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Abstract Flag kernels are tempered distributionswhich generalize these ofCalderón–
Zygmund type. For any homogeneous group G the class of operators which acts on
L2(G) by convolution with a flag kernel is closed under composition. In the case of
the Heisenberg group we prove the inverse-closed property for this algebra. It means
that if an operator from this algebra is invertible on L2(G), then its inversion remains
in the class.
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1 Introduction

A subalgebraA of the algebra B(H) of all bounded operators on a Hilbert spaceH is
said to be inverse-closed if every a ∈ Awhich is invertible inB(H) is also invertible in
A. The question whether an algebra of convolution operators on a Lie group, or simply
R

n is inverse-closed is not new. In 1953, Calderón and Zygmund [4] showed that the
class of convolution operators on L2(Rn) whose kernels are homogeneous of degree
−n and are locally in Lq(Rn) away from the origin, has the property. Here 1 < q < ∞.
Much later the result was generalized by Christ [5] who proved that similar algebras
on a homogeneous group are inverse-closed. A homogeneous group G is a nilpotent
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Lie group with dilations, a very natural generalization of the homogeneous structure
on R

n .
Another direction has been taken byChrist andGeller [6] who dealt with the algebra

of operators with kernels which are homogeneous of degree−n and smooth away from
the identity on a homogeneous group with gradation. This algebra is inverse-closed
too. A step further has been made by Głowacki [9] who showed that this is so for any
homogeneous group.

The kernels which are smooth away from the identity allow an interesting gener-
alization. One can relax the homogeneity condition demanding only that the kernel
satisfies the estimates

|∂α
x K (x)| � |x |−Q−|α|,

where Q is the homogeneous dimension of the group. The cancellation condition takes
the form

|〈K , ϕ〉| = |
∫
G

ϕ(x)K (x)dx | � ‖ϕ‖,

forϕ ∈ S(G), where ‖·‖ is a fixed seminorm in the Schwartz spaceS(G). Such kernels
K are often called the Calderón–Zygmund kernels and the corresponding operators
Op(K ) the Calderón–Zygmund operators. The class is closed under the composition
of operators (Coré-Geller [7]) so they form an algebra. It has been proved recently
(Głowacki [13]) that this algebra is inverse-closed as well.

Let us specify the notion to the Heisenberg group which is the group under study
in this paper. For the sake of simplicity, let us consider here only the one-dimensional
case. The underlying manifold of H is R

3 which we write down as

H = H1 ⊕ H2 = R
2 ⊕ R.

In these coordinates the group law is

(w, t) ◦ (v, s) = (w + v, t + s + w1v2),

where w = (w1, w2), v = (v1, v2) ∈ R
2, t, s ∈ R. There are many choices of

compatible dilations, but the most natural is

δr (w, t) = (rw, r2t), r > 0.

In this setting the size condition for a Calderón–Zygmund kernel reads

|∂α
w∂

β
t K (w, t)| � (‖w‖ + |t |1/2)−4−|α|−2β.

The cancellation condition doesn’t get any simpler, so we do not repeat it here.
We are going to compare these conditions with the estimates that define flag kernels

which are the main object of study in this paper. Flag kernels were introduced by
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Müller–Ricci–Stein [14] and Nagel–Ricci–Stein [15] in their study of Marcinkiewicz
multipliers (the first paper) and CR manifolds (the other one). These kernels are much
more singular than theCalderón–Zygmund kernels.Accordingly, the definition ismore
complex. We consider a tempered distribution K on H which is smooth for w 	= 0
and satisfies the estimates

|∂α
w∂

β
t K (w, t)| � ‖w‖−2−|α|(‖w‖ + |t |1/2)−2−2β, w 	= 0,

as well as the following three cancellation conditions:

1) For every ϕ ∈ S(H1), the distribution

f 
→
∫
H

K (w, t)ϕ(w) f (t)dwdt

is a Calderón–Zygmund kernel on H2,
2) For every ϕ ∈ S(H2), the distribution

f 
→
∫
H

K (w, t) f (w)ϕ(t)dwdt

is a Calderón–Zygmund kernel on H1,
3) For every ϕ ∈ S(H),

sup
R>0

|
∫
H

K (w, t)ϕ(Rw, R2t)dwdt | < ∞.

Finally, for given α, β, the estimates are uniform with respect to ϕ if ϕ stays in a
bounded set in the respective Schwartz space.

The operators with flag kernels share some properties with the Calderón–Zygmund
operators. They are bounded on L p(G)-spaces and form an algebra (seeMüller–Ricci–
Stein [14], Nagel–Ricci–Stein [15], Nagel–Ricci–Stein–Wainger [16], Głowacki [11],
Głowacki [12]). We are, however, interested in the inversion problem for this class.
Before going any further, let us pause for a moment and consider the simplest case,
namely that of an Abelian group R

n . Then, the Fourier transform K̂ is a function on
R

n which is smooth away from the origin and satisfies the estimates

|∂α
ξ K̂ (ξ)| � |ξ |−|α|, ξ 	= 0.

These estimates are, equivalent to the ones defining the Calderón–Zygmund kernel. If
the operator Op(K ) is invertible, then

|K̂ (ξ)| � c > 0, 0 	= ξ ∈ R
n,

and it is directly checked that L̂ = 1/K̂ satisfies analogous estimates, so that L is a
flag kernel such that L � K = K � L = δ0.
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A similar idea works for the Heisenberg group H. Let πλ denote the Schrödinger
representation ofHwith the Planck constant λ 	= 0, If K is a flag kernel onH such that
the operator Op(K ) is invertible, then, for every λ 	= 0, the operator πλ

K is invertible
(Theorem 7.4) and can be regarded as a pseudodifferential operator in a suitable class
(Section 6 and 8). By theBeals theorem, the inverse belongs to the same class (Theorem
8.1). Now, the estimates are uniform in λ, so one can recover the kernel of the inverse
operator from the kernels of (πλ

K )−1 and show that it is a flag kernel (Theorem 8.3).
Thus the algebra of the operators with flag kernels on the Heisenberg group turns out
to be inverse-closed (Theorem 3.3). We believe that similar method could be used in
the case of a general 2-step nilpotent Lie group.

