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Abstract Flag kernels are tempered distributions which generalize these of Calder6n—
Zygmund type. For any homogeneous group G the class of operators which acts on
L*(G) by convolution with a flag kernel is closed under composition. In the case of
the Heisenberg group we prove the inverse-closed property for this algebra. It means
that if an operator from this algebra is invertible on L?(G), then its inversion remains
in the class.
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1 Introduction

A subalgebra A of the algebra B(7H) of all bounded operators on a Hilbert space H is
said to be inverse-closed if every a € A which is invertible in B(H) is also invertible in
A. The question whether an algebra of convolution operators on a Lie group, or simply
R” is inverse-closed is not new. In 1953, Calder6n and Zygmund [4] showed that the
class of convolution operators on L2(R") whose kernels are homogeneous of degree
—n and are locally in L4 (R") away from the origin, has the property. Here | < g < oo.
Much later the result was generalized by Christ [5] who proved that similar algebras
on a homogeneous group are inverse-closed. A homogeneous group G is a nilpotent
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Lie group with dilations, a very natural generalization of the homogeneous structure
on R”.

Another direction has been taken by Christ and Geller [6] who dealt with the algebra
of operators with kernels which are homogeneous of degree —n and smooth away from
the identity on a homogeneous group with gradation. This algebra is inverse-closed
too. A step further has been made by Gtowacki [9] who showed that this is so for any
homogeneous group.

The kernels which are smooth away from the identity allow an interesting gener-
alization. One can relax the homogeneity condition demanding only that the kernel
satisfies the estimates

|05 K ()| < x| =€,

where Q is the homogeneous dimension of the group. The cancellation condition takes
the form

KK, @)l = I/Ggo(X)K(x)dxl < llell,

forp € S(G), where |- || is a fixed seminorm in the Schwartz space S(G). Such kernels
K are often called the Calderon—Zygmund kernels and the corresponding operators
Op(K) the Calderon—Zygmund operators. The class is closed under the composition
of operators (Coré-Geller [7]) so they form an algebra. It has been proved recently
(Glowacki [13]) that this algebra is inverse-closed as well.

Let us specify the notion to the Heisenberg group which is the group under study
in this paper. For the sake of simplicity, let us consider here only the one-dimensional
case. The underlying manifold of H is R? which we write down as

H=H 6H =R*oR.
In these coordinates the group law is
(w,t) o (v,s) = (w+v,t+s+wy),

where w = (wi, wz), v = (v, v2) € R2, t,5 € R. There are many choices of
compatible dilations, but the most natural is

S (w, t) = (rw, rzt), r>0.
In this setting the size condition for a Calderon—Zygmund kernel reads
18507 K (. )] < (Jwl] + ¢ /%) ~41=2F,
The cancellation condition doesn’t get any simpler, so we do not repeat it here.

We are going to compare these conditions with the estimates that define flag kernels
which are the main object of study in this paper. Flag kernels were introduced by
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Miiller—Ricci—Stein [14] and Nagel-Ricci—Stein [15] in their study of Marcinkiewicz
multipliers (the first paper) and CR manifolds (the other one). These kernels are much
more singular than the Calderon—Zygmund kernels. Accordingly, the definition is more
complex. We consider a tempered distribution K on H which is smooth for w # 0
and satisfies the estimates

10297 K (w, )] S Jwl| 2w + 16127272, w £0,

as well as the following three cancellation conditions:

1) For every ¢ € S(H)), the distribution

f'—>/ K(w, g(w) f(1)dwdt
H

is a Calderon—Zygmund kernel on Hy,
2) For every ¢ € S(H>), the distribution

fH/ K(w, 1) f(w)e@)dwdt
H

is a Calderon—Zygmund kernel on H,
3) Forevery ¢ € S(H),

sup| | K(w,)¢(Rw, R2t)dwdt| < 00.
R>0 JH

Finally, for given «, 8, the estimates are uniform with respect to ¢ if ¢ stays in a
bounded set in the respective Schwartz space.

The operators with flag kernels share some properties with the Calderon—Zygmund
operators. They are bounded on L? (G)-spaces and form an algebra (see Miiller—Ricci—
Stein [14], Nagel-Ricci—Stein [15], Nagel-Ricci—Stein—Wainger [16], Gtowacki [11],
Gtowacki [12]). We are, however, interested in the inversion problem for this class.
Before going any further, let us pause for a moment and consider the simplest case,
namely that of an Abelian group R”. Then, the Fourier transform K is a function on
R" which is smooth away from the origin and satisfies the estimates

BgK@E)| S lgl™, & #0.

