

Stable Signal Recovery from Phaseless Measurements

Bing Gao1 · Yang Wang2 · Zhiqiang Xu1

Received: 29 April 2015 / Published online: 20 October 2015 © Springer Science+Business Media New York 2015

Abstract The aim of this paper is to study the stability of the ℓ_1 minimization for the compressive phase retrieval and to extend the instance-optimality in compressed sensing to the real phase retrieval setting. We first show that $m = O(k \log(N/k))$ measurements are enough to guarantee the ℓ_1 minimization to recover k -sparse signals stably provided the measurement matrix *A* satisfies the strong RIP property. We second investigate the phaseless instance-optimality presenting a null space property of the measurement matrix A under which there exists a decoder Δ so that the phaseless instance-optimality holds. We use the result to study the phaseless instance-optimality for the ℓ_1 norm. This builds a parallel for compressive phase retrieval with the classical compressive sensing.

Keywords Phase retrieval · Sparse signals · Compressed sensing

Mathematics Subject Classification 94A12

Communicated by Peter G. Casazza.

 \boxtimes Zhiqiang Xu xuzq@lsec.cc.ac.cn

> Bing Gao gaobing@lsec.cc.ac.cn

Yang Wang yangwang@ust.hk

- ¹ LSEC, Institute of Computational Mathematics, Academy of Mathematics and System Science, Chinese Academy of Sciences, Beijing 100091, China
- ² Department of Mathematics, The Hong Kong University of Science and Technology, Clear Watre Bay, Kowloon, Hong Kong

1 Introduction

In this paper we consider the phase retrieval for sparse signals with noisy measurements, which arises in many different applications. Assume that

$$
b_j := |\langle a_j, x_0 \rangle| + e_j, \quad j = 1, ..., m
$$

where $x_0 \in \mathbb{R}^N$, $a_i \in \mathbb{R}^N$ and $e_i \in \mathbb{R}$ is the noise. Our goal is to recover x_0 up to a unimodular scaling constant from $b := (b_1, \ldots, b_m)^\top$ with the assumption of x_0 being approximately *k*-sparse. This problem is referred to as the *compressive phase retrieval problem* [\[9\]](#page-21-0).

The paper attempts to address two problems. Firstly we consider the stability of ℓ_1 minimization for the compressive phase retrieval problem where the signal x_0 is approximately k -sparse, which is the ℓ_1 minimization problem defined as follows:

$$
\min \|x\|_1 \quad \text{subject to} \quad \| |Ax| - |Ax_0| \|_2 \le \epsilon,\tag{1.1}
$$

where $A := [a_1, ..., a_m]^\top$ and $|Ax_0| := [|\langle a_1, x_0 \rangle|, ..., |\langle a_m, x_0 \rangle|]^\top$. Secondly we investigate instance-optimality in the phase retrieval setting.

Note that in the classical compressive sensing setting the stable recovery of a *k*sparse signal $x_0 \in \mathbb{C}^N$ can be done using $m = \mathcal{O}(k \log(N/k))$ measurements for several classes of measurement matrices *A*. A natural question is whether stable compressive phase retrieval can also be attained with $m = O(k \log(N/k))$ measurements. This has indeed proved to be the case in [\[6](#page-21-1)] if $x_0 \in \mathbb{R}^N$ and A is a random real Gaussian matrix. In [\[8](#page-21-2)] a two-stage algorithm for compressive phase retrieval is proposed, which allows for very fast recovery of a sparse signal if the matrix *A* can be written as a product of a random matrix and another matrix (such as a random matrix) that allows for efficient phase retrieval. The authors proved that stable compressive phase retrieval can be achieved with $m = O(k \log(N/k))$ measurements for complex signals x_0 as well. In [\[10\]](#page-21-3), the strong RIP (S-RIP) property is introduced and the authors show that one can use the ℓ_1 minimization to recover sparse signals up to a global sign from the *noiseless* measurements |*Ax*0| provided *A* satisfies S-RIP. Naturally, one is interested in the performance of ℓ_1 minimization for the compressive phase retrieval with noisy measurements. In this paper, we shall show that the ℓ_1 minimization scheme given in [\(1.1\)](#page-1-0) will recover a *k*-sparse signal stably from $m = O(k \log(N/k))$ measurements, provided that the measurement matrix *A* satisfies the strong RIP (S-RIP) property. This establishes an important parallel for compressive phase retrieval with the classical compressive sensing. Note that in $[11]$ $[11]$ such a parallel in terms of the null space property was already established.

The notion of *instance optimality* was first introduced in [\[5](#page-21-5)]. We use $||x||_0$ to denote the number of non-zero elements in *x*. Given a norm $\|\cdot\|_X$ such as the ℓ_1 -norm and $x \in \mathbb{R}^N$, the best *k*-term approximation error is defined as

$$
\sigma_k(x)_X := \min_{z \in \Sigma_k} \|x - z\|_X,
$$

where

$$
\Sigma_k := \{x \in \mathbb{R}^N : ||x||_0 \le k\}.
$$

We use $\Delta : \mathbb{R}^m \mapsto \mathbb{R}^N$ to denote a decoder for reconstructing *x*. We say the pair (A, Δ) is *instance optimal of order k with constant* C_0 if

$$
||x - \Delta(Ax)||_X \le C_0 \sigma_k(x)_X \tag{1.2}
$$

holds for all $x \in \mathbb{R}^N$. In extending it to phase retrieval, our decoder will have the input $b = |Ax|$. A pair (A, Δ) is said to be *phaseless instance optimal of order k with constant* C_0 if

$$
\min\{|x - \Delta(|Ax|)\|_X, \|x + \Delta(|Ax|)\|_X\} \le C_0 \sigma_k(x)_X \tag{1.3}
$$

holds for all $x \in \mathbb{R}^N$. We are interested in the following problem : *Given* $\| \cdot \|_X$ and $k < N$, what is the minimal value of m for which there exists (A, Δ) so that (1.3) *holds?*

The null space $\mathcal{N}(A) := \{x \in \mathbb{R}^N : Ax = 0\}$ of *A* plays an important role in the analysis of the original instance optimality (1.2) (see [\[5](#page-21-5)]). Here we present a null space property for $\mathcal{N}(A)$, which is necessary and sufficient, for which there exists a decoder Δ so that [\(1.3\)](#page-2-0) holds. We apply the result to investigate the instance optimality where *X* is the ℓ_1 norm. Set

$$
\Delta_1(|Ax|) := \underset{z \in \mathbb{R}^N}{\text{argmin}} \Big\{ \|z\|_1 : |Ax| = |Az| \Big\}.
$$

We show that the pair (A, Δ_1) satisfies (1.3) with *X* being the ℓ_1 -norm provided *A* satisfies the strong RIP property (see Definition [2.1\)](#page-3-0). As shown in $[10]$, the Gaussian random matrix $A \in \mathbb{R}^{m \times N}$ satisfies the strong RIP of order *k* for $m = \mathcal{O}(k \log(N/k))$. Hence $m = \mathcal{O}(k \log(N/k))$ measurements suffice to ensure the phaseless instance optimality [\(1.3\)](#page-2-0) for the ℓ_1 -norm exactly as with the traditional instance optimality $(1.2).$ $(1.2).$

2 Auxiliary Results

In this section we provide some auxiliary results that will be used in later sections. For $x \in \mathbb{R}^N$ we use $||x||_p := ||x||_{\ell_p}$ to denote the *p*-norm of *x* for $0 < p \le \infty$. The measurement matrix is given by $A := [a_1, \ldots, a_m]^T \in \mathbb{R}^{m \times N}$ as before. Given an index set $I \subset \{1, \ldots, m\}$ we shall use A_I to denote the sub-matrix of A where only rows with indices in *I* are kept, i.e.,

$$
A_I := [a_j : j \in I]^\perp.
$$

The matrix *A* satisfies the *Restricted Isometry Property* (*RIP*) *of order k* if there exists a constant $\delta_k \in [0, 1)$ such that for all *k*-sparse vectors $z \in \Sigma_k$ we have

$$
(1 - \delta_k) \|z\|_2^2 \le \|Az\|_2^2 \le (1 + \delta_k) \|z\|_2^2.
$$

It was shown in [\[2\]](#page-21-6) that one can use ℓ_1 -minimization to recover *k*-sparse signals provided that *A* satisfies the RIP of order *tk* and $\delta_{tk} < \sqrt{1 - \frac{1}{t}}$ where $t > 1$.

