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Abstract The aim of this paper is to study the stability of the £; minimization for
the compressive phase retrieval and to extend the instance-optimality in compressed
sensing to the real phase retrieval setting. We first show that m = O(klog(N/k))
measurements are enough to guarantee the £; minimization to recover k-sparse signals
stably provided the measurement matrix A satisfies the strong RIP property. We second
investigate the phaseless instance-optimality presenting a null space property of the
measurement matrix A under which there exists a decoder A so that the phaseless
instance-optimality holds. We use the result to study the phaseless instance-optimality
for the £1 norm. This builds a parallel for compressive phase retrieval with the classical
compressive sensing.
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1 Introduction

In this paper we consider the phase retrieval for sparse signals with noisy measure-
ments, which arises in many different applications. Assume that

bj:= |(aj,xo)|—|—ej, j=1,...,m

where xo € RV, a j € RY and e ; € R is the noise. Our goal is to recover x¢ up to
a unimodular scaling constant from b := (by, ..., by) " with the assumption of xq
being approximately k-sparse. This problem is referred to as the compressive phase
retrieval problem [9].

The paper attempts to address two problems. Firstly we consider the stability of
£1 minimization for the compressive phase retrieval problem where the signal x¢ is
approximately k-sparse, which is the £1 minimization problem defined as follows:

min ||x|; subjectto |[|Ax|—|Axol|, <e, (1.1)

where A := [ay, ..., am]" and |Axq| := [|{a1, x0)|, - .., |{@m, x0)]1"
investigate instance-optimality in the phase retrieval setting.

Note that in the classical compressive sensing setting the stable recovery of a k-
sparse signal xg € C" can be done using m = O(klog(N/k)) measurements for
several classes of measurement matrices A. A natural question is whether stable com-
pressive phase retrieval can also be attained with m = O(k log(N/ k)) measurements.
This has indeed proved to be the case in [6] if x( € R¥ and A is arandom real Gaussian
matrix. In [8] a two-stage algorithm for compressive phase retrieval is proposed, which
allows for very fast recovery of a sparse signal if the matrix A can be written as a prod-
uct of a random matrix and another matrix (such as a random matrix) that allows for
efficient phase retrieval. The authors proved that stable compressive phase retrieval
can be achieved with m = O(klog(N/k)) measurements for complex signals xg as
well. In [10], the strong RIP (S-RIP) property is introduced and the authors show that
one can use the £ minimization to recover sparse signals up to a global sign from the
noiseless measurements | Axo| provided A satisfies S-RIP. Naturally, one is interested
in the performance of £; minimization for the compressive phase retrieval with noisy
measurements. In this paper, we shall show that the £; minimization scheme given in
(1.1) will recover a k-sparse signal stably from m = O(k log(N/k)) measurements,
provided that the measurement matrix A satisfies the strong RIP (S-RIP) property.
This establishes an important parallel for compressive phase retrieval with the classi-
cal compressive sensing. Note that in [11] such a parallel in terms of the null space
property was already established.

The notion of instance optimality was first introduced in [5]. We use ||x ||p to denote
the number of non-zero elements in x. Given a norm || - || x such as the £;-norm and
x € RV, the best k-term approximation error is defined as

. Secondly we

or(xX)x = Helg:n lx —zllx,
Z k
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where
ko= {x e RN 1 ||xllo < k).

We use A : R” > RY to denote a decoder for reconstructing x. We say the pair
(A, A) is instance optimal of order k with constant Cy if

llx — A(AX)lx = Cook(x)x (1.2)

holds for all x € R¥. In extending it to phase retrieval, our decoder will have the
input b = |Ax|. A pair (A, A) is said to be phaseless instance optimal of order k with
constant Cy if

min{ llx = AQAxDIx. ¥ + AGAxDIx} = Coor()x (1.3)

holds for all x € RY. We are interested in the following problem : Given | - || x and
k < N, what is the minimal value of m for which there exists (A, A) so that (1.3)
holds?

The null space N'(A) := {x € RY : Ax = 0} of A plays an important role in the
analysis of the original instance optimality (1.2) (see [5]). Here we present a null space
property for N'(A), which is necessary and sufficient, for which there exists a decoder
A so that (1.3) holds. We apply the result to investigate the instance optimality where
X is the £; norm. Set

A (|Ax]) 1= argmin{||z||1 | Ax| = |Az|}.

zeRN

We show that the pair (A, A1) satisfies (1.3) with X being the £{-norm provided A
satisfies the strong RIP property (see Definition 2.1). As shown in [10], the Gaussian
random matrix A € R”*V satisfies the strong RIP of order k for m = O(k log(N/k).
Hence m = O(klog(N/k)) measurements suffice to ensure the phaseless instance
optimality (1.3) for the ¢;-norm exactly as with the traditional instance optimality
(1.2).

