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Abstract On a bipartite graph G we consider the half sampling problem of uniquely
recovering a function from its values on the even vertices, under the appropriate half
bandlimited assumption with respect to a Laplacian on the graph. We discuss both
finite and infinite graphs, give the appropriate definition of “half bandlimited” that
involves splitting the mid frequency, and give an explicit solution to the problem. We
discuss in detail the example of a regular tree. We also consider a related sampling
problem on graphs that are generated by edge substitution.

Keywords Sampling · Bipartite graphs · Homogeneous trees · Half-sampling ·
Half-bandlimited · Spectral resolution of Laplacians
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1 Introduction

The classical Sampling Theorem on the line has been extended to many different
contexts. We refer the reader to [1,3–8,14–20,25] for just a sampling of such results.
There are also some related works on filter banks and wavelets on graphs, for example
[12,13,23,24]. In general there is a space X where functions are defined and a sampling
set E ⊆ X where the values of a function are given. The problem is to recover the
values of a function f on the whole space X in terms of its sample values on E , under
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the assumption that a suitable spectral decomposition of f is entirely contained in a
suitable low frequency band. Many of these results are of an “overdetermined” type,
meaning that there are implicit “consistency conditions” on the sample values f |E if
f is bandlimited, and the algorithm for recovering the function is not unique and often
involves infinite series or iterations. The results in this paper are of a more precise
nature, in that there are no restrictions on the sample values, and the reconstruction
algorithm is unique (so the sampling set is also an interpolation set) and precisely
given.

We consider a locally finite bipartite graph G, whose vertices split V = V0 ∪ V1
(disjoint) into even V0 and odd V1 vertices, and all edges x ∼ y connect one even
vertex to one odd vertex. (It is not necessary to assume that G is connected; on the
other hand the disconnected case reduces to the analogues results on each connected
component graph.) To define a Laplacian on G we assign positive weights c(x, y) to
all edges, set μ(x) = ∑

y∼x c(x, y) and

− � f (x) = 1

μ(x)

∑

y∼x

c(x, y)( f (x) − f (y)). (1.1)

For simplicity we discuss first the case when G is finite. Then −� is a nonnegative
self-adjoint operator with respect to the measure μ, so there exists an orthonormal
basis of eigenfunctions uk with eigenvalues λk ,

− �uk = λkuk . (1.2)

In fact we have the estimate
0 � λk � 2, (1.3)

and both endpoints occur, as 0 is the eigenvalue of the constant function and 2 is the
eigenvalue of the function that is 1 on V0 and −1 on V1. The midfrequency λ = 1
may or may not occur as an eigenvalue. If it does not then we easily define a half
bandlimited function to be a function

f (x) =
∑

λk<1

akuk(x) (1.4)

that is expanded as a linear combination of low frequency eigenfunctions. Of course
ak = 〈 f, uk〉 (the inner product with respect to the measure μ) in (1.4), and (1.4) is
equivalent to

〈 f, uk〉 = 0 if λk > 1. (1.5)

If there are eigenfunctions with λk = 1, we need to split up the 1-eigenspace into
low frequency and high frequency parts. The details are given in Sect. 2. The main
result proved in Sect. 2 is that a half bandlimited function is uniquely determined
by its samples on V0, with no restrictions on the samples, and the reconstruction
is given by an explicit formula involving a low-pass projection operator. We also
obtain a relationship between the original spectral decomposition and the spectral
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decomposition of a Laplacian defined on V0, but this requires an additional symmetry
hypothesis.

In Sect. 3 we discuss analogous results when G is an infinite graph. Here the
spectral resolution of the Laplacian in general involves projection valued measures
on a spectrum contained in [0, 2]. We make the additional assumption that it may be
written in the form

f =
∫ 2

0
Pλ f dν(λ) (1.6)

where ν is a finite positive measure supported on the spectrum and Pλ f is an eigen-
function,

− �Pλ f = λPλ f. (1.7)

Here (1.6) holds for every f ∈ �2(μ), but Pλ f is not assumed to be in �2(μ). This
form of the spectral resolution is known to hold for many interesting examples. Then
we define f to be half bandlimited if the integral in (1.6) is limited to [0, 1]. Again,
if ν has a point mass at λ = 1 we have to split the 1-eigenspace. Then again a half
bandlimited function is uniquely determined from its samples on V0 via an explicit
formula.