To investigate compressive phase retrieval, a stronger notion of RIP is given in [\[10\]](#page-21-3):

Definition 2.1 (*S-RIP*) We say the matrix $A = [a_1, \ldots, a_m]^\top \in \mathbb{R}^{m \times N}$ has the *Strong Restricted Isometry Property* of order k with bounds $\theta_-, \theta_+ \in (0, 2)$ if

$$
\theta_- \|x\|_2^2 \le \min_{I \subseteq [m], |I| \ge m/2} \|A_I x\|_2^2 \le \max_{I \subseteq [m], |I| \ge m/2} \|A_I x\|_2^2 \le \theta_+ \|x\|_2^2 \tag{2.1}
$$

holds for all k-sparse signals $x \in \mathbb{R}^N$, where $[m] := \{1, \ldots, m\}$. We say *A* has the *Strong Lower Restricted Isometry Property* of order k with bound $θ_$ if the lower bound in [\(2.1\)](#page-3-1) holds. Similarly we say *A* has the *Strong Upper Restricted Isometry Property* of order k with bound θ_+ if the upper bound in [\(2.1\)](#page-3-1) holds.

The authors of [\[10](#page-21-3)] proved that Gaussian matrices with $m = \mathcal{O}(t k \log(N/k))$ satisfy S-RIP of order *tk* with high probability.

Theorem 2.1 ([\[10\]](#page-21-3)) *Suppose that* $t > 1$ *and* $A = (a_{ij}) \in \mathbb{R}^{m \times N}$ *is a random Gaussian matrix with m* = $\mathcal{O}(tk \log(N/k))$ *and a_{ij}* ∼ $\mathcal{N}(0, \frac{1}{\sqrt{m}})$ *. Then there exist* θ _−, θ ₊ ∈ (0, 2) *such that with probability* 1 − exp(−*cm*/2) *the matrix A satisfies the S-RIP of order tk with constants* $θ_$ *and* $θ_$ *+, where c* > 0 *is an absolute constant and* θ_-, θ_+ *are independent of t.*

The following is a very useful lemma for this study.

Lemma 2.1 *Let* $x_0 \in \mathbb{R}^N$ *and* $\rho \geq 0$ *. Suppose that* $A \in \mathbb{R}^{m \times N}$ *is a measurement matrix satisfying the restricted isometry property with* $\delta_{tk} \leq \sqrt{\frac{t-1}{t}}$ *for some* $t > 1$ *. Then for any*

$$
\hat{x} \in \left\{ x \in \mathbb{R}^N : ||x||_1 \le ||x_0||_1 + \rho, ||Ax - Ax_0||_2 \le \epsilon \right\}
$$

we have

$$
\|\hat{x} - x_0\|_2 \le c_1 \epsilon + c_2 \frac{2\sigma_k(x_0)_1}{\sqrt{k}} + c_2 \cdot \frac{\rho}{\sqrt{k}},
$$

 $where \ c_1 = \frac{\sqrt{2(1+\delta)}}{1-\sqrt{t/(t-1)}\delta}, \ c_2 = \frac{\sqrt{2}\delta + \sqrt{(\sqrt{t(t-1)}-\delta t)\delta}}{\sqrt{t(t-1)}-\delta t} + 1.$

Remark [2.1](#page-3-2) We build the proof of Lemma 2.1 following the ideas of Cai and Zhang [\[2](#page-21-6)]. The full proof is given in Appendix for completeness. It is well-known that an effective method to recover approximately-sparse signals x_0 in the traditional compressive sensing is to solve

$$
x^{\#} := \underset{x}{\text{argmin}} \{ \|x\|_1 : \|Ax - Ax_0\|_2 \le \epsilon \}. \tag{2.2}
$$

The definition of x^* shows that

$$
||x^{\#}||_1 \le ||x_0||_1, \quad ||Ax^{\#} - Ax_0||_2 \le \epsilon,
$$

which implies that

$$
||x^{\#} - x_0||_2 \le C_1 \epsilon + C_2 \frac{\sigma_k(x_0)_1}{\sqrt{k}},
$$

provided that *A* satisfies the RIP condition with $\delta_{tk} \leq \sqrt{1-1/t}$ for $t > 1$ (see [\[2\]](#page-21-6)). However, in practice one prefers to design fast algorithms to find an approximation solution of [\(2.2\)](#page-4-0), say \hat{x} . Thus it is possible to have $\|\hat{x}\|_1 > \|x_0\|_1$. Lemma [2.1](#page-3-2) gives an estimate of $\|\hat{x} - x_0\|_2$ for the case where $\|\hat{x}\|_1 \leq \|x_0\|_1 + \rho$.

Remark 2.2 In [\[7\]](#page-21-7), Han and Xu extend the definition of S-RIP by replacing the *m*/2 in [\(2.1\)](#page-3-1) by βm where $0 < \beta < 1$. They also prove that, for any fixed $\beta \in (0, 1)$, the $m \times N$ random Gaussian matrix satisfies S-RIP of order k with high probability provided $m = \mathcal{O}(k \log(N/k)).$

3 Stable Recovery of Real Phase Retrieval Problem

3.1 Stability Results

The following lemma shows that the map $\phi_A(x) := |Ax|$ is stable on Σ_k modulo a unimodular constant provided *A* satisfies strong lower RIP of order 2*k*. Define the equivalent relation ∼ on \mathbb{R}^N and \mathbb{C}^N by the following: for any *x*, *y*, *x* ∼ *y* iff *x* = *cy* for some unimodular scalar *c*, where *x*, *y* are in \mathbb{R}^N or \mathbb{C}^N . For any subset *Y* of \mathbb{R}^N or \mathbb{C}^N the notation *Y*/ ∼ denotes the equivalent classes of elements in *Y* under the equivalence. Note that there is a natural metric *D*∼ on \mathbb{C}^N/\sim given by

$$
D_{\sim}(x, y) = \min_{|c|=1} \|x - cy\|.
$$

Our primary focus in this paper will be on \mathbb{R}^N , and in this case $D_>(x, y) = \min\{\|x - y\|^2\}$ $y\|_2$, $\|x + y\|_2$.

Lemma 3.1 *Let* $A \in \mathbb{R}^{m \times N}$ *satisfy the strong lower RIP of order* 2*k with constant* $θ$ ^{*-}</sup>. Then for any x*, *y* ∈ $Σ_k$ *we have*</sup>

$$
\| |Ax| - |Ay| \|_2^2 \ge \theta_- \min(\|x - y\|_2^2, \|x + y\|_2^2).
$$

Proof For any $x, y \in \Sigma_k$ we divide $\{1, \ldots, m\}$ into two subsets:

$$
T = \{j : sign(\langle a_j, x \rangle) = sign(\langle a_j, y \rangle)\}\
$$

and

$$
T^{c} = \{j : sign(\langle a_j, x \rangle) = -sign(\langle a_j, y \rangle)\}.
$$

Clearly one of *T* and T^c will have cardinality at least $m/2$. Without loss of generality we assume that *T* has cardinality no less than *m*/2. Then

$$
\begin{aligned} |||Ax| - |Ay||_2^2 &= \|A_T x - A_T y\|_2^2 + \|A_T c x + A_T c y\|_2^2 \\ &\ge \|A_T x - A_T y\|_2^2 \\ &\ge \theta_- \|x - y\|_2^2 \\ &\ge \theta_- \min(\|x - y\|_2^2, \|x + y\|_2^2). \end{aligned}
$$

 \Box

Remark 3.1 Note that the combination of Lemma [3.1](#page-4-1) and Theorem [2.1](#page-3-3) shows that for an $m \times N$ Gaussian matrix A with $m = O(k \log(N/k))$ one can guarantee the stability of the map $\phi_A(x) := |Ax|$ on Σ_k / \sim .

3.2 The Main Theorem

In this part, we will consider how many measurements are needed for the stable sparse phase retrieval by ℓ_1 -minimization via solving the following model:

$$
\min \|x\|_1 \text{ subject to } \| |Ax| - |Ax_0| \|_2^2 \le \epsilon^2,\tag{3.1}
$$

where *A* is our measurement matrix and $x_0 \in \mathbb{R}^N$ is a signal we wish to recover. The next theorem tells under what conditions the solution to (3.1) is stable.