These estimates are, equivalent to the ones defining the Calderén—Zygmund kernel. If
the operator Op(K) is invertible, then

KE)|>ec>0, 0#£&eR",

and it is directly checked that L=1 / K satisfies analogous estimates, so that L is a
flag kernel such that L x K = K x L = §p.
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A similar idea works for the Heisenberg group H. Let 7* denote the Schrodinger
representation of H with the Planck constant A # 0, If K is a flag kernel on H such that
the operator Op(K) is invertible, then, for every A # 0, the operator ”1)% is invertible
(Theorem 7.4) and can be regarded as a pseudodifferential operator in a suitable class
(Section 6 and 8). By the Beals theorem, the inverse belongs to the same class (Theorem
8.1). Now, the estimates are uniform in A, so one can recover the kernel of the inverse
operator from the kernels of (7r1’\()_l and show that it is a flag kernel (Theorem 8.3).
Thus the algebra of the operators with flag kernels on the Heisenberg group turns out
to be inverse-closed (Theorem 3.3). We believe that similar method could be used in
the case of a general 2-step nilpotent Lie group.

There is a technicality in the proof we want to comment on. There exists no universal
definition of the extension of the unitary representation to a space of distributions. One
has to rely on specific properties of the distribution space in question. Everything works
fine for distributions with compact support. A Calderon—Zygmund kernel can be split
into a compactly supported part and a part which is square integrable, so there is no
problem with the definition of }( .No such splitting is available for flag kernels. Instead
we modify the domain of the distribution. Originally, a distribution is a functional on the
Schwartz space. We introduce two other spaces on which flag kernels can be regarded as
continuous functionals (Definitions 3 and 4). The cancellation conditions are important
here. We also take adventage of a functional calculus of Glowacki [10] (Lemma 6.1).
Once nlk( is defined for our flag kernel, we can follow the path outlined above.

As we learned recently, Bony—Chemin in the introduction to their work [3] men-
tioned a gap in the proof of the Lemma 4.6 in the work of Beals [2]. This lemma is a
key to a thesis of Theorem 4.7. We have changed our argument so as to be able to use
the Theorem 3.2 from Beals [1] instead.

2 Preliminaries
The main structure of this work is the Heisenberg group. As a set it is
H" =R" xR" x R.
Elements of the group will usually be denoted by
H'>h=(x,y,t) = (v,1).
The group multiplication is
oy, ) -y ) =Xy 4y e+ ).

We define a homogeneous norm on H" as
1 2n 1
Bl = llvll + [e]2 =D Jvi| + I¢]2
i=1

with the corresponding family of dilations
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8j(hy =38;(v,1) = (jv, j*1), j >0,

in the sense that [§;(h)| = j|h|. The set {§;} ;-0 actually forms a group of automor-
phisms. The homogeneous dimension is the number Q = 2n + 2. We will use the
designations

8 =% = o%19%...9% )

U2

and
2n
vl =lal+28=> a+28,
i=1
where o = (1, a2, ..., ®2,), ok, B € N. One of the main tools is the abelian Fourier

transform defined by the formula

Feri= [ fimean
Hn
where
Hnacz(gsnv)"):(w’)")v HnZRnXRnXR
It can be first defined for Schwartz functions

S(H") = {f € C*®°(H") : VN € N sup max |8£:f(h)|(l +1hDY < o0}
heH" lVISN

and then lifted to the Lebesque space of the square-integrable functions
L*(H") = {f : / | f () Pdh < oo}
H»

or to the space of tempered distributions S’ (H") which is the space of all continuous
linear functionals on S(H") in the sense of the usual seminorm topology. Note that
we use the non-isotropic norm to define the Schwartz space. Nevertheless, this space
is equivalent to the standard one defined by isotropic estimates. For § € S'(H"), f €
S(H") one can put

(S, f) = (S. ).
Let also

fre) = fah, (S f) = (S, ), SeSH"), feSH").

By §p we will denote the Dirac distribution.
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3 Flag Kernels and Their Convolution Operators
Automorphisms {8} -0 decompose our group H" into their eigenspaces
GGy > (v,1).

Theorem 2.3.9 of Nagel-Ricci—Stein [15] says that there is a one-to-one correspodence
between flag kernels and their multipliers. It allows us to define flag kernels as follows.