There is a technicality in the proofwewant to comment on. There exists no universal
definition of the extension of the unitary representation to a space of distributions. One
has to rely on specific properties of the distribution space in question. Everythingworks
fine for distributions with compact support. A Calderón–Zygmund kernel can be split
into a compactly supported part and a part which is square integrable, so there is no
problemwith the definition ofπλ

K . No such splitting is available for flagkernels. Instead
wemodify thedomainof thedistribution.Originally, a distribution is a functional on the
Schwartz space.We introduce twoother spaces onwhichflagkernels canbe regarded as
continuous functionals (Definitions 3 and 4). The cancellation conditions are important
here. We also take adventage of a functional calculus of Głowacki [10] (Lemma 6.1).
Once πλ

K is defined for our flag kernel, we can follow the path outlined above.
As we learned recently, Bony–Chemin in the introduction to their work [3] men-

tioned a gap in the proof of the Lemma 4.6 in the work of Beals [2]. This lemma is a
key to a thesis of Theorem 4.7. We have changed our argument so as to be able to use
the Theorem 3.2 from Beals [1] instead.

2 Preliminaries

The main structure of this work is the Heisenberg group. As a set it is

H
n = R

n × R
n × R.

Elements of the group will usually be denoted by

H
n � h = (x, y, t) = (v, t).

The group multiplication is

(x, y, t) · (x ′, y′, t ′) = (x + x ′, y + y′, t + t ′ + xy′).

We define a homogeneous norm on H
n as

|h| = ‖v‖ + |t | 12 =
2n∑

i=1

|vi | + |t | 12

with the corresponding family of dilations



1080 J Fourier Anal Appl (2016) 22:1076–1096

δ j (h) = δ j (v, t) = ( jv, j2t), j > 0,

in the sense that |δ j (h)| = j |h|. The set {δ j } j>0 actually forms a group of automor-
phisms. The homogeneous dimension is the number Q = 2n + 2. We will use the
designations

∂
γ

h = ∂α
v ∂

β
t = ∂α1

v1
∂α2
v2

...∂α2n
v2n

∂
β
t

and

|γ | = |α| + 2β =
2n∑

i=1

αi + 2β,

where α = (α1, α2, . . . , α2n), αk, β ∈ N. One of the main tools is the abelian Fourier
transform defined by the formula

f̂ (ζ ) :=
∫
Hn

f (h)e−2π ihζ dh,

where

Hn � ζ = (ξ, η, λ) = (w, λ), Hn = Rn × Rn × R.

It can be first defined for Schwartz functions

S(Hn) = { f ∈ C∞(Hn) : ∀N ∈ N sup
h∈Hn

max
|γ |�N

|∂γ

h f (h)|(1 + |h|)N < ∞}

and then lifted to the Lebesque space of the square-integrable functions

L2(Hn) = { f :
∫
Hn

| f (h)|2dh < ∞}

or to the space of tempered distributions S ′(Hn) which is the space of all continuous
linear functionals on S(Hn) in the sense of the usual seminorm topology. Note that
we use the non-isotropic norm to define the Schwartz space. Nevertheless, this space
is equivalent to the standard one defined by isotropic estimates. For S ∈ S ′(Hn), f ∈
S(Hn) one can put

〈Ŝ, f 〉 := 〈S, f̂ 〉.

Let also

f �(x) = f (x−1), 〈S�, f 〉 := 〈S, f �〉, S ∈ S ′(Hn), f ∈ S(Hn).

By δ0 we will denote the Dirac distribution.
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3 Flag Kernels and Their Convolution Operators

Automorphisms {δ j } j>0 decompose our group H
n into their eigenspaces

G1 ⊕ G2 � (v, t).

Theorem2.3.9 ofNagel–Ricci–Stein [15] says that there is a one-to-one correspodence
between flag kernels and their multipliers. It allows us to define flag kernels as follows.

Definition 1 Let H
n be the Heisenberg group and

Hn = G
�
1 ⊕ G

�
2 � (w, λ)

the dual vector space to H
n . We say that a tempered distribution K is a flag kernel iff

its Fourier transform K̂ agrees with a smooth function outside of hyperspace {(w, λ) :
λ = 0} and satisfies the estimates

|∂α
w∂

β
λ K̂ (w, λ)| � cα,β(‖w‖ + |λ|1/2)−|α||λ|−β, allα, β.

Observe that in particular K̂ belongs to L∞(Hn). For f ∈ S(Hn), K ∈ S ′(Hn) we
define their convolution as

K � f (h) := 〈K , h−1 f̃ 〉 =
∫
Hn

K (h′) f (h′−1h)dh′,

where f̃ (h) := f (h−1) and x f (h) := f (xh). Our point of departure are the following
two theorems:

Theorem 3.1 Let K be a flag kernel on the Heisenberg group. Then

‖K � f ‖2 � ‖ f ‖2, f ∈ S(Hn).

Hence we have an L2-bounded operator Op(K ) f := K � f .

Observe that our convolution operators are right-invariant even though we often
refer the reader to obviously equivalent left-invariant results.

Theorem 3.2 Let K , S be flag kernels on the Heisenberg group H
n and

T := Op(K )Op(S).