Theorem 3.1 *Assume that* $A \in \mathbb{R}^{m \times N}$ *satisfies the S-RIP of order tk with bounds* $\theta_-, \theta_+ \in (0, 2)$ *such that*

$$
t \ge \max\left\{\frac{1}{2\theta_{-} - \theta_{-}^{2}}, \frac{1}{2\theta_{+} - \theta_{+}^{2}}\right\}.
$$

Then any solution \hat{x} *for* (3.1) (3.1) (3.1) *satisfies*

$$
\min\{\|\hat{x} - x_0\|_2, \|\hat{x} + x_0\|_2\} \le c_1 \epsilon + c_2 \frac{2\sigma_k(x_0)_1}{\sqrt{k}},
$$

*where c*¹ *and c*² *are constants defined in Lemma [2.1.](#page-3-2)*

Proof Clearly any $\hat{x} \in \mathbb{R}^N$ satisfying [\(3.1\)](#page-5-0) must have

$$
\|\hat{x}\|_1 \le \|x_0\|_1 \tag{3.2}
$$

and

$$
\| |A\hat{x}| - |Ax_0|\|_2^2 \le \epsilon^2. \tag{3.3}
$$

Now the index set $\{1, 2, \ldots, m\}$ is divisible into two subsets

$$
T = \{j : sign(\langle a_j, \hat{x} \rangle) = sign(\langle a_j, x_0 \rangle)\},
$$

$$
T^c = \{j : sign(\langle a_j, \hat{x} \rangle) = -sign(\langle a_j, x_0 \rangle)\}.
$$

Then [\(3.3\)](#page-6-0) implies that

$$
||A_T\hat{x} - A_Tx_0||_2^2 + ||A_Tc\hat{x} + A_Tcx_0||_2^2 \le \epsilon^2.
$$
 (3.4)

Here either $|T| \ge m/2$ or $|T^c| \ge m/2$. Without loss of generality we assume that $|T| \ge m/2$. We use the fact

$$
||A_T \hat{x} - A_T x_0||_2^2 \le \epsilon^2. \tag{3.5}
$$

From (3.2) and (3.5) we obtain

$$
\hat{x} \in \left\{ x \in \mathbb{R}^N : \|x\|_1 \le \|x_0\|_1, \|A_T x - A_T x_0\|_2 \le \epsilon \right\}.
$$
 (3.6)

Recall that *A* satisfies S-RIP of order *tk* and constants θ_-, θ_+ . Here

$$
t \ge \max\{\frac{1}{2\theta - \theta_{-}^{2}}, \frac{1}{2\theta_{+} - \theta_{+}^{2}}\} > 1.
$$
 (3.7)

The definition of S-RIP implies that A_T satisfies the RIP of order *tk* in which

$$
\delta_{tk} \le \max\{1 - \theta_-, \ \theta_+ - 1\} \le \sqrt{\frac{t - 1}{t}}
$$
 (3.8)

where the second inequality follows from (3.7) . The combination of (3.6) , (3.8) and Lemma [2.1](#page-3-2) now implies

$$
\|\hat{x} - x_0\|_2 \le c_1 \epsilon + c_2 \frac{2\sigma_k(x_0)_1}{\sqrt{k}},
$$

where c_1 and c_2 are defined in Lemma [2.1.](#page-3-2) If $|T^c| \geq \frac{m}{2}$ we get the corresponding result

$$
\|\hat{x} + x_0\|_2 \le c_1 \epsilon + c_2 \frac{2\sigma_k(x_0)_1}{\sqrt{k}}.
$$

The theorem is now proved.

This theorem demonstrates that, if the measurement matrix has the S-RIP, the real compressive phase retrieval problem can be solved stably by ℓ_1 -minimization.

4 Phase Retrieval and Best k-term Approximation

4.1 Instance Optimality from the Linear Measurements

We introduce some definitions and results in [\[5\]](#page-21-5). Recall that for a given encoder matrix $A \in \mathbb{R}^{m \times N}$ and a decoder $\Delta : \mathbb{R}^m \mapsto \mathbb{R}^N$, the pair (A, Δ) is said to have instance optimality of order k with constant C_0 with respect to the norm X if

$$
||x - \Delta(Ax)||_X \le C_0 \sigma_k(x)_X \tag{4.1}
$$

holds for all $x \in \mathbb{R}^N$. Set $\mathcal{N}(A) := \{ \eta \in \mathbb{R}^N : A\eta = 0 \}$ to be the null space of A. The following theorem gives conditions under which the [\(4.1\)](#page-7-0) holds.

Theorem 4.1 ([\[5\]](#page-21-5)) *Let* $A \in \mathbb{R}^{m \times N}$, $1 \le k \le N$ *and* $\| \cdot \|_X$ *be a norm on* \mathbb{R}^N *. Then a sufficient condition for the existence of a decoder* Δ *satisfying* [\(4.1\)](#page-7-0) *is*

$$
\|\eta\|_X \le \frac{C_0}{2}\sigma_{2k}(\eta)_X, \quad \forall \eta \in \mathcal{N}(A). \tag{4.2}
$$

A necessary condition for the existence of a decoder Δ *satisfying* [\(4.1\)](#page-7-0) *is*

$$
\|\eta\|_X \le C_0 \sigma_{2k}(\eta)_X, \quad \forall \eta \in \mathcal{N}(A). \tag{4.3}
$$

For the norm $X = \ell_1$ it was established in [\[5\]](#page-21-5) that instance optimality of order *k* can indeed be achieved, e.g. for a Gaussian matrix A, with $m = O(k \log(N/k))$. The authors also considered more generally taking different norms on both sides of [\(4.1\)](#page-7-0). Following [\[5](#page-21-5)], we say the pair (A, Δ) has (p, q) -instance optimality of order k with *constant* C_0 if

$$
||x - \Delta(Ax)||_p \le C_0 k^{\frac{1}{q} - \frac{1}{p}} \sigma_k(x)_q, \quad \forall x \in \mathbb{R}^N,
$$
\n(4.4)

with $1 \le q \le p \le 2$. It was shown in [\[5\]](#page-21-5) that the (p, q) -instance optimality of order *k* can be achieved at the cost of having $m = O(k(N/k)^{2-2/q}) \log(N/k)$ measurements.

4.2 Phaseless Instance Optimality

A natural question here is whether an analogous result to Theorem [4.1](#page-7-1) exists for phaseless instance optimality defined in [\(1.3\)](#page-2-0). We answer the question by presenting such a result in the case of real phase retrieval.

Recall that a pair (A, Δ) is said to be have the phaseless instance optimality of order *k* with constant C_0 for the norm $\Vert . \Vert_x$ if

$$
\min\{|x - \Delta(|Ax|)\|_X, \|x + \Delta(|Ax|)\|_X\} \le C_0 \sigma_k(x)_X \tag{4.5}
$$

holds for all $x \in \mathbb{R}^N$.

Theorem 4.2 *Let* $A \in \mathbb{R}^{m \times N}$, $1 \leq k \leq N$ *and* $\|\cdot\|_X$ *be a norm. Then a sufficient condition for the existence of a decoder* Δ *satisfying the phaseless instance optimality* [\(4.5\)](#page-7-2) *is: For any* $I \subseteq \{1, \ldots, m\}$ *and* $\eta_1 \in \mathcal{N}(A_I)$, $\eta_2 \in \mathcal{N}(A_{I^c})$ *we have*

$$
\min\{\|\eta_1\|_X,\|\eta_2\|_X\} \le \frac{C_0}{4}\sigma_k(\eta_1-\eta_2)_X + \frac{C_0}{4}\sigma_k(\eta_1+\eta_2)_X. \tag{4.6}
$$

A necessary condition for the existence of a decoder Δ *satisfying* [\(4.5\)](#page-7-2) *is: For any* $I \subseteq \{1, \ldots, m\}$ *and* $\eta_1 \in \mathcal{N}(A_I)$, $\eta_2 \in \mathcal{N}(A_I)$ *we have*

$$
\min\{\|\eta_1\|_X, \|\eta_2\|_X\} \le \frac{C_0}{2}\sigma_k(\eta_1 - \eta_2)_X + \frac{C_0}{2}\sigma_k(\eta_1 + \eta_2)_X. \tag{4.7}
$$

Proof We first assume [\(4.6\)](#page-8-0) holds, and show that there exists a decoder Δ satisfying the phaseless instance optimality [\(4.5\)](#page-7-2). To this end, we define a decoder Δ as follows:

$$
\Delta(|Ax_0|) = \underset{|Ax|=|Ax_0|}{\text{argmin}} \sigma_k(x)_X.
$$

Suppose $\hat{x} := \Delta(|Ax_0|)$. We have $|A\hat{x}| = |Ax_0|$ and $\sigma_k(\hat{x})_X \leq \sigma_k(x_0)_X$. Note that $\langle a_i, \hat{x} \rangle = \pm \langle a_i, x_0 \rangle$. Let $I \subseteq \{1, \ldots, m\}$ be defined by

$$
I = \Big\{ j : \langle a_j, \hat{x} \rangle = \langle a_j, x_0 \rangle \Big\}.
$$

Then

$$
A_I(x_0 - \hat{x}) = 0, \quad A_{I^c}(x_0 + \hat{x}) = 0.
$$

Set

$$
\eta_1 := x_0 - \hat{x} \in \mathcal{N}(A_I),
$$

$$
\eta_2 := x_0 + \hat{x} \in \mathcal{N}(A_{I^c}).
$$

A simple observation yields

$$
\sigma_k(\eta_1 - \eta_2)_X = 2\sigma_k(\hat{x})_X \le 2\sigma_k(x_0)_X, \quad \sigma_k(\eta_1 + \eta_2)_X = 2\sigma_k(x_0)_X. \tag{4.8}
$$

Then [\(4.6\)](#page-8-0) implies that

$$
\min\{\|\hat{x} - x_0\|_X, \|\hat{x} + x_0\|_X\} = \min\{\|\eta_1\|_X, \|\eta_2\|_X\}
$$

\n
$$
\leq \frac{C_0}{4}\sigma_k(\eta_1 - \eta_2)_X + \frac{C_0}{4}\sigma_k(\eta_1 + \eta_2)_X
$$

\n
$$
\leq C_0\sigma_k(x_0)_X.
$$

Here the last equality is obtained by (4.8) . This proves the sufficient condition.

