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Abstract We continue the study of stability of solving the interior problem of
tomography. The starting point is the Gelfand–Graev formula, which converts the
tomographic data into the finite Hilbert transform (FHT) of an unknown function f
along a collection of lines. Pick one such line, call it the x-axis, and assume that the
function to be reconstructed depends on a one-dimensional argument by restricting
f to the x-axis. Let I1 be the interval where f is supported, and I2 be the interval
where the Hilbert transform of f can be computed using the Gelfand–Graev formula.
The equation to be solved is H1 f = g|I2 , where H1 is the FHT that integrates over
I1 and gives the result on I2, i.e. H1 : L2(I1) → L2(I2). In the case of complete data,
I1 ⊂ I2, and the classical FHT inversion formula reconstructs f in a stable fashion.
In the case of interior problem (i.e., when the tomographic data are truncated), I1 is
no longer a subset of I2, and the inversion problems becomes severely unstable. By
using a differential operator L that commutes with H1, one can obtain the singular
value decomposition of H1. Then the rate of decay of singular values of H1 is the
measure of instability of finding f . Depending on the available tomographic data,
different relative positions of the intervals I1,2 are possible. The cases when I1 and I2
are at a positive distance from each other or when they overlap have been investigated
already. It was shown that in both cases the spectrum of the operator H∗

1H1 is discrete,
and the asymptotics of its eigenvalues σn as n → ∞ has been obtained. In this paper
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we consider the case when the intervals I1 = (a1, 0) and I2 = (0, a2) are adjacent.
Here a1 < 0 < a2. Using recent developments in the Titchmarsh–Weyl theory, we
show that the operator L corresponding to two touching intervals has only continuous
spectrum and obtain two isometric transformations U1, U2, such that U2H1U∗

1 is the
multiplication operator with the function σ(λ), λ ≥ (a2

1 +a2
2)/8. Here λ is the spectral

parameter. Then we show that σ(λ) → 0 as λ → ∞ exponentially fast. This implies
that the problem of finding f is severely ill-posed. We also obtain the leading asymp-
totic behavior of the kernels involved in the integral operators U1, U2 as λ → ∞.
When the intervals are symmetric, i.e. −a1 = a2, the operators U1, U2 are obtained
explicitly in terms of hypergeometric functions.

Keywords Interior problem of tomography · Finite Hilbert transform · Titchmarsh–
Weyl theory · Diagonalization

Mathematics Subject Classification 34B24 · 34L10 · 44A12 · 44A15

1 Introduction

In this paper we continue the study of the stability of solving the interior problem
of tomography initiated in papers [1,2,5,13]. The starting point of the study is the
Gelfand–Graev formula [8], which converts the tomographic data into the finite Hilbert
transform (FHT) of an unknown function f along a collection of lines. In what follows
we pick one such line, call it the x-axis, and assume that the function to be reconstructed
depends on a one-dimensional argument by restricting f to the x-axis.

Let I1 be the interval where f is supported, and I2 be the interval where the Hilbert
transform of f can be computed using the Gelfand–Graev formula. The equation to be
solved can be written in the form H1 f = g|I2 , whereH1 is the FHT that integrates over
I1 and gives the result on I2, i.e. H1 : L2(I1) → L2(I2). In the case of complete data,
I1 ⊂ I2, and the classical FHT inversion formula reconstructs f in a stable fashion.
In the case of interior problem (i.e., when the tomographic data are truncated), I1
is no longer a subset of I2, and the inversion problem becomes severely unstable.
The approach employed in the papers mentioned above is based on a differential
operator L that commutes withH1. The operator was obtained in [11,12]. By using the
commutation property LH1 = H1L one can obtain the singular value decomposition
of H1. Then the rate of decay of the singular values of H1 is the measure of instability
of finding f .

Depending on the type of tomographic data available, different relative positions
of the intervals I1,2 are possible. The case when I1 and I2 are at a positive distance
from each other is investigated in [13]. It is shown there that the spectrum of the
operator H∗

1H1 is discrete, and its eigenvalues σn go to zero exponentially fast as
n → ∞. The case when I1 and I2 overlap is investigated in [1,2]. It is shown that
the spectrum of H∗

1H1 is still discrete and has two accumulation points: 0 and 1. The
eigenvalues of the operator can be enumerated in such a way that σn → 0, n → ∞,
and σn → 1, n → −∞, and in each case σn approach the limit exponentially fast.
The only case that remained unanswered was when I1 and I2 touch each other. It was
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interesting to understand the nature of the spectrum of H1 and estimate how ill-posed
it is to find f . Since this is a transitional case, it is clear that something special must be
happening here. Thus, our problem can be formulated as follows. Given two adjacent
intervals I1 = (a1, 0) and I2 = (0, a2), study the instabily of reconstruction of an
L2(a1, 0) function f (x) knowing its FHT on (0, a2).

Fix two points a1,2 such that a1 < 0 < a2 and consider two intervals

I1 := (a1, 0), I2 := (0, a2). (1.1)

Following [11,12], define a differential operator

L f (x) = (P f ′)′ + Q f, P(x) = (x − a1)x
2(x − a2), Q(x) = 2

(
x − a1 + a2

4

)2

.

(1.2)

Each of the intervals in (1.1) gives rise to a singular Sturm-Liouville problem (SLP).
Using recent developments in the Titchmarsh–Weyl theory obtained in [4,7], we show
in this paper that the SLPs have only continuous spectrum and obtain two isometric
transformations U1, U2, such that U2H1U∗

1 is a multiplication operator with σ(λ),
λ ≥ (a2

1 + a2
2)/8 (see Theorem 3.1). Here λ is the spectral parameter. Then we

show that σ(λ) → 0 as λ → ∞ exponentially fast (cf. (3.47)). This implies that
the problem of finding f is severely ill-posed. We also obtain the leading asymptotic
behavior of the kernels involved in the integral operators U1, U2 as λ → ∞. These
are the functions φ1,2 given in (3.19) and (3.36), respectively. When the intervals are
symmetric, the operators U1, U2 are obtained explicitly in terms of hypergeometric
functions (see Theorem 4.3). Obviously, the operator with the kernel 1/(x − y) acting
from L2(−a, 0) → L2(0, a) is naturally related to the operator with the kernel 1/(x+
y) acting from L2(0, a) → L2(0, a). Thus our results extend those of [14], where, in
particular, the diagonalization of the operator 1/(x + y) : L2(0,∞) → L2(0,∞) is
obtained. See also the paper [6], whether the diagonalization of the operator 1/(x+y) :
L2(0,∞) → L2(0,∞) is discussed in the context of inverting the Laplace transform.

The paper is organized as follows. In Sect. 2 we establish that the operator L in
(1.2) commutes with the FHT defined on the two intervals (1.1). We also briefly
summarize the Titchmarsh–Weyl theory for differential operators with two singular
points obtained in [4,7]. In Sect. 3 we diagonalize the FHT acting from L2(a1, 0) →
L2(0, a2). In Sect. 4 we diagonalize the FHT in the case of symmetric intervals. In
Sect. 5 we prove that L does not have discrete spectrum, and some auxiliary results
are proven in Sects. 6 and 7.

