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1 Introduction

Operator semigroups are ubiquitous objects in pure and appliedmathematics. It iswell-
known thatmany function spaces, such as theBesov spaces onRn , can be characterized
using, for example, the heat kernel [3,31]. Recent work has generalized these results
to function spaces on more general domains; for instance, see [2,17]. More abstractly,
a substantial amount of classical harmonic analysis inRn can be pushed through to the
setting of a measure space equipped with a diffusion semigroup, as found in Stein’s
book [29]. A limiting aspect of the theory developed in this book is the absence of
an explicit geometry; though the statements of maximal theorems, Littlewood–Paley
theorems and interpolation theorems make sense in this general setting, basic notions
such as Lipschitz functions cannot be defined, since these require a metric on the
underlying measure space.

A natural way of introducing a geometry in such an abstract setting is to use the
semigroup itself to define a distance. This is the approach taken in the theory of
diffusion maps [6] and related work [15,16]. If the kernel of the semigroup at time t
is denoted by at (x, y), then the diffusion distance at time t is defined as ‖at (x, ·) −
at (y, ·)‖L2(dμ), for an appropriate measure μ. This conceptually meaningful distance
has found wide application in machine learning, where the kernel at (x, y) is a power
of an affinity matrix measuring the relationship between two points in a data set.

The idea of defining distances using semigroups is the starting point for the present
work. However, the ground distances Dα(x, y) we introduce in Sect. 2 are not defined
at a fixed scale, but incorporate all scales at once. Though the parameterα > 0 controls
the weight placed at each scale, all scales are present. In a variety of examples, and for
appropriate ranges of α, we will show that this distance is equivalent to a “snowflake”
of the intrinsic distance ρ(x, y) on the underlying space; that is, the distance ρ(x, y)

raised to a power less than 1 [18]. In the examples we consider, this power is a constant
times α, and it follows that we must restrict α to be less than 1.

Next, we consider the space �α of functions that are Lipschitz with respect to
the distance Dα(x, y). In the examples where Dα(x, y) is a snowflake of an intrinsic
distance ρ(x, y), Lipschitz functions are Hölder with respect to ρ(x, y). We will
therefore call �α the Hölder–Lipschitz space. This space arises in many areas of
applications. For instance, in nonparametric statisticsHölder–Lipschitz functions arise
naturally as a model for unknown functions corrupted by noise. Simple equivalent
formulas for the Hölder–Lipschitz norm in the Euclidean setting, such as those derived
from wavelet theory [23], have been used for signal recovery [11].

In Sect. 4, we give simple characterizations of the Hölder–Lipschitz norm using the
semigroup itself. As in the Euclidean setting, where similar results are well-known
[3,29,31], the fundamental observation is that the size of a function’s variation across
scales is equivalent to the size of its variation in space.

In Sect. 5, we study the space �∗
α of measures that can be integrated against

Hölder–Lipschitz functions—that is, the space dual to �α . In particular, we give sim-
ple characterizations of the norm on this space. This is of interest in many applications,
as the dual norm of the difference between two probability measures is equal to their
Earth Mover’s Distance (EMD). We will recall the definition of EMD and prove a
basic property of it in Sect. 6. EMD is a popular tool in machine learning that suffers
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from high computational cost. The equivalent metrics we develop provide, in many
situations, a fast approximation to it.

We impose certain regularity conditions on the semigroup.The conditions are highly
non-restrictive, and in Sect. 3 we show that they hold for a broad class of semigroups,
such as those considered in [17]. Examples include heat kernels on closed Riemannian
manifolds, heat kernels on certain fractals, and subordinated heat kernels inRn (includ-
ing the Poisson kernel), as well as the non-symmetric example of shifted heat kernels
on R

n . In addition, we will show that if the theory holds for some finite collection of
semigroups on different spaces, then it holds for their product on the cross-product of
these spaces. In all the examples we consider, the parameter α defining the distance
Dα(x, y) must lie between 0 and 1, and sometimes must be bounded away from 1.

In Sects. 7 and 8, we generalize our results to the product of measure spaces, each
equipped with its own semigroup. We will focus on the example of two spaces for
concreteness, though all results hold for arbitrarily many. In this setting, the natural
measure of a function’s regularity is not the supremum of its difference quotients, but
rather of its mixed difference quotients. We derive equivalent formulas for the norms
on the space �α,β of mixed Hölder–Lipschitz functions and its dual �∗

α,β , where α

and β are the parameters used to define the distances on the two spaces.
Product spaces arise naturally in applications. In signal processing, for example, the

spectrogram of a signal is a function on the product of the time and Fourier domains.
By assuming that the spectrogram lies in a Sobolev space with dominating mixed
derivatives—akin to the mixed Hölder–Lipschitz space �α,β—one can develop effec-
tive estimators for recovering a spectrogram corrupted by noise [24]. Furthermore, the
norm dual to Hölder–Lipschitz is a robust distance between two spectrograms. The
equivalent dual norms we derive in this paper provide distances for comparing mea-
sures on any database with a product structure where each axis has its own semigroup,
and hence its own geometry.

1.1 Notation

By “A � B” or “B � A” we mean inequalities up to positive constants; that is, there
is a constant C > 0 such that A ≤ C · B. Similarly, by “A � B” we mean there
are constants c, C > 0 such that c · A ≤ B ≤ C · A. What is meant by C being a
“constant” will be clear in each instance.

We will encounter a variety of norms and seminorms throughout the paper. We
will use ‖·‖, augmented with appropriate subscripts and superscripts, to denote norms,
whilewewill use capital letters and parentheses, e.g. V (·), augmentedwith appropriate
subscripts and superscripts, to denote seminorms.

2 Multiscale Diffusion Distance

Our setting throughout the paper will be a sigma-finite measure space X . We will not
need to explicitly refer to the σ -algebra or the measure.We suppose thatX is equipped
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with a family of kernels at (x, y), t > 0, in L1. Defining the operators

At f (x) =
∫
X

at (x, y) f (y)dy

we assume the following conditions:

(S) (The semigroup property) For all t, s > 0, At As = At+s . This property can be
expressed in terms of the kernels at (x, y) as

at+s(x, y) =
∫
X

at (x, w)as(w, y)dw.

(C) (The conservation property) If 1 is the constant function 1 on X , then for all
t > 0, At 1 = 1. This property can be expressed in terms of the kernels at (x, y)

as
∫
X

at (x, y)dy = 1.

(I) (The integrability property) There is a constant C > 0 such that for all t > 0 and
x ∈ X ,

∫
X

|at (x, y)|dy ≤ C.

(R) (The regularity property) There are constants C > 0 and α > 0 such that for
every 1 ≥ s ≥ t > 0 and every x ∈ X ,

∫
X

|at (x, y)| · ‖as(x, ·) − as(y, ·)‖1dy ≤ C

(
t

s

)α

.

We will actually only require a slightly weaker version of condition (R), namely
the same condition restricted to dyadic times t = 2−k and s = 2−l , with k and l
non-negative integers. Later in this section we will give an alternate characterization
of (R), namely condition (G) below, that reveals its geometric content with respect to
the distance Dα(x, y) defined by formula (1). In Sect. 3, we will show that condition
(R) holds for a wide variety of spaces X and kernels at (x, y). In Sect. 4 we will show
that this condition also implies convergence to the identity for the class of Hölder–
Lipschitz functions that wewill define there. Note too that in every examplewe discuss
α will be strictly less than 1, and sometimes will be bounded away from 1.

In contrast to [2,17], we do not assume the existence of a metric on the space X .
Rather, we will use the kernels at (x, y) to define a metric from scratch. This approach
is inspired by the papers [6,16] and related work. In the theory of diffusion maps
[6], for example, each time t defines a diffusion distance, namely the L2 distance
between at (x, ·) and at (y, ·). Each such distance captures the geometry of the space at
a particular scale. These distances also have the feature that they can be approximately
embedded into a low-dimensional Euclidean space.
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As in [16], our starting point is the L1 distance between kernels at each scale, and
not the L2 distance. We also consider a single distance that incorporates all scales at
once, rather than a family of distances. Though there are no Euclidean embeddings of
the distance we define (as with an L2 diffusion distance), for the application areas we
have in mind there will usually be no need to explicitly compute our distance for all
pairs of points; see Sect. 6.

We will be concerned with dyadic scales t ∈ (0, 1]; that is, scales t = 2−k, k ≥ 0.
To this end, define

Pk = A2−k

and

pk(x, y) = a2−k (x, y).

Also, we define

Dk(x, y) = ‖pk(x, ·) − pk(y, ·)‖1.

Define the multiscale distance

Dα(x, y) =
∑
k≥0

2−kα Dk(x, y). (1)

Note that condition (I) guarantees not only that Dα(x, y) is finite, but that it is
uniformly bounded for all x and y.

In Sect. 3 wewill compute the distance Dα(x, y) formany examples of semigroups.
Before doing so, however, it will be convenient to turn our attention to the regularity
condition (R) we impose on the kernels at (x, y). We reformulate condition (R) in
geometric terms, where the geometry is defined by the distance Dα(x, y). To that end,
define the geometric condition (G) by

(G) (The geometric property) There are constants C > 0 and α > 0 such that for all
k ≥ 0 and x ∈ X ,

∫
X

|pk(x, y)| · Dα(x, y)dy ≤ C2−kα.

We show that conditions (R) and (G) are essentially equivalent. The following
lemma will be convenient.

Lemma 1 Suppose there are constants C > 0andα > 0 such that for all non-negative
integers k, l ≥ 0 and all x ∈ X ,

∫
|pk(x, y)|

k∑
l=0

2−lα‖pl(x, ·) − pl(y, ·)‖1dy ≤ C2−kα.
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Then (G) holds, for the same choice of α and a possibly different constant C.

Proof By the integrability condition (I) the integrals
∫
X |pl(x, y)|dy are uniformly

bounded. Therefore

∑
l≥k+1

2−lα‖pl(x, ·) − pl(y, ·)‖1 � 2−kα

and so
∫
X

|pk(x, y)|
∑

l≥k+1

2−lα‖pl(x, ·) − pl(y, ·)‖1dy � 2−kα

∫
X

|pk(x, y)|dy � 2−kα.

Recalling that Dl(x, y) = ‖pl(x, ·) − pl(y, ·)‖1, we can therefore write

∫
X

|pk(x, y)| · Dα(x, y)dy =
∫
X

|pk(x, y)|
k∑

l=0

2−lα Dl(x, y)dy

+
∫
X

|pk(x, y)|
∞∑

l=k+1

2−lα Dl(x, y)dy

� 2−kα

completing the proof. 	

Proposition 1 Suppose that (R) holds for some α > 0 and all dyadic times s =
2−l , t = 2−k , where 0 ≤ l ≤ k. Then (G) holds for all k ≥ 0 and for any 0 < α′ < α.

Proof For all x , condition (R) implies

∫
X

|pk(x, y)|2−lα′ ‖pl(x, ·) − pl(y, ·)‖1 � 2−kα2l(α−α′).

Summing over l = 0, . . . , k gives

∫
X

|pk(x, y)|
k∑

l=0

2−lα′ ‖pl(x, ·) − pl(y, ·)‖1dy � 2−kα
k∑

l=0

2l(α−α′)

� 2−kα2k(α−α′) = 2−kα′
.

By Lemma 1, we are done. 	

Proposition 2 Suppose condition (G) holds for some α > 0. Then (R) holds for all
dyadic times s = 2−l , t = 2−k , and for all 0 < α′ ≤ α. In other words, for all
0 < α′ ≤ α there is a constant C such that for all 0 ≤ l ≤ k and x ∈ X ,

∫
X

|pk(x, y)| · ‖pl(x, ·) − pl(y, ·)‖1dy ≤ C2−(k−l)α′
.
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Proof Since 2−lα‖pl(x, ·) − pl(y, ·)‖1 ≤ Dα(x, y) for all l ≥ 0, we have

∫
X

|pk(x, y)| · ‖pl(x, ·) − pl(y, ·)‖1dy ≤ 2lα
∫
X

|pk(x, y)|Dα(x, y)dy � 2−(k−l)α.