We next turn to the necessary condition. Let Δ be a decoder for which the phaseless instance optimality [\(4.5\)](#page-7-2) holds. Let $I \subseteq \{1, ..., m\}$. For any $\eta_1 \in \mathcal{N}(A_I)$ and $\eta_2 \in$ $\mathcal{N}(A_{I^c})$ we have

$$
|A(\eta_1 + \eta_2)| = |A(\eta_1 - \eta_2)| = |A(\eta_2 - \eta_1)|. \tag{4.9}
$$

The instance optimality implies

$$
\min\left\{\|\Delta(|A(\eta_1+\eta_2)|)+\eta_1+\eta_2\|_X,\|\Delta(|A(\eta_1+\eta_2)|)-(\eta_1+\eta_2)\|_X\right\}\leq C_0\sigma_k(\eta_1+\eta_2)_X.
$$
\n(4.10)

Without loss of generality we may assume that

$$
\|\Delta(|A(\eta_1+\eta_2)|)+\eta_1+\eta_2\|_X \leq \|\Delta(|A(\eta_1+\eta_2)|)-(\eta_1+\eta_2)\|_X.
$$

Then [\(4.10\)](#page-9-0) implies that

$$
\|\Delta(|A(\eta_1+\eta_2)|)+\eta_1+\eta_2\|_X\leq C_0\sigma_k(\eta_1+\eta_2)_X.
$$
 (4.11)

By (4.9) , we have

$$
\|\Delta(|A(\eta_1 + \eta_2)|) + \eta_1 + \eta_2\|_X = \|\Delta(|A(\eta_2 - \eta_1)|) - (\eta_2 - \eta_1) + 2\eta_2\|_X
$$

\n
$$
\ge 2\|\eta_2\|_X - \|\Delta(|A(\eta_2 - \eta_1)|) - (\eta_2 - \eta_1)\|_X.
$$

\n(4.12)

Combining (4.11) and (4.12) yields

$$
2\|\eta_2\|_X \le C_0 \sigma_k (\eta_1 + \eta_2)_X + \|\Delta(|A(\eta_2 - \eta_1)|) - (\eta_2 - \eta_1)\|_X. \tag{4.13}
$$

At the same time, [\(4.9\)](#page-9-1) also implies

$$
\|\Delta(|A(\eta_1 + \eta_2)|) + \eta_1 + \eta_2\|_X = \|\Delta(|A(\eta_2 - \eta_1)|) + (\eta_2 - \eta_1) + 2\eta_1\|_X
$$

\n
$$
\ge 2\|\eta_1\|_X - \|\Delta(|A(\eta_2 - \eta_1)|) + (\eta_2 - \eta_1)\|_X.
$$
\n(4.14)

Putting [\(4.11\)](#page-9-2) and [\(4.14\)](#page-9-4) together, we obtain

$$
2\|\eta_1\|_X \le C_0 \sigma_k(\eta_1 + \eta_2)_X + \|\Delta(|A(\eta_2 - \eta_1)|) + (\eta_2 - \eta_1)\|_X. \tag{4.15}
$$

It follows from (4.13) and (4.15) that

$$
\min \{ \|\eta_1\|_X, \|\eta_2\|_X \} \leq \frac{C_0}{2} \sigma_k (\eta_1 + \eta_2)_X
$$

+
$$
\frac{1}{2} \min \{ \|\Delta(|A(\eta_2 - \eta_1)|) - (\eta_2 - \eta_1) \|_X, \|\Delta(|A(\eta_2 - \eta_1)|)
$$

+
$$
(\eta_2 - \eta_1) \|_X \} \leq \frac{C_0}{2} \sigma_k (\eta_1 + \eta_2)_X + \frac{C_0}{2} \sigma_k (\eta_1 - \eta_2)_X.
$$

Here the last inequality is obtained by the instance optimality of (A, Δ) . For the case where

$$
\|\Delta(|A(\eta_1+\eta_2)|)-(\eta_1+\eta_2)\|_X\ \leq\ \|\Delta(|A(\eta_1+\eta_2)|)+\eta_1+\eta_2\|_X,
$$

we obtain

$$
\min\{\|\eta_1\|_X,\|\eta_2\|_X\} \le \frac{C_0}{2}\sigma_k(\eta_1+\eta_2)_X + \frac{C_0}{2}\sigma_k(\eta_1-\eta_2)_X
$$

via the same argument. The theorem is now proved.

We next present a null space property for phaseless instance optimality, which allows us to establish parallel results for sparse phase retrieval.

Definition 4.1 We say a matrix $A \in \mathbb{R}^{m \times N}$ satisfies the *strong null space property (S-NSP) of order k with constant C* if for any index set $I \subseteq \{1, ..., m\}$ with $|I| > m/2$ and $\eta \in \mathcal{N}(A_I)$ we have

$$
\|\eta\|_X\leq C\cdot \sigma_k(\eta)_X.
$$

Theorem 4.3 Assume that a matrix $A \in \mathbb{R}^{m \times N}$ has the strong null space property of *order* 2*k* with constant $C_0/2$. Then there must exist a decoder Δ having the phaseless *instance optimality* [\(1.3\)](#page-2-0) *with constant C*0*. In particular, one such decoder is*

$$
\Delta(|Ax_0|) = \underset{|Ax|=|Ax_0|}{argmin} \sigma_k(x)_X.
$$

Proof Assume that $I \subseteq \{1, ..., m\}$. For any $\eta_1 \in \mathcal{N}(A_I)$ and $\eta_2 \in \mathcal{N}(A_{I^c})$ we must have either $\|\eta_1\|_X \leq \frac{C_0}{2} \sigma_{2k}(\eta_1)_X$ or $\|\eta_2\|_X \leq \frac{C_0}{2} \sigma_{2k}(\eta_2)_X$ by the strong null space property. If $\|\eta_1\|_X \leq \frac{C_0}{2} \sigma_{2k}(\eta_1)_X$ then

$$
\|\eta_1\|_X \leq \frac{C_0}{2}\sigma_{2k}(\eta_1)_X \leq \frac{C_0}{4}\sigma_k(\eta_1 - \eta_2)_X + \frac{C_0}{4}\sigma_k(\eta_1 + \eta_2)_X.
$$

Similarly if $\|\eta_2\|_X \leq \frac{C_0}{2} \sigma_{2k}(\eta_2)_X$ we will have

$$
\|\eta_2\|_X \leq \frac{C_0}{2}\sigma_{2k}(\eta_2)_X \leq \frac{C_0}{4}\sigma_k(\eta_1 - \eta_2)_X + \frac{C_0}{4}\sigma_k(\eta_1 + \eta_2)_X.
$$

It follows that

$$
\min\{\|\eta_1\|_X, \|\eta_2\|_X\} \le \frac{C_0}{4}\sigma_k(\eta_1 - \eta_2)_X + \frac{C_0}{4}\sigma_k(\eta_1 + \eta_2)_X. \tag{4.16}
$$

Theorem [4.2](#page-8-2) now implies that the required decoder Δ exists. Furthermore, by the proof of the sufficiency part of Theorem [4.2,](#page-8-2)

$$
\Delta(|Ax_0|) = \underset{|Ax|=|Ax_0|}{\text{argmin}} \sigma_k(x)_X
$$

is one such decoder.

4.3 The Case $X = \ell_1$

We will now apply Theorem [4.3](#page-10-0) to the ℓ_1 -norm case. The following lemma establishes a relation between S-RIP and S-NSP for the ℓ_1 -norm.

Lemma 4.1 *Let a, b, k be integers. Assume that* $A \in \mathbb{R}^{m \times N}$ *satisfies the S-RIP of order* $(a + b)$ *k* with constants $\theta_-, \theta_+ \in (0, 2)$ *. Then A satisfies the S-NSP of order* ak under the ℓ_1 -norm with constant

$$
C_0 = 1 + \sqrt{\frac{a(1+\delta)}{b(1-\delta)}},
$$

where δ *is the restricted isometry constant and* $\delta := \max\{1 - \theta_-, \theta_+ - 1\} < 1$ *.*

We remark that the above lemma is the analogous to the following lemma providing a relationship between RIP and NSP, which was shown in [\[5](#page-21-5)]:

Lemma 4.2 ([\[5,](#page-21-5) Lemma 4.1]) *Let a* = l/k , *b* = l'/k where $l, l' \geq k$ are integers. *Assume that* $A \in \mathbb{R}^{m \times N}$ *satisfies the RIP of order* $(a + b)k$ *with* $\delta = \delta_{(a+b)k} < 1$. Then A satisfies the null space property under the ℓ_1 -norm of order ak with constant $C_0 = 1 + \frac{\sqrt{a(1+\delta)}}{\sqrt{b(1-\delta)}}$.