2 Spectrum of the Commuting Differential Operator L

2.1 Commuting Differential Operator

Recall that the operator L is defined by (1.2). By considering Frobenius solutions to
the equation L f = λ f near x = a1, 0, and a2 we conclude that
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• Near x = a j , j = 1, 2, there are two linearly independent solutions φ j (x) and
θ j (x) = φ j (x) ln(x − a j ) + ψ j (x), where φ j and ψ j are analytic near x = a j ,
and ψ j (a j ) = 0;

• Near x = 0 there are two linearly independent solutions

y± = x− 1
2 ±iμψ±(x) (2.1)

where

μ =
√

λ − (a1+a2)2

8

−a1a2
− 1

4
, (2.2)

ψ±(0) = 1, and ψ±(z) are analytic in the disk |z| < min{|a1|, a2}.
Also, we see immediately that L is of the Limit Circle (LC) type at x = a j , j = 1, 2,
and of the Limit Point (LP) type at x = 0. Consequently, no boundary condition is
required at x = 0. The two SLPs mentioned in the introduction become

(P(x) f ′)′ + Q(x) f = λ f, x ∈ I j , P(x) f ′(x) → 0 as x → a j , j = 1, 2. (2.3)

Next we define two FHTs

(H j f )(z) := 1

π

∫
I j

f (x)

x − z
dx, j = 1, 2. (2.4)

Lemma 2.1 Pick any f ∈ C2(I j ), j = 1, 2, such that f (x) is bounded as x → a j ,
and

f (x) = o(|x |−1), f ′(x) = o(|x |−2), x → 0. (2.5)

Then one has:

(H j L f )(x) = (LH j f )(x) if dist(x, I j ) > 0, j = 1, 2. (2.6)

Remark 2.2 Assumptions (2.5) are inspired by the properties (2.1), (2.2).

The proof of the lemma is based on integration by parts and is completely analogous
to that of Proposition 2.1 in [11]. The only difference is that now the boundary terms
at x = 0 vanish because (1.2) and (2.5) imply

P(x) f ′(x) → 0 and P ′(x) f (x) → 0 as x → 0. (2.7)

2.2 Basic Facts About Diagonalizing the Operator L

Consider the operator L acting on smooth functions defined on I1. Recall that L is of
the LC type at a1, and of the LP type—at 0. Consider the Liouville transformation

t =
∫ x

a1

ds√−P(s)
, x ∈ I1. (2.8)
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The transformation (2.8) maps the interval I1 into the ray (0,∞). The inverse of the
map defines x = x(t) as a function of t . Define

F(t) := 4
√−P(x)y(x), q(t) := Q(x) +

(
(P ′(x))2

16P(x)
− P ′′(x)

4

)
, x = x(t), t > 0.

(2.9)

A standard computation shows that if f (x) solves the equation L f = λ f on I1, then
F(t) solves

F ′′(t) + (λ − q(t))F(t) = 0, t > 0. (2.10)

Note that q(t (x)) → (a2
1 + a2

2)/8 as x → 0− (and t → ∞). It is easy to see that
after subtracting the constant (a2

1 + a2
2)/8 from q and shifting the spectral parameter

accordingly, our potential q(t) satisfies the conditions (1.2)–(1.4) stated in [7]. In
particular, in the terminology of [7], (2.10) falls under Case I with q0 = 1/4 (cf. (1.3),
(1.4) in [7]). Thus the spectral theory developed in [7] can be applied to our equation.

Following [7], we need to find two solutions �(t, λ),	(t, λ) to (2.10) with the
following properties:

�(t, λ),	(t, λ) ∈ R, ∀t > 0, λ ∈ R,

�′(t, λ) → 0 as t → 0+, Wt (	(t, λ),�(t, λ)) = 1, t > 0, ∀λ ∈ C;
lim
t→0

Wt (	(t, λ′),�(t, λ)) = 1, ∀λ, λ′ ∈ C. (2.11)

Let φ(x, λ), θ(x, λ) be the solutions to (L − λ) f = 0 on I1 that correspond to the
solutions �(t, λ),	(t, λ) to (2.10). As is well known, the Wronskians of the two pairs
are related by

Wt (	(t, λ),�(t, λ)) = −P(x)Wx (θ(x, λ), φ(x, λ)). (2.12)

Hence, in terms of the solutions to the original equation, conditions (2.11) mean:

φ(x, λ), θ(x, λ) ∈ R, ∀x ∈ I1, λ ∈ R,

P(x)φ′(x, λ) → 0 as x → a+
1 , (−P(x))Wx (θ(x, λ), φ(x, λ)) = 1, x ∈ I1, ∀λ ∈ C;

lim
x→a+

1

(−P(x))Wx (θ(x, λ′), φ(x, λ)) = 1, ∀λ, λ′ ∈ C. (2.13)

Note that the first condition on the second line in (2.13) is equivalent to the require-
ment that φ(x, λ) be bounded as x → a1 (cf. Lemma 2.1). Once two solutions
φ(x, λ), θ(x, λ) that satisfy (2.13) have been found, we determine the Titchmarsh–
Weyl m-function m(λ) from the requirement

θ(x, λ) + m(λ)φ(x, λ) ∈ L2(I1), �λ > 0. (2.14)
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Then the m-function determines the spectral density by the formula

ρ(λ2) − ρ(λ1) = lim
u→0+

1

π

∫ λ2

λ1

�m(s + iu)ds, (2.15)

where λ1, λ2 are points of continuity of ρ. Define the operator U : L2(I1) →
L2(R, dρ) and its adjoint by the formulas:

(U f )(λ) =
∫
I1

φ(x, λ) f (x)dx, (U∗ f̃ )(x) =
∫
R

φ(x, λ) f̃ (λ)dρ(λ). (2.16)

The Titchmarsh–Weyl theory asserts that (cf. [4,7])

• the operator U is an isometry: ‖ f ‖L2(I1) = ‖U f ‖L2(R,dρ);
• U is unitary: U−1 = U∗; and
• U diagonalizes L: (ULU−1 f̃ )(λ) = λ f̃ (λ) for a sufficiently “nice” f , i.e. for

f ∈ D(L).

The interval I2 can be considered in a completely analogous fashion. The only
difference is that the two Wronskians in (2.13) are multiplied by P(x) instead of
−P(x). Thus, the analogue of (2.13) becomes

φ(x, λ), θ(x, λ) ∈ R, ∀x ∈ I2, λ ∈ R,

P(x)φ′(x, λ) → 0 as x → a−
2 , P(x)Wx (θ(x, λ), φ(x, λ)) = 1, x ∈ I2, ∀λ ∈ C;

lim
x→a−

2

P(x)Wx (θ(x, λ′), φ(x, λ)) = 1, ∀λ, λ′ ∈ C. (2.17)

3 General Case

From (1.2) we have

x2(x − a1)(x − a2)y
′′ + [2x(x − a1)(x − a2) + x2(2x − a1 − a2)]y′

+[2(x − a1 + a2

4
)2 − λ]y = 0. (3.1)

Our first goal is to obtain approximations as λ → ∞ to two linearly independent
solutions to (3.1) that are valid on all I1 and I2. Consider first the interval I1 = (a1, 0).
It was shown in [13] that in a neighborhood of x = a1 two solutions to (3.1) can be
written in the form

g1(x) = J0(2
√
t) + t−1/4O

(
ε1− 2

3 δ
)

, g2(x) = Y0(2
√
t) + t−1/4O

(
ε1− 2

3 δ
)

,

1 ≤ t ≤ O

(
ε
−

(
1+ 2

3 δ
))

, t := λ(x − a1)

−P ′(a1)
, ε := λ−1/2, 0 < δ � 1. (3.2)
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Thus, t is a rescaled variable defined near x = a1. The leading order terms of the
WKB solutions to (3.1), valid away from x = a1, 0, are given by