Definition 1 Let H" be the Heisenberg group and
H, =G} ® G5 > (w, 1)

the dual vector space to H". We say that a tempered distribution K is a flag kernel iff
its Fourier transform K agrees with a smooth function outside of hyperspace {(w, A) :
) = 0} and satisfies the estimates

18297 K (. )] < cap(llwl + 127N, alle, p.

Observe that in particular K belongs to L*°(H,). For f € S(H"), K € §'(H") we
define their convolution as

K x f(h) .= (K, h_lf) = /]HI" K(h’)f(h’_lh)dh’,
where f (h) = f (h~"and , f(h) := f(xh).Our point of departure are the following

two theorems:

Theorem 3.1 Let K be a flag kernel on the Heisenberg group. Then

IK* fll2 S0 fll2,  f € SHE).

Hence we have an L*-bounded operator Op(K)f =K f.

Observe that our convolution operators are right-invariant even though we often
refer the reader to obviously equivalent left-invariant results.

Theorem 3.2 Let K, S be flag kernels on the Heisenberg group H" and
T := Op(K)Op(S).

Then, there exists a flag kernel L such that T = Op(L).

Thus the flag kernels give rise to convolution operators, bounded on L?(H"), which
form a subalgebra of B(L2(H")). For convenience we will write L = K % S.

These are theorems of Nagel-Ricci—Stein [15] who proved them for a class of
homogeneous groups which includes all two-step homogeneous groups (Theorems
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2.6.B and 2.7.2). Partial results can be found in an earlier paper of Miiller—Ricci—Stein
[14] (Theorem 3.1). They were subsequently generalized for all homogeneous group
independently and virtually simultanously by Nagel-Ricci—Stein—Wainger [16] and
Gtowacki [11]. The aim of this paper is to prove the following theorem.

Theorem 3.3 Let H” be the Heisenberg group. Let K be a flag kernel on H". Suppose
that the operator Op(K) is invertible on LZ(H"). Then there exists a flag kernel L,
such that for all f € L*>(H")

Op(K)™'f =L f =O0p(L) .
Observe that Op(K) is right-invariant. Further the same holds for its inversion.
By general theory it follows that there exists a tempered distribution L such that
Op(K)~'f = L » f. Now it suffices to show that L is a flag kernel. In the following
considerations we can assume that the flag kernel K is symmetric, i.e. K = K*. In
fact if Theorem 3.3 is true for such kernels, let us pick an arbitrary flag kernel K.
Then, we can consider kernels K* x K and K « K* which are symmetric. By Theorem
3.2 they are both flag kernels. Therefore, by Theorem 3.3, there exist flag kernels S, T
such that
S*x(K**K) =36 & (K« K% T =§.

Again, by Theorem 3.2 and associativity, it follows that there exist flag kernels L, Lo
such that

LixK = & K x Ly, = &p.
The identity
Li=Lix(KxLy)=(L1xK)xLy=1L»

ends the proof of our theorem for an arbitrary flag kernel K.

4 Schrodinger Representation

Definition 2 For A # 0 and & € H" we define the family of operators
{m} h e H", A #0},
all acting on the same L*(R") by the following formula

TS £(5 4 hx): A >0,

A —
my f(s) = [eznikzehimysf(s —VIAx); A <.

Birkhduser



J Fourier Anal Appl (2016) 22:1076-1096 1083

For a Hilbert space H, denote by U (H), B(H) the spaces of all unitary and bounded
operators, respectively. It is well-known (see, e.g. Folland [8], Section 1.3) that, for
every A # 0,

H" 5 h —> 7} € U(L*(R™))
is a unitary representation on the Hilbert space L?(R").
L'H") 5 f > € BLAR"),

whg(s) = /H fymyg(s)dh
is a representation of x-algebra L'(H") on the Hilbert space L2(R™).

5 Useful Notation

For f, g € S(R") we define the function
crg(x,¥) 1=/R e f (u + x)g(u)du.