Proof By the definition of S-RIP, for any index set $I \subseteq \{1, ..., m\}$ with $|I| \ge m/2$, the matrix $A_I \in \mathbb{R}^{|I| \times N}$ satisfies the RIP of order $(a + b)k$ with constant $\delta_{(a+b)k}$ $\delta := \max\{1 - \theta_-, \theta_+ - 1\}$ < 1. It follows from Lemma [4.2](#page-11-0) that

$$
\|\eta\|_1 \le \left(1 + \sqrt{\frac{a(1+\delta)}{b(1-\delta)}}\right) \sigma_{ak}(\eta)_1
$$

for all $\eta \in \mathcal{N}(A_I)$. This proves the lemma.

Set $a = 2$ and $b = 1$ in Lemma [4.1](#page-11-1) we infer that if A satisfies the S-RIP of order 3*k* with constants θ−, θ⁺ ∈ (0, 2), then *A* satisfies the S-NSP of order 2*k* under the ℓ_1 -norm with constant $C_0 = 1 + \sqrt{\frac{2(1+\delta)}{1-\delta}}$. Hence by Theorem [4.3,](#page-10-0) there must exist a decoder that has the instance optimality under the ℓ_1 -norm with constant $2C_0$. According to Theorem [2.1,](#page-3-3) by taking $m = O(k \log(N/k))$ a Gaussian random matrix *A* satisfies S-RIP of order 3*k* with high probability. Hence, there exists a decoder Δ so that the pair (A, Δ) has the the ℓ_1 -norm phaseless instance optimality at the cost of $m = O(k \log(N/k))$ measurements, as with the traditional instance optimality.

We are now ready to prove the following theorem on phaseless instance optimality under the ℓ_1 -norm.

Theorem 4.4 *Let* $A \in \mathbb{R}^{m \times N}$ *satisfy the S-RIP of order tk with constants* $0 < \theta_{-} <$ $1 < \theta_+ < 2$, where

$$
t \ge \max\left\{\frac{2}{\theta_-}, \frac{2}{2-\theta_+}\right\} > 2.
$$

Let

$$
\Delta(|Ax_0|) = \underset{x \in \mathbb{R}^N}{\text{argmin}} \{ ||x||_1 : |Ax| = |Ax_0| \}. \tag{4.17}
$$

Then (A, Δ) *has the* ℓ_1 *-norm phaseless instance optimality with constant* $C = \frac{2C_0}{2-C_0}$ *, where* $C_0 = 1 + \sqrt{\frac{1+\delta}{(t-1)(1-\delta)}}$ *and as before*

$$
\delta := \max\{1 - \theta_-, \theta_+ - 1\} \le 1 - \frac{2}{t}.
$$

Proof of Lemma [4.1](#page-11-1) Let $x_0 \in \mathbb{R}^N$ and set $\hat{x} = \Delta(|Ax_0|)$. Then by definition

 $\|\hat{x}\|_1 \leq \|x_0\|_1$ and $|A\hat{x}| = |Ax_0|$.

Denote by $I \subseteq \{1, \ldots, m\}$ the set of indices

$$
I = \left\{ j : \langle a_j, \hat{x} \rangle = \langle a_j, x_0 \rangle \right\},\
$$

and thus $\langle a_j, \hat{x} \rangle = -\langle a_j, x_0 \rangle$ for $j \in I^c$. It follows that

$$
A_I(\hat{x} - x_0) = 0
$$
 and $A_{I^c}(\hat{x} + x_0) = 0$.

Set

$$
\eta := \hat{x} - x_0 \in \mathcal{N}(A_I).
$$

We know that *A* satisfies the S-RIP of order *tk* with constants θ_-, θ_+ where

$$
t \ge \max\left\{\frac{2}{\theta_-}, \frac{2}{2-\theta_+}\right\} > 2.
$$

For the case $|I| \ge m/2$, A_I satisfies the RIP of order *tk* with RIP constant

$$
\delta = \delta_{tk} := \max\{1 - \theta_-, \theta_+ - 1\} \le 1 - \frac{2}{t} < 1.
$$

Take $a := 1$, $b := t - 1$ in Lemma [4.1.](#page-11-1) Then *A* satisfies the ℓ_1 -norm S-NSP of order *k* with constant

$$
C_0 = 1 + \sqrt{\frac{1+\delta}{(t-1)(1-\delta)}} < 2.
$$

This yields

$$
\|\eta\|_1 \le C_0 \|\eta_{T^c}\|_1,\tag{4.18}
$$

where T is the index set for the k largest coefficients of x_0 in magnitude. Hence $\|\eta_T\|_1 \leq (C_0 - 1) \|\eta_{T^c}\|_1$. Since $\|\hat{x}\|_1 \leq \|x_0\|_1$ we have

$$
||x_0||_1 \ge ||\hat{x}||_1 = ||x_0 + \eta||_1 = ||x_{0,T} + x_{0,T^c} + \eta_T + \eta_{T^c}||_1
$$

\n
$$
\ge ||x_{0,T}||_1 - ||x_{0,T^c}||_1 + ||\eta_{T^c}||_1 - \eta_{T^c}||_1.
$$

It follows that

$$
\|\eta_{T^c}\|_1 \le \|\eta_T\|_1 + 2\sigma_k(x_0)\|_1 \le (C_0 - 1)\|\eta_{T^c}\|_1 + 2\sigma_k(x_0)\|_1
$$

and thus

$$
\|\eta_{T^c}\|_1 \leq \frac{2}{2-C_0} \sigma_k(x_0)_1.
$$

Now [\(4.18\)](#page-13-0) yields

$$
\|\eta\|_1 \leq C_0 \|\eta_{T^c}\|_1 \leq \frac{2C_0}{2-C_0} \sigma_k(x_0)_1,
$$

which implies

$$
\|\hat{x} - x_0\|_1 \le C_0 \|\eta_{T^c}\|_1 \le \frac{2C_0}{2 - C_0} \sigma_k(x_0)_1.
$$

For the case $|I^c| \ge m/2$ identical argument yields

$$
\|\hat{x} + x_0\|_1 \le C_0 \|\eta_{T^c}\|_1 \le \frac{2C_0}{2 - C_0} \sigma_k(x_0)_1.
$$

The theorem is now proved.

By Theorem [2.1,](#page-3-3) an $m \times N$ random Gaussian matrix with $m = \mathcal{O}(tk \log(N/k))$ satisfies the S-RIP of order *tk* with high probability. We therefore conclude that the ℓ_1 -norm phaseless instance optimality of order *k* can be achieved at the cost of $m =$ $O(tk \log(N/k))$ measurements.

4.4 Mixed-Norm phaseless Instance Optimality

We now consider *mixed-norm phaseless instance optimality*. Let $1 \le q \le p \le 2$ and $s = 1/q - 1/p$. We seek estimates of the form

$$
\min\{\|x - \Delta(|Ax|)\|_p, \|x + \Delta(|Ax|)\|_p\} \le C_0 k^{-s} \sigma_k(x)_q \tag{4.19}
$$

for all $x \in \mathbb{R}^N$. We shall prove both necessary and sufficient conditions for mixednorm phaseless instance optimality.

Theorem 4.5 *Let* $A \in \mathbb{R}^{m \times N}$ *and* $1 \leq q \leq p \leq 2$ *. Set* $s = 1/q-1/p$ *. Then a decoder* Δ satisfying the mixed norm phaseless instance optimality [\(4.19\)](#page-14-0) with constant C₀ *exists if: for any index set* $I \subseteq \{1, ..., m\}$ *and any* $\eta_1 \in \mathcal{N}(A_I)$, $\eta_2 \in \mathcal{N}(A_I c)$ we *have*

$$
\min\{\|\eta_1\|_p, \|\eta_2\|_p\} \le \frac{C_0}{4} k^{-s} \Big(\sigma_k(\eta_1 - \eta_2)_q + \sigma_k(\eta_1 + \eta_2)_q\Big). \tag{4.20}
$$

Conversely, assume a decoder Δ satisfying the mixed norm phaseless instance opti*mality* [\(4.19\)](#page-14-0) *exists. Then for any index set* $I \subseteq \{1, ..., m\}$ *and any* $\eta_1 \in \mathcal{N}(A_I)$, $\eta_2 \in \mathcal{N}(A_{I^c})$ we have

$$
\min\{\|\eta_1\|_p,\|\eta_2\|_p\}\leq \frac{C_0}{2}k^{-s}\Big(\sigma_k(\eta_1-\eta_2)_q+\sigma_k(\eta_1+\eta_2)_q\Big).
$$

Proof of Lemma [4.1](#page-11-1) The proof is virtually identical to the proof of Theorem [4.2.](#page-8-2) We shall omit the details here in the interest of brevity.

