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Abstract The concepts of BSE property and BSE algebras were introduced and stud-
ied by Takahasi and Hatori in 1990 and later by Kaniuth and Ülger. This abbreviation
refers to a famous theorem proved by Bochner and Schoenberg for L1(R), where R

is the additive group of real numbers, and by Eberlein for L1(G) of a locally compact
abelian group G. In this paper we investigate this property for the Banach algebra
L p(S, μ) (1 ≤ p < ∞) where S is a compact totally ordered semigroup with mul-
tiplication xy = max{x, y} and μ is a regular bounded continuous measure on S. As
an application, we have shown that L1(S, μ) is not an ideal in its second dual.

Keywords BSE algebra · Totally ordered semigroup · Cantor function
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1 Introduction

Let A be a commutative Banach algebra. Denote by Δ(A) and M(A) the Gelfand
spectrum and themultiplier algebra of A, respectively. A bounded continuous function
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σ onΔ(A) is called a BSE-function if there exists a constantC > 0 such that for every
finite number of ϕ1, . . . , ϕn in Δ(A) and complex numbers c1, . . . , cn , the inequality
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holds. The BSE-norm of σ (‖σ‖BSE) is defined to be the infimum of all suchC . The set
of all BSE-functions is denoted byCBSE(Δ(A)). Takahasi and Hatori [16] showed that
under the norm ‖.‖BSE, CBSE(Δ(A)) is a commutative semisimple Banach algebra.

A bounded linear operator on A is called amultiplier if it satisfies xT (y) = T (xy)
for all x, y ∈ A. The setM(A) of all multipliers of A is a unital commutative Banach
algebra, called the multiplier algebra of A.

For each T ∈ M(A) there exists a unique bounded continuous function T̂ onΔ(A)

such that T̂ (a)(ϕ) = T̂ (ϕ)â(ϕ) for all a ∈ A and ϕ ∈ Δ(A). See [9] for a proof.
Define

M̂(A) = {

T̂ : T ∈ M(A)
}

.

Aboundednet (eα)α in aBanach algebra A is called aΔ-weakbounded approximate
identity for A if ϕ(eα) → 1 (equivalently, ϕ(eαa) → ϕ(a) for every a ∈ A) for all
ϕ ∈ Δ(A). As is shown in [16], A has a Δ-weak bounded approximate identity if and
only if M̂(A) ⊆ CBSE(Δ(A)).

A commutative Banach algebra A is called without order if aA = {0} implies a = 0
(a ∈ A).

A commutative and without order Banach algebra A is called a BSE-algebra (or
has BSE-property) if it satisfies the condition

CBSE(Δ(A)) = M̂(A).

The abbreviation BSE stands for Bochner–Schoenberg–Eberlein and refers to a
famous theorem, proved by Bochner and Schoenberg [2,15] for the additive group of
real numbers and in general by Eberlein [5] for a locally compact abelian group G,
saying that, in the above terminology, the group algebra L1(G) is a BSE-algebra (See
[12] for a proof).

It is worth to note that the semigroup algebra l1(Z+) (where Z
+ is the additive

semigroup of nonnegative integers) is a BSE algebra [17], but for k ≥ 1, l1(Nk)

(Nk = {k, k + 1, k + 2, . . .}) is not a BSE algebra.
In [7], we established affirmatively a question raised by Takahasi and Hatori [16]

whether L1(R+) is a BSE-algebra.
The aim of the present paper is to show that for any totally ordered compact

semigroup S with multiplication xy = max{x, y} and a regular bounded continu-
ous measure μ on S, L p(S, μ) (1 ≤ p < ∞) is not a BSE algebra. However, for any
compact abelian group G and 1 ≤ p < ∞, the Banach algebra L p(G) is BSE [18].
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As an application, we will show that the Banach L1(S, μ) is not an ideal in its
second dual. However, for a locally compact group G, the Banach algebra L1(G) is
an ideal in its second dual if and only if G is compact.

Finally, we prove that CBSE(n)((0, 1]) = Cb((0, 1]) for any natural number n.

2 BSE Property of Totally Ordered Semigroup Algebras

The Banach algebra L p(S, μ) (1 ≤ p < ∞), whenever S is a totally ordered compact
space with a regular bounded continuous measure μ on S, was first introduced by
Sapounakis [13,14] and then extensively studied more by Baker, Pym and Vasudeva
[1].