In particular

TraE, ) = f(E)glpe™iEn (5.1)

Let also
Ch o,y 1) = () f. &)
Let A > 0. One can calculate that
C},g(x, v, 1) = /]R" n();cgy’t)f(u)g(u)du = ¥ (Vx, YY)
We also have

Cfﬁ\/;@, n = ///eizmxse*z”iy”ezmﬁy“f(u + V/Ax)g(u)dudxdy

_ogiy iy . .
- / / / AT 2T AN GE QTR o2 ivn 27NV £ () 0 (u)dudxdy

// e (j’) i ﬁ+ﬁy)e‘2”iy”g(u)dudy

2//\ n2 g (5_) (—+\/_y) ~2rivn gy
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%)g (e fﬁdy

—nnrl S o 2mi G *”/\ii
A )

Il
—

E
m/\

Moreover
ChoEnr) =crgod ;®XOMNE 0, 1) = M "Crg @8 (ﬁ’ ")
5.2)

where §,, is a Dirac distribution supported at . For A < 0 the above formula should
be slightly modified. For such XA one can get analogously

/)L\ — )| _L L
Cf’g(és 7797’)— |)"| Cf,g®8)»( |)\|1/29 |)\‘|1/21r)-

Suppose that a is a function on R"” x R" which is bounded or square-integrable.
Then, the weakly defined operator

(Af, g) = / / (g, ) f(&)g(n)dnde
_ / / a (€. NieTa(E, ndEdn = (a.T77)

is a continuous mapping from S(R") to &’(R"). It is often denoted by A = a(x, D)
and called a pseudodifferential operator with the Kohn—Nirenberg (KN) symbol a.

6 The Class Sy and the Operator I);

Let g be a function on I, such that g(w, 1) = @(1), where ¢ € C°(G3). Then
g¥(u,t) =8 ® ¢ (u, t), where the 7" sign denotes the inverse Fourier transform.
Observe that if for example f € S(H"), then

Fag'h) = / FlhrYdg" (r) = / Fh— r)dg ()

_ / FO Wdg” (r) = §¥ % F (),

so gV is a central measure. We will need a notion of the A-support of a function f.
By definition a real number Ag is not in the A-supp ( f) iff there exists & such that no
point (w, A), where A € (Ag — &, A9 + &), is in the support of f.
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Definition 3 We say that a Schwartz function f is in So(H") iff
(Fe > 0)Vp € C°((—e, &) U (—1/e, —00) U (1/e, 00)) fgo =0,
that is, iff A-supp (f) is bounded and does not contain 0.
Lemma 6.1 Suppose f € So(H") and K is a flag kernel. Then K * f is in So(H").
Proof Let us define first a#b := (a” »b™)". For the sake of convenience of the reader

we will write here *, instead of % whenever the convolution becomes abelian. As f is
in So(H") take &, ¢ which satisfy the condition of Definition 3. We have

~

Kxfo=(Kxfro") =K#fo=K# =0,

so the same & works also for K % f. It remains to explain why K * f is an element of

SMH"™). Let ¢ € C°(R\ {0}) be equal to 1 on A-supp of f Observe that /¥ can be
thought of as a central measure. Thus

Kxf=KxfxVV ' =Kx, V" % f=K|*f,
where f(\l is smooth and
19200 K1 (w, )] < cap 1+ llwll + YD+ 2~
Now if we write that a € Sym™ M (H") iff
19800 a(w, M| < cap (14wl + YTV (4 =M,
then K| € Sym®O(H"), f € Sym™-M(H") for all N, M because it is a Schwartz
function. We use here an application of the symbolic calculus of Gtowacki governed
by the metric

el I

1+||w||+|)\‘|1/2 (1+|}\‘|1/2)27 (wv)‘*)Ean (uvr)EHn'

.U, r) =

Theorem 6.2 (Gtowacki [10], Corollary 5.2) Let
a € Sym™ " M"Y, b e Sym">"(H").

Then, a x b € Sym™ 1 Tm2m+n2 (ry
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We have

Kxf=Ki*feSym" ") (1) Sym™M ")
N.M
c ﬂ Sym®O(H") « Sym™ M (H")
N,M
() Sym™M@H") = SH").
N.M

N

Lemma 6.3 The class So(H") is dense in L>(H").

Proof Let g € L2(H") be such that Vf € So(H") (g, f) = 0. Then (g, f) = 0.
Hence supp § € R?*" x {0}. But it implies that g = 0 almost everywhere. O

Lemma 6.4 The Gdrding space
Gh = {m)f : ¢ € SoH"), f € L*(R")
is dense in L>(R").

