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Abstract The aim of this paper is to study the stability of the �1 minimization for
the compressive phase retrieval and to extend the instance-optimality in compressed
sensing to the real phase retrieval setting. We first show that m = O(k log(N/k))
measurements are enough to guarantee the �1 minimization to recover k-sparse signals
stably provided themeasurementmatrix A satisfies the strongRIP property.We second
investigate the phaseless instance-optimality presenting a null space property of the
measurement matrix A under which there exists a decoder � so that the phaseless
instance-optimality holds. We use the result to study the phaseless instance-optimality
for the �1 norm. This builds a parallel for compressive phase retrieval with the classical
compressive sensing.
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1 Introduction

In this paper we consider the phase retrieval for sparse signals with noisy measure-
ments, which arises in many different applications. Assume that

b j := |〈a j , x0
〉| + e j , j = 1, . . . ,m

where x0 ∈ R
N , a j ∈ R

N and e j ∈ R is the noise. Our goal is to recover x0 up to
a unimodular scaling constant from b := (b1, . . . , bm)� with the assumption of x0
being approximately k-sparse. This problem is referred to as the compressive phase
retrieval problem [9].

The paper attempts to address two problems. Firstly we consider the stability of
�1 minimization for the compressive phase retrieval problem where the signal x0 is
approximately k-sparse, which is the �1 minimization problem defined as follows:

min ‖x‖1 subject to
∥∥|Ax | − |Ax0|

∥∥
2 ≤ ε, (1.1)

where A := [a1, . . . , am]� and |Ax0| := [|〈a1, x0〉|, . . . , |〈am, x0〉|]�. Secondly we
investigate instance-optimality in the phase retrieval setting.

Note that in the classical compressive sensing setting the stable recovery of a k-
sparse signal x0 ∈ C

N can be done using m = O(k log(N/k)) measurements for
several classes of measurement matrices A. A natural question is whether stable com-
pressive phase retrieval can also be attained withm = O(k log(N/k)) measurements.
This has indeed proved to be the case in [6] if x0 ∈ R

N and A is a random real Gaussian
matrix. In [8] a two-stage algorithm for compressive phase retrieval is proposed, which
allows for very fast recovery of a sparse signal if the matrix A can be written as a prod-
uct of a random matrix and another matrix (such as a random matrix) that allows for
efficient phase retrieval. The authors proved that stable compressive phase retrieval
can be achieved with m = O(k log(N/k)) measurements for complex signals x0 as
well. In [10], the strong RIP (S-RIP) property is introduced and the authors show that
one can use the �1 minimization to recover sparse signals up to a global sign from the
noiselessmeasurements |Ax0| provided A satisfies S-RIP. Naturally, one is interested
in the performance of �1 minimization for the compressive phase retrieval with noisy
measurements. In this paper, we shall show that the �1 minimization scheme given in
(1.1) will recover a k-sparse signal stably from m = O(k log(N/k)) measurements,
provided that the measurement matrix A satisfies the strong RIP (S-RIP) property.
This establishes an important parallel for compressive phase retrieval with the classi-
cal compressive sensing. Note that in [11] such a parallel in terms of the null space
property was already established.

The notion of instance optimalitywas first introduced in [5]. We use ‖x‖0 to denote
the number of non-zero elements in x . Given a norm ‖ · ‖X such as the �1-norm and
x ∈ R

N , the best k-term approximation error is defined as

σk(x)X := min
z∈�k

‖x − z‖X ,
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where

�k := {x ∈ R
N : ‖x‖0 ≤ k}.

We use � : Rm �→ R
N to denote a decoder for reconstructing x . We say the pair

(A,�) is instance optimal of order k with constant C0 if

‖x − �(Ax)‖X ≤ C0σk(x)X (1.2)

holds for all x ∈ R
N . In extending it to phase retrieval, our decoder will have the

input b = |Ax |. A pair (A,�) is said to be phaseless instance optimal of order k with
constant C0 if

min
{
‖x − �(|Ax |)‖X , ‖x + �(|Ax |)‖X

}
≤ C0σk(x)X (1.3)

holds for all x ∈ R
N . We are interested in the following problem : Given ‖ · ‖X and

k < N , what is the minimal value of m for which there exists (A,�) so that (1.3)
holds?

The null space N (A) := {x ∈ R
N : Ax = 0} of A plays an important role in the

analysis of the original instance optimality (1.2) (see [5]). Here we present a null space
property forN (A), which is necessary and sufficient, for which there exists a decoder
� so that (1.3) holds. We apply the result to investigate the instance optimality where
X is the �1 norm. Set

�1(|Ax |) : = argmin
z∈RN

{
‖z‖1 : |Ax | = |Az|

}
.

We show that the pair (A,�1) satisfies (1.3) with X being the �1-norm provided A
satisfies the strong RIP property (see Definition 2.1). As shown in [10], the Gaussian
random matrix A ∈ R

m×N satisfies the strong RIP of order k for m = O(k log(N/k).
Hence m = O(k log(N/k)) measurements suffice to ensure the phaseless instance
optimality (1.3) for the �1-norm exactly as with the traditional instance optimality
(1.2).

2 Auxiliary Results

In this section we provide some auxiliary results that will be used in later sections.
For x ∈ R

N we use ‖x‖p := ‖x‖�p to denote the p-norm of x for 0 < p ≤ ∞. The
measurement matrix is given by A := [a1, . . . , am]T ∈ R

m×N as before. Given an
index set I ⊂ {1, . . . ,m} we shall use AI to denote the sub-matrix of A where only
rows with indices in I are kept, i.e.,

AI := [a j : j ∈ I ]�.
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The matrix A satisfies the Restricted Isometry Property (RIP) of order k if there exists
a constant δk ∈ [0, 1) such that for all k-sparse vectors z ∈ �k we have

(1 − δk)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δk)‖z‖22.