Definition 4.2 (*Mixed-Norm Strong Null Space Property*) We say that *A* has the mixed strong null space property in norms (ℓ_p, ℓ_q) of order *k* with constant *C* if for any index set *I* ⊆ {1, ..., *m*} with $|I| \ge m/2$ the matrix $A_I \in \mathbb{R}^{|I| \times N}$ satisfies

$$
\|\eta\|_p \leq C k^{-s} \sigma_k(\eta)_q
$$

for all $\eta \in \mathcal{N}(A_I)$, where $s = 1/q - 1/p$.

The above is an extension of the standard definition of the mixed null space property of order *k* in norms (ℓ_p, ℓ_q) (see [\[5](#page-21-5)]) for a matrix *A*, which requires

$$
\|\eta\|_p \leq C k^{-s} \sigma_k(\eta)_q
$$

for all $\eta \in \mathcal{N}(A)$. We have the following straightforward generalization of Theorem [4.3.](#page-10-0)

Theorem 4.6 *Assume that* $A \in \mathbb{R}^{m \times N}$ *has the mixed strong null space property of order* 2*k* in norms (ℓ_p, ℓ_q) with constant $C_0/2$, where $1 \le q \le p \le 2$. Then there *exists a decoder* Δ *such that the mixed-norm phaseless instance optimality* [\(4.19\)](#page-14-0) *holds with constant C*0*.*

We establish relationships between mixed-norm strong null space property and the S-RIP. First we present the following lemma that was proved in [\[5](#page-21-5)].

Lemma 4.3 ([\[5,](#page-21-5) Lemma 8.2]) *Let* $k \geq 1$ *and* $\tilde{k} = \lceil k(\frac{N}{k})^{2-2/q} \rceil$ *. Assume that* $A \in$ $\mathbb{R}^{m \times N}$ *satisfies the RIP of order* $2k + \tilde{k}$ with $\delta := \delta_{2k+\tilde{k}} < 1$ *. Then A satisfies the mixed null space property in norms* (ℓ_p, ℓ_q) *of order* 2*k with constant* $C_0 =$ $2^{1/p+1/2}\sqrt{\frac{1+\delta}{1-\delta}}+2^{1/p-1/q}.$

Proposition 4.1 *Let* $k \geq 1$ *and* $\tilde{k} = \lceil k(\frac{N}{k})^{2-2/q} \rceil$ *. Assume that* $A \in \mathbb{R}^{m \times N}$ *satisfies the S-RIP of order* $2k + \tilde{k}$ with constants $0 < \theta_{-} < 1 < \theta_{+} < 2$. Then A satisfies *the mixed strong null space property in norms* (ℓ_p, ℓ_q) *of order 2k with constant* $C_0 = 2^{1/p+1/2} \sqrt{\frac{1+\delta}{1-\delta}} + 2^{1/p-1/q}$, where δ *is the RIP constant and* $\delta := \delta_{2k+\tilde{k}}$ $max\{1 - \theta_-, \theta_+ - 1\}.$

Proof of Lemma [4.1](#page-11-1) By definition for any index set $I \subseteq \{1, ..., m\}$ with $|I| \ge$ *m*/2, the matrix $A_I \in \mathbb{R}^{|I| \times N}$ satisfies RIP of order $2k + \tilde{k}$ with constant $C_0 =$ $2^{1/p+1/2}\sqrt{\frac{1+\delta}{1-\delta}} + 2^{1/p-1/q}$, where δ is the RIP constant and $\delta := \delta_{2k+\tilde{k}} = \max\{1-\delta\}$ $\theta_-, \theta_+ - 1$. By Lemma [4.3,](#page-15-0) we know that A_I satisfies the mixed null space property in norms (ℓ_p, ℓ_q) of order 2*k* with constant $C_0 = 2^{1/p+1/2} \sqrt{\frac{1+\delta}{1-\delta}} + 2^{1/p-1/q}$, in other words for any $\eta \in \mathcal{N}(A_I)$,

$$
\|\eta\|_p \leq C k^{-s} \sigma_{2k}(\eta)_q.
$$

So *A* satisfies the mixed strong null space property.

Corollary 4.1 *Let* $k \geq 1$ *and* $\tilde{k} = k(\frac{N}{k})^{2-2/q}$. Assume that $A \in \mathbb{R}^{m \times N}$ satisfies the *S-RIP of order* $2k + \tilde{k}$ with constants $0 < \theta_{-} < 1 < \theta_{+} < 2$. Let $\delta := \delta_{2k+\tilde{k}}$ $\max\{1-\theta_-, \theta_+-1\}$ < 1*. Define the decoder* Δ for A by

$$
\Delta(|Ax_0|) = \underset{|Ax| = |Ax_0|}{\operatorname{argmin}} \sigma_k(x)_q. \tag{4.21}
$$

Then (4.19) holds with constant
$$
2C_0
$$
, where $C_0 = 2^{1/p+1/2} \sqrt{\frac{1+\delta}{1-\delta}} + 2^{1/p-1/q}$.

Proof of Lemma [4.1](#page-11-1) By the Proposition [4.1,](#page-15-1) the matrix *A* satisfies the mixed strong null space property in (ℓ_p, ℓ_q) of order 2*k* with constant $C_0 = 2^{1/p+1/2} \sqrt{\frac{1+\delta}{1-\delta}} +$ $2^{1/p-1/q}$. The corollary now follows immediately from Theorem [4.6.](#page-14-1)

Remark 4.1 Combining Theorem [2.1](#page-3-3) and Corollary [4.1,](#page-15-2) the mixed phaseless instance optimality of order *k* in norms (ℓ_p , ℓ_q) can be achieved for the price of $\mathcal{O}(k(N/k)^{2-2/q})$ $log(N/k)$) measurements, just as with the traditional mixed (ℓ_p, ℓ_q) -norm instance optimality. Theorem [3.1](#page-5-1) implies that the ℓ_1 decoder satisfies the $(p, q) = (2, 1)$ mixednorm phaseless instance optimality at the price of $O(k \log(N/k))$ measurements.

$$
\Box
$$

Appendix: Proof of Lemma [2.1](#page-3-2)

We will first need the following two Lemmas to prove Lemma [2.1.](#page-3-2)

Lemma 5.1 (Sparse Representation of a Polytope $[2,12]$ $[2,12]$ $[2,12]$) *Let* $s > 1$ *and* $\alpha > 0$ *. Set*

$$
T(\alpha, s) := \left\{ u \in \mathbb{R}^n : ||u||_{\infty} \leq \alpha, ||u||_1 \leq s\alpha \right\}.
$$

For any $v \in \mathbb{R}^n$ *let*

$$
U(\alpha, s, v) := \left\{ u \in \mathbb{R}^n : supp(u) \subseteq supp(v), ||u||_0 \leq s, ||u||_1 = ||v||_1, ||u||_{\infty} \leq \alpha \right\}.
$$

Then $v \in T(\alpha, s)$ *if and only if* v *is in the convex hull of* $U(\alpha, s, v)$ *, i.e.* v *can be expressed as a convex combination of some* u_1, \ldots, u_N *in* $U(\alpha, s, v)$ *.*

Lemma 5.2 ([\[1,](#page-21-9) Lemma 5.3]) *Assume that* $a_1 \ge a_2 \ge \cdots \ge a_m \ge 0$ *. Let* $r \le m$ *and* $\lambda \geq 0$ *such that* $\sum_{i=1}^{r} a_i + \lambda \geq \sum_{i=r+1}^{m} a_i$ *. Then for all* $\alpha \geq 1$ *we have*

$$
\sum_{j=r+1}^{m} a_j^{\alpha} \le r \left(\sqrt[\alpha]{\frac{\sum_{i=1}^{r} a_i^{\alpha}}{r}} + \frac{\lambda}{r} \right)^{\alpha}.
$$
 (5.1)

In particular for $\lambda = 0$ *we have*

$$
\sum_{j=r+1}^{m} a_j^{\alpha} \le \sum_{i=1}^{r} a_i^{\alpha}.
$$

We are now ready to prove Lemma [2.1.](#page-3-2)

Proof Set $h := \hat{x} - x_0$. Let T_0 denote the set of the largest k coefficients of x_0 in magnitude. Then

$$
||x_0||_1 + \rho \ge ||\hat{x}||_1 = ||x_0 + h||_1
$$

= $||x_{0,T_0} + h_{T_0} + x_{0,T_0^c} + h_{T_0^c}||_1$
 $\ge ||x_{0,T_0}||_1 - ||h_{T_0}||_1 - ||x_{0,T_0^c}||_1 + ||h_{T_0^c}||_1.$