Y1(x) = (−P(x))−
1
4

{
cos

(√
λ

∫ x

a1

dt√−P(t)
− π

4

)
+ O

(
ε

1
2 −δ

)}
,

Y2(x) = (−P(x))−
1
4

{
sin

(√
λ

∫ x

a1

dt√−P(t)
− π

4

)
+ O

(
ε

1
2 −δ

)}
,

x ∈ [a1 + O
(
ε1+2δ

)
,−e−1/

√
ε]. (3.3)

Using the asymptotic formulae 8.451.1, 8.451.2 of [9] for the Bessel functions
J0(t),Y0(t) as t → ∞, it was shown in [13] that

g1(x) = 1

c(λ)

{(
1 + O

(
ε

1
2 −δ

))
Y1(x) + O

(
ε

1
2 −δ

)
Y2(x)

}
,

g2(x) = 1

c(λ)

{
O

(
ε

1
2 −δ

)
Y1(x) +

(
1 + O

(
ε

1
2 −δ

))
Y2(x)

}
, (3.4)

and

g1(x) =
cos

(
ϕ(x; λ) − π

4

) + O
(
ε

1
2 −δ

)

c(λ)(−P(x))
1
4

, g2(x) =
sin

(
ϕ(x; λ) − π

4

) + O
(
ε

1
2 −δ

)

c(λ)(−P(x))
1
4

,

x ∈ [a1 + O
(
ε1+2δ

)
,−e−1/

√
ε], (3.5)

where

ϕ(x; λ) := √
λ

∫ x

a1

dt√−P(t)
, c(λ) := λ1/4

√
π

−P ′(a1)
. (3.6)

In a neighborhood of x = 0 the leading order equation is

a1a2x
2y′′ + 2a1a2xy

′ +
[
(a1 + a2)

2

8
− λ

]
y = 0. (3.7)

The characteristic roots are − 1
2 ± iμ, where

μ =
√

λ − (a1+a2)2

8

−a1a2
− 1

4
=

√√√√λ − a2
1+a2

2
8

−a1a2
=

√
λ

−a1a2
+ O(ε), λ → ∞. (3.8)

Thus, μ ≥ 0 provided λ ≥ a2
1+a2

2
8 . The corresponding solutions to (3.1) have the form

y±(x) = (−x)−
1
2 ±iμψ1,2(x; λ), (3.9)

where ψ1,2(0; λ) = 1, and ψ1,2(x; λ) are analytic in the disk |x | < max{|a1|, a2}.
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To match the WKB solutions (3.3) with those given in (3.9) we use formula 2.266
of [9] to obtain

1

(−P(x))
1
4

= 1 + O(x)

(−a1a2)1/4
√−x

,

∫ x

a1

dt√−P(t)
= 1√−a1a2

ln
2
√−a1a2

√
(t − a1)(a2 − t) + (a1 + a2)t − 2a1a2

|t |
∣∣∣∣
x

a1

= 1√−a1a2
ln

[√−a1
√
a2 − t + √

a2
√
t − a1]2

|t |
∣∣∣∣
x

a1

= − ln(−x) + κ + O(x)√−a1a2
, x → 0−, κ := ln

a2 − a1

−4a1a2
. (3.10)

Therefore,
ϕ(x; λ) = −(μ + O(ε))(ln(−x) + κ + O(x)). (3.11)

For convenience, instead of solutions (3.3) we will temporarily consider an equiv-
alent pair Y±:

Y+(x) := (Y1(x) + iY2(x))e
iπ/4, Y−(x) := (Y1(x) − iY2(x))e

−iπ/4. (3.12)

Clearly,

Y±(x) = (−P(x))−
1
4

{
exp(±iϕ(x; λ)) + O

(
ε

1
2 −δ

)}
,

x ∈ [a1 + O
(
ε1+2δ

)
,−e−1/

√
ε]. (3.13)

According to the sentence following (7.6) (see Sect. 7 below), we will assume x ∈
[−c2ε

2,−c1ε
2], where 0 < c1 < c2 < 1. From (3.3), (3.6), and (3.11) we find

(−x)1/2Y±(x; λ)

= 1 + O(x)

(−a1a2)1/4 [exp(±iϕ(x; λ)) + O
(
ε

1
2 −δ

)
]

= 1 + O(x)

(−a1a2)1/4 [exp(∓iμ(ln(−x) + κ)) + O(ε ln(−x)) + O(x/ε) + O
(
ε

1
2 −δ

)
]

=
exp(∓iμ(ln(−x) + κ)) + O

(
ε

1
2 −δ

)
(−a1a2)1/4 , x ∈ [−c2ε

2,−c1ε
2]. (3.14)

From (7.8),

(−x)1/2y±(x) = (−x)±iμ + O(ε), x ∈ [−c2ε
2,−c1ε

2]. (3.15)
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Matching (3.14) and (3.15) shows

Y±(x) = 1

(−a1a2)1/4

{
exp(∓iμκ)y∓(x)

(
1 + O

(
ε

1
2 −δ

))
+ exp(±iμκ)y±(x)O

(
ε

1
2 −δ

)}
.

(3.16)

Using (3.4), (3.12), and (3.16) yields

g1(x; λ) =
( |a1|3

a2

)1/4 √
a2 − a1

π

1

2λ1/4

{
eiμκ+i π

4

(
1 + O

(
ε

1
2 −δ

))
y+(x; λ)

+ e−iμκ−i π
4

(
1 + O

(
ε

1
2 −δ

))
y−(x; λ)

}
,

g2(x; λ) =
( |a1|3

a2

)1/4 √
a2 − a1

π

1

2iλ1/4

{
−eiμκ+i π

4

(
1 + O

(
ε

1
2 −δ

))
y+(x; λ)

+ e−iμκ−i π
4

(
1 + O

(
ε

1
2 −δ

))
y−(x; λ)

}
. (3.17)

Recall that t is defined according to (3.2). Using formula 8.478 of [9] it is easy
to find that the Wronskian Wx of πY0(2

√
t) and J0(2

√
t) (as functions of x) equals

1
a1−x . Using the limit

lim
x→a+

1

(−P(x))Wx (πY0(2
√
t), J0(2

√
t)) = −a2

1(a2 − a1), (3.18)

we obtain that properties (2.13) are satisfied if we set

φ1(x, λ) := g1(x), θ1(x, λ) := −πg2(x)/[a2
1(a2 − a1)]. (3.19)

Here and in what follows, the subscript ‘1’ in φ1, θ1,m1, and ρ1 means that these
functions correspond to the interval I1. Condition (2.14) now implies that the m func-
tion needs to be selected so that the leading coefficients in front of the singularity

(−x)− 1
2 +iμ as x → 0− in θ1(x, λ) and m1(λ)φ1(x, λ) are equal each other in magni-

tude and are of opposite signs. Using (3.17) and (3.19) we obtain

m1(λ) = π i

a2
1(a2 − a1)

(
1 + O

(
ε

1
2 −δ

))
. (3.20)

Equation (2.15) now immediately implies

ρ′
1(λ) = 1

a2
1(a2 − a1)

(
1 + O

(
ε

1
2 −δ

))
, (3.21)

which matches the case of a2 = −a1 = a considered in Sect. 4 for large λ.
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Next we consider the interval I2. The derivation of the spectral density is very
similar, so we sketch here only the main formulas. The analogue of (3.2) becomes

g1(x) = J0(2
√
t) + t−1/4O

(
ε1− 2

3 δ
)