It was shown in [2] that one can use �1-minimization to recover k-sparse signals

provided that A satisfies the RIP of order tk and δtk <

√
1 − 1

t where t > 1.
To investigate compressive phase retrieval, a stronger notion of RIP is given in [10]:

Definition 2.1 (S-RIP)We say thematrix A = [a1, . . . , am]� ∈ R
m×N has the Strong

Restricted Isometry Property of order k with bounds θ−, θ+ ∈ (0, 2) if

θ−‖x‖22 ≤ min
I⊆[m],|I |≥m/2

‖AI x‖22 ≤ max
I⊆[m],|I |≥m/2

‖AI x‖22 ≤ θ+‖x‖22 (2.1)

holds for all k-sparse signals x ∈ R
N , where [m] := {1, . . . ,m}. We say A has the

Strong Lower Restricted Isometry Property of order k with bound θ− if the lower
bound in (2.1) holds. Similarly we say A has the Strong Upper Restricted Isometry
Property of order k with bound θ+ if the upper bound in (2.1) holds.

The authors of [10] proved that Gaussian matrices with m = O(tk log(N/k))
satisfy S-RIP of order tk with high probability.

Theorem 2.1 ([10]) Suppose that t > 1 and A = (ai j ) ∈ R
m×N is a random

Gaussian matrix with m = O(tk log(N/k)) and ai j ∼ N (0, 1√
m

). Then there exist

θ−, θ+ ∈ (0, 2) such that with probability 1 − exp(−cm/2) the matrix A satisfies the
S-RIP of order tk with constants θ− and θ+, where c > 0 is an absolute constant and
θ−, θ+ are independent of t .

The following is a very useful lemma for this study.

Lemma 2.1 Let x0 ∈ R
N and ρ ≥ 0. Suppose that A ∈ R

m×N is a measurement

matrix satisfying the restricted isometry property with δtk ≤
√

t−1
t for some t > 1.

Then for any

x̂ ∈
{
x ∈ R

N : ‖x‖1 ≤ ‖x0‖1 + ρ, ‖Ax − Ax0‖2 ≤ ε
}

we have

‖x̂ − x0‖2 ≤ c1ε + c2
2σk(x0)1√

k
+ c2 · ρ√

k
,

where c1 =
√
2(1+δ)

1−√
t/(t−1)δ

, c2 =
√
2δ+

√
(
√
t (t−1)−δt)δ√

t (t−1)−δt
+ 1.
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Remark 2.1 We build the proof of Lemma 2.1 following the ideas of Cai and Zhang
[2]. The full proof is given in Appendix for completeness. It is well-known that an
effective method to recover approximately-sparse signals x0 in the traditional com-
pressive sensing is to solve

x# := argmin
x

{‖x‖1 : ‖Ax − Ax0‖2 ≤ ε}. (2.2)

The definition of x# shows that

‖x#‖1 ≤ ‖x0‖1, ‖Ax# − Ax0‖2 ≤ ε,

which implies that

‖x# − x0‖2 ≤ C1ε + C2
σk(x0)1√

k
,

provided that A satisfies the RIP condition with δtk ≤ √
1 − 1/t for t > 1 (see [2]).

However, in practice one prefers to design fast algorithms to find an approximation
solution of (2.2), say x̂ . Thus it is possible to have ‖x̂‖1 > ‖x0‖1. Lemma 2.1 gives
an estimate of ‖x̂ − x0‖2 for the case where ‖x̂‖1 ≤ ‖x0‖1 + ρ.

Remark 2.2 In [7], Han and Xu extend the definition of S-RIP by replacing the m/2
in (2.1) by βm where 0 < β < 1. They also prove that, for any fixed β ∈ (0, 1),
the m × N random Gaussian matrix satisfies S-RIP of order k with high probability
provided m = O(k log(N/k)).

3 Stable Recovery of Real Phase Retrieval Problem

3.1 Stability Results

The following lemma shows that the map φA(x) := |Ax | is stable on �k modulo a
unimodular constant provided A satisfies strong lower RIP of order 2k. Define the
equivalent relation ∼ on RN and CN by the following: for any x, y, x ∼ y iff x = cy
for some unimodular scalar c, where x, y are in R

N or CN . For any subset Y of RN

or CN the notation Y/ ∼ denotes the equivalent classes of elements in Y under the
equivalence. Note that there is a natural metric D∼ on C

N/ ∼ given by

D∼(x, y) = min|c|=1
‖x − cy‖.

Our primary focus in this paper will be onRN , and in this case D∼(x, y) = min{‖x −
y‖2, ‖x + y‖2}.
Lemma 3.1 Let A ∈ R

m×N satisfy the strong lower RIP of order 2k with constant
θ−. Then for any x, y ∈ �k we have

‖|Ax | − |Ay|‖22 ≥ θ− min(‖x − y‖22, ‖x + y‖22).
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Proof For any x, y ∈ �k we divide {1, . . . ,m} into two subsets:

T = { j : sign(〈a j , x〉) = sign(〈a j , y〉)}

and

T c = { j : sign(〈a j , x〉) = −sign(〈a j , y〉)}.

Clearly one of T and T c will have cardinality at least m/2. Without loss of generality
we assume that T has cardinality no less than m/2. Then

‖|Ax | − |Ay|‖22 = ‖AT x − AT y‖22 + ‖ATc x + ATc y‖22
≥ ‖AT x − AT y‖22
≥ θ−‖x − y‖22
≥ θ− min(‖x − y‖22, ‖x + y‖22).

��
Remark 3.1 Note that the combination of Lemma 3.1 and Theorem 2.1 shows that
for an m × N Gaussian matrix A with m = O(k log(N/k)) one can guarantee the
stability of the map φA(x) := |Ax | on �k/ ∼.

3.2 The Main Theorem

In this part, we will consider howmany measurements are needed for the stable sparse
phase retrieval by �1-minimization via solving the following model:

min ‖x‖1 subject to ‖|Ax | − |Ax0|‖22 ≤ ε2, (3.1)

where A is our measurement matrix and x0 ∈ R
N is a signal we wish to recover. The

next theorem tells under what conditions the solution to (3.1) is stable.