It follows that

$$
||h_{T_0^c}||_1 \le ||h_{T_0}||_1 + 2||x_{0,T_0^c}||_1 + \rho
$$

= $||h_{T_0}||_1 + 2\sigma_k(x_0)_1 + \rho.$

Suppose that S_0 is the index set of the k largest entries in absolute value of h . Then we can get

$$
||h_{S_0^c}||_1 \le ||h_{T_0^c}||_1 \le ||h_{T_0}||_1 + 2\sigma_k(x_0)_1 + \rho
$$

$$
\le ||h_{S_0}||_1 + 2\sigma_k(x_0)_1 + \rho.
$$

Set

$$
\alpha := \frac{\|h_{S_0}\|_1 + 2\sigma_k(x_0)_1 + \rho}{k}.
$$

We divide $h_{S_0^c}$ into two parts $h_{S_0^c} = h^{(1)} + h^{(2)}$, where

$$
h^{(1)} := h_{S_0^c} \cdot I_{\{i : |h_{S_0^c}(i)| > \alpha/(t-1)\}}, \quad h^{(2)} := h_{S_0^c} \cdot I_{\{i : |h_{S_0^c}(i)| \le \alpha/(t-1)\}}.
$$

A simple observation is that $||h^{(1)}||_1 \leq ||h_{S_0^c}||_1 \leq \alpha k$. Set

$$
\ell := |\text{supp}(h^{(1)})| = ||h^{(1)}||_0.
$$

Since all non-zero entries of $h^{(1)}$ have magnitude larger than $\alpha/(t-1)$, we have

$$
\alpha k \ge ||h^{(1)}||_1 = \sum_{i \in \text{supp}(h^{(1)})} |h^{(1)}(i)| \ge \sum_{i \in \text{supp}(h^{(1)})} \frac{\alpha}{t-1} = \frac{\alpha \ell}{t-1},
$$

which implies $\ell \leq (t-1)k$. Thus we have:

$$
\left\langle A(h_{S_0} + h^{(1)}), Ah \right\rangle \le \|A(h_{S_0} + h^{(1)})\|_2 \cdot \|Ah\|_2 \le \sqrt{1+\delta} \cdot \|h_{S_0} + h^{(1)}\|_2 \cdot \epsilon. \tag{5.2}
$$

Here we apply the facts that $||h_{S_0} + h^{(1)}||_0 = \ell + k \leq tk$ and A satisfies the RIP of order *tk* with $\delta := \delta_{tk}^A$. We shall assume at first that *tk* as an integer. Note that $||h^{(2)}||_{\infty}$ ≤ $\frac{\alpha}{t-1}$ and

$$
||h^{(2)}||_1 = ||h_{S_0^c}||_1 - ||h^{(1)}||_1 \le k\alpha - \frac{\alpha\ell}{t-1} = (k(t-1) - \ell)\frac{\alpha}{t-1}.
$$
 (5.3)

We take $s := k(t - 1) - \ell$ in Lemma [5.1](#page-11-1) and obtain that $h^{(2)}$ is a weighted mean

$$
h^{(2)} = \sum_{i=1}^{N} \lambda_i u_i, \quad 0 \le \lambda_i \le 1, \sum_{i=1}^{N} \lambda_i = 1
$$

where $||u_i||_0 \le k(t-1) - \ell$, $||u_i||_1 = ||h^{(2)}||_1$, $||u_i||_{\infty} \le \alpha/(t-1)$ and supp $(u_i) \subseteq$ $supp(h^{(2)})$. Hence

$$
||u_i||_2 \le \sqrt{||u_i||_0} \cdot ||u_i||_{\infty} = \sqrt{k(t-1) - \ell} \cdot ||u_i||_{\infty}
$$

$$
\le \sqrt{k(t-1)} \cdot ||u_i||_{\infty}
$$

$$
\le \alpha \sqrt{k/(t-1)}.
$$

Now for $0 \leq \mu \leq 1$ and $d \geq 0$, which will be chosen later, set

$$
\beta_j := h_{S_0} + h^{(1)} + \mu \cdot u_j, \quad j = 1, ..., N.
$$

Then for fixed $i \in [1, N]$

$$
\sum_{j=1}^{N} \lambda_j \beta_j - d\beta_i = h_{S_0} + h^{(1)} + \mu \cdot h^{(2)} - d\beta_i
$$

= $(1 - \mu - d)(h_{S_0} + h^{(1)}) - d\mu u_i + \mu h.$

Recall that $\alpha = \frac{\|h_{S_0}\|_1 + 2\sigma_k(x_0)_1 + \rho}{k}$. Thus

$$
||u_i||_2 \le \sqrt{k/(t-1)}\alpha
$$
\n
$$
\le \frac{||h_{S_0}||_2}{\sqrt{t-1}} + \frac{2\sigma_k(x_0)_1 + \rho}{\sqrt{k(t-1)}}
$$
\n
$$
\le \frac{||h_{S_0} + h^{(1)}||_2}{\sqrt{t-1}} + \frac{2\sigma_k(x_0)_1 + \rho}{\sqrt{k(t-1)}}
$$
\n
$$
= \frac{z+R}{\sqrt{t-1}},
$$
\n(5.4)

where $z := \|h_{S_0} + h^{(1)}\|_2$ and $R := \frac{2\sigma_k(x_0) + \rho}{\sqrt{k}}$. It is easy to check the following identity:

$$
(2d - 1) \sum_{1 \le i < j \le N} \lambda_i \lambda_j \|A(\beta_i - \beta_j)\|_2^2
$$
\n
$$
= \sum_{i=1}^N \lambda_i \|A(\sum_{j=1}^N \lambda_j \beta_j - d\beta_i)\|_2^2 - \sum_{i=1}^N \lambda_i (1 - d)^2 \|A\beta_i\|_2^2,\tag{5.5}
$$

provided that $\sum_{i=1}^{N} \lambda_i = 1$. Choose $d = 1/2$ in [\(5.5\)](#page-18-0) we then have

$$
\sum_{i=1}^N \lambda_i \left\| A\left((\frac{1}{2}-\mu)(h_{S_0}+h^{(1)}) - \frac{\mu}{2}u_i + \mu h\right) \right\|_2^2 - \sum_{i=1}^N \frac{\lambda_i}{4} \|A\beta_i\|_2^2 = 0.
$$

Note that for $d = 1/2$,

$$
\begin{aligned} &\left\| A \left((\frac{1}{2} - \mu)(h_{S_0} + h^{(1)}) - \frac{\mu}{2} u_i + \mu h \right) \right\|_2^2 \\ &= \left\| A \left((\frac{1}{2} - \mu)(h_{S_0} + h^{(1)}) - \frac{\mu}{2} u_i \right) \right\|_2^2 \\ &+ 2 \Big\langle A \left((\frac{1}{2} - \mu)(h_{S_0} + h^{(1)}) - \frac{\mu}{2} u_i \right), \mu A h \Big\rangle + \mu^2 \| A h \|_2^2. \end{aligned}
$$

It follows from $\sum_{i=1}^{N} \lambda_i = 1$ and $h^{(2)} = \sum_{i=1}^{N} \lambda_i u_i$ that

$$
\sum_{i=1}^{N} \lambda_{i} \| A \Big((\frac{1}{2} - \mu)(h_{S_{0}} + h^{(1)}) - \frac{\mu}{2} u_{i} + \mu h \Big) \|_{2}^{2}
$$

=
$$
\sum_{i} \lambda_{i} \| A \Big((\frac{1}{2} - \mu)(h_{S_{0}} + h^{(1)}) - \frac{\mu}{2} u_{i} \Big) \|_{2}^{2}
$$

+
$$
2 \Big\langle A \Big((\frac{1}{2} - \mu)(h_{S_{0}} + h^{(1)}) - \frac{\mu}{2} h^{(2)} \Big), \mu A h \Big\rangle + \mu^{2} \| A h \|_{2}^{2}
$$

=
$$
\sum_{i} \lambda_{i} \| A \Big((\frac{1}{2} - \mu)(h_{S_{0}} + h^{(1)}) - \frac{\mu}{2} u_{i} \Big) \|_{2}^{2}
$$

+
$$
\mu (1 - \mu) \Big\langle A (h_{S_{0}} + h^{(1)}), A h \Big\rangle - \sum_{i=1}^{N} \frac{\lambda_{i}}{4} \| A \beta_{i} \|_{2}^{2}.
$$
 (5.6)