, g2(x) = Y0(2
√
t) + t−1/4O

(
ε1− 2

3 δ
)

,

1 ≤ t ≤ O

(
ε
−

(
1+ 2

3 δ
))

, t := λ(a2 − x)

P ′(a2)
, 0 < δ � 1. (3.22)

Thus, t is a rescaled variable defined near x = a2. The leading order terms of the
WKB solutions, valid away from x = 0, a2, are given by

Y1(x) = (−P(x))−
1
4

{
cos

(√
λ

∫ a2

x

dt√−P(t)
− π

4

)
+ O

(
ε

1
2 −δ

)}
,

Y2(x) = (−P(x))−
1
4

{
sin

(√
λ

∫ a2

x

dt√−P(t)
− π

4

)
+ O

(
ε

1
2 −δ

)}
,

x ∈ [e−1/
√

ε, a2 − O
(
ε1+2δ

)
]. (3.23)

Matching g1,2 in (3.22) with Y1,2 in (3.23) gives (cf. [13])

g1(x) = 1

c(λ)

{(
1 + O

(
ε

1
2 −δ

))
Y1(x) + O

(
ε

1
2 −δ

)
Y2(x)

}
,

g2(x) = 1

c(λ)

{
O

(
ε

1
2 −δ

)
Y1(x) +

(
1 + O

(
ε

1
2 −δ

))
Y2(x)

}
, (3.24)

and

g1(x) =
cos

(
ϕ(x; λ) − π

4

) + O
(
ε

1
2 −δ

)

c(λ)(−P(x))
1
4

, g2(x) =
sin

(
ϕ(x; λ) − π

4

) + O
(
ε

1
2 −δ

)

c(λ)(−P(x))
1
4

,

x ∈ [e−1/
√

ε, a2 − O
(
ε1+2δ

)
], (3.25)

where

ϕ(x; λ) := √
λ

∫ a2

x

dt√−P(t)
, c(λ) := λ1/4

√
π

P ′(a2)
. (3.26)

Analogously to (3.10) we have

∫ a2

x

dt√−P(t)
= − 1√−a1a2

ln
[√−a1

√
a2 − t + √

a2
√
t − a1]2

|t |
∣∣∣∣
a2

x

= − ln x + κ + O(x)√−a1a2
, x → 0+, (3.27)

where κ is the same as in (3.10). Therefore,

ϕ(x; λ) = −(μ + O(λ−1/2))(ln x + κ + O(x)). (3.28)
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With the solutions Y± defined according to (3.12) (using Y1,2 for the interval I2), we
have

Y±(x) = (−P(x))−
1
4

{
exp(±iϕ(x; λ)) + O

(
ε

1
2 −δ

)}
,

x ∈ [e−1/
√

ε, a2 − O
(
ε1+2δ

)
]. (3.29)

Next we assume x ∈ [c1ε
2, c2ε

2], where 0 < c1 < c2 < 1. From (3.28) and (3.29)
we find similarly to (3.14)

x1/2Y±(x; λ) =
exp(∓iμ(ln x + κ)) + O

(
ε

1
2 −δ

)
(−a1a2)1/4 , x ∈ [c1ε

2, c2ε
2]. (3.30)

The solutions analogous to (3.1) have the form

y±(x) = x− 1
2 ±iμψ1,2(x; λ), (3.31)

where ψ1,2(0; λ) = 1, and ψ1,2(x; λ) are analytic in the disk |x | < max{|a1|, a2}.
Similarly to (3.15),

x1/2y±(x) = x±iμ + O(ε), x ∈ [c1ε
2, c2ε

2]. (3.32)

Matching (3.30) and (3.32) shows

Y±(x) = 1

(−a1a2)1/4

{
exp(∓iμκ)y∓(x)

(
1 + O

(
ε

1
2 −δ

))
+ exp(±iμκ)y±(x)O

(
ε

1
2 −δ

)}
.

(3.33)

Combining (3.12), (3.24), (3.26), and (3.33) gives

g1(x; λ) =
(

a3
2

|a1|

)1/4 √
a2 − a1

π

1

2λ1/4

{
eiμκ+i π

4

(
1 + O

(
ε

1
2 −δ

))
y+(x; λ)

+ e−iμκ−i π
4

(
1 + O

(
ε

1
2 −δ

))
y−(x; λ)

}
,

g2(x; λ) =
(

a3
2

|a1|

)1/4 √
a2 − a1

π

1

2iλ1/4

{
−eiμκ+i π

4

(
1 + O

(
ε

1
2 −δ

))
y+(x; λ)

+ e−iμκ−i π
4

(
1 + O

(
ε

1
2 −δ

))
y−(x; λ)

}
. (3.34)

With t defined according to (3.22), we have Wx (πY0(2
√
t), J0(2

√
t)) = 1/(a2 − x).

Thus
lim

x→a−
2

P(x)Wx (πY0(2
√
t), J0(2

√
t)) = −a2

2(a2 − a1), (3.35)



J Fourier Anal Appl (2016) 22:1356–1380 1367

and properties (2.17) are satisfied by setting

φ2(x, λ) := g1(x), θ2(x, λ) := −πg2(x)/[a2
2(a2 − a1)]. (3.36)

From (2.14), (3.34), and (3.36) we obtain

m2(λ) = π i

a2
2(a2 − a1)

(
1 + O

(
ε

1
2 −δ

))
. (3.37)

Equation (2.15) now immediately implies

ρ′
2(λ) = 1

a2
2(a2 − a1)

(
1 + O

(
ε

1
2 −δ

))
. (3.38)

Now we can find the asymptotics of the diagonal representation of H. Following
(2.16) introduce the operators

(U1 f )(λ) =
∫
I1

φ1(x, λ) f (x)dx, (U∗
1 f̃ )(x) =

∫
R

φ1(x, λ) f̃ (λ)dρ1(λ),

(U2 f )(λ) =
∫
I2

φ2(x, λ) f (x)dx, (U∗
2 f̃ )(x) =

∫
R

φ2(x, λ) f̃ (λ)dρ2(λ). (3.39)

The domain and range spaces of these four operators are defined similarly to Sect. 2.2.
Recall that φ1,2(x, λ) are solutions to (L−λ) f = 0 on I1,2 that are bounded at a1,2,

respectively. If λ ≥ (a2
1 + a2

2)/8, φ1,2(x, λ) satisfy (3.31). Thus, φ1,2(x, λ) satisfy the
assumptions of Lemma 2.1, and from (2.6)

λH1φ1 = H1Lφ1 = LH1φ1. (3.40)

Hence H1φ1 satisfies (3.1) on I2 and is bounded near a2. From the Frobenius theory
it follows that there cannot be two linearly independent solutions to (L − λ) f = 0
on I2 that are bounded at a2, so we conclude that H1φ1 = ν(λ)φ2 for some function
ν(λ). Obviously,

(H1U
∗
1 f̃ )(λ) =

∫
R

(H1φ1(x, λ)) f̃ (λ)dρ1(λ) =
∫
R

(ν(λ)φ2(x, λ)) f̃ (λ)dρ1(λ)

=
∫
R

(
ν(λ)

ρ′
1(λ)

ρ′
2(λ)

)
φ2(x, λ) f̃ (λ)dρ2(λ), (3.41)

where f̃ ∈ L2(R, dρ1). In Sect. 5 below we will show that L does not have discrete
spectrum. It is also well-known that L has no continuous spectrum in the region λ <

(a2
1+a2

2)/8. Hence the integrals in (3.41) are actually over the interval λ ≥ (a2
1+a2

2)/8.
The first equality in (3.41) holds because H1 : L2(I1) → L2(I2) is continuous, and
the kernel 1/(x − y) is smooth on I1 × I2. Hence
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U2H1U
∗
1 = ν(λ)

ρ′
1(λ)

ρ′
2(λ)

, (3.42)

To find ν(λ) we use the well-known identity

1

π

∫ 0

−∞
(−x)− 1

2 +iμ

x − y
dx = − y− 1

2 +iμ

cosh(μπ)
, y > 0, μ ∈ R. (3.43)

When the interval of integration is not all of (−∞, 0) and the integrand is not exactly

(−x)− 1
2 +iμ, we can interpret (3.43) as a statement about the leading singularities.