While none of the above results are surprising or difficult, they set the stage for
the discussion of a nontrivial example in Sect. 4. We denote by Tq the connected
(q + 1)-regular tree, equipped with its completely symmetric Laplacian. The spectral
resolution of this Laplacian in the form (1.6) was given explicitly by Cartier [2]. An
exposition may be found in [9], and generalizations to other Laplacians may be found
in [10]. A related “Plancherel formula”in the case q = 2 is given in [22].

It turns out that the spectrum is the smaller interval
[
1 − 2

√
q

q+1 , 1 + 2
√
q

q+1

]
, and ν is

an explicit absolutely continuous measure. The spectral resolution Pλ f is given by a
spherical convolution operator

Pλ f (x) =
∑

y

ϕλ(d(x, y)) f (y) (1.8)

for an explicit spherical function ϕλ (here d(x, y) denotes the graph distance). The
spherical function just fails to be in �2(G). We give here a simple proof of the spectral
resolution based on the Cauchy integral formula. Using the same reasoning we obtain
an explicit formula for the low-pass operator that gives the reconstruction formula. It
is also a spherical convolution operator with a kernel that is now just barely in �2(G).

In Sect. 5 we discuss a related sampling problem on graphs GH that are generated
by edge substitution. That is, we are given graphsG and H andLaplacians and produce
GH by substituting a copy of H for each edge of G. Under some minimal hypotheses
on H , we show how to define low-pass bandlimited functions on GH (in terms of a
natural Laplacian) so that every such function can be reconstructed from its samples
on G, and all functions on G arise in this manner. The reconstruction algorithm is
given explicitly, but it is not as simple as in the half sampling problem.

The results in this paper are motivated by pure mathematical curiosity. We are not
aware of any potential applications, but as usual this does not preclude the possibility
of future applications.
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2 Finite Graphs

For simplicity we first describe the case of finite bipartite graphsG. We assume we are
given a set of positive weights c(x, y) on the edges ofG, so that c(x, y) = c(y, x) > 0
if x ∼ y and c(x, y) = 0 otherwise. Define

μ(x) =
∑

j

c(x, y j ) (2.1)

where {y j } is the set of neighboring vertices of x . We consider μ as a measure on the
vertices V of G. Then the Laplacian is defined by

−� f (x) = 1

μ(x)

∑

j

c(x, y j )( f (x) − f (y j ))

= f (x) −
∑

j

c(x, y j )

μ(x)
f (y j ). (2.2)

Since −� is a nonnegative self-adjoint operator with respect to the measure μ, there
exists an orthonormal basis {uk} of eigenfunctions, with

− �uk = λkuk . (2.3)

We order the eigenvalues in increasing order, 0 = λ1 � λ2 � · · · � λN � 2, with
N = #V . Note that u1 is constant, and if we assume that G is connected then λ2 > 0.

We define the twist operator T by

T f (x) = (−1)p(x) f (x) (2.4)

where p(x) is the parity function

p(x) =
{
0 if x ∈ V0
1 if x ∈ V1

.

Lemma 1 If u is an eigenfunction with eigenvalue λ, then T u is an eigenfunction with
eigenvalue 2 − λ.

Proof If x ∈ V0 then all y j ∈ V1, so

−�Tu(x) = u(x) +
∑

j

c(x, y j )

μ(x)
u(y j )

= 2u(x) + �u(x)

= (2 − λ)u(x)

= (2 − λ)Tu(x).

A similar computation works if x ∈ V1. 	
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We may divide up the spectrum into low frequency eigenvalues with λ j < 1 and
high frequency eigenvalues with λ j > 1, and these are interchanged by the twist
operator. Thus

λN− j+1 = 2 − λ j (2.5)

and we may redefine the eigenfunctions so that

uN− j+1 = Tu j (2.6)

for low frequency eigenfunctions. Of course it may happen (and often does) that there
aremidfrequency eigenvalues with λ j = 1. If we denote thismidfrequency eigenspace
by E1 then the twist operator maps E1 to itself.

Lemma 2 E1 = E+
1 ⊕ E−

1 where the functions in E+
1 are supported in V0 and the

functions in E−
1 are supported in V1. Moreover

dim E+
1 − dim E−

1 = #V0 − #V1. (2.7)

Proof Since T 2 = I on E1, and T is self-adjoint, E1 splits into an orthonormal sum
of eigenspaces of T with eigenvalues ±1, and these are exactly E+

1 and E−
1 , since

Tu = u if and only if u is supported in V0, and Tu = −u if and only if u is supported
in V1.