Then, there exists a flag kernel L such that T = Op(L).

Thus the flag kernels give rise to convolution operators, bounded on L2(Hn), which
form a subalgebra of B(L2(Hn)). For convenience we will write L = K � S.

These are theorems of Nagel–Ricci–Stein [15] who proved them for a class of
homogeneous groups which includes all two-step homogeneous groups (Theorems
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2.6.B and 2.7.2). Partial results can be found in an earlier paper of Müller–Ricci–Stein
[14] (Theorem 3.1). They were subsequently generalized for all homogeneous group
independently and virtually simultanously by Nagel–Ricci–Stein–Wainger [16] and
Głowacki [11]. The aim of this paper is to prove the following theorem.

Theorem 3.3 Let H
n be the Heisenberg group. Let K be a flag kernel on H

n. Suppose
that the operator Op(K ) is invertible on L2(Hn). Then there exists a flag kernel L,
such that for all f ∈ L2(Hn)

Op(K )−1 f = L � f = Op(L) f.

Observe that Op(K ) is right-invariant. Further the same holds for its inversion.
By general theory it follows that there exists a tempered distribution L such that
Op(K )−1 f = L � f . Now it suffices to show that L is a flag kernel. In the following
considerations we can assume that the flag kernel K is symmetric, i.e. K = K �. In
fact if Theorem 3.3 is true for such kernels, let us pick an arbitrary flag kernel K .
Then, we can consider kernels K � � K and K � K � which are symmetric. By Theorem
3.2 they are both flag kernels. Therefore, by Theorem 3.3, there exist flag kernels S, T
such that

S � (K � � K ) = δ0 & (K � K �) � T = δ0.

Again, by Theorem 3.2 and associativity, it follows that there exist flag kernels L1, L2
such that

L1 � K = δ0 & K � L2 = δ0.

The identity

L1 = L1 � (K � L2) = (L1 � K ) � L2 = L2

ends the proof of our theorem for an arbitrary flag kernel K .

4 Schrödinger Representation

Definition 2 For λ 	= 0 and h ∈ H
n we define the family of operators

{πλ
h : h ∈ H

n, λ 	= 0},

all acting on the same L2(Rn) by the following formula

πλ
h f (s) :=

{
e2π iλt e2π i

√
λys f (s + √

λx); λ > 0,
e2π iλt e2π i

√|λ|ys f (s − √|λ|x); λ < 0.
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For a Hilbert spaceH, denote by U(H),B(H) the spaces of all unitary and bounded
operators, respectively. It is well-known (see, e.g. Folland [8], Section 1.3) that, for
every λ 	= 0,

H
n � h 
−→ πλ

h ∈ U(L2(Rn))

is a unitary representation on the Hilbert space L2(Rn).

L1(Hn) � f 
−→ πλ
f ∈ B(L2(Rn)),

πλ
f g(s) :=

∫
Hn

f (h)πλ
h g(s)dh

is a representation of �-algebra L1(Hn) on the Hilbert space L2(Rn).

5 Useful Notation

For f, g ∈ S(Rn) we define the function

c f,g(x, y) :=
∫
Rn

e2π iyu f (u + x)g(u)du.

In particular

ĉ f,g(ξ, η) = f̂ (ξ)g(η)e2π iξη (5.1)

Let also

Cλ
f,g(x, y, t) := 〈πλ

h f, g〉

Let λ > 0. One can calculate that

Cλ
f,g(x, y, t) =

∫
Rn

πλ
(x,y,t) f (u)g(u)du = e2π i tλc f,g(

√
λx,

√
λy).

We also have

̂c f,g ◦ δ√
λ(ξ, η) =

∫ ∫ ∫
e−2π i xξ e−2π iyηe2π i

√
λyu f (u + √

λx)g(u)dudxdy

=
∫ ∫ ∫

λ−n/2e
−2π i x ξ√

λ e
2π iu ξ√

λ e−2π iyηe2π i
√

λyu f (x)g(u)dudxdy

=
∫ ∫

λ−n/2 f̂

(
ξ√
λ

)
e
2π iu

(
ξ√
λ
+√

λy
)
e−2π iyηg(u)dudy

=
∫

λ−n/2 f̂

(
ξ√
λ

)
g∨

(
ξ√
λ

+ √
λy

)
e−2π iyηdy
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=
∫

|λ|−n f̂

(
ξ√
λ

)
g∨(y)e

−2π iy η√
λ e

2π i ξ√
λ

η√
λ dy

= |λ|−n f̂

(
ξ√
λ

)
g

(
η√
λ

)
e
2π i ξ√

λ

η√
λ = |λ|−n̂c f,g

(
ξ√
λ

,
η√
λ

)
.

Moreover

̂Cλ
f,g(ξ, η, r) = ̂c f,g ◦ δ√

λ ⊗ ê2π i(·)λ(ξ, η, r) = |λ|−n̂c f,g ⊗ δλ

(
ξ√
λ

,
η√
λ

, r

)
,

(5.2)

where δλ is a Dirac distribution supported at λ. For λ < 0 the above formula should
be slightly modified. For such λ one can get analogously

̂Cλ
f,g(ξ, η, r) = −|λ|−n̂c f,g ⊗ δλ

(
− ξ

|λ|1/2 ,
η

|λ|1/2 , r

)
.

Suppose that a is a function on R
n × R

n which is bounded or square-integrable.
Then, the weakly defined operator

〈A f, g〉 =
∫ ∫

e2π iξηa(ξ, η) f̂ (ξ)g(η)dηdξ

=
∫ ∫

a(ξ, η)̂c f,g(ξ, η)dξdη = 〈a, ĉ f,g〉

is a continuous mapping from S(Rn) to S ′(Rn). It is often denoted by A = a(x, D)

and called a pseudodifferential operator with the Kohn–Nirenberg (KN) symbol a.