More precisely, if H1 acts on a function with the leading singularity (−x)− 1
2 +iμ,

x → 0−, the result is a function with the leading singularity (−1/ cosh(μπ))y− 1
2 +iμ,

y → 0+. Thus, from (3.17), (3.19) and (3.34), (3.36) we obtain

ν(λ) = − 1

cosh(μπ)

(
|a1|
a3

2

)1/4 ( |a1|3
a2

)1/4 (
1 + O

(
ε

1
2 −δ

))

= a1a2

cosh(μπ)

(
1 + O

(
ε

1
2 −δ

))
. (3.44)

Using now (3.21) and (3.38) finally gives

U2H1U
∗
1 = a3

2

a1

1

cosh(μπ)

(
1 + O

(
ε

1
2 −δ

))
. (3.45)

Define J := [(a2
1 +a2

2)/8,∞). The results of this section combined with the results
in [4,7]) can be summarized in the following theorem.

Theorem 3.1 The operators U j : L2(I j ) → L2(J, ρ′
j ) and U∗

j : L2(J, ρ′
j ) →

L2(I j ), j = 1, 2, defined in (3.39) are isometric transformations. Moreover, in the
sense of operator equality on L2(J, ρ′

1) one has

U2H1U
∗
1 = σ(λ), (3.46)

where

σ(λ) = a3
2

a1

1

cosh(μπ)

(
1 + O

(
ε

1
2 −δ

))
, λ → ∞. (3.47)

4 Symmetric Case

In this section we consider the case of symmetric intervals, i.e. a2 = −a1 = a. The
polynomials P and Q are given by P = x2(x2 − a2) and Q(x) = 2x2, and the
differential equation in (3.1) becomes

(x2(x2 − a2)y′)′ + (2x2 − λ)y = 0. (4.1)
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Due to symmetry, if y(x) is a solution to (4.1), then so is y(−x).

4.1 Solution of Ly = λy

The change of variables x = az reduces (4.1) to

z2(z2 − 1)y′′ + 2z(2z2 − 1)y′ +
(

2z2 − λ

a2

)
y = 0. (4.2)

According to [10], 2.410, two linearly independent solutions of (4.2) are given by

y(z) = z−
1
2 ±iμη±(z2), (4.3)

where

μ =
√

λ

a2 − 1

4
, α = 1

4
± 1

2
iμ, β = 3

4
± 1

2
iμ, γ = 1 ± iμ, (4.4)

and η±(ξ) are solutions of the hypergeometric equation

ξ(ξ − 1)η′′± + [(α + β + 1)ξ − γ ]η′± + αβη± = 0 (4.5)

with the corresponding choice of the sign in α, β, γ . Sometimes, we will use notation
η instead of η+.

Since we are interested in a solution ϕ(z) = ϕ(z, λ) of (4.2) that is analytic at
z = 1, we reduce (4.5) to another hypergeometric equation

ζ(ζ − 1)η′′ + [(α + β + 1)ζ − (1 + α + β − γ )]η′ + αβη = 0 (4.6)

by the change of variables ξ = 1 − ζ . Then

ϕ(z) = z−
1
2 +iμF

(
1

4
+ iμ

2
,

3

4
+ iμ

2
, 1, 1 − z2

)
. (4.7)

Using the transformation formula 15.3.6 from [3], the behavior of ϕ near z = 0 is
given by

ϕ(z) = �(−iμ)

�( 1
4 − iμ

2 )�( 3
4 − iμ

2 )
z−

1
2 +iμF

(
1

4
+ iμ

2
,

3

4
+ iμ

2
, 1 + iμ, z2

)

+ �(iμ)

�( 1
4 + iμ

2 )�( 3
4 + iμ

2 )
z−

1
2 −iμF

(
1

4
− iμ

2
,

3

4
− iμ

2
, 1 − iμ, z2

)

= k f (z) + lg(z), (4.8)

where

f (z) = z−
1
2 +iμF

(
1

4
+ iμ

2
,

3

4
+ iμ

2
, 1 + iμ, z2

)
,
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g(z) = z−
1
2 −iμF

(
1

4
− iμ

2
,

3

4
− iμ

2
, 1 − iμ, z2

)
, (4.9)

and k, l are the corresponding prefactors.
It follows from (4.3), (4.4) that f (z), g(z) themselves are solutions to (4.2) with

f (z) = z− 1
2 +iμη+(z2) and g(z) = z− 1

2 −iμη−(z2). Moreover, in the case

λ ≥ a2

4
(4.10)

we have l = k̄ and g(z) = f (z) when z ∈ R. Thus, for these values of λ and z,

ϕ(z, λ) = k f (z) + k̄ f (z̄) = 2�[k f (z)]. (4.11)

It follows from (4.11) that ϕ(z, λ) is real for all z ∈ R and λ ≥ a2/4. Returning to the
original variable x = az, we obtain that

φ(x, λ) =
( x
a

)− 1
2 +iμ

F

(
1

4
+ iμ

2
,

3

4
+ iμ

2
, 1, 1 −

( x
a

)2
)

(4.12)

is a real solution of (3.1) on (0, a) that is analytic at x = a. It is clear that φ(−x, λ)

is also a solution, it is real on (−a, 0) and analytic at x = −a.

Lemma 4.1 If λ ≥ a2

4 then

|k|2 = coth(πμ)

2πμ
. (4.13)

Proof Using (4.8), the Schwarz symmetry of �(z), and formulae 8.332.1, 8.332.4 of
[9], we obtain

|k|2 = |�(−iμ)|2( 1
4 − iμ

2 )( 1
4 + iμ

2 )

�( 5
4 − iμ

2 )�( 5
4 + iμ

2 )�( 3
4 − iμ

2 )�( 3
4 + iμ

2 )
= coth(πμ)

2πμ
. (4.14)

��

4.2 Spectral Measure for Ly = λy and Diagonalization of H1

Following the approach in Sect. 3, in order to calculate the spectral measure ρ(λ) we
start with constructing a real-valued solution θ(x, λ), which must be chosen so that
the requirements (2.13) hold. Since θ(x) = θ(x, λ) must be linearly independent from
φ(x, λ), we choose θ(x, λ) as the standard second linearly independent solution of
the hypergeometric equation near x = a, see [9], 9.153.2, which can be written as

θ(x, λ) = κ

[
φ(x, λ) ln

(
a2 − x2

a2

)
+ �

(
a2 − x2

a2 , λ

)]
, (4.15)
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where �( a
2−x2

a2 , λ) is the analytic (non-logarithmic) part of this second solution at

x = ±a and �(0, λ) = 0. We will show below that κ is real and �( a
2−x2

a2 , λ) is
real-valued for all x ∈ R and appropriate λ.