Proof Takeany g € L?(R") suchthatforallg € Sy, f € L2(R") wehave (g, n(ﬁf) =
0. We will show that g = 0 a.e. Consider only those functions ¢ which can be
decomposed as ¢(x, y, t) = ¢1(x, y)@2(t). Then

0= (g.1i 1) = (e [ ot fan) = [ otite. i} pian

=/ (/ <p1(x,y)<g,ﬂ2f>dxdy) goz(t)dt=/ F(t)pa(t)dt.
R R2n R

It follows that (ﬁ , ¢2) = 0, which, by the structure of So(H"), implies that
supp FC {0}.

Hence £ = >V ¢,80". By the Schwarz inequality || F||oc < || fIl2/1gll2ll¢1]]1. So

F € L°°(R) and at the same time F (t) = 2111\,:0 cpt". Consequently, there is no other
option than F' = const, which means that

/Rz” o1(x, Y)(g. 7} f)dxdy = cy,.

By the density of S(R?") in L?(R?"), we have that the expression (g, n})}f) does not
depend on the variable ¢. So (n(ko 00" I)g = O for all ¢, which leads to a contradiction
unless g = 0 a.e. O
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Lemma 6.5 Let K, L be flag kernels such that K |s,my = L|s,@r). Then, K = L.

Proof TE(K, f) = (L, f)for f € So(H"),then (K —L, f) = Oandso (K — L, f) =
0. Therefore from the definition of the class So(H"), we have that K — L = 0 outside
of the center of H,, which has measure 0. Thus K = L as elements of L*°(H,), so
K = L in §'(H"). O

Definition 4 We denote by By(H") the class of all smooth functions such that their
Fourier transforms are bounded measures whose A-support does not contain 0. One
can norm this space with || f |5, = ||f|| M, Where || - || o denotes the total variation
of a measure.

Observe that So(H"*) C Bo(H"). Bo(H") is convenient because it contains objects
of type C}’g, as by 5.2 and 5.1, we have

1C% N5, < IErglt < 17 lglh.

Now according to Lemma 6.5 we can restrict the algebra of flag kernels to So(H")
and then extend it to Bo(H") by the formula

(K, f) =/H K(w, M)d f(w, ).

Continuity is gained for free as |[(K, f)| < ||f||w||ﬂ|M. Now we can define the
representation of a flag kernel. Suppose first that K € So(H"). Then,

i o9y =, Kl fdhog) = [ Kt fogidh = (K. CG )

for f, g € S(R™). Hence, for every flag kernel we put (n,@f, g) = (K, C}g) as a
weak definition of its representation. Observe next that if 1 > 0

(7% frg) ://K(u,z)cf,g(|A|‘/2u)e2”’”dudt

= _ § n
=///K($, n,1)|Al ”?f}(m—l/z,m—l/z)dsdndéx(r)

=//i?<|x|‘/zs,|x|1/2n,x>?f';<é, ndédn.

Similar calculation for A < 0 leads to a conclusion that n,’\( is a pseudodifferential
operator with the KN symbol

K (sgn (W12, 112, 0).

Lemma 6.6 Let K be a flag kernel and ¢ in So(H"). Then, the operators n}( " and

A
g, are equal.
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Proof First one can calculate that

Cz);gf,g(h) :/rr;)l‘n(ﬁf(s)g(s)ds =/7{2/(p(h/)n,i‘,f(s)dh’g(s)ds
= / () / T f ($)g(s)dsdh' = / GUC (W™ Dydh' =C % G(h).

Now using fact that K * ¢ is in So(H")

(Tkap s 8) = / K » o(h)(mj, f, g)dh = / K » 9(h)C% o (h)dh
:/K(h)C}’g*g’E(h)dh :/K(h)chﬁg(h)dh = (mg7m) f. 8).

]

Corollary 6.7 Let K1, Ky be flag kernels. The operators 711)}1* K> and nﬁlnlk(z are
equal.

Proof As flag kernels form an algebra, the above lemma implies

A A A A A A oA A
nKl*sz-[(Pf ZT[KI*KZ*Wf = nKleKz*rpf = nKanzmpf’ .

where the second equality follows by the fact that K» x¢ € So(H"). 6.1 proves that the

operators agree on vectors of type n;} f which are dense in L2(R") when ¢ € So(H"),
f e L*(R"). o

7 Representations of L2

We start from a simple calculation of the KN symbol of & }, where f is a Schwartz
function. Let A be positive. We have

nA;‘«u(s) = / fx,y, t)e2””k62”iﬁysu(s + Vax)dxdydt
= / f(x, ﬁsv, Mu(s + \/Xx)dx
_ |/\|_”/2/f (% ﬁsv,kv) u(x)dx
_ |)\|"/2//f(x\/_;,ﬁsv,w) 2TINEG(E ) dEdx
— //f(x, \/XS\/, )\‘V)eZﬂl\/xxfezni‘s‘fﬁ(é)d%-dx

= / FY (Vg N s, Ve ) dE.
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Here the sign “V”’, over arguments of f, has been used as a notation of a partial inverse
Fourier transform in respective variables. As we can see in this case the symbol of }
is also

a(e. ) = fsgn WA, |A]Y29, 2).