Since α′ ≤ α, the result follows. 	


We will find condition (G) to be a more useful statement of regularity than (R)
going forward. Note too that, as stated earlier, to recover (G) we need only assume
(R) for dyadic times s and t between 0 and 1.

3 Examples of Kernels Satisfying Our Conditions

In this section, we show that the conditions (S), (C), (I) and (R) (and equivalently, by
Propositions 1 and 2, condition (G) as well) we impose on the kernels at (x, y) hold
for semigroups arising in many different settings. Specifically, we consider two very
general conditions (conditions 1 and 2 formulated below) that are found in the paper
[17]. These conditions assume the existence of another metric ρ(x, y) on X and posit
that the kernels at (x, y) exhibit a certain regularity with respect to ρ(x, y). We show
that we can recover the four conditions (S), (C), (I) and (R) from conditions 1 and 2.

Furthermore, we also obtain an upper bound on the distance Dα(x, y) given by
Eq. (1) in terms of the distance ρ(x, y). More precisely, we show that Dα(x, y) is
bounded above by ρ(x, y) raised to a power less than 1. Such a distance—that is, a
distance of the form ρ(x, y)δ , where 0 < δ < 1—is called a snowflake of ρ(x, y)

[18]. By imposing even stronger regularity on at (x, y) in the form of condition 3 below
(also found in [17]), we will show that the distance Dα(x, y) is in fact equivalent to a
thresholded snowflake of ρ(x, y). We will use our analysis to establish conditions (S),
(C), (I) and (R) for many examples of semigroups and compute the distance Dα(x, y)

for these examples.
Throughout this section, we will always assume 0 < α < 1; as we will see, it will

often be necessary to impose an even tighter upper bound on α.

3.1 Hölder Continuous Kernels with Decay

Suppose there is a metric ρ(x, y) on X and a measure μ such that μ(B(x, r)) � rn ,
where n > 0 is fixed. In addition to the conservation property (C) and the uniform
L1 bound (I) that we already assume, the kernel at (x, y) is assumed to be symmetric,
and the following two regularity conditions are imposed:

1. An upper bound on the kernel: there is a non-negative, monotonic decreasing
function � : [0,∞) → R and a number β > 0 such that for any γ < β,

∫ ∞
τ n+γ �(τ)

dτ

τ
< ∞
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and

|at (x, y)| ≤ 1

tn/β
�

(
ρ(x, y)

t1/β

)
.

2. The Hölder continuity estimate: there is some constant � > 0 sufficiently small
such that for all t ∈ (0, 1], all x and y in X with ρ(x, y) ≤ t1/β , and all u ∈ X ,

|at (x, u) − at (y, u)| ≤
(

ρ(x, y)

t1/β

)� 1

tn/β
�

(
ρ(x, u)

t1/β

)
.

These conditions are found in [17]. As discussed there, examples of semigroups
satisfying these estimates include the subordinated heat kernels in Rn , the heat kernel
on certain Riemannian manifolds, the heat kernel on a variety of fractals such as the
unbounded Sierpinksi Gasket, and the heat kernel of the semigroup e−t L for certain
elliptic operators L on R

n .
We will show that if we assume conditions 1 and 2, then our geometric condition

(G) is satisfied for all 0 < α < min{1,�/β}. The first step in showing this is to prove
that our distance Dα(x, y) defined from the semigroup is bounded above by a power
of the distance ρ(x, y).

Lemma 2 For any 0 ≤ η < 1, there is a finite constant C > 0 such that for every
0 < t ≤ 1 and every x ∈ X ,

∫
X

ρ(x, y)βη 1

tn/β
�

(
ρ(x, y)

t1/β

)
dy ≤ Ctη.

Proof Let Vk = B(x, 2k+1t1/β) \ B(x, 2k t1/β). The upper bound on the kernel from
condition 1 yields the following inequality:

∫
X

ρ(x, y)βη 1

tn/β
�

(
ρ(x, y)

t1/β

)
dy

= 1

tn/β

{ ∫
B(x,t1/β )

+
∞∑

k=0

∫
Vk

}
ρ(x, y)βη�

(
ρ(x, y)

t1/β

)
dy

� tηt−n/β

{
�(0)μ(B(x, t1/β))

+
∞∑

k=0

2kηβ�(2k)μ(B(x, 2k+1t1/β))

}

� tηt−n/β

{
�(0)tn/β +

∞∑
k=0

�(2k)2k(n+ηβ)tn/β

}

� tη
{
�(0) +

∫ ∞

1
τ n+ηβ�(τ)

dτ

τ

}
� tη.
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We used that η < 1 and condition 1 to conclude that the last integral is finite. This is
the desired result. 	

Proposition 3 For every 0 < α < min{1,�/β}, there is a constant C > 0 such that
Dα(x, y) ≤ C min{1, ρ(x, y)αβ}.
Proof Since Dα(x, y) is uniformly bounded, we need only consider the case when
ρ(x, y) ≤ 1. Condition 2 and Lemma 2 above with η = 0 imply that whenever
ρ(x, y) ≤ t1/β ,

‖at (x, ·) − at (y, ·)‖1 ≤
(

ρ(x, y)

t1/β

)� 1

tn/β

∫
X

�

(
ρ(x, u)

t1/β

)
du �

(
ρ(x, y)

t1/β

)�

.

Consequently, if we define K so that 2−K ≤ ρ(x, y)β < 2−K+1, then

Dα(x, y) � ρ(x, y)�
K∑

k=0

2−kα2k�/β +
∞∑

k=K+1

2−kα � ρ(x, y)�2K (�/β−α) + 2−Kα

� ρ(x, y)αβ .

We used that α < �/β for the upper bound on the first sum. 	

With this upper bound on Dα(x, y), it is now straightforward to show that our

geometric condition (G) holds for a range of α.

Theorem 1 Under conditions 1 and 2, condition (G) holds for all 0 < α <

min{1,�/β}.
Proof From Proposition 3, we have the upper bound Dα(x, y) � ρ(x, y)αβ . Conse-
quently, taking η = α in Lemma 2 yields

∫
X

|at (x, y)|Dα(x, y)dy �
∫
X

ρ(x, y)αβ 1

tn/β
�

(
ρ(x, y)

t1/β

)
dy � tα

which is the desired result. 	


3.2 The Distance Dα(x, y) for Kernels with a Matching Lower Bound

Having established conditions (G) and (R) from the upper bound Dα(x, y) �
min{1, ρ(x, y)αβ} for all 0 < α < min{1,�/β} under the continuity and decay
conditions 1 and 2 of the previous section, we now formulate general conditions under
which we can prove a corresponding lower bound, Dα(x, y) � min{1, ρ(x, y)αβ}.
We will then study several examples where both conditions are satisfied.

Note that the lower bound is not necessary for the general results of our paper to
hold; in particular, our primary concern was to prove Theorem 1, which establishes
condition (G) for a large class of examples. We only prove lower bounds on Dα(x, y)
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to show that it is equivalent to a snowflake of the “natural” distance ρ(x, y) in many
cases.

In this section we will assume a stronger relation between the measure ρ(x, y) and
the metric μ, namely the two-sided estimate μ(B(x, r)) � rn . We suppose too that
in addition to conditions 1 and 2 of the previous section, we also have the following
condition:

3. A local lower bound on the kernel: there is a monotonic decreasing function  :
[0,∞) → R and R > 0 such that for all t ∈ (0, 1] and all ρ(x, y) < R

|at (x, y)| ≥ 1

tn/β


(
ρ(x, y)

t1/β

)
.

We will show:

Proposition 4 Under the conditions 1,2 and 3, Dα(x, y) � min{1, ρ(x, y)αβ}.
We will deduce the result from the following lemmas.

Lemma 3 There is a constant A > 1 and a constant ε > 0 such that whenever
x, y ∈ X and t ∈ (0, 1] satisfy At1/β ≤ ρ(x, y) < R, we have

‖at (x, ·) − at (y, ·)‖1 > ε.

Proof Temporarily fix any A > 1 and suppose At1/β ≤ ρ(x, y) < R. Then for any
u ∈ B(x, t1/β), the triangle inequality implies

ρ(y, u) ≥ ρ(x, y) − ρ(x, u) ≥ (A − 1)t1/β .

From the monotonicity of � it follows that �(ρ(y, u)/t1/β) ≤ �(A − 1). Conse-
quently, using the upper and lower bounds on |at (x, y)| and the fact thatμ(B(x, r)) �
rn , we have

‖at (x, ·) − at (y, ·)‖1
≥

∫
B(x,t1/β )

|at (x, u)|du −
∫

B(x,t1/β )

|at (y, u)|du

≥ 1

tn/β

∫
B(x,t1/β )



(
ρ(x, u)

t1/β

)
du − 1

tn/β

∫
B(x,t1/β )

�

(
ρ(y, u)

t1/β

)
du

≥ 1

tn/β

∫
B(x,t1/β )



(
ρ(x, u)

t1/β

)
du − 1

tn/β

∫
B(x,t1/β )

�(A − 1)du

≥ C1(1) − C2�(A − 1)

for some constants C1, C2 > 0. Since� is decreasing, by choosing A large enough
we can guarantee ε ≡ C1(1) − C2�(A − 1) > 0, yielding the desired result. 	
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Corollary 1 Let R be as in condition 3. Then for all ρ(x, y) < R,

Dα(x, y) � ρ(x, y)αβ .

Proof By the previous lemma, ‖at (x, ·) − at (y, ·)‖1 > ε > 0 whenever At1/β ≤
ρ(x, y). Take L so that 2−L ≤ ρ(x, y)β/Aβ < 2−L+1. Then

Dα(x, y) ≥
∞∑

k=L

2−kα‖pk(x, ·) − pk(y, ·)‖1 ≥ ε

∞∑
k=L

2−kα � 2−Lα � ρ(x, y)αβ .

	

Lemma 4 Let R be as in condition 3. There are constants C > 0 and δ > 0 such that
whenever ρ(x, y) ≥ R and t1/β < δR,

‖at (x, ·) − at (y, ·)‖1 ≥ C.

Proof Since ρ(x, y) ≥ R, the balls B(x, R/2) and B(y, R/2) are disjoint. Conse-
quently

‖at (x, ·) − at (y, ·)‖1 ≥
∫

B(x,R/2)
|at (x, u)|du −

∫
B(x,R/2)

|at (y, u)|du

≥
∫

B(x,R/2)
|at (x, u)|du −

∫
B(y,R/2)c

|at (y, u)|du

≥ 1 −
∫

B(x,R/2)c
|at (x, u)|du −

∫
B(y,R/2)c

|at (y, u)|du.

The result follows from Lemma 5 below. 	

Lemma 5 Fix any r > 0 and ε > 0. Then there exists δ > 0 sufficiently small so that
whenever 0 < t1/β < δr ,

∫
B(x,r)c

|at (x, u)|du ≤ ε.

Proof Temporarily fix δ > 0 and suppose 0 < t1/β < δr . Then if we let Vk =
B(x, 2k+1r) \ B(x, 2kr), we have

∫
B(x,r)c

|at (x, u)|du ≤ 1

tn/β

∫
B(x,r)c

�

(
ρ(x, y)

t1/β

)
du = 1

tn/β

∑
k≥0

∫
Vk

�

(
ρ(x, y)

t1/β

)
du

� 1

tn/β

∑
k≥0

�

(
2kr

t1/β

)
(2k+1r)n � rn

tn/β

∫ ∞

1
τ n�

(
τr

t1/β

)
dτ

τ

= rn

tn/β

∫ ∞

r t−1/β
tn/βr−nsn�(s)

ds

s
≤

∫ ∞

δ−1
sn�(s)

ds

s
.
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By taking δ small enough, the integral can be made as small as desired, completing
the proof. 	