6 The Class S0 and the Operator πλ
K

Let g be a function on Hn such that g(w, λ) = ϕ(λ), where ϕ ∈ C∞
c (G�

2). Then
g∨(u, t) = δ0 ⊗ ϕ∨(u, t), where the ”∨” sign denotes the inverse Fourier transform.
Observe that if for example f ∈ S(Hn), then

f � g∨(h) =
∫

f (hr−1)dg∨(r) =
∫

f (h − r)dg∨(r)

=
∫

f (r−1h)dg∨(r) = g∨ � f (h),

so g∨ is a central measure. We will need a notion of the λ-support of a function f .
By definition a real number λ0 is not in the λ-supp ( f ) iff there exists ε such that no
point (w, λ), where λ ∈ (λ0 − ε, λ0 + ε), is in the support of f .
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Definition 3 We say that a Schwartz function f is in S0(H
n) iff

(∃ε > 0)∀ϕ ∈ C∞
c ((−ε, ε) ∪ (−1/ε,−∞) ∪ (1/ε,∞)) f̂ ϕ = 0,

that is, iff λ-supp ( f̂ ) is bounded and does not contain 0.

Lemma 6.1 Suppose f ∈ S0(H
n) and K is a flag kernel. Then K � f is in S0(H

n).

Proof Let us define first a#b := (a∨ �b∨)∧. For the sake of convenience of the reader
we will write here ∗e instead of ∗ whenever the convolution becomes abelian. As f is
in S0(H

n) take ε, ϕ which satisfy the condition of Definition 3. We have

K̂ � f ϕ = (K � f �e ϕ∨)∧ = K̂# f̂ ϕ = K̂#0 = 0,

so the same ε works also for K � f . It remains to explain why K � f is an element of
S(Hn). Let ψ ∈ C∞

c (R \ {0}) be equal to 1 on λ-supp of f̂ . Observe that ψ∨ can be
thought of as a central measure. Thus

K � f = K � f �e ψ∨ = K �e ψ∨ �e f = K1 � f,

where K̂1 is smooth and

|∂α
w∂

β
λ K̂1(w, λ)| � cα,β(1 + ‖w‖ + |λ|1/2)−|α|(1 + |λ|)−β.

Now if we write that a ∈ Sym N ,M (Hn) iff

|∂α
w∂

β
λ â(w, λ)| � cα,β(1 + ‖w‖ + |λ|1/2)−|α|−N (1 + |λ|)−β−M ,

then K1 ∈ Sym0,0(Hn), f ∈ Sym N ,M (Hn) for all N , M because it is a Schwartz
function. We use here an application of the symbolic calculus of Głowacki governed
by the metric

g(w,λ)(u, r) = ‖u‖
1 + ‖w‖ + |λ|1/2 + |r |

(1 + |λ|1/2)2 ; (w, λ) ∈ Hn, (u, r) ∈ Hn .

.

Theorem 6.2 (Głowacki [10], Corollary 5.2) Let

a ∈ Symm1,n1(Hn), b ∈ Symm2,n2(Hn).

Then, a ∗ b ∈ Symm1+m2,n1+n2(Hn).
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We have

K � f = K1 � f ∈ Sym0,0(Hn) �
⋂
N ,M

Sym N ,M (Hn)

⊆
⋂
N ,M

Sym0,0(Hn) � Sym N ,M (Hn)

⊆
⋂
N ,M

Sym N ,M (Hn) ∼= S(Hn).

��
Lemma 6.3 The class S0(Hn) is dense in L2(Hn).

Proof Let g ∈ L2(Hn) be such that ∀ f ∈ S0(Hn) 〈g, f 〉 = 0. Then 〈ĝ, f̂ 〉 = 0.
Hence supp ĝ ⊆ R

2n × {0}. But it implies that g = 0 almost everywhere. ��
Lemma 6.4 The Gärding space

Gλ := {πλ
ϕ f : ϕ ∈ S0(H

n), f ∈ L2(Rn)}

is dense in L2(Rn).

Proof Take any g ∈ L2(Rn) such that for allϕ ∈ S0, f ∈ L2(Rn)wehave 〈g, πλ
ϕ f 〉 =

0. We will show that g = 0 a.e. Consider only those functions ϕ which can be
decomposed as ϕ(x, y, t) = ϕ1(x, y)ϕ2(t). Then

0 = 〈g, πλ
ϕ f 〉 = 〈g,

∫
Hn

ϕ(h)πλ
h f dh〉 =

∫
Hn

ϕ(h)〈g, πλ
h f 〉dh

=
∫
R

(∫
R2n

ϕ1(x, y)〈g, πλ
h f 〉dxdy

)
ϕ2(t)dt =

∫
R

F(t)ϕ2(t)dt.

It follows that 〈F̂, ϕ̂2〉 = 0, which, by the structure of S0(H
n), implies that

supp F̂ ⊆ {0}.

Hence F̂ = ∑N
n=0 cnδ

(n)
0 . By the Schwarz inequality ||F ||∞ ≤ || f ||2||g||2||ϕ1||1. So

F ∈ L∞(R) and at the same time F(t) = ∑N
n=0 cntn . Consequently, there is no other

option than F = const , which means that

∫
R2n

ϕ1(x, y)〈g, πλ
h f 〉dxdy = cϕ2 .

By the density of S(R2n) in L2(R2n), we have that the expression 〈g, πλ
h f 〉 does not

depend on the variable t . So (πλ
(0,0,t) − I )g = 0 for all t , which leads to a contradiction

unless g = 0 a.e. ��



J Fourier Anal Appl (2016) 22:1076–1096 1087

Lemma 6.5 Let K , L be flag kernels such that K |S0(Hn) = L|S0(Hn). Then, K = L.