To prove (2.7) we note that

dim E+
1 + M = #V0 and

dim E−
1 + M = #V1

where M denotes the number of low frequency eigenvalues, since when restricted to
V0 we have Tu = u. 	


We choose the orthonormal basis of E1 so that the E
+
1 eigenfunctions come before

the E−
1 eigenfunctions.

Definition 1 (a) A function is said to be half-bandlimited if it is a linear combina-
tion of low frequency eigenfunctions and midfrequency eigenfunctions in E+

1 .
Specifically,

f =
#V0∑

k=1

akuk . (2.8)

(b) The half-sampling operator H f is defined to be

H f (x) =
{
f (x) for x ∈ V0
0 for x ∈ V1

, (2.9)

so that H = 1
2 (I + T ). Note that we could also have defined an operator H̃ from

functions on V to functions on V0 by restriction. Clearly H and H̃ contain the
same information.
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(c) We define the low-pass operator L by

L

(
#V∑

k=1

akuk

)

=
#V0∑

k=1

akuk . (2.10)

Note that L is given explicitly as

L f (x) =
∑

y∈V
L (x, y) f (y)μ(y) for (2.11)

L (x, y) =
#V0∑

k=1

uk(x)uk(y). (2.12)

Theorem 1 A half-bandlimited function f is uniquely determined from its half-
samples H̃ f , and every function on V0 arises as H̃ f for some unique half-bandlimited
function f . In other words, V0 is both a sampling set and an interpolation set for the
space of half-bandlimited functions. Explicitly

f (x) =
∑

y∈V0
K (x, y)H f (y)μ(y) for (2.13)

K (x, y) = 2
M∑

k=1

uk(x)uk(y) +
#V0∑

k=M+1

uk(x)uk(y). (2.14)

Proof Suppose f = uk for 1 � k � #V0. Then Huk = 1
2uk+ 1

2Tuk . If 1 � k � M so
that uk is low frequency then Tuk is high frequency so LTuk = 0 and Luk = uk . Thus
LHuk = 1

2uk . On the other hand, if M + 1 � k � #V0 so that uk is mid-frequency
in E+

1 , then Tuk = uk and Luk = uk . Thus LHuk = uk . Taking linear combinations
we arrive at (2.13) and (2.14).

Conversely, if g is any function on V0, extend g to g̃ on V in any way. Then g̃ is
a linear combination of all the eigenfunctions. But the eigenfunctions in E−

1 vanish
on V0 and the high frequency eigenfunctions uN− j+1 = Tu j are equal to the low
frequency eigenfunctions u j when restricted to V0. So g is equal to a half-bandlimited
function restricted to V0. 	

Remark 1 We could reverse the roles of the even and odd vertices, and consider half-
sampling on the odd vertices. We would then obtain the same sort of results, but we
would have to replace E+

1 by E−
1 in the definition of half-bandlimited. Only in graphs

where E1 is empty would we have a single class of bandlimited functions that would
allow half-sampling on either even or odd vertices.

Next we consider the half graph G0 whose vertices are V0 and with edges x ∼ z
if and only if there exists y ∈ V1 such that x ∼ y and y ∼ z are edges in G. Note
that such y need not be unique. We consider the question of whether we can define
weights c0(x, z) on the edges of G0 so that the functions ũk for 1 � k � #V0 give a
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complete set of eigenfunctions for the Laplacian −�0 on G0. It appears that we need
to make an additional assumption on the original set of weights of a weak symmetry
type in order to do this.

Definition 2 We say that the graph G and its weights {c(x, y)} are weakly symmetric
if there exists a constant A independent of x ∈ V0 such that

∑

y∼x

c(y, x)2

μ(x)μ(y)
= A (2.15)

for all x ∈ V0. In that case we define weights c0(x, z) on G0 by

c0(x, z) =
∑

y∈V1
x∼y∼z

c(x, y)c(y, z)

μ(y)(1 − A)
. (2.16)

Theorem 2 Assume that G and its weights are weakly symmetric, and consider the
Laplacian −�0 on G0 with weights given by (2.16). Then H̃uk for 1 � k � #V0 is
an eigenfunction of −�0 with eigenvalue

λ̃k = λk(2 − λk)

1 − A
, (2.17)

and these give a complete set of eigenfunctions for −�0.