Corollary 2 There is a constant B > 0 such that whenever ρ(x, y) ≥ R, Dα(x, y) ≥
B.

Proof Take C and δ from Lemma 4. Let K = �log2(1/(δβ Rβ))�. Then 2−K ≤ δβ Rβ ,
and so

Dα(x, y) ≥
∞∑

k=K

2−kαC � Cδαβ Rαβ > 0

which completes the proof. 	

Corollaries 1 and 2 easily imply Proposition 4. Furthermore, Propositions 3 and 4

yield the following theorem:

Theorem 2 If all the conditions 1, 2 and 3 on at (x, y) hold, and if μ(B(x, r)) � rn,
then for 0 < α < min{1,�/β} the distance Dα(x, y) is equivalent to the thresholded
snowflake distance min{1, ρ(x, y)αβ}.

3.3 Heat Kernel on a Riemannian Manifold

We illustrate Theorems 1 and 2 on some selected examples. We consider first the case
whereX is a closed (compact, without boundary) Riemannian manifold of dimension
n, and at (x, y) is its heat kernel. This section may be of interest to those in the
machine-learning community, as approximations to the heat kernel on data sampled
from submanifolds of Rn are widely-used in the analysis of many data sets [1,21].

SinceX is compact, it is true thatμ(B(x, r)) � rn . Furthermore, the following two
lemmas can be easily derived from the parametrix construction of the heat kernel given
in [5, Chapter VI, Section 4]. Here, ρ(x, y) is the geodesic distance on the manifold.

Lemma 6 There are positive constants A, B such that

at (x, y) ≤ A

tn/2 e−Bρ(x,y)2/t

for all t ∈ (0, 1].
Lemma 7 There are positive constants C, D

C

tn/2 e−Dρ(x,y)2/t ≤ at (x, y)

whenever t ∈ (0, 1] and ρ(x, y) is sufficiently small.
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Taking β = 2, fromLemma 6we see that the heat kernel at (x, y) satisfies condition
1 with �(τ) � e−Bτ 2 and times 0 < t ≤ 1, which is the only range of t we made
use of in Sect. 3.1; and from Lemma 7 the heat kernel satisfies condition 3 with
(τ) � e−Dτ 2 . To apply Theorem 2, it remains to show condition 2. We will deduce
the continuity estimate from the following gradient bound:

Lemma 8 There are constants E, F > 0 such that for all t ∈ (0, 1] and for all x and
y in X ,

‖∇x at (x, y)‖ ≤ E√
t

e−Fρ(x,y)2/t

tn/2

where ∇x denotes the gradient with respect to the first variable.

Proof Using the asymptotic expansion of at (x, y) in [5, Chapter VI, Section 4], it is
easy to show a Gaussian upper bound on the time derivative of at (x, y), namely

∣∣∣∣∂at

∂t
(x, y)

∣∣∣∣ ≤ b

t

e−cρ(x,y)2/t

tn/2

for some positive constants b, c. Since the curvature of X is bounded (because X is
compact) we can apply Theorem 1.4 from [20], which states that there are constants
A1, A2, A3 such that

‖∇x at (x, y)‖2 ≤
(

A1 + A2

t

)
at (x, y)2 + A3at (x, y)

∂at

∂t
(x, y).

For t ∈ (0, 1], it follows from the Gaussian estimates on at (x, y) and ∂t at (x, y)

that

‖∇x at (x, y)‖2 ≤ Ã

t

e−2Bρ(x,y)2/t

tn
+ b

t

e−cρ(x,y)2/t

tn/2

A

tn/2 e−Bρ(x,y)2/t � 1

t

e−B̃ρ(x,y)2/t

tn

for sufficiently small B̃ > 0, from which the result follows. 	

We next prove a consequence of the mean value theorem that will be useful.

Lemma 9 If x, y ∈ X are sufficiently close, then for any smooth function h : X → R

there is a point x̃ lying on the minimal geodesic from x to y such that

|h(x) − h(y)| ≤ ‖∇h(x̃)‖ρ(x, y).

Proof Suppose r ≡ ρ(x, y) is less than the injectivity radius of themanifold M (which
is positive, since M is compact). Let γ (t) be the unit speed geodesic connecting x
to y. Then γ (r) = y, and γ (0) = x . For details, see, for instance, [10, Chapter 13,
Section 2].
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Consider the function ĥ(t) = h(γ (t)). Observe that ĥ(0) = h(x) and ĥ(r) = h(y).
By the mean value theorem, there is some point t1 between 0 and r such that

h(y) − h(x)

ρ(x, y)
= ĥ(r) − ĥ(0)

r
= ĥ′(t1) = d

dt
h(γ (t))

∣∣∣∣
t=t1

= 〈∇h(γ (t1)), γ
′(t1)〉

Consequently, since γ has unit speed, the Cauchy–Schwarz inequality gives

|h(y) − h(x)| = |〈∇h(γ (t1)), γ
′(t1)〉|ρ(x, y) ≤ ‖∇h(γ (t1))‖ρ(x, y).

Consequently, if we let x̃ = γ (t1), then x̃ lies on the minimal geodesic connecting x
and y, and

|h(x) − h(y)| ≤ ‖∇h(x̃)‖ρ(x, y).

	

Corollary 3 There are positive constants G, H such that whenever t ∈ (0, 1] and
ρ(x, y) ≤ t1/2,

|at (x, u) − at (y, u)| ≤ G
ρ(x, y)√

t

e−Hρ(x,u)2/t

tn/2 .

Proof From Lemma 9 and the gradient estimate from Lemma 8, we have the bound

|at (x, u) − at (y, u)| ≤ ρ(x, y)
E√

t

e−Fρ(u,x̃)2/t

tn/2 .

where x̃ is some point on the minimal geodesic connecting x and y. Since ρ(x, y) ≤
t1/2, it is also true that ρ(x, x̃) ≤ t1/2. Consequently, we have

ρ(u, x)2 ≤ 2ρ(u, x̃)2 + 2ρ(x̃, x)2 ≤ 2ρ(u, x̃)2 + 2t

and so

|at (x, u) − at (y, u)| ≤ ρ(x, y)
E√

t

e−Fρ(u,x̃)2/t

tn/2 ≤ ρ(x, y)
E√

t

e−F(ρ(u,x)2−2t)/2t

tn/2

≤ ρ(x, y)
Ee√

t

e−(F/2)ρ(u,x)2/t

tn/2

which is the desired result. 	

Corollary 3 gives us condition 2. We can therefore apply Theorems 1 and 2 to

conclude that for all 0 < α < 1/2, Dα(x, y) � ρ(x, y)2α , and condition (G) is
satisfied.
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We note that to establish (G), we only made use of the Gaussian upper bound from
Lemma 6, the continuity estimate fromCorollary 3, and the upper boundμ(B(x, r)) �
rn . Condition (G) will therefore hold for the heat kernel on any manifold where these
estimates are true, and not just closed manifolds. For example, as discussed in [17],
the Gaussian upper bounds and continuity estimates hold for the heat kernel on any
geodesically complete Riemannian manifold with non-negative curvature.

3.4 Subordinated Heat Kernels with Shifts on R
n

Next we consider the case in which at (x, y) = Kt (x − y), where Kt (u) is a radial
kernel, i.e. Kt (x) = Kt (y) if |x | = |y|, satisfying the following scaling property:

Kt (x) = t−n/β K1(t
−1/β x)

where 0 < β ≤ 2. For details on the construction of such kernels in one dimension,
the reader can refer to the book [33]. These kernels are known as subordinated heat
kernels on R

n , and can be expressed as an average of the Gaussian heat kernel at
different scales. Concretely, when 0 < β < 2 (that is, β �= 2), Kt (x) is of the form

Kt (x) =
∫ ∞

0
ηt (s)gs(x)ds

where gs is the Gaussian kernel at time s, and for each t the function ηt (s) is a
probability density on (0,∞), known as the subordinator. In fact, ηt satisfies the
identity

exp(−tλβ/2) =
∫ ∞

0
ηt (s)e

−sλds

for all λ ≥ 0, from which it easily follows that the Fourier transform of Kt is

K̂t (ξ) = exp(−t |ξ |β).

For example, when β = 2, Kt is equal to the Gaussian heat kernel, and when β = 1
it is equal to the Poisson kernel.

It is shown in [17] that any subordinated heat kernel satisfies conditions 1, 2 and 3.
More precisely,

at (x, y) � 1

tn/β

(
1 + |x − y|

t1/β

)−(n+β)

and

|at (x, u) − at (y, u)| � |x − y|
t1/m

1

tn/m

(
1 + |x − y|

t1/m

)−(n+m)

.
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From Theorems 1 and 2, it follows immediately that whenever 0 < α < 1/β, the
distance Dα(x, y) with respect to the kernel at (x, y) = Kt (x − y) is equivalent to
min{1, |x − y|αβ} and that condition (G) holds. Note that our use of the parameter β in
the definition of the subordinated heat kernel coincides with its use in the conditions
1, 2 and 3.

This leads us to a family of examples of non-symmmetric semigroups for which
condition (G) holds, namely the subordinated heat kernels with shifts. Take β ∈ [1, 2].
Then for a fixed parameter θ ∈ R, define

at (x, y) = t−nβ K1

(
t−1/β(x − θ t − y)

)
.

It is easy to check from the semigroupproperty for the non-shift case θ = 0 thatat (x, y)

is also a semigroup. Furthermore, when 0 < α < 1/β we still have Dα(x, y) �
min{1, |x − y|αβ}. Therefore, we can verify condition (G) directly by writing

∫
Rn

at (x, y)Dα(x, y)dy �
∫
Rn

t−n/β K1(t
−1/β(x − θ t − y))min{1, |x − y|αβ}dy

=
∫
Rn

t−n/β K1(t
−1/β(x − y))min{1, |x − y + θ t |αβ}dy

≤
∫
Rn

t−n/β K1(t
−1/β(x − y))min{1, |x − y|αβ}dy

+
∫
Rn

t−n/β K1(t
−1/β(x − y))|θ t |αβdy

� tα + tαβ.

The last line follows from condition (G) in the case θ = 0. Since β ≥ 1, condition
(G) is satisfied. Note that this range of β includes both the heat kernel (β = 2) and
the Poisson kernel (β = 1).

3.5 Products of Kernels and Anisotropic Distances

Suppose that at (x1, x2) and bt (y1, y2) are two semigroups on spacesX andY , respec-
tively, for which the conditions (S), (C), (I) and (R) (and thus (G)) hold. We define
their product by ct ((x1, y1), (x2, y2)) = at (x1, x2) · bt (y1, y2). It is easy to check that
the kernel ct defines a semigroup onX ×Y , and that the three conditions (S), (C), and
(I) all hold. We will check that (G) holds as well. Since we have three semigroups, we
augment our notation to distinguish between the distances each one induces. Fixing
the distance parameter α, we will write Da

α(x1, x2) for the distance induced by at , and
similarly for bt and ct . We then have:

Proposition 5 The distance Dc
α((x1, y1), (x2, y2)) on X × Y is equivalent to

Da
α(x1, x2) + Db

α(y1, y2).

Proof This follows immediately from the following lemma. 	
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Lemma 10 For every z1 = (x1, y1), z2 = (x2, y2) in X × Y , we have

‖ct (z1, ·) − ct (z2, ·)‖1 � ‖at (x1, ·) − at (x2, ·)‖1 + ‖bt (y1, ·) − bt (y2, ·)‖1.