Theorem 3.1 Assume that A ∈ R
m×N satisfies the S-RIP of order tk with bounds

θ−, θ+ ∈ (0, 2) such that

t ≥ max
{ 1

2θ− − θ2−
,

1

2θ+ − θ2+

}
.

Then any solution x̂ for (3.1) satisfies

min{‖x̂ − x0‖2, ‖x̂ + x0‖2} ≤ c1ε + c2
2σk(x0)1√

k
,

where c1 and c2 are constants defined in Lemma 2.1.
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Proof Clearly any x̂ ∈ R
N satisfying (3.1) must have

‖x̂‖1 ≤ ‖x0‖1 (3.2)

and

‖|Ax̂ | − |Ax0|‖22 ≤ ε2. (3.3)

Now the index set {1, 2, . . . ,m} is divisible into two subsets

T = { j : sign(〈a j , x̂〉) = sign(〈a j , x0〉)},
T c = { j : sign(〈a j , x̂〉) = −sign(〈a j , x0〉)}.

Then (3.3) implies that

‖AT x̂ − AT x0‖22 + ‖ATc x̂ + ATc x0‖22 ≤ ε2. (3.4)

Here either |T | ≥ m/2 or |T c| ≥ m/2. Without loss of generality we assume that
|T | ≥ m/2. We use the fact

‖AT x̂ − AT x0‖22 ≤ ε2. (3.5)

From (3.2) and (3.5) we obtain

x̂ ∈
{
x ∈ R

N : ‖x‖1 ≤ ‖x0‖1, ‖AT x − AT x0‖2 ≤ ε
}

. (3.6)

Recall that A satisfies S-RIP of order tk and constants θ−, θ+. Here

t ≥ max{ 1

2θ− − θ2−
,

1

2θ+ − θ2+
} > 1. (3.7)

The definition of S-RIP implies that AT satisfies the RIP of order tk in which

δtk ≤ max{1 − θ−, θ+ − 1} ≤
√
t − 1

t
(3.8)

where the second inequality follows from (3.7). The combination of (3.6), (3.8) and
Lemma 2.1 now implies

‖x̂ − x0‖2 ≤ c1ε + c2
2σk(x0)1√

k
,

where c1 and c2 are defined in Lemma 2.1. If |T c| ≥ m
2 we get the corresponding

result

‖x̂ + x0‖2 ≤ c1ε + c2
2σk(x0)1√

k
.

The theorem is now proved. ��
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This theorem demonstrates that, if the measurement matrix has the S-RIP, the real
compressive phase retrieval problem can be solved stably by �1-minimization.

4 Phase Retrieval and Best k-term Approximation

4.1 Instance Optimality from the Linear Measurements

We introduce some definitions and results in [5]. Recall that for a given encoder matrix
A ∈ R

m×N and a decoder � : Rm �→ R
N , the pair (A,�) is said to have instance

optimality of order k with constant C0 with respect to the norm X if

‖x − �(Ax)‖X ≤ C0σk(x)X (4.1)

holds for all x ∈ R
N . SetN (A) := {η ∈ R

N : Aη = 0} to be the null space of A. The
following theorem gives conditions under which the (4.1) holds.

Theorem 4.1 ([5]) Let A ∈ R
m×N , 1 ≤ k ≤ N and ‖ · ‖X be a norm on RN . Then a

sufficient condition for the existence of a decoder � satisfying (4.1) is

‖η‖X ≤ C0

2
σ2k(η)X , ∀η ∈ N (A). (4.2)

A necessary condition for the existence of a decoder � satisfying (4.1) is

‖η‖X ≤ C0σ2k(η)X , ∀η ∈ N (A). (4.3)

For the norm X = �1 it was established in [5] that instance optimality of order k
can indeed be achieved, e.g. for a Gaussian matrix A, with m = O(k log(N/k)). The
authors also considered more generally taking different norms on both sides of (4.1).
Following [5], we say the pair (A,�) has (p, q)-instance optimality of order k with
constant C0 if

‖x − �(Ax)‖p ≤ C0k
1
q − 1

p σk(x)q , ∀x ∈ R
N , (4.4)

with 1 ≤ q ≤ p ≤ 2. It was shown in [5] that the (p, q)-instance optimality of order k
can be achieved at the cost of havingm = O(k(N/k)2−2/q) log(N/k)measurements.

4.2 Phaseless Instance Optimality

A natural question here is whether an analogous result to Theorem 4.1 exists for
phaseless instance optimality defined in (1.3). We answer the question by presenting
such a result in the case of real phase retrieval.

Recall that a pair (A,�) is said to be have the phaseless instance optimality of
order k with constant C0 for the norm ‖.‖X if

min
{
‖x − �(|Ax |)‖X , ‖x + �(|Ax |)‖X

}
≤ C0σk(x)X (4.5)

holds for all x ∈ R
N .
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Theorem 4.2 Let A ∈ R
m×N , 1 ≤ k ≤ N and ‖ · ‖X be a norm. Then a sufficient

condition for the existence of a decoder� satisfying the phaseless instance optimality
(4.5) is: For any I ⊆ {1, . . . ,m} and η1 ∈ N (AI ), η2 ∈ N (AIc ) we have

min{‖η1‖X , ‖η2‖X } ≤ C0

4
σk(η1 − η2)X + C0

4
σk(η1 + η2)X . (4.6)

A necessary condition for the existence of a decoder � satisfying (4.5) is: For any
I ⊆ {1, . . . ,m} and η1 ∈ N (AI ), η2 ∈ N (AIc ) we have

min{‖η1‖X , ‖η2‖X } ≤ C0

2
σk(η1 − η2)X + C0

2
σk(η1 + η2)X . (4.7)

Proof We first assume (4.6) holds, and show that there exists a decoder � satisfying
the phaseless instance optimality (4.5). To this end, we define a decoder� as follows:

�(|Ax0|) = argmin
|Ax |=|Ax0|

σk(x)X .