Proof Fix x ∈ V0 and let {y j } enumerate the vertices in V1 that are neighbors of x .
Let {z j�} enumerate the vertices in V0 that are neighbors of y j . Note that x is one of
these neighbors and we choose the enumeration so x = z j1. The complete union of
z j� with � � 2 gives all z ∈ V0 that are neighbors of x in G0, but there may be more
than one representation of a fixed z. The eigenvalue equation for −� at x yields

∑

j

c(x, y j )uk(y j ) = μ(x)(1 − λk)uk(x) (2.18)

and similarly at y j we have

∑

�

c(y j , z j�)uk(z j�)

μ(y j )
= (1 − λk)uk(y j ). (2.19)

Now we multiply (2.19) by c(x, y j ) and sum over j to obtain

∑

j

∑

�

c(x, y j )c(y j , z j�)uk(z j�)

μ(y j )
= (1 − λk)

∑

j

c(x, y j )uk(y j )

= μ(x)(1 − λk)
2uk(x). (2.20)
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Note that the terms corresponding to � = 1 on the left side of (2.20) sum to exactly
μ(x)Auk(x)while the other terms sum to exactly (1− A)

∑
z c0(x, z)uk(z)where the

sum is over all z that are neighbors of x in G0. Dividing by (1 − A)μ(x), we obtain

∑

z

c0(x, z)

μ(x)
uk(z) =

(
(1 − λk)

2

1 − A
− A

1 − A

)

uk(x)

= (1 − λ̃k)uk(x),

which is equivalent to−�0 H̃uk = λ̃k H̃uk . Note that choosing k = 1 so u1 is constant
verifies that μ(x) = ∑

k c0(y, z) as required. 	


3 Infinite Graphs

IfG is infinite we assume that there is an upper bound to the order of each vertex. Then
the operator −� on �2(G) (with respect to the measure given by the weights μ(x)) is
a bounded, nonnegative self-adjoint operator with spectrum contained in [0, 2]. By the
spectral theorem it has a spectral resolution. For simplicity we assume this resolution
can be given in the form

f =
∫ 2

0
Pλ f dν(λ) (3.1)

where ν is a finite positive measure on the spectrum, and Pλ f is an eigenfunction

− �Pλ f = λPλ f. (3.2)

Note that Pλ f is not assumed to be in �2(G) (usually it is not). The usual spectral
projection onto an interval [a, b] is then ∫ b

a Pλ f dν(λ). Note that Pλ and ν are not
unique, since you could multiply Pλ by ϕ(x) and ν by 1

ϕ(x) . The general case may be
treated by similar arguments, but the notation is more awkward.

For simplicitywe consider first the casewhen themeasure ν does not have an atomat
λ = 1.Wedefine the twist operator T as before, and note that−�T Pλ f = (2−λ)Pλ f .
We may assume then that P2− λ f = PλT f . We define the lowpass operator L by

L f =
∫ 1

0
Pλ f dν(λ) (3.3)

and define f to be half-bandlimited if L f = f . The half-sampling operators H f and
H̃ f are defined as before. Then the analogue of Theorem 1 holds with

f = 2LH f. (3.4)

The proof is essentially the same.
In the case that ν has an atom at λ = 1, we define the space E1 to be the set of

1-eigenfunctions in �2(G). If {ϕ j } is an orthonormal basis for E1 then we define the
projection onto E1 by
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PE1 f (x) =
∑

j

∑

y

ϕ j (x)ϕ j (y) f (y)μ(y). (3.5)

We then split E1 into E
+
1 ⊕E−

1 into eigenfunctions supported on V0 and V1, and obtain
similar projections PE+

1
and PE−

1
. We define Pλ as before for λ �= 1, and denote by ν0

the measure ν with the atom at 1 removed. Then the analogue of (3.1) is

f =
∫ 2

0
Pλ f dν0 + PE+

1
f + PE−

1
f, (3.6)

and the analogue of (3.3) is

L f =
∫ 1

0
Pλ f dν0(λ) + PE+

1
f. (3.7)

We say that f is half-bandlimited if L f = f , in which case we can recover f from
H f by

f = 2
∫ 1

0
PλH f dν0(λ) + PE+

1
H f

= 2LH f − PE+
1
H f. (3.8)

The survey paper [11] discussesmany examples of infinite graphswhere the spectral
resolution (3.1) may be given explicitly.