Lemma 4.2 Set κ = − 1
2a3 . Let the functions φ(x, λ) and θ(x, λ) be defined by (4.12)

and (4.15), respectively. Then the pairφ(x, λ)and θ(x, λ) satisfies all the requirements
(2.13) on (0, a), and the pair φ(−x, λ) and θ(−x, λ) satisfies all the requirements
(2.13) on (−a, 0).

Proof We start with the interval (0, a). Clearly,

Wx := Wx (θ(x, λ), φ(x, λ)) = κ

∣∣∣∣∣
φ ln a2−x2

a2 + � φ

φ′ ln a2−x2

a2 − φ 2x
a2−x2 + d

dx � φ′

∣∣∣∣∣
= κ

(
φ′� − φ

d

dx
� + φ2 2x

a2 − x2

)
. (4.16)

Thus, using that φ and � are smooth near a, we obtain

1 = lim
x→a− PWx (θ, φ) = −2a3κ. (4.17)

Here we have used that φ(a, λ) = 1, cf. (4.12). This shows that κ is real. By Abel’s
theorem, P(x)Wx is constant, so the second condition in the second line of (2.13) is
satisfied.

Since φ is real-valued and P(x)Wx (θ, φ) ≡ 1 on (0, a), the Wronskian of φ and �θ

is zero. Since �(0, λ) = 0 and φ(a, λ) = 1, we immediately conclude that �� ≡ 0.
Repeating now the calculations for Wx (θ(x, λ′), φ(x, λ)) and arguing similarly to

(4.16)–(4.17), we obtain

lim
x→a− P(x)W (θ(x, λ′), φ(x, λ)) = 1 (4.18)

for any λ, λ′ ∈ C. Note that in this case the logarithmic terms will appear in the
Wronskian, but they will not affect the limit in (4.18). Thus our choice of κ is correct,
and all the requirements in (2.13) are satisfied.

Next we consider the interval (−a, 0). Analytic continuation of the solutions
θ(x, λ), φ(x, λ), λ ≥ a2

4 , from the interval (0, a) to the negative half-axis is no longer
real-valued. Therefore, on the interval (−a, 0) we replace them by the real-valued
solutions θ(−x, λ), φ(−x, λ). It is straightforward to see that the Wronskian of these
solutions is − 1

P(−x) . However the sign in front of P(x) in (2.13) is also changed to the
opposite. Thus the pair θ(−x, λ), φ(−x, λ) satisfies (2.17), and the lemma is proven.

��
We are interested in �m(λ), where λ ∈ R. Given the solutions φ and θ with the

required properties, we can compute the spectral density ρ′(λ). Again, we start with
the interval (0, a). We need �m(λ), where λ ∈ R. In the upper halfplane �λ > 0, the
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function m(λ) is defined by the requirement that θ(x, λ) + m(λ)φ(x, λ) ∈ L2(0, a),
and then m(λ) is analytically continued to the ray λ ≥ a2

4 .
If z ∈ R and μ > 0 then g(z) = f (z̄), where f, g are linearly independent solutions

of (4.2) defined by (4.9). Then, since θ is real valued, there exists some l ∈ C such
that θ = l f + l̄ f̄ , where z = x

a . Note that l = l(μ) and l̄ = l̄(μ) are continuous
functions of μ that are complex conjugate when μ > 0. Then, according to (4.9) and
[3], 15.3.10, we have

θ(x, λ) = l f (x/a) + l̄ f (x/a)

= −2�
[
l

�(1 + iμ)

�( 1
4 + iμ

2 )�( 3
4 + iμ

2 )

]
ln

a2 − x2

a2 + O(1), x → a−. (4.19)

Note that according to (4.8), �(1+iμ)

�( 1
4 + iμ

2 )�( 3
4 + iμ

2 )
= iμk̄. Comparing the logarithmic terms

of (4.19) and (4.15), and using Lemma 4.2, we obtain

− [iμlk̄ + iμlk̄] = − 1

2a3 or �(lk̄) = − 1

4μa3 . (4.20)

Let �λ > 0. According to (4.9), g(z) ∈ L2(0, a) and f (z) /∈ L2(0, a). So, the
requirement that

θ + mφ = l f + l̄g + m(k f + k̄g) ∈ L2(0, a) (4.21)

implies l+mk = 0 or m = − l
k = −lk̄

|k|2 . Taking into account the continuity of l = l(μ),
equation (4.20) and Lemma 4.1, we obtain

�m(λ) = −�(lk̄)

|k|2 = 1

4a3μ|k|2 = π tanh(πμ)

2a3 . (4.22)

For the interval (−a, 0) and �λ > 0, the functionm(λ) is defined by the requirement
that θ(−x, λ) + m(λ)φ(−x, λ) ∈ L2(−a, 0). Arguing analogously to (4.20)–(4.22),
we obtain that the m-function given in (4.22) works for the interval (−a, 0) as well.
Thus,

ρ′(λ) =
tanh(π

√
λ
a2 − 1

4 )

2a3 , (4.23)

and the above holds for both intervals (−a, 0) and (0, a).
Using (4.8), we have

φ1(x) ∼k(−x/a)−
1
2 +iμ + k̄(−x/a)−

1
2 −iμ, x → 0−,

φ2(x) ∼k(x/a)−
1
2 +iμ + k̄(x/a)−

1
2 −iμ, x → 0+. (4.24)

Observing that ρ′
1(λ)/ρ′

2(λ) ≡ 1 (cf. (3.45)) and combining (4.24) with (3.43), we
prove the following result.
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Theorem 4.3 Let J := [a2/4,∞). Define the functions

φ2(x, λ) :=
( x
a

)− 1
2 +iμ

F

(
1

4
+ iμ

2
,

3

4
+ iμ

2
, 1, 1 −

( x
a

)2
)

;

θ2(x, λ) := − 1

2a3

[
φ2(x, λ) ln

(
a2 − x2

a2

)
+�

(
a2 − x2

a2 , λ

)]
, 0 < x < a, λ ∈ J,

(4.25)

and

φ1(x, λ) := φ2(−x, λ), θ1(x, λ) := θ2(−x, λ), −a < x < 0, λ ∈ J. (4.26)

Here F is the hypergeometric function (see 15.1.1 in [3]), and � is the analytic (non-
logarithmic) part of the second solution in [9], 9.153.2. The operators U j : L2(I j ) →
L2(J, ρ′) and U∗

j : L2(J, ρ′) → L2(I j ), j = 1, 2, defined in (3.39) are isometric

transformations. Moreover, in the sense of operator equality on L2(J, ρ′) one has

U2H1U
∗
1 = a2

cosh(μπ)
. (4.27)

Lemma 4.4 One has

k ∼ ei(
π
4 −μ ln 2)

√
2πμ

as μ → +∞. (4.28)

Proof The result follows from (4.8) and formulae 8.335.1, 8328.2 in [9]. ��
Lemma 4.4 shows that the behavior of φ2(x; λ) as x → 0+ in the symmetric case

(cf. (4.24)) and in the general case (given by (3.34)) match up.