Let for a moment x, y € H" and A be a Hilbert—-Schmidt operator on S(H") with a
kernel 2. One can calculate that

Au(x) = / Q. Yu(y)dy= / Q. y) / PTG dEdy = / Qx, £)A(E)dE.
It is easy to see that if a is the KN symbol of A, then

a(g, n) = e ENQ g, 1Y),

and by the Plancharel formula,

1A = ||9||§=//|sz<s,y)|2dsdy=//|e*2”if"sz<s,nV)|2dsdn= lal.

The sign change on the first coordinate, in a situation where A is negative, have no
impact on the obstacles with which we struggle. Thus from now on in all calculations
we will disregard this difference.

Lemma 7.1 Let f € L>(H") and {f,}, C So(H") be such that f, — f in L%. For
almost every A, there exists a subsequence { fy,, (o) }x Such that j} o tend to an operator
nk

A% in the Hilbert-Schmidt norm. A* depends neither on the chosen sequence f, nor
on its subsequence fy, ;). Moreover the KN symbol ofA)‘ is ay(w) = f(Mll/zw, A).

Proof By Plancherel’s formula

1 fo = £13 =/|fn<w,x> w2 Pdwds
=/|A|"/|ﬁ(|x|‘/2w,x)—?(|x|‘/2w,>»)|2dwdx

= / A"l }, — AM 1 sdA,

where A”* is the Hilbert—Schmidt operator with the symbol (w, 1) f(|k| 12w, ).
By Fatou’s lemma lim inf || n)f‘n — A*||gs = 0for almost every A. Therefore, for almost
every A, there exists a subsequence fy, (;) such that

A A
I}, oy = A*lls = 0.
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Let ]ﬂ(w) = f(|k|1/2w,k). Lemma 7.1 says that for every u,v € S(H"),
(f}.Cuv) tends to (f*, ¢, ) ae. which implies that (n}nu, v) must have a limit.

This limit is A* and it will be denoted by 7 } Nevertheless, for a given L? function,
the operator exists only for a.e. A.

Lemma 7.2 Let K be a flag kernel on H". Then, for every f € L*(H"),

A h _ A
TRTF =T, f-

Proof Let {f,}, C So(H") tend to f in L>(H"). By definition
A S
TRep = lim nK*fnk(A)’

for a.e. A. As fy, (1) converges to f in L2(H"), by Lemma 7.1, K  f;,, (1) converges
to K x f a.e. Hence
A A i A — Tim A _
mgmy = lim KT fo ) = lim TRk fug 0 = RS-

O

Assume that f € L?(H"). Let us continue with the calculation of kernel Q)} of the
operator n}. As it has been said before, we have

Q&) = Y (AVPE, A2, ).
Therefore,
Qi y) = / e 200 £V (A2, 102, Mdn

_ y—§
= [\ f (mlﬂsv, Wl/z,ﬂ).

Furthermore, by Plancherel’s formula
y—§
G0 = M lm ks = IS5 = // |f (ml”sv, e AV) *ddy

= [ [ 156y Paxay,

The function & f is continuous when f € S(H"). Let A be linear, bounded operator
on LZ(H") (in particular a convolver), g a characteristic function of a set £ C R.
Then, from the above calculation we can conclude that

XEQ)Bar(A) = B a0 1))

Let as recall here that ||f||% = fR* & r(M)dA.
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Lemma 7.3 Let A be a linear, bounded operator on L*(H"). Suppose that, for every
feL>@

/ ®Af(x)dx>c2/ & r(L)d,
R* R*

then, for almost every A, & o7 (L) = c2Q5f (A).