Proof If 〈K , f 〉 = 〈L , f 〉 for f ∈ S0(H
n), then 〈K −L , f 〉 = 0 and so 〈K̂ − L, f̂ 〉 =

0. Therefore from the definition of the class S0(H
n), we have that K̂ − L = 0 outside

of the center of Hn which has measure 0. Thus K̂ = L̂ as elements of L∞(Hn), so
K = L in S ′(Hn). ��
Definition 4 We denote by B0(H

n) the class of all smooth functions such that their
Fourier transforms are bounded measures whose λ-support does not contain 0. One
can norm this space with ‖ f ‖B0 = ‖ f̂ ‖M, where ‖ · ‖M denotes the total variation
of a measure.

Observe that S0(H
n) ⊂ B0(H

n). B0(H
n) is convenient because it contains objects

of type Cλ
f,g , as by 5.2 and 5.1, we have

‖Cλ
f,g‖B0 � ‖̂c f,g‖1 � ‖ f̂ ‖1‖g‖1.

Now according to Lemma 6.5 we can restrict the algebra of flag kernels to S0(H
n)

and then extend it to B0(H
n) by the formula

〈K , f 〉 =
∫
Hn

K̂ (w, λ)d f̂ (w, λ).

Continuity is gained for free as |〈K , f 〉| � ‖K̂‖∞‖ f̂ ‖M. Now we can define the
representation of a flag kernel. Suppose first that K ∈ S0(H

n). Then,

〈πλ
K f, g〉 = 〈

∫
Hn

K (h)πλ
h f dh, g〉 =

∫
Hn

K (h)〈πλ
h f, g〉dh = 〈K , Cλ

f,g〉,

for f, g ∈ S(Rn). Hence, for every flag kernel we put 〈πλ
K f, g〉 := 〈K , Cλ

f,g〉 as a
weak definition of its representation. Observe next that if λ > 0

〈πλ
K f, g〉 =

∫ ∫
K (u, t)c f,g(|λ|1/2u)e2π i tλdudt

=
∫ ∫ ∫ ˜̂K (ξ, η, r)|λ|−n̂c f,g

(
ξ

|λ|1/2 ,
η

|λ|1/2
)

dξdηdδλ(r)

=
∫ ∫ ˜̂K (|λ|1/2ξ, |λ|1/2η, λ)̂c f,g(ξ, η)dξdη.

Similar calculation for λ < 0 leads to a conclusion that πλ
K is a pseudodifferential

operator with the KN symbol

˜̂K (sgn (λ)|λ|1/2ξ, |λ|1/2η, λ).

Lemma 6.6 Let K be a flag kernel and ϕ in S0(H
n). Then, the operators πλ

K�ϕ and

πλ
K πλ

ϕ are equal.
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Proof First one can calculate that

Cλ
πλ

ϕ f,g(h) =
∫

πλ
h πλ

ϕ f (s)g(s)ds =
∫

πλ
h

∫
ϕ(h′)πλ

h′ f (s)dh′g(s)ds

=
∫

ϕ(h′)
∫

πλ
hh′ f (s)g(s)dsdh′ =

∫
ϕ̃(h′)Cλ

f,g(hh′−1)dh′ =Cλ
f,g � ϕ̃(h).

Now using fact that K � ϕ is in S0(H
n)

〈πλ
K�ϕ f, g〉 =

∫
K � ϕ(h)〈πλ

h f, g〉dh =
∫

K � ϕ(h)Cλ
f,g(h)dh

=
∫

K (h)Cλ
f,g � ϕ̃(h)dh =

∫
K (h)Cλ

πλ
ϕ f,g(h)dh = 〈πλ

K πλ
ϕ f, g〉.

��
Corollary 6.7 Let K1, K2 be flag kernels. The operators πλ

K1�K2
and πλ

K1
πλ

K2
are

equal.

Proof As flag kernels form an algebra, the above lemma implies

πλ
K1�K2

πλ
ϕ f = πλ

K1�K2�ϕ
f = πλ

K1
πλ

K2�ϕ
f = πλ

K1
πλ

K2
πλ

ϕ f, (6.1)

where the second equality follows by the fact that K2 �ϕ ∈ S0(H
n). 6.1 proves that the

operators agree on vectors of type πλ
ϕ f which are dense in L2(Rn)when ϕ ∈ S0(H

n),
f ∈ L2(Rn). ��

7 Representations of L2

We start from a simple calculation of the KN symbol of πλ
f , where f is a Schwartz

function. Let λ be positive. We have

πλ
f u(s) =

∫
f (x, y, t)e2π i tλe2π i

√
λysu(s + √

λx)dxdydt

=
∫

f (x,
√

λs∨, λ∨)u(s + √
λx)dx

= |λ|−n/2
∫

f

(
x − s√

λ
,
√

λs∨, λ∨
)

u(x)dx

= |λ|−n/2
∫ ∫

f

(
x − s√

λ
,
√

λs∨, λ∨
)

e2π i xξ û(ξ)dξdx

=
∫ ∫

f (x,
√

λs∨, λ∨)e2π i
√

λxξ e2π isξ û(ξ)dξdx

=
∫

f ∨(
√

λξ,
√

λs, λ)e2π isξ û(ξ)dξ.
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Here the sign “∨”, over arguments of f , has been used as a notation of a partial inverse
Fourier transform in respective variables. As we can see in this case the symbol of πλ

f
is also

a(ξ, η) = ˜̂f (sgn (λ)|λ|1/2ξ, |λ|1/2η, λ).