4 Regular Trees

We follow the standard convention and denote by Tq the connected (q + 1)-regular
tree. All trees are bipartite: choose one vertex x and define V0 to consist of all vertices
that are an even distance to x . Every vertex in Tq has exactly q + 1 neighbors, and we
place weights 1

q+1 on each edge so that μ(x) = 1. Note that T1 = Z, so we are mainly
interested in the case q � 2. We note that Tq may be realized as the Cayley graph of
a group in several different ways. For example, take the group with q + 1 generators
a1, a1, . . . , aq and relations a20 = a21 = · · · = a2q = id. For some reason, the group
theory plays no role in the spectral resolution of the Laplacian on Tq . The theory that
we outline is due to Cartier [2] and is described in detail in [9]. We will also provide
a proof of the main theorem here.

Everything is described in terms of what might be called spherical convolution
operators f → ∑

f (y)G(dist(x, y)) for a function G defined on Z
+. We begin by

defining the c-function on C by

c(z) =
(

1

q + 1

)
q1−z − qz−1

q−z − qz−1 (4.1)
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and the spherical functions

ϕz(n) = c(z)q−nz + c(1 − z)q−n(1−z). (4.2)

A direct computation shows that for any fixed vertex x0, the function ϕz(d(x, x0)) is
an eigenfunction of −� with eigenvlue

λ = 1 − qz + q1−z

q + 1
. (4.3)

Indeed, if x �= x0 then x has q neighbors y with d(y, x0) = d(x, x0) + 1 and one
neighbor with d(y, x0) = d(x, x0) − 1, so −�q−d(x,x0)z = λq−d(x,x0)z and similarly
for z replaced by 1 − z. In other words, the eigenvalue equation holds separately for
each of the functions q−nz and q−n(1−z) that form ϕz(n) by linear combination. But x0
has q + 1 neighbors y with d(x0, y) = 1 so −�ϕz(d(x, x0))|x=x0 = ϕz(0) − ϕz(1),
and the specific linear combinations in (4.2) yieldsϕz(0)−ϕz(1) = λϕz(0) as required.

We will actually only be interested in the choice z = 1
2 + it for 0 � t � π

log q . This
yields

λ = 1 − 2
√
q

q + 1
cos(t log q), (4.4)

and we will see that
[
1 − 2

√
q

q+1 , 1 + 2
√
q

q+1

]
is the spectrum of −�. Note that we may

write

c

(
1

2
+ it

)

=
(

1

q + 1

) (
qeit log q − eit log q

e−it log q − eit log q

)

. (4.5)

Now define
Pλ f (x) =

∑

y

ϕ 1
2+it (d(x, y)) f (y) (4.6)

where λ and t are related by (4.4). We may initially assume that f has finite support,
since such functions are dense in �2(Tq). This eliminates all questions of convergence
of sums, and we see from the above computation that

− �Pλ f = λPλ f. (4.7)

We will take Pλ to be the spectral projection. It turns out that the associated measure
is

dν(λ) = q log q

2π i(q + 1)

∣
∣
∣
∣c

(
1

2
+ it

)∣
∣
∣
∣

−2

dt = 4q(q + 1) log q sin2(t log q)

2π((q − 1)2 + 4q sin2(t log q))
dt.

(4.8)

Theorem 3 (Cartier)The spectral resolution of −� is

f =
∫ 1+ 2

√
q

q+1

1− 2
√
q

q+1

Pλ f dν(λ). (4.9)
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Proof We need to verify (4.9), which follows easily from

∫ π/ log q

0
ϕ 1

2+it (n)
q log q

2π(q + 1)

∣
∣
∣
∣c

(
1

2
+ it

)∣
∣
∣
∣

−2

dt = δn0. (4.10)

Since c( 12 − it) = c( 12 + it), the integrand in (4.10) is

(
q log q

2π(q + 1)

)

q−n/2

(
e−int log q

c( 12 − it)
+ ein+log q

c( 12 + it)

)

.

Thus the integral in (4.10) is

(
q log q

2π(q + 1)

)

q−n/2
∫ π

log q

− π
log q

eint log q

c( 12 + it)
dt. (4.11)

We introduce the variable w = eit log q . Note that 1
c( 12+it)

= (q + 1)
(
1−w2

q−w2

)
and

dt = e−it log q

i log q dw, so (4.11) becomes the contour integral over the unit circle

q1−
π
2

1

2π i

∮
wn−1(1 − w2)

q − w2 dw. (4.12)

When n � 1 the integrand is holomorphic inside the unit disk so the integral is zero.
When n = 0 we obtain

q
1

2π i

∮
1 − w2

q − w2

dw

w
= 1

by Cauchy’s integral formula. 	