Suppose x̂ := �(|Ax0|). We have |Ax̂ | = |Ax0| and σk(x̂)X ≤ σk(x0)X . Note that
〈a j , x̂〉 = ±〈a j , x0〉. Let I ⊆ {1, . . . ,m} be defined by

I =
{
j : 〈a j , x̂〉 = 〈a j , x0〉

}
.

Then

AI (x0 − x̂) = 0, AIc (x0 + x̂) = 0.

Set

η1 := x0 − x̂ ∈ N (AI ),

η2 := x0 + x̂ ∈ N (AIc ).

A simple observation yields

σk(η1 − η2)X = 2σk(x̂)X ≤ 2σk(x0)X , σk(η1 + η2)X = 2σk(x0)X . (4.8)

Then (4.6) implies that

min{‖x̂ − x0‖X , ‖x̂ + x0‖X } = min{‖η1‖X , ‖η2‖X }
≤ C0

4
σk(η1 − η2)X + C0

4
σk(η1 + η2)X

≤ C0σk(x0)X .

Here the last equality is obtained by (4.8). This proves the sufficient condition.
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We next turn to the necessary condition. Let� be a decoder for which the phaseless
instance optimality (4.5) holds. Let I ⊆ {1, . . . ,m}. For any η1 ∈ N (AI ) and η2 ∈
N (AIc ) we have

|A(η1 + η2)| = |A(η1 − η2)| = |A(η2 − η1)|. (4.9)

The instance optimality implies

min
{
‖�(|A(η1 + η2)|) + η1 + η2‖X , ‖�(|A(η1 + η2)|) − (η1 + η2)‖X

}

≤ C0σk(η1 + η2)X . (4.10)

Without loss of generality we may assume that

‖�(|A(η1 + η2)|) + η1 + η2‖X ≤ ‖�(|A(η1 + η2)|) − (η1 + η2)‖X .

Then (4.10) implies that

‖�(|A(η1 + η2)|) + η1 + η2‖X ≤ C0σk(η1 + η2)X . (4.11)

By (4.9), we have

‖�(|A(η1 + η2)|) + η1 + η2‖X = ‖�(|A(η2 − η1)|) − (η2 − η1) + 2η2‖X
≥ 2‖η2‖X − ‖�(|A(η2 − η1)|) − (η2 − η1)‖X .

(4.12)

Combining (4.11) and (4.12) yields

2‖η2‖X ≤ C0σk(η1 + η2)X + ‖�(|A(η2 − η1)|) − (η2 − η1)‖X . (4.13)

At the same time, (4.9) also implies

‖�(|A(η1 + η2)|) + η1 + η2‖X = ‖�(|A(η2 − η1)|) + (η2 − η1) + 2η1‖X
≥ 2‖η1‖X − ‖�(|A(η2 − η1)|) + (η2 − η1)‖X .

(4.14)

Putting (4.11) and (4.14) together, we obtain

2‖η1‖X ≤ C0σk(η1 + η2)X + ‖�(|A(η2 − η1)|) + (η2 − η1)‖X . (4.15)

It follows from (4.13) and (4.15) that

min {‖η1‖X , ‖η2‖X } ≤ C0

2
σk(η1 + η2)X

+ 1

2
min{‖�(|A(η2 − η1)|)−(η2−η1)‖X , ‖�(|A(η2 − η1)|)

+ (η2 − η1)‖X } ≤ C0

2
σk(η1 + η2)X + C0

2
σk(η1 − η2)X .
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Here the last inequality is obtained by the instance optimality of (A,�). For the case
where

‖�(|A(η1 + η2)|) − (η1 + η2)‖X ≤ ‖�(|A(η1 + η2)|) + η1 + η2‖X ,

we obtain

min{‖η1‖X , ‖η2‖X } ≤ C0

2
σk(η1 + η2)X + C0

2
σk(η1 − η2)X

via the same argument. The theorem is now proved. ��
We next present a null space property for phaseless instance optimality, which

allows us to establish parallel results for sparse phase retrieval.

Definition 4.1 We say a matrix A ∈ R
m×N satisfies the strong null space property

(S-NSP) of order k with constant C if for any index set I ⊆ {1, . . . ,m}with |I | ≥ m/2
and η ∈ N (AI ) we have

‖η‖X ≤ C · σk(η)X .

Theorem 4.3 Assume that a matrix A ∈ R
m×N has the strong null space property of

order 2k with constant C0/2. Then there must exist a decoder � having the phaseless
instance optimality (1.3) with constant C0. In particular, one such decoder is

�(|Ax0|) = argmin
|Ax |=|Ax0|

σk(x)X .

Proof Assume that I ⊆ {1, . . . ,m}. For any η1 ∈ N (AI ) and η2 ∈ N (AIc ) we must
have either ‖η1‖X ≤ C0

2 σ2k(η1)X or ‖η2‖X ≤ C0
2 σ2k(η2)X by the strong null space

property. If ‖η1‖X ≤ C0
2 σ2k(η1)X then

‖η1‖X ≤ C0

2
σ2k(η1)X ≤ C0

4
σk(η1 − η2)X + C0

4
σk(η1 + η2)X .

Similarly if ‖η2‖X ≤ C0
2 σ2k(η2)X we will have

‖η2‖X ≤ C0

2
σ2k(η2)X ≤ C0

4
σk(η1 − η2)X + C0

4
σk(η1 + η2)X .

It follows that

min{‖η1‖X , ‖η2‖X } ≤ C0

4
σk(η1 − η2)X + C0

4
σk(η1 + η2)X . (4.16)

Theorem 4.2 now implies that the required decoder � exists. Furthermore, by the
proof of the sufficiency part of Theorem 4.2,
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�(|Ax0|) = argmin
|Ax |=|Ax0|

σk(x)X

is one such decoder. ��

4.3 The Case X = �1

Wewill now apply Theorem 4.3 to the �1-norm case. The following lemma establishes
a relation between S-RIP and S-NSP for the �1-norm.