Let for a moment x, y ∈ H
n and A be a Hilbert–Schmidt operator on S(Hn) with a

kernel �. One can calculate that

Au(x)=
∫

�(x, y)u(y)dy =
∫

�(x, y)

∫
e2π iyξ û(ξ)dξdy =

∫
�(x, ξ∨)̂u(ξ)dξ.

It is easy to see that if a is the KN symbol of A, then

a(ξ, η) = e−2π iξη�(ξ, η∨),

and by the Plancharel formula,

‖A‖2H S = ‖�‖22 =
∫ ∫

|�(ξ, y)|2dξdy =
∫ ∫

|e−2π iξη�(ξ, η∨)|2dξdη = ‖a‖22.

The sign change on the first coordinate, in a situation where λ is negative, have no
impact on the obstacles with which we struggle. Thus from now on in all calculations
we will disregard this difference.

Lemma 7.1 Let f ∈ L2(Hn) and { fn}n ⊂ S0(H
n) be such that fn → f in L2. For

almost everyλ, there exists a subsequence { fnk (λ)}k such that πλ
fnk (λ)

tend to an operator

Aλ in the Hilbert–Schmidt norm. Aλ depends neither on the chosen sequence fn nor
on its subsequence fnk (λ). Moreover the KN symbol of Aλ is aλ(w) = ˜̂f (|λ|1/2w, λ).

Proof By Plancherel’s formula

‖ fn − f ‖22 =
∫

| f̂n(w, λ) − f̂ (w, λ)|2dwdλ

=
∫

|λ|n
∫

| ˜̂fn(|λ|1/2w, λ) − ˜̂f (|λ|1/2w, λ)|2dwdλ

=
∫

|λ|n‖πλ
fn

− Aλ‖2H Sdλ,

where Aλ is the Hilbert–Schmidt operator with the symbol (w, λ) 
→ ˜̂f (|λ|1/2w, λ).
By Fatou’s lemma lim inf ‖πλ

fn
− Aλ‖H S = 0 for almost every λ. Therefore, for almost

every λ, there exists a subsequence fnk (λ) such that

‖πλ
fnk (λ)

− Aλ‖H S → 0.

��
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Let f̂ λ(w) := f̂ (|λ|1/2w, λ). Lemma 7.1 says that for every u, v ∈ S(Hn),
〈 f̂ λ

n , ĉu,v〉 tends to 〈 f̂ λ, ĉu,v〉 a.e. which implies that 〈πλ
fn

u, v〉 must have a limit.

This limit is Aλ and it will be denoted by πλ
f . Nevertheless, for a given L2 function,

the operator exists only for a.e. λ.

Lemma 7.2 Let K be a flag kernel on H
n. Then, for every f ∈ L2(Hn),

πλ
K πλ

f = πλ
K� f .

Proof Let { fn}n ⊂ S0(H
n) tend to f in L2(Hn). By definition

πλ
K� f = lim πλ

K� fnk (λ)
,

for a.e. λ. As fnk (λ) converges to f in L2(Hn), by Lemma 7.1, K � fnk (λ) converges
to K � f a.e. Hence

πλ
K πλ

f = lim πλ
K πλ

fnks (λ)
= lim πλ

K� fnks (λ)
= πλ

K� f .

��
Assume that f ∈ L2(Hn). Let us continue with the calculation of kernel �λ

f of the

operator πλ
f . As it has been said before, we have

�λ
f (ξ, η∨) = e2π iξη f ∨(|λ|1/2ξ, |λ|1/2η, λ).

Therefore,

�λ
f (ξ, y) =

∫
e−2π iη(y−ξ) f ∨(|λ|1/2ξ, |λ|1/2η, λ)dη

= |λ|−n/2 f

(
|λ|1/2ξ∨,

y − ξ

|λ|1/2 , λ∨
)

.

Furthermore, by Plancherel’s formula

G f (λ) : = |λ|n‖πλ
f ‖2H S = |λ|n‖�λ

f ‖22 =
∫ ∫

| f

(
|λ|1/2ξ∨,

y − ξ

|λ|1/2 , λ∨
)

|2dξdy

=
∫ ∫

| f (x, y, λ∨)|2dxdy.

The function G f is continuous when f ∈ S(Hn). Let A be linear, bounded operator
on L2(Hn) (in particular a convolver), χE a characteristic function of a set E ⊂ R.
Then, from the above calculation we can conclude that

χE (λ)GA f (λ) = GA(χE (λ) f )(λ).

Let as recall here that ‖ f ‖22 = ∫
R� G f (λ)dλ.
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Lemma 7.3 Let A be a linear, bounded operator on L2(Hn). Suppose that, for every
f ∈ L2(Hn)

∫
R�

GA f (λ)dλ � c2
∫
R�

G f (λ)dλ,

then, for almost every λ, GA f (λ) � c2G f (λ).

Proof Assume a contrario that for a function g and λ in a set E of positive Lebesque
measure we have thatGAg(λ) < c2Gg(λ). Then, there exists ε>0 and a subset F of E
of positive Lebesque measure such that GAg(λ) � (1 − ε)c2Gg(λ) on F . Therefore,

c2
∫
R�

GχF (λ)g(λ)dλ �
∫
R�

GA(χF (λ)g)(λ)dλ =
∫

F
GAg(λ)dλ

� c2(1 − ε)

∫
F
Gg(λ)dλ = c2(1 − ε)

∫
R�

GχF (λ)g(λ)dλ,

which is obviously a contradiction. ��
The same holds true for the opposite inequality and the proof is analogous.

Theorem 7.4 Let K be a symmetric flag kernel, such that Op(K ) is invertible. The
family {πλ

K }λ is uniformly invertible, that is all πλ
K are invertible and the family of

operators {(πλ
K )−1}λ is uniformly bounded on L2(Rn).