Proof First, we prove that

‖ct (z1, ·) − ct (z2, ·)‖1 � ‖at (x1, ·) − at (x2, ·)‖1 + ‖bt (y1, ·) − bt (y2, ·)‖1.

To see this, observe that if x1 = x2 then

‖ct ((x1, y1), ·) − ct ((x1, y2), ·)‖1 =
∫
X

∫
Y

|at (x1, x)||bt (y1, y) − bt (y2, y)|dydx

� ‖bt (y1, ·) − bt (y2, ·)‖1
where we have used condition (I) on the kernels at . Similarly,

‖ct ((x1, y2), ·) − ct ((x2, y2), ·)‖1 � ‖at (x1, ·) − at (x2, ·)‖1.

We therefore have

‖ct ((x1, y1), ·) − ct ((x2, y2), ·)‖1
≤ ‖ct ((x1, y1), ·) − ct ((x1, y2), ·)‖1

+ ‖ct ((x1, y2), ·) − ct ((x2, y2), ·)‖1
� ‖at (x1, ·) − at (x2, ·)‖1 + ‖bt (y1, ·) − bt (y2, ·)‖1,

as desired.
For the other direction, observe that

‖ct (z1, ·) − ct (z2, ·)‖1 =
∫
X

∫
Y

|at (x1, x)bt (y1, y) − at (x2, x)bt (y2, y)|dydx

≥
∫
X

∣∣∣∣
∫
Y

[at (x1, x)bt (y1, y) − at (x2, x)bt (y2, y)]dy

∣∣∣∣dx

=
∫
X

∣∣∣∣at (x1, x)

∫
Y

bt (y1, y)dy−at (x2, x)

∫
Y

bt (y2, y)dy

∣∣∣∣dx

=
∫
X

|at (x1, x) − at (x2, x)|dx = ‖at (x1, ·) − at (x2, ·)‖1.

where we have used condition (C) in the last equality. Similarly,

‖ct (z1, ·) − ct (z2, ·)‖1 ≥ ‖bt (y1, ·) − bt (y2, ·)‖1
from which it follows

‖ct (z1, ·) − ct (z2, ·)‖1 ≥ 1

2
(‖at (x1, ·) − at (x2, ·)‖1 + ‖bt (y1, ·) − bt (y2, ·)‖1)

completing the proof. 	
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From Proposition 5 we can easily deduce that condition (G) holds for ct if it holds
for at and bt .

Proposition 6 If condition (G) holds for at and bt , then it holds for their product ct

as well.

Proof We have, using condition (I) for both at and bt ,

∫
X×Y

|ct (z1, z2)|Dc
α(z1, z2)dz2

�
∫
X

∫
Y

|at (x1, x2) · bt (y1, y2)|(Da
α(x1, x2) + Db

α(y1, y2))dx2dy2

�
∫
X

|at (x1, x2)|Da
α(x1, x2)dx2 +

∫
Y

|bt (y1, y2)|Db
α(y1, y2)dy2

� tα

which is the desired result. 	

Of course, these results hold for the product of any number of kernels, not just

two, and the proofs are similar. A natural example is the product of subordinated heat
kernels on Rn . Suppose that n = n1 + · · · + nl and that on each space Rni we have a
subordinated heat kernel a(i)

t (xi , yi ) with scaling parameter βi , as in Sect. 3.4. Then
as long as 0 < α < min{1, 1/β1, . . . , 1/βl}, for x = (x1, . . . , xl), y = (y1, . . . , yl),
xi , yi ∈ R

ni , the kernel

at (x, y) =
l∏

i=1

a(i)
t (xi , yi )

generates the distance

Dα(x, y) � min{1, |x − y|AN}

where

|x − y|AN =
l∑

i=1

|xi − yi |αβi

is an example of an anisotropic distance on R
n ; see, for example, [9,13,27] for work

on function spaces built from such distances.

4 The Space of Hölder–Lipschitz Functions

We now turn to characterizing functions that are Lipschitz with respect to the distance
Dα(x, y), for a fixed α ∈ (0, 1). We assume that α is chosen so that condition (G)
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holds; in particular, by Proposition 1 if the kernel satisfies condition (R) for some α′,
we take any 0 < α < α′. As we have seen in Sect. 3, the distance Dα(x, y) is, in many
cases of interest, of the form ρ(x, y)αβ , where ρ(x, y) is some other distance on X
and 0 < αβ < 1. In classical analysis, functions that are Lipschitz with respect to a
snowflake metric are called Hölder. We will therefore refer to the space of Lipschitz
functions with respect to Dα(x, y) as the Hölder–Lipschitz space.

More formally, for a function f on X define its maximum variation seminorm as

V ( f ) = sup
x �=y

| f (x) − f (y)|
Dα(x, y)

.

We then define the Hölder–Lipschitz norm of a function f on X to be

‖ f ‖�α = sup
x

| f (x)| + V ( f )

and the Hölder–Lipschitz space�α to be the collection of all functions onX for which
this norm is finite.

We will define two alternate norms on �α and show that they are equivalent to
‖ f ‖�α . We define the difference operators

�k = Pk+1 − Pk, δk = I − Pk .

We also define the seminorms

V (1)( f ) = sup
k≥0

sup
x

2kα|�k f (x)|

and

V (2)( f ) = sup
k≥0

sup
x

2kα|δk f (x)|.

The alternate norms can now be defined as

‖ f ‖(1)
�α

= sup
x

| f (x)| + V (1)( f )

and

‖ f ‖(2)
�α

= sup
x

| f (x)| + V (2)( f ).

We immediately see the use of condition (R) and its equivalent condition (G) in the
following result:

Proposition 7 For all f ∈ �α , V (2)( f ) � V ( f ).
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Proof Take any k ≥ 0. Since pk(x, ·) has integral 1 for every x , we have

| f (x) − Pk f (x)| =
∣∣∣∣ f (x) −

∫
X

pk(x, y) f (y)dy

∣∣∣∣=
∣∣∣∣
∫
X

pk(x, y)( f (x)− f (y))dy

∣∣∣∣
≤ V ( f )

∫
X

|pk(x, y)|Dα(x, y)dy � V ( f )2−kα

from which the desired inequality follows trivially. 	

Corollary 4 For all f ∈ �α , ‖ f ‖(2)

�α
� ‖ f ‖�α .

Next, we make the following simple observation about uniform convergence to the
identity:

Lemma 11 If ‖ f ‖(2)
�α

< ∞, then Pk f converges to f uniformly as k → ∞.

Proof This is clear from the definition of ‖ f ‖(2)
�α

(more specifically, the definition of

V (2)( f )). 	

Since ‖ f ‖(2)

�α
� ‖ f ‖�α , it follows that:

Lemma 12 For all f ∈ �α , Pk f converges to f uniformly as k → ∞.

We now prove:

Proposition 8 The seminorms V (1)( f ) and V (2)( f ) are equivalent for f ∈ �α .

Proof First, write f as a telescopic series:

f − P0 f =
∞∑

l=0

[Pl+1 f − Pl f ]

where the series converges uniformly by Lemma 12.
Similarly we can write Pk f as a telescopic series

Pk f − P0 f =
k−1∑
l=0

[Pl+1 f − Pl f ]

and subtracting the two series gives:

| f − Pk f | =
∣∣∣∣

∞∑
l=0

(Pl+1 f − Pl f ) −
k−1∑
l=0

(Pl+1 f − Pl f )

∣∣∣∣

=
∣∣∣∣

∞∑
l=k

(Pl+1 f − Pl f )

∣∣∣∣ ≤
∞∑

l=k

|Pl+1 f − Pl f |

≤ V (1)( f )

∞∑
l=k

2−lα = V (1)( f )
1

1 − 2−α
2−kα
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and consequently

2kα sup
x

|δk f (x)| ≤ 1

1 − 2−α
V (1)( f ).

Taking the supremum over all k ≥ 0 shows V (2)( f ) � V (1)( f ).
For the other direction, we simply observe

|Pk f − Pk+1 f | ≤ |(Pk − I ) f | + |(Pk+1 − I ) f | ≤ 2V (2)( f )2−kα

implying

2kα sup
x

|�k f (x)| ≤ 2V (2)( f ).

Taking the supremum over all k ≥ 0 gives the result. 	

Corollary 5 The norms ‖ f ‖(1)

�α
and ‖ f ‖(2)

�α
are equivalent on �α .

Now we turn to proving the main result of this section, namely that ‖ f ‖(1)
�α

and

‖ f ‖(2)
�α

are equivalent to ‖ f ‖�α . The following simple observation will be useful:

Lemma 13 (Pk+1 + Pk)�k = �k−1.

Proof This is a simple algebraic computation:

(Pk+1 + Pk)�k =(Pk+1 + Pk)(Pk+1 − Pk)= Pk+1Pk+1−Pk+1Pk +Pk Pk+1−Pk Pk

= A2−(k+1) A2−(k+1) − A2−k A2−k = A2−(k+1)+2−(k+1) − A2−k+2−k

= A2−k − A2−(k−1) = Pk − Pk−1 = �k−1.

	

Lemma 14 Suppose f is bounded. Then for all x, y ∈ X ,

|Pk f (x) − Pk f (y)| ≤ sup
x ′

| f (x ′)| · Dk(x, y)

Proof

|Pk f (x) − Pk f (y)| =
∣∣∣∣
∫
X

pk(x, u) f (u)du −
∫
X

pk(y, u) f (u)du

∣∣∣∣
=

∣∣∣∣
∫
X

[pk(x, u) − pk(y, u)] f (u)du

∣∣∣∣
≤ sup

x ′
| f (x ′)| · ‖pk(x, ·) − pk(y, ·)‖1

= sup
x ′

| f (x ′)| · Dk(x, y).
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Proposition 9 For all f ∈ �α , ‖ f ‖�α � ‖ f ‖(1)
�α

.

Proof Expand f in a telescopic series:

f − P0 f =
∞∑

k=0

[
Pk+1 f − Pk f

] =
∞∑

k=0

�k f (x) =
∞∑

k=0

[
(Pk+1 + Pk+2)�k+1 f

]

where we have used Lemma 13. The series converges uniformly by Lemma 12.
For all x, y ∈ X ,

|Pk�k f (x) − Pk�k f (y)| =
∣∣∣∣
∫
X

pk(x, u)(�k f )(u)du −
∫
X

pk(y, u)(�k f )(u)du

∣∣∣∣
=

∣∣∣∣
∫
X

(pk(x, u) − pk(y, u))(�k f )(u)du

∣∣∣∣
≤ V (1)( f )2−kα Dk(x, y). (2)

Similarly,

|Pk+1�k f (x) − Pk+1�k f (y)| ≤ V (1)( f )2−kα Dk+1(x, y). (3)

For every x, y ∈ X

f (x) − f (y) =
∞∑

k=0

[
(Pk+1 + Pk+2)�k+1 f

]
(x) −

∞∑
k=0

[
(Pk+1 + Pk+2)�k+1 f

]
(y)

+ P0 f (x) − P0 f (y).

From the inequalities (2) and (3) we get

∣∣∣∣
∞∑

k=0

[
(Pk+1 + Pk+2)�k+1 f

]
(x) −

∞∑
k=0

[
(Pk+1 + Pk+2)�k+1 f

]
(y)

∣∣∣∣

≤
∣∣∣∣

∞∑
k=0

(Pk+1�k+1 f (x) − Pk+1�k+1 f (y))

∣∣∣∣

+
∣∣∣∣

∞∑
k=0

(Pk+2�k+1 f (x) − Pk+2�k+1 f (y))

∣∣∣∣

≤
∞∑

k=0

V (1)( f )2−(k+1)α Dk+1(x, y) +
∞∑

k=0

V (1)( f )2−(k+1)α Dk+2(x, y)

≤ V (1)( f )(1 + 2α)Dα(x, y).
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By Lemma 14, we also know |P0 f (x) − P0 f (y)| ≤ supx ′ | f (x ′)|Dα(x, y). Con-
sequently, for every x, y ∈ X

| f (x) − f (y)| ≤ (V (1)( f )(1 + 2α) + sup
x ′

| f (x ′)|)Dα(x, y)

and so

sup
x �=y

| f (x) − f (y)|
Dα(x, y)

≤ V (1)( f )(1 + 2α) + sup
x ′

| f (x ′)|.