Lemma 4.1 Let a, b, k be integers. Assume that A ∈ R
m×N satisfies the S-RIP of

order (a + b)k with constants θ−, θ+ ∈ (0, 2). Then A satisfies the S-NSP of order
ak under the �1-norm with constant

C0 = 1 +
√
a(1 + δ)

b(1 − δ)
,

where δ is the restricted isometry constant and δ := max{1 − θ−, θ+ − 1} < 1.

We remark that the above lemma is the analogous to the following lemma providing
a relationship between RIP and NSP, which was shown in [5]:

Lemma 4.2 ([5, Lemma 4.1]) Let a = l/k, b = l ′/k where l, l ′ ≥ k are integers.
Assume that A ∈ R

m×N satisfies the RIP of order (a + b)k with δ = δ(a+b)k < 1.
Then A satisfies the null space property under the �1-norm of order ak with constant

C0 = 1 +
√
a(1+δ)√
b(1−δ)

.

Proof By the definition of S-RIP, for any index set I ⊆ {1, . . . ,m} with |I | ≥ m/2,
the matrix AI ∈ R

|I |×N satisfies the RIP of order (a + b)k with constant δ(a+b)k =
δ := max{1 − θ−, θ+ − 1} < 1. It follows from Lemma 4.2 that

‖η‖1 ≤
(

1 +
√
a(1 + δ)

b(1 − δ)

)

σak(η)1

for all η ∈ N (AI ). This proves the lemma. ��
Set a = 2 and b = 1 in Lemma 4.1 we infer that if A satisfies the S-RIP of order

3k with constants θ−, θ+ ∈ (0, 2), then A satisfies the S-NSP of order 2k under

the �1-norm with constant C0 = 1 +
√

2(1+δ)
1−δ

. Hence by Theorem 4.3, there must
exist a decoder that has the instance optimality under the �1-norm with constant 2C0.
According to Theorem 2.1, by takingm = O(k log(N/k)) a Gaussian random matrix
A satisfies S-RIP of order 3k with high probability. Hence, there exists a decoder �

so that the pair (A,�) has the the �1-norm phaseless instance optimality at the cost
of m = O(k log(N/k)) measurements, as with the traditional instance optimality.

We are now ready to prove the following theorem on phaseless instance optimality
under the �1-norm.
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Theorem 4.4 Let A ∈ R
m×N satisfy the S-RIP of order tk with constants 0 < θ− <

1 < θ+ < 2, where

t ≥ max

{
2

θ−
,

2

2 − θ+

}
> 2.

Let

�(|Ax0|) = argmin
x∈RN

{‖x‖1 : |Ax | = |Ax0|} . (4.17)

Then (A,�) has the �1-norm phaseless instance optimality with constant C = 2C0
2−C0

,

where C0 = 1 +
√

1+δ
(t−1)(1−δ)

and as before

δ := max{1 − θ−, θ+ − 1} ≤ 1 − 2

t
.

Proof of Lemma 4.1 Let x0 ∈ R
N and set x̂ = �(|Ax0|). Then by definition

‖x̂‖1 ≤ ‖x0‖1 and |Ax̂ | = |Ax0|.

Denote by I ⊆ {1, . . . ,m} the set of indices

I = {
j : 〈a j , x̂〉 = 〈a j , x0〉

}
,

and thus 〈a j , x̂〉 = −〈a j , x0〉 for j ∈ I c. It follows that

AI (x̂ − x0) = 0 and AIc (x̂ + x0) = 0.

Set

η := x̂ − x0 ∈ N (AI ).

We know that A satisfies the S-RIP of order tk with constants θ−, θ+ where

t ≥ max

{
2

θ−
,

2

2 − θ+

}
> 2.

For the case |I | ≥ m/2, AI satisfies the RIP of order tk with RIP constant

δ = δtk := max{1 − θ−, θ+ − 1} ≤ 1 − 2

t
< 1.

Take a := 1, b := t − 1 in Lemma 4.1. Then A satisfies the �1-norm S-NSP of order
k with constant
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C0 = 1 +
√

1 + δ

(t − 1)(1 − δ)
< 2.

This yields

‖η‖1 ≤ C0‖ηT c‖1, (4.18)

where T is the index set for the k largest coefficients of x0 in magnitude. Hence
‖ηT ‖1 ≤ (C0 − 1)‖ηT c‖1. Since ‖x̂‖1 ≤ ‖x0‖1 we have

‖x0‖1 ≥ ‖x̂‖1 = ‖x0 + η‖1 = ‖x0,T + x0,T c + ηT + ηT c‖1
≥ ‖x0,T ‖1 − ‖x0,T c‖1 + ‖ηT c‖1 − ‖ηT ‖1.

It follows that

‖ηT c‖1 ≤ ‖ηT ‖1 + 2σk(x0)1 ≤ (C0 − 1)‖ηT c‖1 + 2σk(x0)1

and thus

‖ηT c‖1 ≤ 2

2 − C0
σk(x0)1.

Now (4.18) yields

‖η‖1 ≤ C0‖ηT c‖1 ≤ 2C0

2 − C0
σk(x0)1,

which implies

‖x̂ − x0‖1 ≤ C0‖ηT c‖1 ≤ 2C0

2 − C0
σk(x0)1.

For the case |I c| ≥ m/2 identical argument yields

‖x̂ + x0‖1 ≤ C0‖ηT c‖1 ≤ 2C0

2 − C0
σk(x0)1.