Recall that a totally ordered locally compact space S is a totally ordered space S
which is locally compact in its order topology. This has a natural continuous multi-
plication xy = max{x, y}. For convenience, we adjoin a minimal element 0 to S if it
has not already got one. The convolution product v1 ∗ v2 of two bounded regular mea-
sures v1, v2 on S is defined (as a linear functional on the space C0(S) of continuous
functions vanishing at infinity on S) by the usual formula

∫

f dv1 ∗ v2 =
∫ ∫

f (xy)dv1(x)dv2(y) ( f ∈ C0(S)).

By dividing the range of the inner integral on the right into the sets where x < y and
x ≥ y we have

dv1 ∗ v2(x) = v1[0, x[ . dv2(x) + v2[0, x[ . dv1(x).

In particular, if both v1 and v2 are absolutely continuous with respect to some positive
measure μ, say dv1 = f dμ and dv2 = gdμ, then so is v1 ∗ v2; and if we put
dv1 ∗ v2 = f ∗ g.dμ, then

f ∗ g(x) = g(x)
∫

[0,x[
f dμ + f (x)

∫

[0,x]
gdμ. (III)

By defining the convolution of two measurable functions f and g with respect to μ

as in (III), one has the following result.

Proposition 1 For p = 1, L p(S, μ) is a Banach algebra. For 1 < p ≤ ∞, L p(S, μ)

is a Banach algebra if and only if μ is bounded. Moreover, for 1 ≤ p ≤ ∞ the
algebra L p(S, μ) is commutative and semisimple. It has an approximate identity if
1 ≤ p < ∞, which is bounded if and only if p = 1.

Proof See [1]. 
�
Remark 1 Here we suppose that μ is bounded and it will do no harm to suppose
that its total mass is 1. By taking the order completion of S, we may also assume
that S is compact, and we lose nothing by taking S to be the support of μ. In [1] it
is shown that all L p−algebras associated with continuous measures of mass 1 with
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support S are algebra isomorphic to the Banach algebra L p([0, 1], λ), where λ is the
Lebesgue measure on the interval [0, 1]. Thus, we need only consider L p([0, 1], λ)

and this we shall do (See Theorem 1.1 and page 48 of [1]).Then the Gelfand spectrum
Δ(L p(S, μ)) of L p(S, μ) is equal to the set

{χ[0,x] : x ∈ (0, 1]}

which may be identified with the half-open interval (0, 1], and the Gelfand transform
f̂ of f ∈ L p(S, μ) is given by

f̂ (t) =
∫ x

0
f dμ (t ∈ [0, 1]),

where 0 is the minimal element of S and σ(x) = t , where σ is a continuous increasing
surjection from S to [0, 1] given in the statement of Theorem 1.1 of [1].

Before turning to the next result we need to recall the following definition from
[11].

Definition 1 A real-valued function f defined on [a, b] is said to be absolutely con-
tinuous on [a, b] if, given ε > 0, there exists δε > 0 such that

n
∑

i=1

| f (yi ) − f (xi )| < ε

for every finite collection {(xi , yi )} of non overlapping intervals with

n
∑

i=1

|yi − xi | < δε.

A complex-valued function f = u+ iv is said to be absolutely continuous if u and
v are absolutely continuous.

Theorem 1 (Fundamental Theorem of Lebesgue Integral Calculus). The following
conditions on a real-valued function f on a compact interval [a, b] are equivalent:
1. f is absolutely continuous on [a, b].
2. There exists a Lebesgue integrable function g on [a, b] such that

f (x) = f (a) +
∫ x

a
g(t)dt

for all x ∈ [a, b].
Proof See Page 106 of [11]. 
�
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2.1 The Cantor Function

The function ϕ : [0, 1] → [0, 1] defined by

ϕ(x) =
∞
∑

k=1

txk/2

2k
,

whenever the digit 1 does not appear in the ternary expansion of x , and

ϕ(x) =
jx−1
∑

k=1

txk/2

2k
+ 1

2 jx
,

whenever the digit 1 does appear in the ternary expansion of x , and jx = min{k :
txk = 1}, is called the Cantor function.

Proposition 2 For the Cantor function ϕ the following statements are valid.

1. ϕ is continuous and of bounded variation.
2. ϕ is not absolutely continuous.
3. ϕ is differentiable almost every where and ϕ′ = 0 a. e. on [0, 1].
4.

∫ 1
0 ϕ(t)dt = 1

2 .

Proof See [3] and [6]. 
�
Lemma 1 Let ϕ be the Cantor function. Then the function g defined by g(x) = xϕ(x)
is not absolutely continuous on [0, 1].
Proof By Proposition 2, the function g is differentiable almost every where on [0, 1].
Therefore

g′(x) = xϕ′(x) + ϕ(x) = ϕ(x) a.e.

holds. Assume towards a contradiction that g is absolutely continuous on [0,1]. So by
Theorem 1, we get

1 = g(1) − g(0) =
∫ 1

0
g′(t)dt =

∫ 1

0
ϕ(t)dt = 1

2
.