Therefore

‖ f ‖�α = sup
x

| f (x)| + sup
x �=y

| f (x) − f (y)|
Dα(x, y)

≤ V (1)( f )(1 + 2α) + 2 sup
x

| f (x)|

≤ 3‖ f ‖(1)
�α

.

	

Putting together Corollaries 4, 5 and Proposition 9, we have shown:

Theorem 3 The norms ‖ f ‖�α , ‖ f ‖(1)
�α

and ‖ f ‖(2)
�α

are equivalent on �α .

4.1 The Necessity of Condition (G) for Positive Kernels

The only place in which we have made use of condition (G) so far—and indeed, the
only place we will directly use it in the whole paper—was in establishing Proposition
7; in fact, assuming condition (G) made the proof of Proposition 7 almost tautological.
While it is true that in Sect. 3 we showed that condition (G) holds for vastly many
semigroups encountered throughout mathematics, the reader may still wonder if it
is actually necessary to assume it, or if perhaps an even weaker condition could be
imposed on the semigroup.

In this subsection, we give a partial answer to this question. Specifically, we show
that if the kernels pk(x, y) are non-negative for all k ≥ 0 and for all x, y ∈ X , then
condition (G) is equivalent to the result of Proposition 7. Consequently, in order for
the Hölder–Lipschitz norm of a function to be equivalent in size to its scale variations,
as defined by the norms ‖ f ‖(1)

�α
and ‖ f ‖(2)

�α
, condition (G) must hold. In fact, this

statement is true not only for the distance Dα(x, y) but for any distance D(x, y) on
X .

We now formalize this result:

Proposition 10 Suppose the kernels pk(x, y) are non-negative for all k ≥ 0 and for
all x, y ∈ X . Let D(x, y) be any distance on X and α ∈ (0, 1). Suppose there is a
constant C > 0 such that for any function f on X

sup
k≥0

sup
x∈X

2kα|δk f (x)| ≤ C sup
x �=y

f (x) − f (y)

D(x, y)
(4)
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Then condition (G) must hold, with D(x, y) in place of Dα(x, y); that is,

∫
X

pk(x, y) · D(x, y)dy ≤ C2−kα.

Proof Take any x0 ∈ X , and consider the function f (x) = D(x0, x). Then f (x0) = 0,
so that

|δk f (x0)| = | f (x0) − Pk f (x0)| =
∫
X

pk(x0, x)D(x0, x)dy.

Because

sup
x �=y

f (x) − f (y)

D(x, y)
= 1

assumption (4) gives

∫
X

pk(x, y) · D(x, y)dy = |δk f (x0)| ≤ C2−kα

completing the proof. 	


5 The Space Dual to �α

We now turn to the space of L1 measures on X (that is, measures with finite total
variation; see, for instance, [14]). Since all Hölder–Lipschitz functions are in L∞, we
can view every such measure as a distribution acting on �α . We will denote the action
of such a distribution T on a function f ∈ �α by 〈 f, T 〉 = ∫

X f (x)dT (x). The dual
norm to the Hölder–Lipschitz space �α is defined as:

‖T ‖�∗
α

= sup
‖ f ‖�α ≤1

〈 f, T 〉.

The space �∗
α is the space of L1 measures T equipped with the norm ‖T ‖�∗

α
. In Sect.

6, we will give a well-known interpretation of the dual norm of the difference of two
probability measures.

In this section we will define two other norms on �∗
α that are more amenable to

computation, and prove their equivalence to ‖T ‖�∗
α
. In what follows, for a linear

operator A acting on � we denote by A∗ the dual operator acting on �∗.
We define the seminorms

W (1)(T ) =
∑
k≥0

2−kα‖�∗
k T ‖1

and

W (2)(T ) =
∑
k≥0

2−kα‖d∗
k T ‖1
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where

dk = Pk − P0.

Now we define the equivalent norms. The first is defined by

‖T ‖(1)
�∗

α
= ‖P∗

0 T ‖1 + W (1)(T )

and the second is defined by

‖T ‖(2)
�∗

α
= ‖P∗

0 T ‖1 + W (2)(T ).

We show that all three norms ‖T ‖�∗
α
, ‖T ‖(1)

�∗
α
and ‖T ‖(2)

�∗
α
are equivalent on �∗

α .

Proposition 11 The seminorms W (1)(T ) and W (2)(T ) are equivalent on �∗
α .

Proof We first show W (1)(T ) ≤ (1 + 2α)W (2)(T ).

W (1)(T ) =
∞∑

k=0

2−kα‖�∗
k T ‖1 =

∞∑
k=0

2−kα‖(P∗
k − P∗

k+1)T ‖1

≤
∞∑

k=0

2−kα‖(P∗
k − P∗

0 )T ‖1 +
∞∑

k=0

2−kα‖(P∗
k+1 − P∗

0 )T ‖1

≤ (1 + 2α)W (2)(T ).

For the other direction, we write d∗
k as the telescopic sum

d∗
k T = P∗

k T − P∗
0 T =

k−1∑
l=0

[
(P∗

l+1T (x) − P∗
l )T

] =
k−1∑
l=0

�∗
l T .

Then ‖d∗
k T ‖1 ≤ ∑k−1

l=0 ‖�∗
l T ‖1, and consequently Fubini’s theorem yields

W (2)(T ) =
∞∑

k=0

2−kα‖d∗
k T ‖1 ≤

∞∑
k=0

2−kα
k−1∑
l=0

‖�∗
l T ‖1

=
∞∑

l=0

‖�∗
l T ‖1

∑
k≥l+1

2−kα

=
∞∑

l=0

‖�∗
l T ‖1 2

−(l+1)α

1 − 2−α
= 2−α

1 − 2−α
W (1)(T )

completing the proof. 	

Corollary 6 The norms ‖T ‖(1)

�∗
α

and ‖T ‖(2)
�∗

α
are equivalent on �∗

α .
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Next we turn to the main result of this section, namely that ‖T ‖(1)
�∗

α
and ‖T ‖(2)

�∗
α
are

equivalent to ‖T ‖�∗
α
.

Proposition 12 For all T ∈ �∗
α , ‖T ‖�∗

α
� ‖T ‖(2)

�∗
α
.

Proof Suppose f is any function with ‖ f ‖�α ≤ 1. Making use of Lemma 13 and the
uniform convergence of Pk f to f as k → ∞ we can write

f − P0 f =
∞∑
j=0

� j f =
∞∑
j=1

Pj� j f +
∞∑
j=1

Pj+1� j f

=
∞∑
j=1

(Pj − P0)� j f +
∞∑
j=1

(Pj+1 − P0)� j f + 2P0(I − P1) f.

Therefore,

〈 f, T 〉 =
∞∑
j=1

〈T, (Pj − P0)� j f 〉 +
∞∑
j=1

〈T, (Pj+1 − P0)� j f 〉

+ 〈T, (3P0 − 2P0P1) f 〉

=
∞∑
j=1

〈(P∗
j − P∗

0 )T,� j f 〉 +
∞∑
j=1

〈(P∗
j+1 − P∗

0 )T,� j f 〉

+ 〈P∗
0 T, (3I − 2P1) f 〉.

Consequently, we have

|〈 f, T 〉| ≤
∞∑
j=1

‖(P∗
j − P∗

0 )T ‖1 sup
x

|� j f (x)| +
∞∑
j=1

‖(P∗
j+1 − P∗

0 )T ‖1 sup
x

|� j f (x)|

+ ‖P∗
0 T ‖1 sup

x
|(3I − 2P1) f (x)|

�
∞∑
j=1

2− jα‖d∗
j T ‖1 +

∞∑
j=1

2− jα‖d∗
j+1T ‖1 + ‖P∗

0 T ‖1 sup
x

| f (x)|

where in the last inequality we have used the equivalence of ‖ f ‖�α and ‖ f ‖(1)
�α

from
Theorem 3 and the fact that supx |Pk f (x)| � supx | f (x)| (a trivial consequence of
condition (I) on the kernel). Since supx | f (x)| ≤ ‖ f ‖�α ≤ 1, it follows immediately
that

|〈 f, T 〉| �
∞∑
j=1

2− jα‖d∗
j T ‖1 + ‖P∗

0 T ‖1 = ‖T ‖(2)
�∗

α
.

Now take the supremum over all f with ‖ f ‖�α ≤ 1 to reach the desired conclusion.
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Proposition 13 For all T ∈ �∗
α , ‖T ‖(2)

�∗
α

� ‖T ‖�∗
α
.

Proof Define the function f by

f (x) =
∞∑

k=1

2−kα(Pk − P0) sgn
[
(P∗

k − P∗
0 )T

]
(x) + P0

[
sgn(P∗

0 T )
]
(x)

=
∞∑

k=1

2−kα Pk sgn
[
(P∗

k − P∗
0 )T

]
(x) + P0F(x)

where

F(x) = sgn(P∗
0 T )(x) −

∞∑
k=1

2−kα sgn
[
(P∗

k − P∗
0 )T

]
(x).

Since

sup
x

|F(x)| ≤ 1 +
∞∑

k=1

2−kα ≤ 1 + 2−α

1 + 2−α

therefore, by Lemma 14,

|P0F(x) − P0F(y)| ≤
(
1 + 2−α

1 + 2−α

)
Dα(x, y)

for all x, y ∈ X . Furthermore, letting hk = sgn[(P∗
k − P∗

0 )T ], Lemma 14 also implies
that |Pkhk(x) − Pkhk(y)| ≤ Dk(x, y), and consequently

∣∣∣∣
∞∑

k=1

2−kα Pk sgn[(P∗
k − P∗

0 )T ](x) −
∞∑

k=1

2−kα Pk sgn[(P∗
k − P∗

0 )T ](y)

∣∣∣∣

≤
∞∑

k=1

2−kα|Pkhk(x) − Pkhk(y)|

≤
∞∑

k=1

2−kα Dk(x, y) ≤ Dα(x, y).

We also have the estimate

‖ f ‖∞ �
∞∑

k=1

2−kα + 1 ≤ 1 + 2−α+1

1 + 2−α
.
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It follows that ‖ f ‖�α ≤ C(α), where C(α) is a constant depending only on α (in
particular, not on T or f ). By the definition of f , we see

〈 f, T 〉 =
∞∑

k=1

2−kα〈(Pk − P0) sgn[(P∗
k − P∗

0 )T ], T 〉 + 〈P0[sgn(P∗
0 T )], T 〉

=
∞∑

k=1

2−kα〈sgn[(P∗
k − P∗

0 )T ], (P∗
k − P∗

0 )T 〉 + 〈sgn(P∗
0 T ), P∗

0 T 〉

=
∞∑

k=1

2−kα‖(P∗
k − P∗

0 )T ‖1 + ‖P∗
0 T ‖1.

Therefore,

‖T ‖�∗
α

≥ C(α)−1〈 f, T 〉 �
∞∑

k=1

2−kα‖(P∗
k − P∗

0 )T ‖1 + ‖P∗
0 f ‖1 = ‖T ‖(2)

�∗
α

which is the desired result. 	

Putting together Corollary 6, Propositions 12 and 13 we have shown:

Theorem 4 The norms ‖T ‖�∗
α
, ‖T ‖(1)

�∗
α

and ‖T ‖(2)
�∗

α
are equivalent on �∗

α .