The theorem is now proved. ��

By Theorem 2.1, an m × N random Gaussian matrix with m = O(tk log(N/k))
satisfies the S-RIP of order tk with high probability. We therefore conclude that the
�1-norm phaseless instance optimality of order k can be achieved at the cost of m =
O(tk log(N/k)) measurements.
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4.4 Mixed-Norm phaseless Instance Optimality

We now consider mixed-norm phaseless instance optimality. Let 1 ≤ q ≤ p ≤ 2 and
s = 1/q − 1/p. We seek estimates of the form

min{‖x − �(|Ax |)‖p, ‖x + �(|Ax |)‖p} ≤ C0k
−sσk(x)q (4.19)

for all x ∈ R
N . We shall prove both necessary and sufficient conditions for mixed-

norm phaseless instance optimality.

Theorem 4.5 Let A ∈ R
m×N and 1 ≤ q ≤ p ≤ 2. Set s = 1/q−1/p. Then a decoder

� satisfying the mixed norm phaseless instance optimality (4.19) with constant C0
exists if: for any index set I ⊆ {1, . . . ,m} and any η1 ∈ N (AI ), η2 ∈ N (AIc ) we
have

min{‖η1‖p, ‖η2‖p} ≤ C0

4
k−s

(
σk(η1 − η2)q + σk(η1 + η2)q

)
. (4.20)

Conversely, assume a decoder � satisfying the mixed norm phaseless instance opti-
mality (4.19) exists. Then for any index set I ⊆ {1, . . . ,m} and any η1 ∈ N (AI ),
η2 ∈ N (AIc ) we have

min{‖η1‖p, ‖η2‖p} ≤ C0

2
k−s

(
σk(η1 − η2)q + σk(η1 + η2)q

)
.

Proof of Lemma 4.1 The proof is virtually identical to the proof of Theorem 4.2. We
shall omit the details here in the interest of brevity. ��
Definition 4.2 (Mixed-NormStrongNull SpaceProperty)We say that A has themixed
strong null space property in norms (�p, �q) of order k with constantC if for any index
set I ⊆ {1, . . . ,m} with |I | ≥ m/2 the matrix AI ∈ R

|I |×N satisfies

‖η‖p ≤ Ck−sσk(η)q

for all η ∈ N (AI ), where s = 1/q − 1/p.

The above is an extension of the standard definition of themixed null space property
of order k in norms (�p, �q) (see [5]) for a matrix A, which requires

‖η‖p ≤ Ck−sσk(η)q

for all η ∈ N (A). We have the following straightforward generalization of Theorem
4.3.

Theorem 4.6 Assume that A ∈ R
m×N has the mixed strong null space property of

order 2k in norms (�p, �q) with constant C0/2, where 1 ≤ q ≤ p ≤ 2. Then there
exists a decoder � such that the mixed-norm phaseless instance optimality (4.19)
holds with constant C0.
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We establish relationships between mixed-norm strong null space property and the
S-RIP. First we present the following lemma that was proved in [5].

Lemma 4.3 ([5, Lemma 8.2]) Let k ≥ 1 and k̃ = �k( Nk )2−2/q�. Assume that A ∈
R
m×N satisfies the RIP of order 2k + k̃ with δ := δ2k+k̃ < 1. Then A satisfies

the mixed null space property in norms (�p, �q) of order 2k with constant C0 =
21/p+1/2

√
1+δ
1−δ

+ 21/p−1/q .

Proposition 4.1 Let k ≥ 1 and k̃ = �k( Nk )2−2/q�. Assume that A ∈ R
m×N satisfies

the S-RIP of order 2k + k̃ with constants 0 < θ− < 1 < θ+ < 2. Then A satisfies
the mixed strong null space property in norms (�p, �q) of order 2k with constant

C0 = 21/p+1/2
√

1+δ
1−δ

+ 21/p−1/q , where δ is the RIP constant and δ := δ2k+k̃ =
max{1 − θ−, θ+ − 1}.
Proof of Lemma 4.1 By definition for any index set I ⊆ {1, . . . ,m} with |I | ≥
m/2, the matrix AI ∈ R

|I |×N satisfies RIP of order 2k + k̃ with constant C0 =
21/p+1/2

√
1+δ
1−δ

+ 21/p−1/q , where δ is the RIP constant and δ := δ2k+k̃ = max{1 −
θ−, θ+ − 1}. By Lemma 4.3, we know that AI satisfies the mixed null space property

in norms (�p, �q) of order 2k with constant C0 = 21/p+1/2
√

1+δ
1−δ

+ 21/p−1/q , in other
words for any η ∈ N (AI ),

‖η‖p ≤ Ck−sσ2k(η)q .

So A satisfies the mixed strong null space property. ��
Corollary 4.1 Let k ≥ 1 and k̃ = k( Nk )2−2/q . Assume that A ∈ R

m×N satisfies the

S-RIP of order 2k + k̃ with constants 0 < θ− < 1 < θ+ < 2. Let δ := δ2k+k̃ =
max{1 − θ−, θ+ − 1} < 1. Define the decoder � for A by

�(|Ax0|) = argmin
|Ax |=|Ax0|

σk(x)q . (4.21)

Then (4.19) holds with constant 2C0, where C0 = 21/p+1/2
√

1+δ
1−δ

+ 21/p−1/q .

Proof of Lemma 4.1 By the Proposition 4.1, the matrix A satisfies the mixed strong

null space property in (�p, �q) of order 2k with constant C0 = 21/p+1/2
√

1+δ
1−δ

+
21/p−1/q . The corollary now follows immediately from Theorem 4.6. ��
Remark 4.1 Combining Theorem 2.1 and Corollary 4.1, the mixed phaseless instance
optimality of order k in norms (�p, �q) can be achieved for the price ofO(k(N/k)2−2/q

log(N/k)) measurements, just as with the traditional mixed (�p, �q)-norm instance
optimality. Theorem3.1 implies that the �1 decoder satisfies the (p, q) = (2, 1)mixed-
norm phaseless instance optimality at the price of O(k log(N/k)) measurements.
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Appendix: Proof of Lemma 2.1

We will first need the following two Lemmas to prove Lemma 2.1.