4.3 Large λ Asymptotics of φ(z, λ) on I2

In this subsection we calculate a uniform approximation of φ(z, λ) on I2 as λ → ∞.
First, we assume for simplicity that a = 1, so ϕ(x, λ) = φ(z, λ) and x = z (cf. (4.8)).
Using (4.8) and the integral representation given by formula 9.111 of [9], we obtain

φ(z, λ) = 2√
z
�

[
ziμ

�(1 + iμ)�(−iμ)

|�( 1
4 − iμ

2 )�( 3
4 − iμ

2 )|2
∫ 1

0
e
iμ
2 h(t)r(t)dt

]
, (4.29)

where

h(t) = ln t + ln(1 − t) − ln(1 − z2t), r(t) = 1

[t (1 − t)3(1 − z2t)] 1
4

. (4.30)
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According to Lemma 4.1, the constant prefactor of the intergral in (4.29) is i coth πμ
2π

.
We use the stationary phase method to calculate the asymptotic behavior of the integral.
The stationary point t∗ ∈ (0, 1) defined by h′(t∗) = 0 is calculated to be

t∗ = 1 − √
1 − z2

z2 = 1

1 + √
1 − z2

. (4.31)

We also have

1 − t∗ =
√

1 − z2

1 + √
1 − z2

, 1 − z2t∗ =
√

1 − z2, (4.32)

so that

h(t∗) = −2 ln(1 +
√

1 − z2), r(t∗) = 1 + √
1 − z2

√
1 − z2

and

h′′(t∗) = −2
(1 + √

1 − z2)2

√
1 − z2

. (4.33)

Applying the stationary phase method and then returning to the original scale (i.e.,
arbitrary a), we get

φ(x, λ) =
√

2a
√

πμ
√
x(a2 − x2)

1
4

cos

(
μ ln

a + √
a2 − x2

x
− π

4

)
+O(μ−1), (4.34)

which is valid uniformly on compact subintervals of (0, a). Note that the asymptotics
(4.34) in the symmetrical case matches the asymptotics (3.25) for φ2 in the general
case (cf. (3.25) and (3.36)). Recall that λ and μ are related by (3.8).

5 Absence of Discrete Spectrum

In this section we prove that the two Sturm-Liouville problems defined in (2.3) have
no discrete spectrum. We will consider only the case j = 1, with the other case
being analogous. By assumption, if λ is an eigenvalue and f (x) is the corresponding
eigenfunction, then f is bounded (and, hence analytic) near a1 and f ∈ L2(I1). From
(3.8) and (3.9) it follows that if λ > (a2

1 +a2
2)/8, then neither of the solutions y±(x) is

in L2(I1). Hence f ∈ L2(I1) imples f ≡ 0. If λ = (a2
1 + a2

2)/8, the solutions behave
like (−x)1/2 and (−x)1/2 ln(−x), so no linear combination of two such functions can
be in L2(I1).

Suppose next that λ < (a2
1+a2

2)/8. In this case the solutions of (L−λ) f = 0 behave

like (−x)− 1
2 ±q as x → 0− for some q > 0. Clearly, only one of the solutions is in L2.

Let f denote the solution which is in L2 and bounded neara1. Thus, f (x) ∼ (−x)− 1
2 +q

as x → 0−. We can assume f (a1) �= 0, since otherwise f ≡ 0. Denote g := H1 f .
Using (2.6) we have

λg = λH1 f = H1L f = LH1 f = Lg. (5.1)
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By the properties of the Hilbert transform, g has the same behavior at zero as f :

g(y) ∼ y− 1
2 +q as y → 0+. Since Lg = λg on I2, we obtain that f and g are the same

solutions up to a multiplicative factor, i.e.

(H1 f )(y) = k f (y), y ∈ I2, (5.2)

where k is a constant. Using that f (a1) �= 0 and analytically continuing f from I2
into a neighborhood of a1, we see that f has a logarithmic singularity there. But this
contradicts the assumption that f is analytic in a neighborhood of a1. Hence f ≡ 0.

Remark 5.1 At first glance it follows from equation (3.43) that H1 preserves the ratio

of the coefficients in front of the singularities (−x)− 1
2 ±iμ and, therefore, H1 converts

a solution of (L − λ) f = 0 on I1 into (the analytic continuation of) the same solution
on I2. This would lead to a contradiction similar to the one obtained above. It is
easy to check that f and H1 f are, in fact, two different solutions. Indeed, analytic

continuations of (−x)− 1
2 ±iμ from the negative half-axis to the positive half-axis can be

written in the form c±(−x)− 1
2 ±iμ, where c+ �= c−. Hence the ratios of the coefficients

in front of the singularities in f and H1 f at zero are different.

6 Validity of the WKB Solutions

The goal of this section is to construct the WKB solution in a neighborhood of x = 0.
If Eq. (2.3) is written as a 2 by 2 system, then the transformation

Y = diag

(
1,

√
λ

−P

)
Z̃ (6.1)

reduces it to

ε Z̃ ′ =
(

0 1√−P

− 1√−P
+ ε2Q√−P

− εP ′
2P

)
Z̃ , (6.2)

where ε = 1√
λ

. Using now

Z̃ =
(

1 i
i 1

)
Z , (6.3)

we reduce (6.2) to

εZ ′ =
[(

i√−P
0

0 − i√−P

)
− ε

4

(
P ′
P + 2iε Q√−P

−i P
′

P − 2ε
Q√−P

i P
′

P − 2ε
Q√−P

P ′
P − 2iε Q√−P

)]
Z = AZ .

(6.4)
Using the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,



1376 J Fourier Anal Appl (2016) 22:1356–1380

we can write A = A0 + εA1 + ε2A2, where

A0 = iσ3√−P
, A1 = − P ′

4P
(I + σ2), A2 = Q

2
√−P

(σ1 − iσ3). (6.5)

Now the transformation Z = (I + εU )X , where U = P ′
8
√−P

σ1, reduces (6.4) to

εX ′ = B̃ X , where
B̃ = A0 + εdiagA1 + ε2B(ε) (6.6)

and B(ε) is defined by the equation

(I + εU )B(ε) = A2(I + εU ) + A1U −UdiagA1 −U ′. (6.7)

It is clear that B(ε) is analytic near ε = 0 provided εU is small. Direct calculation
yields

B(0) =
(

− (P ′)2

32(−P)
3
2

− Q

2
√−P

)
iσ3 +

(
2PP ′′ − (P ′)2

16(−P)
3
2

+ Q

2
√−P

)
σ1. (6.8)

Consider equation εX ′ = B̃ X as a perturbation of the diagonal equation

εW ′ = (A0 + εdiagA1)W, (6.9)

which has a solution

W = P− 1
4 e

i
ε

∫ z dζ√−P(ζ )
σ3

. (6.10)

Looking now for a solution of εX ′ = B̃ X in the form X = TW , we obtain

εT ′ = [
A0 + εdiagA1, T

] + ε2BT = [A0, T ] + ε2BT, (6.11)

where we have used the fact that diagA1 commutes with any matrix T and matrix W
is nondegenerate. Differential equation (6.11) can be written as the Volterra integral
equation

T (x) = I + ε

∫ x

e
iσ3
ε

∫ x
ζ

dξ√−P(ξ) B(ζ )T (ζ )e
− iσ3

ε

∫ x
ζ

dζ√−P(ζ ) dζ = I + IT, (6.12)

where different contours of integration with the same endpoint x will be selected (see
below) for each entry of the matrix integrand. We denote this collection of contours
by γ̃ (x).