6 Application to Earth Mover’s Distance

The dual norm ‖T ‖�∗
α
has a natural interpretation when the distribution T is the

difference of two probability measures P and Q. We will explain this in a more
general setting. Suppose � is any metric/measure space with metric ρ. A measure π

on � × � satisfies the equality-of-marginals condition with respect to P and Q if

π(�, E) = P(E) (EM)

π(E,�) = Q(E)

for all measurable sets E ⊂ �. TheKantorovich–Rubinstein condition is the statement
that:

sup
g:|g(x)−g(y)|≤ρ(x,y)

{∫
�

gd P −
∫

�

gd Q

}
= inf

π : (E M) holds

∫
�×�

ρ(x, y)dπ(x, y).

(KR)

The following theorem gives conditions under which (KR) is true:

Theorem 5 (Kantorovich–Rubinstein) Suppose � is a measure space that is separa-
ble with respect to the metric ρ. Let P and Q be two probability measures on � such
that the expected distance under P and Q from any point is finite. Then the equation
(KR) is true.

Proof The proof can be found in [12]. 	
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The quantity on the right of (KR) is known as theEarthMover’sDistance between P
and Q, denoted EMD(P, Q). It has a physical interpretation. We view each measure
π satisfying the equality-of-marginals condition (EM) with respect to P and Q as
a transport between the measures Q and P; that is, for any two measurable sets
A, B ⊂ �, π(A, B) is interpreted as the amount of mass moved from set A to set
B. The equality-of-marginals condition (EM) guarantees that the transport rearranges
the mass distribution described by Q to end up with the distribution described by P .
If ρ(x, y) is the cost-per-mass of moving mass from location x to location y, then
EMD(P, Q) is the minimal cost over all transports; in other words, it is the cheapest
way of rearranging mass distributed like Q to get mass distributed like P .

The quantity on the left of (KR) is equal to the norm of T = P − Q in the
space dual to Lipschitz functions, except we do not require that the functions T is
integrated against lie in L∞. However, when the diameter of the space is finite, as
for the distances Dα we have defined, and

∫
d P = ∫

d Q, then we can assume that
all Lipschitz functions integrated against P − Q are uniformly bounded, and the two
definitions are easily seen to be equivalent; that is, the norm ‖P − Q‖�∗

α
is equivalent

in size to the left side of (KR).
Due to the way it exploits the geometry of the metric space on which the two

probability distributions are defined, EMD has many desirable properties that make it
a natural choice of metric for many problems in machine learning [22,25,26,32]. We
now describe one such property, which helps explain its robustness.

Suppose � is a space with a metric ρ(x, y) and measure μ. Suppose � is separable
with respect to ρ. Let p be a probability density on � relative to μ; that is, p takes
values in [0,∞) and

∫
�

pdμ = 1. Let h : � → � be a 1-1, absolutely continuous
(with respect to μ) transformation satisfying

ρ(x, h(x)) ≤ ε (5)

for all x ∈ �. Let ν be the measure induced by the change-of-variable h, that is,
ν(S) = μ(h(S)) for measurable subsets S ⊂ �; and let dν

dμ
denote the Radon–

Nikodym derivative of ν with respect to μ. Then we define the probability density

q(x) = p(h(x))
dν

dμ
(x)

obtained from p by the change-of-variable h. We can think of q as a perturbation of
p. The distance between p and q in some metrics may be quite large, even though
the change-of-variable h is small. For example, if p is a narrow bump on R of width
less than ε, and h is a shift of size ε, then the supports of p and q will be disjoint
and their L1 distance will be 2, the maximum possible. However, we now show that
EMD(p, q) is no greater than the size of the perturbation h itself.

Proposition 14 Under the assumptions described above, EMD(p, q) ≤ ε.

Proof We use the Kantorovich–Rubinstein Theorem (KR):

EMD(p, q) = sup

{ ∫
�

f (x)(p(x) − q(x))dμ(x) : | f (x) − f (y)| ≤ ρ(x, y)

}
.
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Take any f with | f (x) − f (y)| ≤ ρ(x, y) for all x and y, and observe that

∫
�

f (x)q(x)dμ(x) =
∫

�

f (x)p(h(x))
dν

dμ
(x)dμ(x)

=
∫

�

f (x)p(h(x))dν(x)

=
∫

�

f (h−1(y))p(y)dμ(y).

Consequently,

∫
�

f (x)(p(x) − q(x))dμ(x) =
∫

�

p(x)( f (x) − f (h−1(x)))dμ(x).

By assumption (5) on h, we have ρ(x, h−1(x)) ≤ ε; hence, since f has Lipschitz
constant 1, we have

| f (x) − f (h−1(x))| ≤ ρ(x, h−1(x)) ≤ ε

and therefore

∫
�

f (x)(p(x) − q(x))dμ(x) =
∫

�

p(x)( f (x) − f (h−1(x)))dμ(x)

≤ ε

∫
�

p(x)dμ(x) = ε

since p is a probability density. Taking the supremum over all Lipschitz f gives
EMD(p, q) ≤ ε, as desired. 	


In order to apply this theory to the setting of this paper, we need to check that
condition (KR) holds when the space X is given the metric Dα(x, y). Since Dα(x, y)

is uniformly bounded (so the expected distance from any point under a probability
measure is automatically finite), to apply the Kantorovich–Rubinstein Theorem (The-
orem 5) it remains to check that the resulting metric space is separable. We will prove
separability by using our assumption that X is sigma-finite.

Lemma 15 Under the metric Dα(x, y), balls in X of positive radius have positive
measure.

Proof We deduce this from condition (G) as follows. Suppose that there were some
ball B(x, r), r > 0, with measure zero. Then

1 =
∫
X

pk(x, y)dy ≤
∫
X

|pk(x, y)|dy =
∫

B(x,r)c
|pk(x, y)|dy
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and consequently

r ≤
∫

B(x,r)c
|pk(x, y)|Dα(x, y)dy ≤ C2−kα.

Since r > 0, taking k → ∞ yields a contradiction. 	

Proposition 15 The metric Dα(x, y) turns X into a separable metric space; in par-
ticular, the Kantorovich–Rubinstein Theorem holds on X .

Proof Since we assume X is sigma-finite, we can write X as a countable union of
finite measure sets. Without loss of generality, we can therefore assume that X itself
has finite measure. Take any positive integer n. Use Zorn’s Lemma to find a maximal
collection of points {x (n)

i }i∈In so that Dα(x (n)
i , x (n)

j ) ≥ 1/n, where In is some index

set. By maximality, every point in X is within 1/n of one of the points x (n)
i .

Wewill show that In is countable. Observe that the balls B(x (n)
i , 1/2n) are pairwise

disjoint and have positive measure. Since X has finite measure, there can only be
finitely many balls whose measure lies in the interval (2−k−1, 2−k], for each k ∈ Z.
Since the measure of each ball must lie in one such interval, and there are countably
many intervals, there are only countably many balls.

Consequently, ∪∞
n=1{x (n)

i }i∈In is a countable dense subset of S, and the proof is
complete. 	


In our setting of the space X with the semigroup at (x, y), the formulas for the
norm ‖T ‖�∗

α
from Sect. 5 provide an approximation to Earth Mover’s Distance. From

Theorem 4, and the Kantorovich–Rubinstein Theorem, the Earth Mover’s Distance
between two probability measures μ and ν is equivalent to the expressions

‖μ − ν‖(1)
�∗

α
= ‖P∗

0 (μ − ν)‖1 +
∑
k≥0

2−kα‖�∗
k(μ − ν)‖1 (6)

and

‖μ − ν‖(2)
�∗

α
= ‖P∗

0 (μ − ν)‖1 +
∑
k≥0

2−kα‖d∗
k (μ − ν)‖1. (7)

In machine learning applications, these formulas can often be computed fast, and
thus provide a fast approximation to Earth Mover’s Distance. We only give a sketch of
how this works, waving our hands regarding the issues that arise when using discrete
data. We take X to be a collection of n data points, and the operators Pk to be dyadic
powers of a Markov matrix M on the data, as in the theory of diffusion maps [6].

If the mixing time of the walk is bounded by a power of n, then the series found
in formulas (6) and (7) can be well approximated by the first O(log n) terms. For
many operators encountered in practice, all their dyadic powers can be applied in
time O(n logk n); for instance, see [7,8]. In this environment, the approximations to
EMD given by (6) and (7) can be evaluated at cost O(n logk n) as well. Note that a
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simplifying consideration in the case of the operators used for diffusion maps is that
the Markov matrices M considered there are similar to a symmetric positive definite
matrix (with maximum eigenvalue equal to 1), and so any algorithm that permits rapid
application of all powers of such matrices will enable a fast approximation to EMD
in our setting.

In more specialized cases similar formulas have been shown to approximate EMD
as well. The work that most closely resembles this one is wavelet EMD [28]. Here,
wavelets are used in place of the operators�k and dk . The applicability of this method
is limited to Rn , where the ground distance is a snowflake of the Euclidean metric.

The reader can also refer to the papers by Charikar [4] and Indyk and Thaper
[19]. Though the particulars are quite different than in the present work, the general
spirit is the same; EMD can be approximated by a weighted sum of L1 norms of
difference operators at different scales, whatever the notion of “scale” might mean for
the geometry under consideration.

7 Mixed Hölder–Lipschitz Functions on Product Spaces

We now consider the setting where we have a product of spaces, each equipped with its
own semigroup satisfying (S), (C), (I) and (R) so that the theory developed so far can be
applied. For simplicity, we will consider only two spaces, which we will denoteX and
Y , each with a semigroup As and Bt with kernels as(x, x ′) and bt (y, y′), respectively.
All the results and their proofs can be extended to arbitrarily many semigroups. We
define the dyadic discretizations for times between 0 and 1

Pk = A2−k , pk(x, x ′) = a2−k (x, x ′), k ≥ 0

and

Ql = B2−l , ql(y, y′) = b2−k (y, y′), l ≥ 0

and the distances

DX ,k(x, x ′) = ‖pk(x, ·) − pk(x ′, ·)‖1
and

DY,l(y, y′) = ‖ql(y, ·) − ql(y′, ·)‖1.
For 0 < α, β < 1, such that the geometric condition (G) holds for Pk with respect

to α and (G) holds for Ql with respect to β, we define metrics on X and Y by

DX ,α(x, x ′) =
∑
k≥0

2−kα DX ,k(x, x ′)

and

DY,β(y, y′) =
∑
l≥0

2−lβ DY,k(y, y′).
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For brevity, we will let DX = DX ,α and DY = DY,β .
We will define a regularity norm and its dual on the product space X ×Y . We first

define the following quantities:

VX ( f ) = sup
y,x �=x ′

f (x, y) − f (x ′, y)

DX (x, x ′)
,

VY ( f ) = sup
x,y �=y′

f (x, y) − f (x, y′)
DY (y, y′)

,

and

M( f ) = sup
x �=x ′,y �=y′

f (x, y) − f (x, y′) − f (x ′, y) + f (x ′, y′)
DX (x, x ′)DY (y, y′)

.

We then define the norm

‖ f ‖�α,β ≡ M( f ) + VX ( f ) + VY ( f ) + sup
x

| f (x)|

and denote by�α,β the space of all functions f where ‖ f ‖�α,β < ∞.Wewill call�α,β

the mixed Hölder-Lipschitz space, since the functions f ∈ �α,β must have bounded
mixed difference quotients. The space �α,β is analogous to spaces of functions with
dominating mixed derivatives on R

n ; see [30].