It is clear that [1 − 2
√
q

q+1 , 1] is the lower half of the spectrum, so that the lowpass
operator is

L f =
∫ 1

1− 2
√
q

q+1

Pλ f dν(λ), (4.13)

and a function is half-bandlimited if L f = f . If f is half-bandlimited it can be
reconstructed from its half-samples H f via f = 2LH f . We can get an explicit
expression for L f by following the reasoning in the proof of Theorem 3 to write

L f (x) =
∑

y

L (d(x, y)) f (y) (4.14)

with

L (n) = q1−
n
2

1

2π i

∫ i

−i

wn−1(1 − w2)

q − w2 dw (4.15)
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since the low frequencies correspond to − π
2 log q � t � π

2 log q . The integral in (4.15)
is over the contour that is the right half of the unit circle, but for n � 1 the integral is
holomorphic so the integral is independent of the contour. When n is even it follows
by symmetry that (4.15) is half of (4.12), so 2LH f (x) = f (x) for x ∈ V0 as required.

When n = 2m + 1 is odd we define

αm = 1

2π i

∫ i

−i

w2m

q − w2 dw (4.16)

so that
L (2m + 1) = q

1
2−m(αm − αm+1). (4.17)

We evaluate αm by standard methods of calculus by writing 1
q−w2 = 1

2
√
q(

1√
q+w

+ 1√
q−w

)
and w2m = ((

√
q ±w)−√

q)2m = ∑2m
k=0

(2m
k

)
(−1)kqm+ k

2 (
√
q ±

w)k so that the integrand in (4.16) is

1

2
√
q

2m∑

k=0

(
2m

k

)

(−1)kqm+ k
2

(
(
√
q + w)k−1 + (

√
q − w)k−1

)
.

When we integrate the k = 0 term we obtain

1

2π i

∫ i

−i

(
1√

q + w
+ 1√

q − w

)

dw = 1

2π i
log

√
q + i√
q − i

= 2

π
tan−1

(
1√
q

)

,

while for k � 1, we obtain

1

2π i

∫ i

−i

(
(
√
q + w)k−1 + (

√
q − w)k−1

)
dw = 1

π ik

(
(
√
q + i)k − (

√
q − i)k

)

= 2

πk

⌊
k−1
2

⌋

∑

j=0

(
k

2 j + 1

)

(−1) j q
k
2− j− 1

2 .

This leads to

αm = qn− 1
2

π
tan−1

(
1√
q

)

+
2m∑

k=1

⌊
k−1
2

⌋

∑

j=0

1

πk

(
2m

k

)(
k

2 j + 1

)

(−1) j+kqm+k− j−1.

(4.18)
Although (4.17) and (4.18) give an explicit formula forL (2m + 1), it is not clear

how to obtain size estimates from this. However, we may rewrite (4.15) as

L (n) = q1−
n
2
1

2π

∫ π
2

− π
2

einθ

(
1 − e2π iθ

q − eiθ

)

dθ. (4.19)
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The integral gives the Fourier coefficients of a function with jump discontinuities at
θ = ±π

2 , so

L (n) = O

(
q−n/2

n

)

(4.20)

and this estimate is sharp. This shows that for fixed y, f (x) = L (d(x, y)) is in �2(G)

uniformly in y, since there are (q + 1)qn−1 points x with d(x, y) = n. However, this
is essentially best possible, as f (x) /∈ L p for any p < 2. This is in contrast to the sinc
function on T1 = Z which belongs to every L p with p > 1.

We conclude this section by showing how the ideas in Theorem 2 lead to the explicit
spectral resolution for the symmetric Laplacian on the graph G0. Note that G0 is not
a tree, but it is homogeneous and q(q + 1) regular, with each vector lying on the
intersection of q + 1 complete-(q + 1) graphs. Let us fix a pair of distinct vertices
x and y with d0(x, y) = n (we denote the distance on G0 by d0, and of course
2d0(x, y) = d(x, y) regarding x and y as vertices of G). Then y has one neighbor z
with d0(x, z) = n − 1, q − 1 neighbors z with d0(x, z) = n and q2 neighbors z with

d0(x, z) = n + 1. Thus if f (y) = q−2( 12+it)d0(x,y), an easy computation shows

−�0 f (y) = λ̃ f (y) for y �= x with (4.21)

λ̃ = 1 − q − 1

q(q + 1)
− q2it + q−2it

q + 1
= q2 + 1

q2 + q
− 2q cos(2t log q)

q2 + q
, (4.22)

and this agrees with (2.17) for λ given by (4.4). Again we can verify directly that
ϕ 1

2+it (d(x, y)) satisfies the eigenvalue equation (4.21) also at y = x . Thus we may
define

P0
λ̃
f (x) =

∑

y∈G0

ϕ 1
2+it (2d0(x, y)) f (y) (4.23)

as our spectral projection onto the λ̃-eigenspace, where t and λ̃ are related by (4.22).
Note that this will give us a spectrum

[
(q − 1)2

q2 + q
, 1 + 1

q

]

(4.24)

for −�0.