Lemma 5.1 (Sparse Representation of a Polytope [2,12]) Let s ≥ 1 and α > 0. Set

T (α, s) :=
{
u ∈ R

n : ‖u‖∞ ≤ α, ‖u‖1 ≤ sα
}
.

For any v ∈ R
n let

U(α, s, v) :=
{
u ∈ R

n : supp(u) ⊆ supp(v), ‖u‖0 ≤ s, ‖u‖1 = ‖v‖1, ‖u‖∞ ≤ α
}
.

Then v ∈ T (α, s) if and only if v is in the convex hull of U(α, s, v), i.e. v can be
expressed as a convex combination of some u1, . . . , uN in U(α, s, v).

Lemma 5.2 ([1, Lemma 5.3]) Assume that a1 ≥ a2 ≥ · · · ≥ am ≥ 0. Let r ≤ m and
λ ≥ 0 such that

∑r
i=1 ai + λ ≥ ∑m

i=r+1 ai . Then for all α ≥ 1 we have

m∑

j=r+1

aα
j ≤ r

⎛

⎝ α

√∑r
i=1 a

α
i

r
+ λ

r

⎞

⎠

α

. (5.1)

In particular for λ = 0 we have

m∑

j=r+1

aα
j ≤

r∑

i=1

aα
i .

We are now ready to prove Lemma 2.1.

Proof Set h := x̂ − x0. Let T0 denote the set of the largest k coefficients of x0 in
magnitude. Then

‖x0‖1 + ρ ≥ ‖x̂‖1 = ‖x0 + h‖1
= ‖x0,T0 + hT0 + x0,T c

0
+ hT c

0
‖1

≥ ‖x0,T0‖1 − ‖hT0‖1 − ‖x0,T c
0
‖1 + ‖hT c

0
‖1.

It follows that

‖hT c
0
‖1 ≤ ‖hT0‖1 + 2‖x0,T c

0
‖1 + ρ

= ‖hT0‖1 + 2σk(x0)1 + ρ.
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Suppose that S0 is the index set of the k largest entries in absolute value of h. Then
we can get

‖hSc0‖1 ≤ ‖hT c
0
‖1 ≤ ‖hT0‖1 + 2σk(x0)1 + ρ

≤ ‖hS0‖1 + 2σk(x0)1 + ρ.

Set

α := ‖hS0‖1 + 2σk(x0)1 + ρ

k
.

We divide hSc0 into two parts hSc0 = h(1) + h(2), where

h(1) := hSc0 · I{i : |hSc0 (i)|>α/(t−1)}, h(2) := hSc0 · I{i : |hSc0 (i)|≤α/(t−1)}.

A simple observation is that ‖h(1)‖1 ≤ ‖hSc0‖1 ≤ αk. Set

� := |supp(h(1))| = ‖h(1)‖0.

Since all non-zero entries of h(1) have magnitude larger than α/(t − 1), we have

αk ≥ ‖h(1)‖1 =
∑

i∈supp(h(1))

|h(1)(i)| ≥
∑

i∈supp(h(1))

α

t − 1
= α�

t − 1
,

which implies � ≤ (t − 1)k. Thus we have:

〈
A(hS0 + h(1)), Ah

〉 ≤ ‖A(hS0 + h(1))‖2 · ‖Ah‖2 ≤ √
1 + δ · ‖hS0 + h(1)‖2 · ε.

(5.2)

Here we apply the facts that ‖hS0 + h(1)‖0 = � + k ≤ tk and A satisfies the RIP
of order tk with δ := δAtk . We shall assume at first that tk as an integer. Note that
‖h(2)‖∞ ≤ α

t−1 and

‖h(2)‖1 = ‖hSc0‖1 − ‖h(1)‖1 ≤ kα − α�

t − 1
= (k(t − 1) − �)

α

t − 1
. (5.3)

We take s := k(t − 1) − � in Lemma 5.1 and obtain that h(2) is a weighted mean

h(2) =
N∑

i=1

λi ui , 0 ≤ λi ≤ 1,
N∑

i=1

λi = 1

where ‖ui‖0 ≤ k(t − 1) − �, ‖ui‖1 = ‖h(2)‖1, ‖ui‖∞ ≤ α/(t − 1) and supp(ui ) ⊆
supp(h(2)). Hence
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‖ui‖2 ≤ √‖ui‖0 · ‖ui‖∞ = √
k(t − 1) − � · ‖ui‖∞

≤ √
k(t − 1) · ‖ui‖∞

≤ α
√
k/(t − 1).

Now for 0 ≤ μ ≤ 1 and d ≥ 0, which will be chosen later, set

β j := hS0 + h(1) + μ · u j , j = 1, . . . , N .

Then for fixed i ∈ [1, N ]

N∑

j=1

λ jβ j − dβi = hS0 + h(1) + μ · h(2) − dβi

= (1 − μ − d)(hS0 + h(1)) − dμui + μh.

Recall that α = ‖hS0‖1+2σk (x0)1+ρ

k . Thus

‖ui‖2 ≤ √
k/(t − 1)α (5.4)

≤ ‖hS0‖2√
t − 1

+ 2σk(x0)1 + ρ√
k(t − 1)

≤ ‖hS0 + h(1)‖2√
t − 1

+ 2σk(x0)1 + ρ√
k(t − 1)

= z + R√
t − 1

,

where z := ‖hS0 + h(1)‖2 and R := 2σk (x0)1+ρ√
k

. It is easy to check the following
identity:

(2d − 1)
∑

1≤i< j≤N

λiλ j‖A(βi − β j )‖22

=
N∑

i=1

λi

∥∥∥A(

N∑

j=1

λ jβ j − dβi )
∥∥∥
2

2
−

N∑

i=1

λi (1 − d)2‖Aβi‖22, (5.5)

provided that
∑N

i=1 λi = 1. Choose d = 1/2 in (5.5) we then have

N∑

i=1

λi

∥∥∥A
(
(
1

2
− μ)(hS0 + h(1)) − μ

2
ui + μh

)∥∥∥
2

2
−

N∑

i=1

λi

4
‖Aβi‖22 = 0.
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Note that for d = 1/2,

∥∥∥A
(
(
1

2
− μ)(hS0 + h(1)) − μ

2
ui + μh

)∥∥∥
2

2

=
∥∥∥A

(
(
1

2
− μ)(hS0 + h(1)) − μ

2
ui

)∥∥∥
2

2

+ 2
〈
A
(
(
1

2
− μ)(hS0 + h(1)) − μ

2
ui

)
, μAh

〉
+ μ2‖Ah‖22.