Lemma 16 Taking

ṼX ( f ) = sup
y,x �=x ′

(Q0 f )(x, y) − (Q0 f )(x ′, y)

DX (x, x ′)
,

ṼY ( f ) = sup
x,y �=y′

(P0 f )(x, y) − (P0 f )(x, y′)
DY (y, y′)

in place of, respectively, the seminorms VX ( f ) and VY ( f ) in the definition of ‖ f ‖�α,β

yields an equivalent norm.

Proof Fromcondition (I), it is immediate that ṼX ( f ) � VX ( f ) and ṼY ( f ) ≤ VY ( f ).
For the other inequality, we can control VX ( f ) by ṼX ( f ) and M( f ), and control
VY ( f ) by ṼY ( f ) and M( f ). To see this, observe that

|(Q0 f )(x, y) − (Q0 f )(x ′, y) − f (x, y) + f (x ′, y)|
=

∣∣∣∣
∫
X

q0(y, y′)[ f (x, y′) − f (x ′, y′) − f (x, y) + f (x ′, y)]dy′
∣∣∣∣

≤ C DX (x, x ′) diam(Y)M( f )

� M( f )DX (x, x ′)
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where we have used condition (I) in the second-to-last inequality. Consequently,
VX ( f ) � ṼX ( f ) + M( f ); similarly, VY ( f ) � ṼY ( f ) + M( f ). It follows that
replacing VX ( f ) and VY ( f ) by, respectively, ṼX ( f ) and ṼY ( f ) in the definition of
‖ f ‖�α,β yields an equivalent norm. 	


Of course, other minor variations in the definition of ‖ f ‖�α,β yielding equivalent
norms are also possible. However, as in the case of a single space our primary goal
is to give simpler characterizations of the norm ‖ f ‖�α,β involving the changes in the
function’s averages across scales. More precisely, the equivalent norms will measure
the variations across all pairs of scales. In Sect. 8, we will use these to give simple
characterizations of the norm on the space dual to �α,β .

We define the difference operators

�P,k = Pk+1 − Pk, �Q,l = Ql+1 − Ql

as well as

δP,k = I − Pk, δQ,l = I − Ql .

We then define

V (1)
X ( f ) = sup

k≥0
sup
x,y

2kα|�P,k f (x, y)|, V (1)
Y ( f ) = sup

l≥0
sup
x,y

2lβ |�Q,l f (x, y)|,

and

M (1)( f ) = sup
k≥0,l≥0

sup
x,y

2kα+lβ |�P,k�Q,l f (x, y)|.

Similarly, define

V (2)
X ( f ) = sup

k≥0
sup
x,y

2kα|δP,k f (x, y)|, V (2)
Y ( f ) = sup

l≥0
sup
x,y

2lβ |δQ,l f (x, y)|,

and

M (2)( f ) = sup
k≥0,l≥0

sup
x,y

2kα+lβ |δP,kδQ,l f (x, y)|.

We can now define the equivalent regularity norms by

‖ f ‖(1)
�α,β

= M (1)( f ) + V (1)
X ( f ) + V (1)

Y ( f ) + sup
x,y

| f (x, y)|

and

‖ f ‖(2)
�α,β

= M (2)( f ) + V (2)
X ( f ) + V (2)

Y ( f ) + sup
x,y

| f (x, y)|.
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We first show that ‖ f ‖�α,β controls ‖ f ‖(2)
�α,β

. It will follow that on �α,β we have
uniform convergence of the semigroups and their products to the identity.

Proposition 16 For any function f , ‖ f ‖(2)
�α,β

� ‖ f ‖�α,β .

Proof Showing that V (2)
X ( f ) and V (2)

Y ( f ) are controlled by, respectively, VX ( f ) and
VY ( f ) is an immediate consequence of the one-dimensional result, Proposition 7. To
show M (2)( f ) � M( f ), observe that Proposition 7 also gives

|2kαδP,k2
lβδQ,l f (x, y)| � sup

x �=x ′

2lβδQ,l f (x, y) − 2lβδQ,l f (x ′, y)

DX (x, x ′)

= sup
x �=x ′

2lβδQ,l [ f (x, ·) − f (x ′, ·)](y)

DX (x, x ′)
.

Now apply Proposition 7 again to the function y �→ f (x, y) − f (x ′, y) to obtain
the bound

|2lβδQ,l [ f (x, ·) − f (x ′, ·)](y)| � sup
y �=y′

f (x, y) − f (x ′, y) − f (x, y′) + f (x ′, y′)
DY (y, y′)

.

The result follows. 	

It is easy to see that if ‖ f ‖(2)

�α,β
< ∞, then

lim
k→∞,l→∞ Pk Ql f = f

uniformly, where the limits can be taken in either order or simultaneously. Since
‖ f ‖(2)

�α,β
� ‖ f ‖�α,β , the same convergence applies for any f ∈ �α,β .

Wewill next show that‖ f ‖(1)
�α,β

and‖ f ‖(2)
�α,β

are equivalent, and then that‖ f ‖�α,β �
‖ f ‖(1)

�α,β
. To that end:

Lemma 17 The seminorms V (1)
X ( f ) and V (2)

X ( f ) are equivalent on �α,β , as are the

seminorms V (1)
Y ( f ) and V (2)

Y ( f ).

Proof This follows immediately from Proposition 8 for a single semigroup. 	

Lemma 18 The seminorms M (1)( f ) and M (2)( f ) are equivalent on �α,β .

Proof From Proposition 8, we have

|2kα�P,k2
lβ�Q,l f (x, y)| � sup

x ′
sup
k′≥0

2k′α|δP,k′2lβ�Q,l f (x ′, y)|

= sup
x ′

sup
k′≥0

2lβ |�Q,l2
k′αδP,k′ f (x ′, y)|

� sup
x ′

sup
k′≥0

sup
y′

sup
l ′

2l ′β |δQ,l2
k′αδP,k′ f (x ′, y′)|

which proves M (1)( f ) � M (2)( f ). The other direction is proved similarly. 	
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Combining Lemmas 17 and 18, we get:

Proposition 17 The norms ‖ f ‖(1)
�α,β

and ‖ f ‖(2)
�α,β

are equivalent on �α,β .

To finish proving that all three norms are equivalent, we will show that ‖ f ‖�α,β �
‖ f ‖(1)

�α,β
.

Proposition 18 For all f ∈ �α,β , ‖ f ‖�α,β � ‖ f ‖(1)
�α,β

.

Proof First, it is trivial to deduce VX ( f ) � V (1)
X ( f )+ supx,y | f (x, y)| and VY ( f ) �

V (1)
Y ( f )+supx,y | f (x, y)| from Proposition 9. Therefore, it remains to show M( f ) �

‖ f ‖(1)
�α,β

.

Fix any y, y′ ∈ Y and define

g(x) = f (x, y) − f (x, y′)
DY (y, y′)

.

From Proposition 9 again, we have that for all x �= x ′,

f (x, y)− f (x, y′) − f (x ′, y) + f (x ′, y′)
DX (x, x ′)DY (y, y′)

� sup
k≥0

sup
x ′′

2kα|�P,k g(x ′′)| + sup
x ′′

|g(x ′′)|.

The supremum of g is bounded by

sup
x ′′

|g(x ′′)| ≤ VY ( f ) � V (1)
Y ( f ) + sup

x,y
| f (x, y)|.

Furthermore, we have

2kα|�P,k g(x ′′)| = 2kα |�P,k f (x ′′, y) − �P,k f (x ′′, y′)|
DY (y, y′)

� 2kα sup
l≥0

sup
y′′

2lβ |�Q,l�P,k f (x ′′, y′′)| + 2kα sup
y′′

|�P,k f (x ′′, y′′)|

≤ M (1)( f ) + V (1)
X ( f ).

It follows that M( f ) � M (1)( f )+ V (1)
Y ( f )+ V (1)

X ( f )+ supx,y | f (x, y)| = ‖ f ‖(1)
�α,β

,
which completes the proof. 	


Combining Propositions 16, 17, and 18, we have shown

Theorem 6 The norms ‖ f ‖�α,β , ‖ f ‖(1)
�α,β

and ‖ f ‖(2)
�α,β

are equivalent on �α,β .
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7.1 Approximating Mixed Hölder–Lipschitz Functions

The reader will recall Proposition 7, which states that for a Hölder–Lipschitz function
f on a single space X ,

sup
x

| f (x) − PL f (x)| ≤ CV ( f )2−Lα

for some constant C > 0. In other words, Hölder–Lipschitz functions f are well-
approximated by their averages under the semigroup. We will derive a similar result
for mixed Hölder–Lipschitz functions. For any positive integer L , define the operator
PL by

PL f =
∑

k,l:k+l≤L

�P,k�Q,l f + δQ,L P0 f + δP,L Q0 f + P0Q0 f.

Loosely speaking, PL f captures the activity of the function f at the pairs of scales
(2−k, 2−l) with 2−(k+l) ≥ 2−L ; in particular, the reciprocals (2k, 2l) lie in the hyper-
bolic cross {(x, y) ∈ R

2 : |xy| ≤ 2L}. There is an extensive theory of hyperbolic
cross approximations from classical analysis; for instance, see [30]. In our setting, we
have the following result on uniformly approximating f by PL f :

Proposition 19 For any L ≥ 0, we have

sup
x,y

|PL f (x, y) − f (x, y)| ≤ C‖ f ‖�α,β

{
L2−Lα, if α = β

2−L min(α,β), if α �= β

where C > 0 is a constant.

Proof We can write f as

f =
∑

k,l≥0

�P,k�Q,l f +
∑
l≥0

�Q,l P0 f +
∑
k≥0

�P,k Q0 f + P0Q0 f

=
∑

k,l≥0

�P,k�Q,l f +
∑
l≥L

�Q,l P0 f + δQ,L P0 f +
∑
k≥L

�P,k Q0 f

+ δP,L Q0 f + P0Q0 f.

Therefore,

f − PL f =
∑

k,l:k+l>L

�P,k�Q,l f +
∑
l≥L

�Q,l P0 f +
∑
k≥L

�P,k Q0 f.

It is easy to see from condition (I) that V (1)
Y (P0 f ) � V (1)

Y ( f ) and V (1)
X (Q0 f ) �

V (1)
X ( f ). Using this, we have

∣∣∣∣
∑
l≥L

�Q,l P0 f

∣∣∣∣ �
∑
l≥L

V (1)
Y (P0 f )2−lβ �

∑
l≥L

V (1)
Y ( f )2−lβ � V (1)

Y ( f )2−Lβ (8)
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and similarly

∣∣∣∣
∑
l≥L

�Q,l P0 f

∣∣∣∣ � V (1)
X ( f )2−Lα. (9)

Finally, we control the mixed difference term:

∣∣∣∣
∑

k,l:k+l>L

�P,k�Q,l f

∣∣∣∣

≤
L∑

k=0

∞∑
l=L−k+1

|�P,k�Q,l f | +
∞∑

k=L+1

∞∑
l=0

|�P,k�Q,l f |

≤ M (1)( f )

L∑
k=0

2−kα
∞∑

l=L−k+1

2−lβ + M (1)( f )

∞∑
k=L+1

2−kα
∞∑

l=0

2−lβ

≤ M (1)( f )

1 − 2−β
2−(L+1)β

L∑
k=0

2−k(α−β) + M (1)( f )

1 − 2−β

1

1 − 2−α
2−(L+1)α. (10)

Now, if α = β, then
∑L+1

k=0 2−k(α−β) = L + 2, and (10) becomes

∣∣∣∣
∑

k,l:k+l>L

�P,k�Q,l f

∣∣∣∣ � M (1)( f )L2−Lα

which, combined with (8) and (9), gives the estimate supx,y |PL f (x, y)− f (x, y)| �
‖ f ‖(1)

�α,β
L2−Lα .