2 Auxiliary Results

In this section we provide some auxiliary results that will be used in later sections.
For x € RN we use lIxllp := llxlle, to denote the p-norm of x for 0 < p < co. The
measurement matrix is given by A := [ay, ..., am]’ € R™*N a5 before. Given an
index set I C {1, ..., m} we shall use A; to denote the sub-matrix of A where only
rows with indices in I are kept, i.e.,

Api=laj:jell.
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The matrix A satisfies the Restricted Isometry Property (RIP) of order k if there exists
a constant §; € [0, 1) such that for all k-sparse vectors z € X we have

(1 =80zl < 1Azl < (1 + 80)llz3.

It was shown in [2] that one can use £{-minimization to recover k-sparse signals

provided that A satisfies the RIP of order tk and 6;, < /1 — % where t > 1.
To investigate compressive phase retrieval, a stronger notion of RIP is given in [10]:

Definition 2.1 (S-RIP) We say the matrix A = [ay, ..., an,]" € R"™*N hasthe Strong
Restricted Isometry Property of order k with bounds 0_, 64 € (0, 2) if

o_|x||3 < i Arx|3 < Arx|3 <04 )x|13 2.1
IxIF <, min - lAXIGs | max o AE S 04xE @D
holds for all k-sparse signals x € RY, where [m] := {1,...,m}. We say A has the

Strong Lower Restricted Isometry Property of order k with bound 6_ if the lower
bound in (2.1) holds. Similarly we say A has the Strong Upper Restricted Isometry
Property of order k with bound 6 if the upper bound in (2.1) holds.

The authors of [10] proved that Gaussian matrices with m = O(tk log(N/k))
satisfy S-RIP of order ¢tk with high probability.

Theorem 2.1 ([10]) Suppose that t > 1 and A = (a;;) € R™N s a random
Gaussian matrix with m = O(tklog(N/k)) and a;; ~ N0, ﬁ). Then there exist

0_, 6+ € (0, 2) such that with probability 1 — exp(—cm /2) the matrix A satisfies the
S-RIP of order tk with constants 0_ and 0, where ¢ > 0 is an absolute constant and
0_, 04 are independent of t.

The following is a very useful lemma for this study.

Lemma 2.1 Let xo € RN and p > 0. Suppose that A € R™*N is a measurement

. . . . . . t—1
matrix satisfying the restricted isometry property with 8;x < /=~ for some t > 1.
Then for any

e lx e RV lxlh < lolli + o, 1A% — Axollz < e}

we have
R 207 (x0)1 Iy
IX — xoll2 < cre +co——— + 2 - —,
Vk Vk
— _ 20+ _ V284+4/(ViG=1)=81)8
where ¢\ = 1= 7 =55, €2 = Vit—D—ot +1
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Remark 2.1 We build the proof of Lemma 2.1 following the ideas of Cai and Zhang
[2]. The full proof is given in Appendix for completeness. It is well-known that an
effective method to recover approximately-sparse signals xq in the traditional com-
pressive sensing is to solve

x* = argmin{||x||; : [|[Ax — Axoll> < €}. (22)
X

The definition of x* shows that
Il < xolli. 1Ax* — Axoll < e,
which implies that

ok (x0)1

TE

provided that A satisfies the RIP condition with 8,3 < /T — 1/f for t > 1 (see [2]).
However, in practice one prefers to design fast algorithms to find an approximation
solution of (2.2), say x. Thus it is possible to have ||X]; > ||xo|l1. Lemma 2.1 gives
an estimate of || X — xgl|2 for the case where ||X]|1 < |lxoll1 + p.

Remark 2.2 In [7], Han and Xu extend the definition of S-RIP by replacing the m /2
in (2.1) by Bm where 0 < B < 1. They also prove that, for any fixed 8 € (0, 1),
the m x N random Gaussian matrix satisfies S-RIP of order k with high probability
provided m = O(klog(N /k)).