Proof Assume a contrario that for a function g and A in a set E of positive Lebesque
measure we have that & 4, (1) < & ¢(1). Then, there exists >0 and a subset F’ of E
of positive Lebesque measure such that & 44(A) < (1 — 8)c2®g(k) on F. Therefore,

6‘2/ Q5XF(A)g(k)dA</ QﬁA()(p(A)g)()\)d)h:/ G g (M)dA
R* R* F
< —s)/ G (M)dr = (1 —s)/ Gy (g (M,
F R*

which is obviously a contradiction. O

The same holds true for the opposite inequality and the proof is analogous.

Theorem 7.4 Let K be a symmetric flag kernel, such that Op(K) is invertible. The
family {n,}é};\ is uniformly invertible, that is all JT,A( are invertible and the family of
operators { (711);)_1 V. is uniformly bounded on L*(R™).

Proof As Op(K) is invertible there exists a constant Ck, such that for f € L?(H")
K * fll2 = Ck|l f 2. Using Plancherel formula we have

/]R A" ks IFrsdh = 1K = £115 > Cx 15 = C%(/R A" 711 sdA

Now by Lemma 7.3

Cxlmtllms < ko llus = Inkmilms < Imk la—2llnl as.
Consider the operator Py 558, h € L?(R™), where ||h||> # 0, whichacts on vectors u €
L2(R™) by Pg n(u) := (u, g)h. Itis easy to see that the kernel of Py 1, is Qp(x, y) =
g)h(y), so IPenllms = ligll2llhll2. Now

Tk Pet = (mu, )h = (u, (Tg)*g)h = (u, 7 g)h = (. W 8)h = Pra , .

Hence

Ik gll2linll2 = mk Penlas = Cx I Penllus = Ckligl2lhll2-
Dividing both sides by |k||2 we obtain that ||712(g||2 > Ckllgll2 holds for every

g € L?(R") which, together with the fact that 77 % 18 self-adjoint, implies our claim.
O
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8 The Beals Theorem and the Main Result

Summing up our previous results we conclude that, for every X, a flag kernel K, gives
rise to an operator 7{1*( which acts on L2(R") as a pseudodifferential operator with the

Kohn-Nirenberg symbol a; (w) = 17(\ (IA1Y%w, 1). Moreover,

10%ax ()| = [9X(K (A]2w, )} < ca (A1 2w]) + |A]1/2) 71 1)/
= co (1 + [wl)~1.

Observe that these estimates do not depend on A. In particular, by the Calderén—
Vaillancourt theorem, the family {JTI)%})\ is uniformly bounded on LZ(R”). Let us
define

Sym®(R*") := {a € CX(R™) : |9a(w)| < ca(1 + wl) ™).

In this language the family of symbols {a; } is bounded in Sym®(R>") with the natural
seminorm topology. The key point in our argument is the following application of a
much more general theorem of Beals.

Theorem 8.1 (Beals[1], Theorem3.2) Let A = a(x, D), where a is a smooth function
on R?" which satisfies the estimates

|aga)] < Ca.

Moreover let A be invertible on L*(R"). Then, A~' = b(x, D) with b satisfying
the same properties as a. Each seminorm of b depends only on a finite number of
seminorms of a and the operator norm of A",

Let us denote the symbol of (n}()_l by b;.. In the language of symbols the equation
nl)} (JTI)%)_I = Id corresponds to a,#b, = 1. Differentiating this formula we get

0xby = > ¢, 0 ba#OL a, #0} by,

w
yel

where I' := {y = (y1,12.13) € W)’ : |ya] > 0,91 + 2 + 13 = a}. By the
standard symbolic calculus, we obtain that in fact {b,}, C Symo(]R2”). Moreover
one can conclude that the seminorms of b, once again do not depend on A. So the
family {b; }, also corresponds to a bounded family in Sym®(R?"). Similar formulas
will be explained in later arguments. Following Gtowacki [10], we say that a is a weak
limit of a bounded sequence {a, }, in S ymO(RZ") iff for every « the sequence {0%ay,},
converges almost uniformly to d%a. The twisted multiplication # is continuous in the
weak sense.

Lemma 8.2 The family {b,}, is weakly smooth in the parameter A.
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Proof We proceed by induction. Let {A,}, converge to a nonzero A. As {by,}, is
bounded in Sym®(R?"), we can use Arzeli-Ascoli theorem to find a weakly convergent
subsequence. Let {b;\nk }k tend to by ({ny}). We have

1= b)‘"k#a)‘"k — bk({nk})#a;\.