This contradiction completes the proof. 
�
Let (X,Σ,μ) be a positive measure space. The space ba(X, μ) is the Banach space

consisting of those bounded and finitely additive signed measures on Σ which vanish
on sets of μ-measure zero. The norm of an element in ba(X, μ) is its total variation.
Before stating our next result, we need to recall the following theorem from page 296
of [4].
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Theorem 2 Let (X,Σ,μ) be a σ -finite measure space . There is an isometric iso-
morphism between L∞(X, μ)∗ and ba(X, μ)determined by the identity

F( f ) =
∫

X
f (x)dμ(x) ( f ∈ L∞(X, μ)).

The following theorem is indeed the main result of this paper.

Theorem 3 The Banach algebra L p(S, μ)(1 ≤ p < ∞) is not a BSE algebra.

Proof As in Remark 1, we may assume that S = ([0, 1],max) and μ is the Lebesgue
measure on S.

Case I. p = 1. Suppose that σ is a continuous function of bounded variation on
[0, 1] and σ(0) = 0. By Theorem 3.1 of [10], there exists ν ∈ ba(S, μ) such that
σ(x) = ν([0, x]) for all x ∈ [0, 1]. By Theorem 2, the mapping F given by

F( f ) =
∫

X
f (x)dν(x)

(

f ∈ L∞(X, μ)
)

.

is in L∞(S, μ)∗. In particular,

F(χ[0,x]) =
∫

S
χ[0,x])(t)dν(t) = ν([0, x]) = σ(x) (x ∈ (0, 1]).

Therefore F ∈ L∞(S, μ)∗(= L1(S, μ)∗∗) and σ |(0,1] = F |(0,1]. Hence by Theorem
4 (ii) of [16], we have

σ |(0,1] ∈ L1(S, μ)∗∗|Δ(L1(S,μ))(=(0,1])
⋂

Cb((0, 1]) = CBSE((0, 1]).

By Proposition 2 and the above argument, ϕ|(0,1] ∈ CBSE((0, 1]), where ϕ is the

Cantor function on [0, 1]. We claim that ϕ|(0,1] /∈ ̂M(L1(S, μ)). Suppose towards a

contradiction that ϕ|(0,1] ∈ ̂M(L1(S, μ)). Then for any f ∈ L1(S, μ), there exists
h f ∈ L1(S, μ)) such that

ϕ(x) f̂ (x) = ĥ f (x) x ∈ (0, 1].

Thus

ϕ(x)
∫ x

0
f (t)dμ(t) =

∫ x

0
h f (t)dμ(t) x ∈ (0, 1],

which is an absolutely continuous function byTheorem1. In particular, for the constant
function f (t) = 1 (t ∈ (0, 1]), we get

xϕ(x) =
∫ x

0
h f (t)dt (x ∈ (0, 1]).
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This implies that the function g defined by g(x) = xϕ(x) (x ∈ [0, 1]) is absolutely
continuous. This is a contradiction, by Lemma 1. Therefore ϕ|(0,1] /∈ ̂M(L1(S, μ))

and consequently, L1(S, μ) is not a BSE algebra.
Case II. 1 < p < ∞. We prove that L p(S, μ) has no Δ−weak bounded approx-

imate identity. Assume towards a contradiction that { fα}α is a Δ−weak bounded
approximate identity for L p(S, μ) with bound C . By the definition of { fα} we have

lim
α

φx ( fα) = 1 (x ∈ (0, 1]),

for all φx ∈ Δ(L p(S, μ)). By Remark 1,

lim
α

∫ x

0
fα(t)dμ(t) = 1 (x ∈ (0, 1]).

By Holder’s inequality for every x ∈ S we have

∣
∣
∣
∣

∫ x

0
fα(t)dμ(t)

∣
∣
∣
∣
≤

∫ x

0
| fα(t)|dμ(t)

≤
(∫ x

0
| fα(t)|pdμ(t)

) 1
p

.

(∫ x

0
1qdμ(t)

) 1
q

≤ C.x
1
q (x ∈ (0, 1]),

This implies that 1 ≤ C.x
1
q , so x ≥ 1

Cq for all x ∈ (0, 1]. This contradiction completes
the proof. 
�

It is well known that for a locally compact group G, the Banach algebra L1(G) is
an ideal in its second dual if and only if G is compact. As a consequence of the above
theorem, in the following result, we prove that this is not the case for the compact
totally ordered semigroup S.

Corollary 1 The Banach algebra L1(S, μ) is not an ideal in its second dual.