Theorem 4 The spectral resolution of −�0 is

f =
∫ 1+ 1

q

(q−1)2

q2−q

P0
λ̃
f dν0 (̃λ) (4.25)

where
dν0(̃λ) = 2dν(λ). (4.26)
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Proof Let g denote the extension of f to V obtained by setting g = 0 on V1. Then

g = ∫ 1+ 2
√
q

q+1

1− 2
√
q

q+1

Pλg dν(λ) on V by (4.9). Since Pλg = P2−λg on V0 we obtain f = g =
2

∫ 1
1− 2

√
q

q+1
Pλg dν(λ) on V0. But Pλg = P0

λ̃
f on V0. 	


5 Edge Substitution Graphs

In this section we consider edge substitution graphs as discussed in [21]. We consider
two graphs G and H , and define a graph GH obtained from G by substituting a
copy of H for each edge in G. We assume that H is finite (with #H � 3) and has
two distinguished boundary points q0 and q1. For simplicity we assume that H has a
symmetry that permutes q0 and q1. The vertices ofGH consist of Vold, the old vertices,
that are just vertices ofG, and Vnew, the new vertices, denoted v(x, y, h), where x ∼ y
is an edge in G and h ∈ VH � {q0, q1}. The edges of GH are exactly the edges EH of
H in each copy of H , so

⎧
⎪⎨

⎪⎩

v(x, y, h) ∼ v(x, y, h′) if h ∼ h′ in H

v(x, y, h) ∼ x if h ∼ q0 in H, and

v(x, y, h) ∼ y if h ∼ q1 in H.

(5.1)

Because of the symmetry assumption it doesn’t matter which order we take for x ∼ y.
In this sectionwe are not assuming that any of the graphs are bipartite. The sampling

problem we consider is to recover a function on GH from its values on Vold, under
an appropriate bandlimited assumption. To do this we need to consider Laplacians
�G , �H and �GH on the three graphs. We assume we are given a set of positive
conductances c(x, y) on the edges of G, with μ(x) = ∑

y∼x c(x, y) and positive
conductances cH (h, h′) on the edges of H , with ν(h) = ∑

h′∼h cH (h, h′), and we
assume that the H conductances are invariant under the symmetry that permutes q0
and q1. Then

−�G f (x) = f (x) −
∑

y∼x

c(x, y)

μ(x)
f (y) and (5.2)

−�H f (h) = f (h) −
∑

h′∼h

c(h, h′)
ν(h)

f (h). (5.3)

For the graph GH we assign weights multiplicatively, so

⎧
⎪⎨

⎪⎩

c(v(x, y, h), v(x, y, h′)) = c(x, y)cH (h, h′)
c(v(x, y, h), x) = c(x, y)cH (q0, h)

c(v(x, y, h), y) = c(x, y)cH (q1, h).

(5.4)

We may assume that ν(q0) = ν(q1) = 1 by multiplying all the H conductances
by the appropriate constant. That means that the weights μ(x) at the old vertices are
unchanged, and ν((x, y, h)) = c(x, y)ν(h). Thus, at new vertices
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−�GH f (v(x, y, h)) = f (v(x, y, h)) −
∑

h′∼h

cH (h, h′)
ν(h)

f (v(x, y, h′))

= −�H f (v(x, y, h)), (5.5)

while at old vertices

− �GH f (x) = f (x) −
∑

y∼x

∑

h∼q0

c(x, y)

μ(x)
c(q0, h) f (v(x, y, h)). (5.6)

We want to compare the λ′-eigenfuntion equation on GH with the λ-eigenfunction
equation on G. Note that (5.5) implies that λ′-eigenfunctions on GH , when restricted
to the new points v(x, y, h), for fixed edge x ∼ y, will be λ′-eigenfunctions on the
interior of H .