Hence for every convergent subsequence {b;, }, the limit must be the same and

equal to by. Therefore, it also must be the limit of {b;,},. Assume now that 8{\’ by
is continuous for N < M. Observe that using continuity of b; which we have just
obtained, formally we have

b —b —
lim 22— _ im bk#w

#b = —b, #0,a,#b,, 8.1
Jim : Jim At+h aHOpa #b;, (8.1

where the right hand side is weakly continuous. Consider the set
E:={m=(my,my,m3) € N3 - my > 0,my +my +m3 = M}.
Iterating the decomposition (8.1) we obtain

WMy =D cwd] by} a,#0]" by (8.2)

meg

By induction hypothesis the right hand side is again weakly continuous. Hence the
proof is complete. O

The decomposition 8.2 actually gives more. It turns out that b(w, A) := by (w) is
also smooth if only A # 0. It is a consequence of the fact that every derivative of
b(w, 1) has bounded partial derivatives outside of every set of type R?" x [, ¢].

Note that E(w, A) = E(—w, —\), SO B is the Fourier transform of a flag kernel if
and only if B is.

Theorem 8.3 Let B be a distribution such that E(w, A = b;L(IM_l/zw). Then, B is
a flag kernel.

Proof 1Tt is obvious from the definition that B is smooth away from the hyperspace
{(w, A) : A = 0}. We have

155, ou BYAM 2w, DA = 1055 o, ABAA 2w, M)} = 182 bs (w)]
< (14wl

Therefore,

1055, 2u BY(Aw, M) <o (1 + )T A V2 = o (1412 + 112 2wl 1.
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Now putting w instead of |A|'/“w we obtain

109 B)(w, 1| < ca (A2 + [lwl) 1. (8.3)

It sufficies now to get the estimates of the derivatives with respect to A. We can treat
inequality 8.3 as an initial step of an induction. First of all using the fact that K is a
flag kernel one can calculate that

|0M a; (w)| = [aM {I?(|k|1/2w,A)} ‘
_ Cﬁ,jwﬂ Y 3 Ry 2w
=| 2 pprean O EIOA w0
I<IBl+j <M
ep w1 1/2y~1Bl 1 [~
<l<lﬂlz<Mm<um wil + (A2 7Pl
18]
lw] S

AMA A+ lw DIF

As {b;}; is a bounded family in Sym®(R>") let us assume that it is so for the families
{|)L|N8){Vb;h};\, where N < M. Now using 8.2 we can write

MMM p, = z Con | AI™ O by #1202 s #1023 by

meg

As my > 0 one can use an induction argument and the standard symbolic calculus
to deduce that the right hand side is bounded in SymO(R?"). Therefore, the families
{IAM3Mp,}; are bounded, for all M € N. Thus,

102 (MMM by (w))| < cqm (14wl ™,
SO
1923 by (w)| < ca (1 + Nlwl) ™" a =M.

One can calculate that

wB—r 4
M Cy.B.jW B+8 i Byl
a0 b(w) = Y > = i—agrenzz 2,200 B (A Pw, ).
y+i=a I<IBl+j<M

The only component of the sum on the right hand side that includes j = M is the one
with 8 = y =0, § = «. So, by induction hypothesis, we have
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5. onon BY(A] 2w, 2|21/

- Z Z lw|BI=1¥I
e D o WP (2] 2] - A1) BRI
+ 103,33, (w))|
lw||BI=I¥I

S 2 2 (I + wID P + wlDlela ™

y+8=a 1<IBI+j <M, B0
+ (4w ™A™ <+ wlh =M.

Thus,

1055 2,000 BY(A 2w, )| < copr (1 + fwl) 71N =M o 11/
= cam (1IA2w] 4 (22 1A=

1/2

Again putting w instead of |A|'/“w we obtain

1(020M By (w, M)| < com(wll + |22 71l |a =M.
O

proof of Theorem 3.3. The KN symbol of (})~" is by (w) = B(|A|'"/?w, 1) which
is the symbol of 7% and B is a flag kernel. So ()l = 7% Now

A _ Ak _ A _ _h
Ty =TgTE =75

2 Ay=1_2 A=l
ny, =1d = (g)” g =ng(g) =7 Gk = TkB

A
B
SoK*B =35y = E*K.NowputtingL = §forf € L>(H") we achieve K L% f =
L x K x f = f, which is equivalent to Op(K)Op(L) f = Op(L)Op(K)f = f and
finally Op(K)~! = Op(L). o
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