Proof As Op(K ) is invertible there exists a constant CK , such that for f ∈ L2(Hn)

‖K � f ‖2 � CK ‖ f ‖2. Using Plancherel formula we have

∫
R�

|λ|n‖πλ
K� f ‖2H Sdλ = ‖K � f ‖22 � C2

K ‖ f ‖22 = C2
K

∫
R�

|λ|n‖πλ
f ‖2H Sdλ.

Now by Lemma 7.3

CK ‖πλ
f ‖H S � ‖πλ

K� f ‖H S = ‖πλ
K πλ

f ‖H S � ‖πλ
K ‖2→2‖πλ

f ‖H S .

Consider the operatorPg,h ; g, h ∈ L2(Rn),where‖h‖2 	= 0,which acts onvectorsu ∈
L2(Rn) by Pg,h(u) := 〈u, g〉h. It is easy to see that the kernel of Pg,h is �P (x, y) =
g(x)h(y), so ‖Pg,h‖H S = ‖g‖2‖h‖2. Now

πλ
KPg,hu = 〈πλ

K u, g〉h = 〈u, (πλ
K )�g〉h = 〈u, πλ

K � g〉h = 〈u, πλ
K g〉h = Pπλ

K g,hu.

Hence

‖πλ
K g‖2‖h‖2 = ‖πλ

KPg,h‖H S � CK ‖Pg,h‖H S = CK ‖g‖2‖h‖2.

Dividing both sides by ‖h‖2 we obtain that ‖πλ
K g‖2 � CK ‖g‖2 holds for every

g ∈ L2(Rn) which, together with the fact that πλ
K is self-adjoint, implies our claim.

��
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8 The Beals Theorem and the Main Result

Summing up our previous results we conclude that, for every λ, a flag kernel K , gives
rise to an operator πλ

K which acts on L2(Rn) as a pseudodifferential operator with the

Kohn-Nirenberg symbol aλ(w) = ˜̂K (|λ|1/2w, λ). Moreover,

|∂α
waλ(w)| = |∂α

w{˜̂K (|λ|1/2w, λ)}| � cα(‖|λ|1/2w‖ + |λ|1/2)−|α||λ||α|/2

= cα(1 + ‖w‖)−|α|.

Observe that these estimates do not depend on λ. In particular, by the Calderón–
Vaillancourt theorem, the family {πλ

K }λ is uniformly bounded on L2(Rn). Let us
define

Sym0(R2n) := {a ∈ C∞(R2n) : |∂α
wa(w)| � cα(1 + ‖w‖)−|α|}.

In this language the family of symbols {aλ}λ is bounded in Sym0(R2n)with the natural
seminorm topology. The key point in our argument is the following application of a
much more general theorem of Beals.

Theorem 8.1 (Beals [1], Theorem3.2)Let A = a(x, D), where a is a smooth function
on R

2n, which satisfies the estimates

|∂α
wa(w)| � Cα.

Moreover let A be invertible on L2(Rn). Then, A−1 = b(x, D) with b satisfying
the same properties as a. Each seminorm of b depends only on a finite number of
seminorms of a and the operator norm of A−1.

Let us denote the symbol of (πλ
K )−1 by bλ. In the language of symbols the equation

πλ
K (πλ

K )−1 = I d corresponds to aλ#bλ = 1. Differentiating this formula we get

∂α
wbλ =

∑
γ∈�

cγ ∂γ1
w bλ#∂

γ2
w aλ#∂

γ3
w bλ,

where � := {γ = (γ1, γ2, γ3) ∈ (N2n)3 : |γ2| > 0, γ1 + γ2 + γ3 = α}. By the
standard symbolic calculus, we obtain that in fact {bλ}λ ⊂ Sym0(R2n). Moreover
one can conclude that the seminorms of bλ once again do not depend on λ. So the
family {bλ}λ also corresponds to a bounded family in Sym0(R2n). Similar formulas
will be explained in later arguments. Following Głowacki [10], we say that a is a weak
limit of a bounded sequence {an}n in Sym0(R2n) iff for every α the sequence {∂αan}n

converges almost uniformly to ∂αa. The twisted multiplication # is continuous in the
weak sense.

Lemma 8.2 The family {bλ}λ is weakly smooth in the parameter λ.
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Proof We proceed by induction. Let {λn}n converge to a nonzero λ. As {bλn }n is
bounded in Sym0(R2n), we can use Arzeli-Ascoli theorem to find aweakly convergent
subsequence. Let {bλnk

}k tend to bλ({nk}). We have

1 = bλnk
#aλnk

→ bλ({nk })#aλ.

Hence for every convergent subsequence {bλnk
}k , the limit must be the same and

equal to bλ. Therefore, it also must be the limit of {bλn }n . Assume now that ∂ N
λ bλ

is continuous for N < M . Observe that using continuity of bλ which we have just
obtained, formally we have

lim
h→0

bλ+h − bλ

h
= lim

h→0
bλ#

aλ − aλ+h

h
#bλ+h = −bλ#∂λaλ#bλ, (8.1)

where the right hand side is weakly continuous. Consider the set

� := {m = (m1, m2, m3) ∈ N
3 : m2 > 0, m1 + m2 + m3 = M}.

Iterating the decomposition (8.1) we obtain

∂ M
λ bλ =

∑
m∈�

cm∂
m1
λ bλ#∂

m2
λ aλ#∂

m3
λ bλ. (8.2)

By induction hypothesis the right hand side is again weakly continuous. Hence the
proof is complete. ��

The decomposition 8.2 actually gives more. It turns out that b(w, λ) := bλ(w) is
also smooth if only λ 	= 0. It is a consequence of the fact that every derivative of
b(w, λ) has bounded partial derivatives outside of every set of type R

2n × [−ε, ε].
Note that ˜̂B(w, λ) = B̂(−w,−λ), so ˜̂B is the Fourier transform of a flag kernel if

and only if B̂ is.