If α < β, then
∑L+1

k=0 2−k(α−β) � 2L(β−α) so that (10) becomes

∣∣∣∣
∑

k,l:k+l>L

�P,k�Q,l f

∣∣∣∣ � M (1)( f )(2−Lβ2L(β−α) + 2−Lα) � M (1)( f )2−Lα

and combining this with (8) and (9) gives the estimate supx,y |PL f (x, y)− f (x, y)| �
‖ f ‖(1)

�α,β
2−Lα .

Finally, if α > β, then
∑L+1

k=0 2−k(α−β) � 1, and so from (10) we get:

∣∣∣∣
∑

k,l:k+l>L

�P,k�Q,l f

∣∣∣∣ � M (1)( f )(2−Lβ + 2−Lα) � M (1)( f )2−Lβ

from which the estimate supx,y |PL f (x, y) − f (x, y)| � ‖ f ‖(1)
�α,β

2−Lβ also follows.

Since ‖ f ‖(1)
�α,β

� ‖ f ‖�α,β by Theorem 6, we are done. 	
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8 The Space Dual to �α,β

We now consider the space �∗
α,β of L1 measures dual to the space �α,β of mixed

Hölder–Lipschitz functions. We will derive two simpler norms that are equivalent to
the canonical dual norm on �∗

α,β , as we did for the case of a single semigroup in Sect.
5.

The dual norm of T ∈ �∗
α,β is given by

‖T ‖�∗
α,β

= sup
‖ f ‖�α,β

≤1
〈 f, T 〉.

Before defining the equivalent norms, we introduce some notation. Define

dP,k = Pk − P0, dQ,l = Qk − Q0

and

W (1)
X (T ) =

∑
k≥0

2−kα‖�∗
P,k Q∗

0 f ‖1, W (1)
Y (T ) =

∑
l≥0

2−lβ‖�∗
Q,l P∗

0 f ‖1

and

W (2)
X (T ) =

∑
k≥0

2−kα‖d∗
P,k Q∗

0T ‖1, W (2)
Y (T ) =

∑
l≥0

2−lβ‖d∗
Q,l P∗

0 T ‖1

as well as

N (1)(T ) =
∑

k≥0,l≥0

2−kα2−lβ‖�∗
P,k�

∗
Q,l T ‖1, N (2)(T )

=
∑

k≥0,l≥0

2−kα2−lβ‖d∗
P,kd∗

Q,l T ‖1.

With these definitions, we define the two norms we will show are equivalent to
‖T ‖�∗

α,β
. The first norm is defined by

‖T ‖(1)
�∗

α,β
= N (1)(T ) + W (1)

X (T ) + W (1)
Y (T ) + ‖P∗

0 Q∗
0T ‖1

and the second is defined by

‖T ‖(2)
�∗

α,β
= N (2)(T ) + W (2)

X (T ) + W (2)
Y (T ) + ‖P∗

0 Q∗
0T ‖1.

Lemma 19 The seminorms W (1)
X (T ) and W (2)

X (T ) are equivalent on �∗
α,β , as are the

seminorms W (1)
Y (T ) and W (2)

Y (T ).

Proof This follows immediately from Proposition 11. 	
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Lemma 20 The seminorms N (1)(T ) and N (2)(T ) are equivalent on �∗
α,β .

Proof We reduce the proof to the case of a single semigroup by applying Proposition
11 repeatedly. We have

N (1)(T ) =
∑
l≥0

2−lβ
∑
k≥0

2−kα‖�∗
P,k�

∗
Q,l T ‖1

=
∫
Y

∑
l≥0

2−lβ
∑
k≥0

2−kα‖�∗
P,k�

∗
Q,l T (·, y)‖L1(X)dy

�
∫
Y

∑
l≥0

2−lβ
∑
k≥0

2−kα‖d∗
P,k�

∗
Q,l T (·, y)‖L1(X)dy

=
∫
X

∑
k≥0

2−kα
∑
l≥0

2−lβ‖�∗
Q,ld

∗
P,k T (x, ·)‖L1(Y )dx

�
∫
X

∑
k≥0

2−kα
∑
l≥0

2−lβ‖d∗
Q,ld

∗
P,k T (x, ·)‖L1(X)dx

=
∑
k≥0

2−kα
∑
l≥0

2−lβ‖d∗
Q,ld

∗
P,k T ‖1 = N (2)(T ).

	

Proposition 20 The norms ‖T ‖(1)

�∗
α,β

and ‖T ‖(2)
�∗

α,β
are equivalent on �∗

α,β .

Proof This follows immediately from the preceding two lemmas. 	

Wewill now prove that ‖T ‖�∗

α,β
and ‖T ‖(2)

�∗
α,β

are equivalent on�∗
α,β . We will work

formally; all manipulations can be easily justified by the fact that Pk Ql f converges
uniformly to f as k, l → ∞, whenever f ∈ �α,β . Take any function f with‖ f ‖�α,β ≤
1. Write

f =
∑

k≥0,l≥0

�P,k�Q,l f +
∑
k≥0

�P,k Q0 f +
∑
l≥0

�Q,l P0 f + P0Q0 f. (11)

We want to show that |〈 f, T 〉| � ‖T ‖(2)
�∗

α,β
. We will deal with the inner product of f

with each of the four terms on the right side of (11) separately. First, we have

|〈P0Q0 f, T 〉| = |〈 f, P∗
0 Q∗

0T 〉| ≤ ‖P∗
0 Q∗

0T ‖1 (12)

since ‖ f ‖∞ ≤ 1.
To control the inner product of T with

∑
k≥0 �P,k Q0 f , first observe that, using

Lemma 13, we get

�P,k Q0 = �P,k+1(Pk+2 + Pk+1)Q0

= �P,k+1Pk+2Q0 + �P,k+1Pk+1Q0. (13)
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Now, we have the identity

�P,k+1Pk+1Q0 = �P,k+1(Pk+1 − P0)Q0 + �P,k+1P0Q0

= �P,k+1dP,k+1Q0 + �P,k+1P0Q0,

from which it follows:

|〈�P,k+1Pk+1Q0 f, T 〉| ≤ |〈�P,k+1dP,k+1Q0 f, T 〉| + |〈�P,k+1P0Q0 f, T 〉|
= |〈�P,k+1 f, d∗

P,k+1Q∗
0T 〉| + |〈�P,k+1 f, P∗

0 Q∗
0T 〉|

≤ sup
x,y

|�P,k+1 f (x, y)|
{
‖d∗

P,k+1Q∗
0 f ‖1 + ‖P∗

0 Q∗
0T ‖1

}

� 2−kα‖d∗
P,k+1Q∗

0T ‖1 + 2−kα‖P∗
0 Q∗

0T ‖1. (14)

Similarly,

|〈�P,k+1Pk+2Q0 f, T 〉| ≤ 2−kα‖d∗
P,k+2Q∗

0T ‖1 + 2−kα‖P∗
0 Q∗

0T ‖1. (15)

Combining equation (13) with the estimates (14) and (15) yields

|〈�P,k Q0 f, T 〉| � 2−kα
{
‖d∗

P,k+1Q∗
0T ‖1 + ‖d∗

P,k+2Q∗
0T ‖1 + 2‖P∗

0 Q∗
0T ‖1

}

and summing over k ≥ 0 then yields

∣∣∣∣
〈 ∑

k≥0

�P,k Q0 f, T

〉∣∣∣∣ � W (2)
X (T ) + ‖P∗

0 Q∗
0T ‖1. (16)

A nearly identical proof shows that

∣∣∣∣
〈∑

l≥0

�Q,l P0 f, T

〉∣∣∣∣ � W (2)
Y (T ) + ‖P∗

0 Q∗
0T ‖1. (17)

The only term left to control from (11) is the inner product of T with

∑
k≥0,l≥0

�P,k�Q,l f.

Using the identity

�P,k−1�Q,l−1 = �P,k(Pk+1 + Pk)�Q,l(Ql+1 + Ql)

= �P,k Pk+1�Q,l Ql+1 + �P,k Pk�Q,l Ql+1

+�P,k Pk+1�Q,l Ql + �P,k Pk�Q,l Ql (18)
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it follows that we must control the inner product of T with each of the four terms on
the right side of (18) (applied to f ). The argument is the same for each, so we will
show it only for �P,k Pk�Q,l Ql f = �P,k�Q,l Pk Ql f .

From the easily-verified identity

Pk Ql f = dP,kdQ,l f + dP,k Q0 f + dQ,l P0 f + P0Q0 f

it follows that

�P,k�Q,l Pk Ql f = �P,k�Q,ldP,kdQ,l f + �P,k�Q,ldP,k Q0 f

+�P,k�Q,ldQ,l P0 f + �P,k�Q,l P0Q0 f. (19)

We will bound the inner product of T with the sum over k ≥ 0 and l ≥ 0 of each
of the four terms in (19) separately. First, we have

|〈�P,k�Q,l P0Q0 f, T 〉| = |〈�P,k�Q,l f, P∗
0 Q∗

0T 〉| ≤ 2−kα2−lβ‖P∗
0 Q∗

0T ‖1

and summing over k and l gives the upper bound ‖P∗
0 Q∗

0T ‖1.
Next, observe that

|〈�P,k�Q,ldQ,l P0 f, T 〉| = |〈�P,k�Q,l f, d∗
Q,l P∗

0 T 〉| ≤ 2−kα2−lβ‖d∗
Q,l P∗

0 T ‖1

and summing over k and l gives the upper bound
∑∞

l=0 2
−lβ‖d∗

Q,l P∗
0 T ‖1 = W (2)

Y (T ).
Similarly, the inner product of T with �P,k�Q,ldP,k Q0 f can be bounded above by

W (2)
X (T ).
Finally, we have the upper bound

|〈�P,k�Q,ldP,kdQ,l f, T 〉| = |〈�P,k�Q,l f, d∗
P,kd∗

Q,l T 〉| ≤ 2−kα2−lβ‖d∗
P,kd∗

Q,l T ‖1

and summing over k and l gives the upper bound
∑

k,l 2
−kα2−lβ‖d∗

P,kd∗
Q,l T ‖1 =

N (2)(T ). Putting the four bounds together and applying Eq. (19) yields

∣∣∣∣
〈∑

k,l

�P,k�Q,l Pk Ql f, T

〉∣∣∣∣ � ‖T ‖(2)
�∗

α,β

and the same estimate applied to each of the four terms on the right side of Eq. (18)
gives

∣∣∣∣
〈 ∑

k≥0,l≥0

�P,k�Q,l f, T

〉∣∣∣∣ � ‖T ‖(2)
�∗

α,β
. (20)

Combining the estimates (12), (16), (17) and (20) with (11), we complete the proof
that ‖T ‖�∗

α,β
� ‖T ‖(2)

�∗
α,β

.
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To prove the reverse inequality, as in the proof of Proposition 13 for a single
semigroup we define a function f such that ‖ f ‖�α,β � 1 and whose inner product

with T achieves the norm ‖T ‖(2)
�∗

α,β
. It is easy to check that the function f defined by

f =
∑

k,l≥0

2−kα2−lβdP,ldQ,l sgn(d
∗
P,kd∗

Q,l T ) +
∑
k≥0

2−kαdP,k Q0 sgn(d
∗
P,k Q∗

0T )

+
∑
l≥0

2−lβdQ,l P0 sgn(d
∗
Q,l P∗

0 T ) + P0Q0 sgn(P∗
0 Q∗

0T ).

satisfies the necessary conditions; in fact, each of the four terms defining f havemixed
Hölder–Lipschitz norm bounded independently of T , and 〈 f, T 〉 = ‖T ‖(2)

�∗
α,β

. We have

therefore shown:

Theorem 7 The norms ‖T ‖�∗
α,β

, ‖T ‖(1)
�∗

α,β
, and ‖T ‖(2)

�∗
α,β

are equivalent on �∗
α,β .
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