Wefirst discuss the casewhenG is finite.Assume thatλ′ is not aDirichlet eigenvalue
of −�H . Then interior values are determined by boundary values, so

f (v(x, y, h)) = a0(λ
′, h) f (x) + a1(λ

′, h) f (y) (5.7)

for certain rational functions ai (λ′, h) of λ′ with a denominator a polynomial of degree
N = #H −2 and numerator polynomial of degree N −1 (see [21] p. 2052). The zeros
of the denominator are the Dirichlet eigenvalues. We then define

Ai (λ
′) =

∑

h∼q0

cH (q0, h)ai (λ
′, h), i = 0, 1 (5.8)

so that
− �GH f (x) = (1 − A0(λ

′)) f (x) − A(λ
′)( f (x) − �G f (x)). (5.9)

In other words, f is a λ′-eigenfunction of −�GH if and only if its restriction to Vold
is a λ-eigenfunction of −�G where the eigenvalues are related by

A1(λ
′)(1 − λ) = 1 − λ′ − A0(λ

′). (5.10)

It is clear from (5.10) that each λ′ determines a unique value of λ, but there aremultiple
solutions for λ′ in terms of λ. Note that if f is constant then λ = λ′ = 0.

Note that the relationship (5.10) depends on the graph H and its Laplacian, not onG.
Suppose λ′ is a Neumann eigenvalue of −�H corresponding to an odd eigenfunction
g with g(q0) = 1, g(q1) = −1. (Recall that a Neumann eigenfunction means that if
we glue together two copies of H at q0 and q1 and extend g symmetrically then the
eigenvalue equation continues to hold at q0 and q1.) It is clear that such eigenfunctions
exist. If G is bipartite then we can take the −�G eigenfunction f |V0 = 1 and f |V1 =
−1 with λ = 2, extend it to GH by interpolating g in every copy of H , and obtain an
eigenfunction of −�GH with eigenvalue λ′. This shows that (5.10) has a solution λ′
for λ = 2.

Denote by λ′
1 the smallest solution of (5.10) with λ = 2. Then by continuity there

is a solution λ′ to (5.10) in the interval [0, λ′
1] for every λ ∈ [0, 2]. We make the
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additional assumption that λ is an increasing function of λ′ in the interval [0, λ′
1]. This

implies that the solution of (5.10) in this interval is unique. We denote it λ′(λ).
We may now define the low frequency spectrum on GH to correspond, roughly

speaking, to the eigenfunctions of−�GH with eigenvalues in [0, λ′
1]. Each such eigen-

function restricts to a λ-eigenfunction of−�G , and all such eigenfunctions arise in this
way. The only exception is that we have to exclude eigenfunctions that restrict to zero
on G. These, of course, correspond to Dirichlet eigenvalues on H . For each Dirichlet
eigenvalue λ′

D in [0, λ′
1], we must consider all such eigenfunctions as high frequency.

Note that it may happen that there still remains some low frequency eigenfunctions
with eigenvalues λ′

D, and in fact this happens exactly when λ′
D has multiplicity greater

than one in the spectrum of−�H . In that case we are simply fine-tuning the distinction
between low and high frequency at the endpoint of the band.

Now define a low bandlimited function on GH to be one whose spectral expansion
in eigenfunctions of −�GH contains only low frequency spectrum

f =
∑

bkuk, (5.11)

where the sum extends over all low frequency eigenfunctions. Then−�GH uk = λ′
kuk ,

but also the restriction of uk to G satisfies −�Guk = λkuk for λ′
k = λ′(λk). Then the

restriction of (5.11) to G just gives the spectral expansion of f |Vold for −�G . In this
manner we obtain all functions on G as restrictions of low bandlimited functions to
G. We may then uniquely solve the sampling problem as follows. Given the sample
values F = f |Vold , expand F in the −�G eigenfunctions

F =
∑

ckϕk with (5.12)

−�Gϕk = λkϕk . (5.13)

Solve for λ′
k = λ′(λk), and then the restriction of uk to Vold will be amultiple ofϕk , and

so (5.12) yields (5.11). (In the case that the eigenvalue λk has nontrivial multiplicity
it may be necessary to reshuffle the eigenspaces to line up uk and ϕk .) The extension
from ϕk to uk is given explicitly by (5.7). The coefficients in the expansions (5.11)
and (5.12) are given by different inner products. The relationship between the inner
products is discussed in detail in [21] p. 2055-2057. The situation whenG is an infinite
graph is similar to the discussion for half sampling in Sect. 3. We leave the details to
the interested reader.
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