Proof By Theorem 3, L1(S, μ) is not a BSE algebra, however, it admits a bounded
approximate identity. So by Theorem 3.1 of [8], it is not an ideal in its second dual. 
�
Remark 2 Let σ be a function on [0, 1] such that σ(0) = 0 and σ |(0,1] ∈ CBSE((0, 1]).
By Theorem 4 (ii) of [16], there exists F ∈ L1(S, μ)∗∗(= L∞(S, μ)∗) such that
σ(x) = F(χ[0,x]) (x ∈ (0, 1]). Since F ∈ L∞(S, μ)∗, from Theorem 2, it follows
that there exists ν ∈ ba(S, μ) such that

F( f ) =
∫

S
f (t)dν(t)

(

f ∈ L∞(S, μ)
)

.

In particular,

σ(x) = F(χ[0,x]) =
∫

S
χ[0,x])(t)dν(t) = ν([0, x]) (x ∈ (0, 1]).
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From page 190 of [10], we conclude that σ is of bounded variation on [0, 1].
Now if we let σ(x) = x sin

( 1
x

)

(x ∈ (0, 1]) and

σ1(x) =
{

x sin
( 1
x

)

x 
= 0
0 x = 0

Obviously, σ ∈ Cb((0, 1]). The function σ1 is not of bounded variation on [0, 1]
and so as the above argument, σ /∈ CBSE((0, 1]). This implies that CBSE((0, 1]) �

Cb((0, 1]). However, in the sequel we will prove that for any n ∈ N, the natural
numbers, CBSE(n)((0, 1]) = Cb((0, 1]), where CBSE(n)(Δ(A)) denotes the set of all
complexvalued continuous functionsσ onΔ(A)which satisfy the following condition:
there exists a positive real numbers β such that the inequality

∣
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∣
∣
∣
∣

n
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c jσ(ϕ j )
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c jϕ j
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A∗

holds for any choice of complex numbers c1, . . . , cn and ϕ1, . . . , ϕn ∈ Δ(A). For
each σ ∈ CBSE(n)(Δ(A)) we denote by ‖σ‖BSE(n) the infimum of such β. Let
CBSE(∞)(Δ(A)) = ⋂

n∈N
CBSE(n)(Δ(A). It is evident that ‖σ‖BSE = supn∈N ‖σ‖BSE(n)

and

CBSE(Δ(A)) = {σ ∈ CBSE(∞)(Δ(A) : ‖σ‖BSE < ∞}.

Also we have

Â ⊆ CBSE(Δ(A)) ⊆ CBSE(∞)(Δ(A))

⊆ · · · ⊆ CBSE(2)(Δ(A)) ⊆ CBSE(1)(Δ(A)) = Cb(Δ(A)).

For more details see [17].

Theorem 4 For S = ([0, 1],max) and n ∈ N, we have

̂L1(S, μ) � CBSE((0, 1]) � CBSE(n)((0, 1]) = Cb((0, 1]).

Proof By Remark 2 and the proof of Theorem 3, we only need to prove the last
equality. By Lemma 1 of [17], it is enough to show that for any natural number n,
there exists a real number βn such that for c1, . . . , cn ∈ C with |ci | ≤ 1 (1 ≤ i ≤ n)

and x1, . . . , xn ∈ (0, 1], there exists a function f ∈ L1(S, μ) such that f̂ (xi ) =
ci (1 ≤ i ≤ n) and ‖ f ‖1 ≤ βn . For every x ∈ [0, 1] we define
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f (x) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1
x1

x ∈ [0, x1]
c2−c1
x2−x1

x ∈ (x1, x2]

. .

. .

. .

cn−cn−1
xn−xn−1

x ∈ (xn−1, xn]

0 x ∈ (xn, 1]

Now for every 1 ≤ i ≤ n, we have

f̂ (xi ) =
∫ xi

0
f dμ =

∫ x1

0
f dμ +

∫ x2

x1
f dμ + · · · +

∫ xi

xi−1

f dμ = ci ,

and

‖ f ‖1 =
∫ 1

0
| f |dμ =

∫ x1

0
| f |dμ +

∫ x2

x1
| f |dμ + · · · +

∫ 1

xn
| f |dμ

= |c1| + |c2 − c1| + · · · + |cn − cn−1|
≤ 2n − 1.

So if we choose βn = 2n − 1, then f ∈ L1(S, μ) is the required function. 
�
Conjecture It is well known that L∞(S, μ) with the pointwise multiplication is a
C∗−algebra and so it is a BSE algebra. We conjecture that L∞(S, μ) with the con-
volution multiplication is not a BSE algebra.
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