Set $\mu = \sqrt{t(t-1)} - (t-1)$. We next estimate the three terms in [\(5.6\)](#page-19-0). Noting that $||h_{S_0}||_0 \le k$, $||h^{(1)}||_0 \le \ell$ and $||u_i||_0 \le s = k(t-1) - \ell$, we obtain

$$
\|\beta_i\|_0 \le \|h_{S_0}\|_0 + \|h^{(1)}\|_0 + \|u_i\|_0 \le t \cdot k
$$

and $\|(\frac{1}{2} - \mu)(h_{S_0} + h^{(1)}) - \frac{\mu}{2}u_i\|_0 \le t \cdot k$. Since *A* satisfies the RIP of order $t \cdot k$ with δ , we have

$$
\begin{aligned} &\left\| A \left((\frac{1}{2} - \mu)(h_{S_0} + h^{(1)}) - \frac{\mu}{2} u_i \right) \right\|_2^2 \\ &\leq (1 + \delta) \left\| (\frac{1}{2} - \mu)(h_{S_0} + h^{(1)}) - \frac{\mu}{2} u_i \right\|_2^2 \\ &= (1 + \delta) \left((\frac{1}{2} - \mu)^2 \| (h_{S_0} + h^{(1)}) \|_2^2 + \frac{\mu^2}{4} \| u_i \|_2^2 \right) \\ &= (1 + \delta) \left((\frac{1}{2} - \mu)^2 z^2 + \frac{\mu^2}{4} \| u_i \|_2^2 \right) \end{aligned}
$$

and

$$
\begin{aligned} \|A\beta_i\|_2^2 &\ge (1-\delta) \|\beta_i\|_2^2 = (1-\delta) (\|h_{S_0} + h^{(1)}\|_2^2 + \mu^2 \cdot \|u_i\|_2^2) \\ &= (1-\delta)(z^2 + \mu^2 \cdot \|u_i\|_2^2). \end{aligned}
$$

Combining the result above with (5.2) and (5.4) we get

$$
0 \leq (1+\delta) \sum_{i=1}^{N} \lambda_{i} \left((\frac{1}{2} - \mu)^{2} z^{2} + \frac{\mu^{2}}{4} ||u_{i}||_{2}^{2} \right) + \mu (1 - \mu) \sqrt{1+\delta} \cdot z \cdot \epsilon
$$

\n
$$
- (1-\delta) \sum_{i=1}^{N} \frac{\lambda_{i}}{4} (z^{2} + \mu^{2} ||u_{i}||_{2}^{2})
$$

\n
$$
= \sum_{i=1}^{N} \lambda_{i} \left(\left((1+\delta)(\frac{1}{2} - \mu)^{2} - \frac{1-\delta}{4} \right) z^{2} + \frac{\delta}{2} \mu^{2} ||u_{i}||_{2}^{2} \right) + \mu (1-\mu) \sqrt{1+\delta} \cdot z \cdot \epsilon
$$

\n
$$
\leq \sum_{i=1}^{N} \lambda_{i} \left(\left((1+\delta)(\frac{1}{2} - \mu)^{2} - \frac{1-\delta}{4} \right) z^{2} + \frac{\delta}{2} \mu^{2} \frac{(z+R)^{2}}{t-1} \right)
$$

\n
$$
+ \mu (1-\mu) \sqrt{1+\delta} \cdot z \cdot \epsilon
$$

\n
$$
= \left((\mu^{2} - \mu) + \delta \left(\frac{1}{2} - \mu + (1 + \frac{1}{2(t-1)}) \mu^{2} \right) \right) z^{2}
$$

\n
$$
+ \left(\mu (1-\mu) \sqrt{1+\delta} \cdot \epsilon + \frac{\delta \mu^{2} R}{t-1} \right) z + \frac{\delta \mu^{2} R^{2}}{2(t-1)}
$$

\n
$$
= -t \left((2t-1) - 2 \sqrt{t(t-1)} \right) \left(\sqrt{\frac{t-1}{t}} - \delta \right) z^{2}
$$

\n
$$
+ \left(\mu^{2} \sqrt{\frac{t}{t-1}} \sqrt{1+\delta} \cdot \epsilon + \frac{\delta \mu^{2} R}{t-1} \right) z + \frac{\delta \mu^{2} R^{2}}{2(t-1)}
$$

\n
$$
= \frac{\mu^{2}}{t-1} \left(-t \left(\sqrt{\frac{t-1}{t}} - \delta \right) z^{2} + \left(\sqrt{t(t-
$$

which is a quadratic inequality for *z*. We know $\delta < \sqrt{(t-1)/t}$. So by solving the above inequality we get

$$
z \leq \frac{(\sqrt{t(t-1)(1+\delta)}\epsilon + \delta R) + ((\sqrt{t(t-1)(1+\delta)}\epsilon + \delta R)^2 + 2t(\sqrt{(t-1)/t} - \delta)\delta R^2)^{1/2}}{2t(\sqrt{(t-1/t)} - \delta)}
$$

$$
\leq \frac{\sqrt{t(t-1)(1+\delta)}}{t(\sqrt{(t-1)/t} - \delta)}\epsilon + \frac{2\delta + \sqrt{2t(\sqrt{(t-1)/t} - \delta)\delta}}{2t(\sqrt{(t-1)/t} - \delta)}R.
$$

Finally, noting that $||h_{S_0^c}||_1 \leq ||h_{S_0}||_1 + R\sqrt{k}$, in the Lemma [5.2,](#page-11-0) if we set $m = N$, $r = k$, $\lambda = R\sqrt{k} \ge 0$ and $\alpha = 2$ then $||h_{S_0^c}||_2 \le ||h_{S_0}||_2 + R$. Hence

$$
||h||_2 = \sqrt{||h_{S_0}||_2^2 + ||h_{S_0}||_2^2}
$$

$$
\leq \sqrt{||h_{S_0}||_2^2 + (||h_{S_0}||_2 + R)^2}
$$

$$
\leq \sqrt{2||h_{S_0}||_2^2} + R \leq \sqrt{2}z + R
$$

$$
\leq \frac{\sqrt{2(1+\delta)}}{1 - \sqrt{t/(t-1)}\delta} \epsilon + \left(\frac{\sqrt{2}\delta + \sqrt{t(\sqrt{(t-1)/t} - \delta)\delta}}{t(\sqrt{(t-1)/t} - \delta)} + 1\right)R.
$$

Substitute *R* into this inequality and the conclusion follows.

For the case where $t \cdot k$ is not an integer, we set $t^* := \lceil tk \rceil / k$, then $t^* > t$ and $\delta_t * k = \delta_t k < \sqrt{\frac{t-1}{t}} < \sqrt{\frac{t^*-1}{t^*}}$. We can then prove the result by working on $\delta_t * k$.

Acknowledgments Yang Wang was supported in part by the AFOSR grant FA9550-12-1-0455 and NSF grant IIS-1302285. Zhiqiang Xu was supported by NSFC grant (11171336, 11422113, 11021101, 11331012) and by National Basic Research Program of China (973 Program 2015CB856000).

References

- 1. Cai, T.T., Zhang, A.: Sharp RIP bound for sparse signal and low-rank matrix recovery. Appl. Comput. Harmon. Anal. **35**(1), 74–93 (2013)
- 2. Cai, T.T., Zhang, A.: Sparse representation of a polytope and recovery of sparse signals and low-rank matrices. IEEE Trans. Inf. Theory **60**(1), 122–132 (2014)
- 3. Candès, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory **51**(12), 4203–4215 (2005)
- 4. Candès, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. **59**(8), 1207–1223 (2006)
- 5. Cohen, A., Dahmen, W., Devore, R.: Compressed sensing and best *k*-term approximation. J. Am. Math. Soc. **22**(1), 211–231 (2009)
- 6. Eldar, Y.C., Mendelson, S.: Phase retrieval: stability and recovery guarantees. Appl. Comput. Harmon. Anal. **36**(3), 473–494 (2014)
- 7. Han, B., Xu, Z. Q.: Robustness properties of dimensionality reduction with Gaussian random matrices. [arXiv:1501.01695](http://arxiv.org/abs/1501.01695) (2015)
- 8. Iwen, M., Viswanathan, A.,Wang, Y.: Robust sparse phase retrieval made easy. [arXiv:1410.5295](http://arxiv.org/abs/1410.5295) (2015)
- 9. Moravec, M.L., Romberg, J.K., Baraniuk, R.G.: Compressive phase retrieval. In: SPIE Proceedings, vol. 6701 (2007)
- 10. Voroninski, V., Xu, Z.Q.: A strong restricted isometry property, with an application to phaseless compressed sensing. Appl. Comput. Harmon. Anal. (2015). doi[:10.1016/j.acha.2015.06.004](http://dx.doi.org/10.1016/j.acha.2015.06.004)
- 11. Wang, Y., Xu, Z.Q.: Phase retrieval for sparse signals. Appl. Comput. Harmon. Anal. **37**(3), 531–544 (2014)
- 12. Xu, G.W., Xu, Z.Q.: On the ℓ_1 -sparse decomposition of signals. J. Oper. Res. Soc. China $1(4)$, 537–541 (2013)