Theorem 8.3 Let B be a distribution such that B̂(w, λ) = bλ(|λ|−1/2w). Then, B is
a flag kernel.

Proof It is obvious from the definition that B̂ is smooth away from the hyperspace
{(w, λ) : λ = 0}. We have

|(∂α
1,2,...,2n B̂)(|λ|1/2w, λ)||λ||α|/2 = |∂α

1,2,...,2n{B̂(|λ|1/2w, λ)}| = |∂α
wbλ(w)|

� cα(1 + ‖w‖)−|α|.

Therefore,

|(∂α
1,2,...,2n B̂)(|λ|1/2w, λ)|�cα(1 + ‖w‖)−|α||λ|−|α|/2=cα(|λ|1/2 + ‖|λ|1/2w‖)−|α|.
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Now putting w instead of |λ|1/2w we obtain

|(∂α
w B̂)(w, λ)| � cα(|λ|1/2 + ‖w‖)−|α|. (8.3)

It sufficies now to get the estimates of the derivatives with respect to λ. We can treat
inequality 8.3 as an initial step of an induction. First of all using the fact that K is a
flag kernel one can calculate that

∣∣∂ M
λ aλ(w)

∣∣ =
∣∣∣∣∂ M

λ

{˜̂K (|λ|1/2w, λ)
} ∣∣∣∣

=
∣∣∣∣

∑
1�|β|+ j�M

cβ, jw
β

|λ|M− j−|β|/2 (∂
β
1,2,...,2n∂

j
2n+1

˜̂K )(|λ|1/2w, λ)

∣∣∣∣

�
∑

1�|β|+ j�M

|cβ, j |‖w‖|β|

|λ|M− j−|β|/2 (‖|λ|1/2w‖ + |λ|1/2)−|β||λ|− j

� ‖w‖|β|

|λ|M (1 + ‖w‖)|β| � |λ|−M .

As {bλ}λ is a bounded family in Sym0(R2n) let us assume that it is so for the families
{|λ|N ∂ N

λ bλ}λ, where N < M . Now using 8.2 we can write

|λ|M∂ M
λ bλ =

∑
m∈�

cm |λ|m1∂
m1
λ bλ#|λ|m2∂

m2
λ aλ#|λ|m3∂

m3
λ bλ.

As m2 > 0 one can use an induction argument and the standard symbolic calculus
to deduce that the right hand side is bounded in Sym0(R2n). Therefore, the families
{|λ|M∂ M

λ bλ}λ are bounded, for all M ∈ N. Thus,

|∂α
w(|λ|M∂ M

λ bλ(w))| � cα,M (1 + ‖w‖)−|α|,

so

|∂α
w∂ M

λ bλ(w)| � cα,M (1 + ‖w‖)−|α||λ|−M .

One can calculate that

∂α
w∂ M

λ bλ(w) =
∑

γ+δ=α

∑
1�|β|+ j�M

cγ,β, jw
β−γ

|λ|M− j−(|β|+|δ|)/2 (∂
β+δ
1,2,...,2n∂

j
2n+1 B̂)(|λ|1/2w, λ).

The only component of the sum on the right hand side that includes j = M is the one
with β = γ = 0, δ = α. So, by induction hypothesis, we have



J Fourier Anal Appl (2016) 22:1076–1096 1095

|(∂α
1,2,...,2n∂ M

2n+1 B̂)(|λ|1/2w, λ)||λ||α|/2

�
∑

γ+δ=α

∑
1�|β|+ j�M, β 	=0

‖w‖|β|−|γ |

|λ|M− j−(|β|+|δ|)/2(‖|λ|1/2w‖ + |λ|1/2)|β|+|δ||λ| j

+ |∂α
w∂ M

λ bλ(w)|

�
∑

γ+δ=α

∑
1�|β|+ j�M, β 	=0

‖w‖|β|−|γ |

(1 + ‖w‖)|β|−|γ |(1 + ‖w‖)|α||λ|M

+ (1 + ‖w‖)−|α||λ|−M � (1 + ‖w‖)−|α||λ|−M .

Thus,

|(∂α
1,2,...,2n∂ M

2n+1 B̂)(|λ|1/2w, λ)| � cα,M (1 + ‖w‖)−|α||λ|−M |λ|−|α|/2

= cα,M (‖|λ|1/2w‖ + |λ|1/2)−|α||λ|−M .

Again putting w instead of |λ|1/2w we obtain

|(∂α
w∂ M

λ B̂)(w, λ)| � cα,M (‖w‖ + |λ|1/2)−|α||λ|−M .

��
proof of Theorem 3.3. The KN symbol of (πλ

K )−1 is bλ(w) = B̂(|λ|1/2w, λ) which
is the symbol of πλ

B̃
and B̃ is a flag kernel. So (πλ

K )−1 = πλ
B̃
. Now

πλ
δ0

= I d = (πλ
K )−1πλ

K = πλ
K (πλ

K )−1 = πλ
B̃
πλ

K = πλ
K πλ

B̃
= πλ

B̃�K
= πλ

K�B̃
.

So K � B̃ = δ0 = B̃ � K . Now putting L = B̃ for f ∈ L2(Hn)we achieve K � L � f =
L � K � f = f , which is equivalent to Op(K )Op(L) f = Op(L)Op(K ) f = f and
finally Op(K )−1 = Op(L). ��
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