It follows from
∑N

i=1 λi = 1 and h(2) = ∑N
i=1 λi ui that

N∑

i=1

λi

∥∥∥A
(
(
1

2
− μ)(hS0 + h(1)) − μ

2
ui + μh

)∥∥∥
2

2

=
∑

i

λi

∥∥∥A
(
(
1

2
− μ)(hS0 + h(1)) − μ

2
ui

)∥∥∥
2

2

+ 2
〈
A
(
(
1

2
− μ)(hS0 + h(1)) − μ

2
h(2)

)
, μAh

〉
+ μ2‖Ah‖22

=
∑

i

λi

∥∥∥A
(
(
1

2
− μ)(hS0 + h(1)) − μ

2
ui

)∥∥∥
2

2

+ μ(1 − μ)
〈
A(hS0 + h(1)), Ah

〉
−

N∑

i=1

λi

4
‖Aβi‖22. (5.6)

Set μ = √
t (t − 1) − (t − 1). We next estimate the three terms in (5.6). Noting that

‖hS0‖0 ≤ k, ‖h(1)‖0 ≤ � and ‖ui‖0 ≤ s = k(t − 1) − �, we obtain

‖βi‖0 ≤ ‖hS0‖0 + ‖h(1)‖0 + ‖ui‖0 ≤ t · k

and ‖( 12 −μ)(hS0 + h(1))− μ
2 ui‖0 ≤ t · k. Since A satisfies the RIP of order t · k with

δ, we have

∥∥∥A
(
(
1

2
− μ)(hS0 + h(1)) − μ

2
ui

)∥∥∥
2

2

≤ (1 + δ)‖(1
2

− μ)(hS0 + h(1)) − μ

2
ui‖22

= (1 + δ)
(
(
1

2
− μ)2‖(hS0 + h(1))‖22 + μ2

4
‖ui‖22

)

= (1 + δ)
(
(
1

2
− μ)2z2 + μ2

4
‖ui‖22

)

and

‖Aβi‖22 ≥ (1 − δ)‖βi‖22 = (1 − δ)(‖hS0 + h(1)‖22 + μ2 · ‖ui‖22)
= (1 − δ)(z2 + μ2 · ‖ui‖22).
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Combining the result above with (5.2) and (5.4) we get

0 ≤ (1 + δ)

N∑

i=1

λi

(
(
1

2
− μ)2z2 + μ2

4
‖ui‖22

)
+ μ(1 − μ)

√
1 + δ · z · ε

− (1 − δ)

N∑

i=1

λi

4
(z2 + μ2‖ui‖22)

=
N∑

i=1

λi

((
(1 + δ)(

1

2
− μ)2 − 1 − δ

4

)
z2 + δ

2
μ2‖ui‖22

)
+ μ(1 − μ)

√
1 + δ · z · ε

≤
N∑

i=1

λi

((
(1 + δ)(

1

2
− μ)2 − 1 − δ

4

)
z2 + δ

2
μ2 (z + R)2

t − 1

)

+ μ(1 − μ)
√
1 + δ · z · ε

=
(
(μ2 − μ) + δ

(1
2

− μ + (1 + 1

2(t − 1)
)μ2

))
z2

+
(
μ(1 − μ)

√
1 + δ · ε + δμ2R

t − 1

)
z + δμ2R2

2(t − 1)

= −t
(
(2t − 1) − 2

√
t (t − 1)

)
(

√
t − 1

t
− δ)z2

+
(
μ2

√
t

t − 1

√
1 + δ · ε + δμ2R

t − 1

)
z + δμ2R2

2(t − 1)

= μ2

t − 1

(
−t (

√
t − 1

t
− δ)z2 + (

√
t (t − 1)(1 + δ)ε + δR)z + δR2

2

)
,

which is a quadratic inequality for z. We know δ <
√

(t − 1)/t . So by solving the
above inequality we get

z ≤ (
√
t (t − 1)(1 + δ)ε + δR) + (

(
√
t (t − 1)(1 + δ)ε + δR)2 + 2t (

√
(t − 1)/t − δ)δR2

)1/2

2t (
√

(t − 1/t) − δ)

≤
√
t (t − 1)(1 + δ)

t (
√

(t − 1)/t − δ)
ε + 2δ + √

2t (
√

(t − 1)/t − δ)δ

2t (
√

(t − 1)/t − δ)
R.

Finally, noting that ‖hSc0‖1 ≤ ‖hS0‖1 + R
√
k, in the Lemma 5.2, if we set m = N ,

r = k, λ = R
√
k ≥ 0 and α = 2 then ‖hSc0‖2 ≤ ‖hS0‖2 + R. Hence

‖h‖2 =
√

‖hS0‖22 + ‖hSc0‖22
≤

√
‖hS0‖22 + (‖hS0‖2 + R)2
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≤
√
2‖hS0‖22 + R ≤ √

2z + R

≤
√
2(1 + δ)

1 − √
t/(t − 1)δ

ε +
(√

2δ + √
t (

√
(t − 1)/t − δ)δ

t (
√

(t − 1)/t − δ)
+ 1

)

R.

Substitute R into this inequality and the conclusion follows.
For the case where t · k is not an integer, we set t∗ := �tk�/k, then t∗ > t and

δt∗k = δtk <

√
t−1
t <

√
t∗−1
t∗ . We can then prove the result by working on δt∗k . ��
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