We will solve equation (6.12) by iterations in a certain region � = �(ε) of the
complex x plane that comes exponentially close to x = 0. In order to describe the
region � = �(ε) and contours γ̃ (z) (and taking into account (3.10)), we use the
conformal mapping

v(x) =
∫ x

a1

dζ√−P(ζ )
(6.13)
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x

v

a aa0
0

1 2  

*

*

*

v(a )

v(a )

2

2

v(a )

v(a )

Fig. 1 The map v(x) maps the complex x-plane (left) into the region of the complex v-plane, shown on

the right. The point shown on (a1, 0) is −e
− 1√

ε

that maps the upper half plane �x ≥ 0 into the semi-strip − π√−a1a2
≤ �v ≤ 0 and

�v ≤ 0 of the complex v plane, where v(a1) = 0, v(a2) = − iπ√−a1a2
and v(0) = −∞,

see Fig. 1. The lower half plane �x ≥ 0 is mapped into the complex conjugated semi-
strip. Let us pick an arbitrary fixed point a∗ ∈ (0, a2), for example, a∗ = a2/2. By
�̂ = �̂(ε) we define the isosceles triangle with the base [v(a∗), v(a∗)] and the (third)

vertex at v(−e
− 1√

ε ). According to (3.10),

v

(
−e

− 1√
ε

)
= −ε− 1

2 + O(1) as ε → 0. (6.14)

Then � is the preimage of �̂ under the map (6.13), which is schematically shown

on Fig. 2. It contains the segment [a∗∗,−e
− 1√

ε ], a∗∗ ∈ (a1, 0), where v(a∗∗) =
�v(a∗). Contours γ̃1,1(x), γ̃2,2(x) are the preimages of the segments [v(a∗), v(x)],
[v(a∗), v(x)]. The remaining two contours connect a1

2 and x .
Let �̂0, �0 denote the semi-strip |�v| ≤ π√−a1a2

, �v ≤ v(a∗), and its preimage
under the map (6.13), respectively. Note that �0 contains both shores of the branchcut
[0, a∗], and �(ε) ⊂ �0 for all small ε > 0. Denote by B the vector space of two
by two matrix functions M(x), which are analytic in �0 and bounded in �(ε). The
vector space B becomes a Banach space with the norm given by supx∈�0

‖M(x)‖,
where ‖ · ‖ denotes a matrix norm.

The Volterra equation (6.12) can be written in the operator form as

T = (Id − I)−1 I =
∞∑
j=0

I j I. (6.15)
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x

v(a )
*

*
v(a )

v(a  )
**a2  a

1
a

*

a**

v

v(x)

ΩΩ

x

0

Fig. 2 The triangular region �̂. The preimage � of �̂ is shown on the left. It has the shape of an oval with
a part of its interior (another oval) removed. Given a point x ∈ �, the contours γ̃1,1(x), γ̃2,2(x), are the
preimages of the segments [v(a∗), v(x)], [v(a∗), v(x)], respectively. The latter are shown on the right. The

unmarked points are −e
− 1√

ε —on the left, and its image v(−e
− 1√

ε )—on the right

In order to show the convergence of the series in (6.15), we need to estimate the norm
of I. In the variable v, the operator I becomes

IM = ε

∫
γ̂ (v)

e
iσ3
ε

(v−ξ) B̃(ξ)M(ξ)e− iσ3
ε

(v−ξ)dξ, (6.16)

where B̃(ξ) = √−P(x)B(x)
∣∣
x=v−1(ξ)

. According to (6.6)–(6.8), the matrix√−P(x)B(x) ∈ B. Let ‖B̃(x)‖ = b. It follows then from the construction of I
and (6.16) that

‖IM‖ ≤ 2bε
1
2 ‖M‖. (6.17)

Thus, choosing ε < 1
4b2 , we can guarantee the convergence of the series in (6.15), that

is, the convergence of iterations to the solution of the Volterra equation (6.12).
According to the above argument, we have constructed a fundamental solution of

the form

Y (x) = diag

(
1,

√
λ

−P

)(
1 i
i 1

)(
I + εP ′

8
√−P

σ1

)

×
(
I + O

(
ε

1
2
))

(−P)−
1
4 e

i
ε

∫ x
a1

dζ√−P(ζ )
σ3 (6.18)

on �(ε). Then, according to (3.8), (3.10), there exist two solution Y±(x) of (2.3),
given by

Y±(x) = (−P)−
1
4 e

± i
ε

∫ x
a1

dζ√−P(ζ )

(
I + O

(
ε

1
2
))

= e±iμκ

(−a1a2)
1
4

(−x)−
1
2 ±iμ(1 + O

(
ε

1
2
) + O(x)). (6.19)
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7 Validity of the Inner Solutions

Here we prove an estimate for solutions (3.9), called inner solutions, on a small interval
centered at x = 0. This estimate allows us to match the WKB and inner solutions.

Introducing y1 = f , y2 = P f ′, we can reduce the original equation (2.3) to the
matrix equation

Ỹ ′ =
(

0 1
P(x)

λ − Q 0

)
Ỹ , (7.1)

where the columns of the matrix Ỹ are (y j , y′
j ), j = 1, 2, respectively. The shearing

transformation
Ỹ = diag

(
1,

√
λx

)
Y (7.2)

reduces (7.1) to

Y ′ =
(

0
√

λ
x(x−a1)(x−a2)

λ−Q√
λx

− 1
x

)
Y =

(
B̃

x
+ M̃

)
Y

=
[

1

x

(
0

√
λ

a1a2√
λ − (a1+a2)

2

8
√

λ
−1

)
+

(
0

√
λ(a1a+2−x)

(x−a1)(x−a2)
a1+a2−2x√

λx
0

)]
Y, (7.3)

where B̃, M̃ are the first and the second terms in the square brackets and M = M(x)
is analytic at x = 0.

It is clear (and can be easily verified) that

B̃ = Udiag

(
−1

2
+ iμ,−1

2
− iμ

)
U−1, where

U =
(

1
a1a2

1
a1a2− 1

2
√

λ
+ i μ√

λ
− 1

2
√

λ
− i μ√

λ

)
, (7.4)

and μ is given in (3.8). The change of variables Y = UZ reduces (7.3) to Z ′ =
( Bx +M)Z , where B = diag(− 1

2 + iμ,− 1
2 − iμ) and M = U−1 B̃U . Another change

of variables Z = TW , where W = x B , gives

T ′ = 1

x
[iμσ3, T ] + MT, (7.5)

where, according to (7.1), (7.4), M = O(
√

λ). As in Sect. 6, we replace the latter
system with the Volterra equation

T (x) = I + xiμσ3

∫ x

0
ζ−iμσ3 M(ζ )T (ζ )ζ iμσ3dζ xiμσ3 = I + IT . (7.6)
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Since |x±iμ| = 1 on R \ {0}, we conclude that on the interval J̃ = (−λ−1, λ−1) ⊂ R,
the norm of the operator I does not exceed O(λ− 1

2 ). Thus, we obtain

Ỹ (x) = diag(1,
√

λx)U (I + O(λ− 1
2 ))x− 1

2 I+iμσ3 (7.7)

uniformly on J̃ . This immediately implies (see (3.9))

y± = (−x)−
1
2 ±iμ

(
1 + O

(
λ− 1

2
))

(7.8)

uniformly on J̃ . Since J̃ has a common segment with � for large λ, we can match the
WKB and the inner solutions there. Thus, comparing Y± and y± on �(ε), we conclude
that

Y±(x) = e±iμκ

(−a1a2)
1
4

y±(x)
(

1 + O
(
λ− 1

2
))

. (7.9)
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