1% — xolla < Cre + Ca

3 Stable Recovery of Real Phase Retrieval Problem
3.1 Stability Results

The following lemma shows that the map ¢4 (x) := |Ax| is stable on X; modulo a
unimodular constant provided A satisfies strong lower RIP of order 2k. Define the
equivalent relation ~ on RY and CV by the following: for any x, y, x ~ y iffx = cy
for some unimodular scalar ¢, where x, y are in RV or CV. For any subset ¥ of RV
or CV the notation Y/ ~ denotes the equivalent classes of elements in ¥ under the
equivalence. Note that there is a natural metric D~ on C/ ~ given by

D(x,y) = llglll_nl llx —cyll

Our primary focus in this paper will be on RY, and in this case D~ (x, y) = min{||x —
yli2, X + yll2}-

Lemma 3.1 Let A € R™*N satisfy the strong lower RIP of order 2k with constant
0_. Then for any x,y € Xy we have

Ax| — |Ay|l13 > 6- min(Jlx — yII3, lx + y[3).
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Proof For any x, y € X we divide {1, ..., m} into two subsets:

T ={j: sign({aj, x)) = sign({a;, y))}

and

T¢={j: sign({aj, x)) = —sign({a;, y)}.

Clearly one of T and T¢ will have cardinality at least m /2. Without loss of generality
we assume that 7" has cardinality no less than m /2. Then

I|1Ax| — [Ay[I3 = IATx — Aryl3 + |Arex + Azey|3
> ||Arx — A7yl
> 6_|lx — yl3
> 6_min(|lx — |13, lx + yII3).

]

Remark 3.1 Note that the combination of Lemma 3.1 and Theorem 2.1 shows that
for an m x N Gaussian matrix A with m = O (klog(N/k)) one can guarantee the
stability of the map ¢4 (x) := |Ax| on Xx/ ~.

3.2 The Main Theorem

In this part, we will consider how many measurements are needed for the stable sparse
phase retrieval by £1-minimization via solving the following model:

min [|x||; subject to [[|[Ax| — |Axo|l3 < €, (3.1

where A is our measurement matrix and xo € R is a signal we wish to recover. The
next theorem tells under what conditions the solution to (3.1) is stable.

Theorem 3.1 Assume that A € R™*N satisfies the S-RIP of order tk with bounds
0_,04 € (0, 2) such that

1 1
thax{ >, 2}.
20_ — 62" 20, — 62

Then any solution X for (3.1) satisfies

201 (x0)1

i

min{||X — xoll2, [I¥ + xoll2} < c1e + 2
where c1 and c> are constants defined in Lemma 2.1.
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Proof Clearly any £ € RY satisfying (3.1) must have

€11 < llxoll (3.2)
and
IIAZ] = |Axol[3 < €. (3.3)
Now the index set {1, 2, ..., m} is divisible into two subsets

T = {j: sign({(a;, X)) = sign({a;, x0))},
T¢ ={j: sign({a;, X)) = —sign({a;, x0))}.
Then (3.3) implies that
|A7% — Arxoll3 + [[Arek 4+ Arexol3 < €2 (3.4)

Here either |T'| > m/2 or |T¢| > m/2. Without loss of generality we assume that
|T| > m/2. We use the fact

IATZ — Arxol} < €2 (3.5)
From (3.2) and (3.5) we obtain

Xe {x e RY - lxll1 < lIxoll1, IA7x — Arxoll2 < 6}- (3.6)

Recall that A satisfies S-RIP of order tk and constants 6_, 6. Here

t > max , > 1. 3.7
TR 29+—9$} GD
The definition of S-RIP implies that A7 satisfies the RIP of order #k in which
t—1
Sk <max{l —0_, 6L — 1} <,/ —— (3.8)

t

where the second inequality follows from (3.7). The combination of (3.6), (3.8) and
Lemma 2.1 now implies

203 (x0)1

T

where ¢ and ¢; are defined in Lemma 2.1. If |[T¢| > 5 we get the corresponding
result

[X —xoll2 < cre +c2

20 (x0)1

Vi

The theorem is now proved. O

X+ x0ll2 < cre +c2
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This theorem demonstrates that, if the measurement matrix has the S-RIP, the real
compressive phase retrieval problem can be solved stably by £;-minimization.

4 Phase Retrieval and Best k-term Approximation

4.1 Instance Optimality from the Linear Measurements

We introduce some definitions and results in [5]. Recall that for a given encoder matrix
A € R™*N and a decoder A : R™ > RV, the pair (A, A) is said to have instance
optimality of order k£ with constant Cp with respect to the norm X if

lx — A(Ax)|lx < Coox(x)x 4.1

holds for all x € RY. Set N'(A) := {n € RN : A = 0} to be the null space of A. The
following theorem gives conditions under which the (4.1) holds.

Theorem 4.1 ([5]) Let A € R™*N 1 <k < N and || - || x be a norm on RN . Then a
sufficient condition for the existence of a decoder A satisfying (4.1) is

C
Inllx < 70021((77))(, Vi € N(A). 4.2)

A necessary condition for the existence of a decoder A satisfying (4.1) is

Inllx < Cooox(mx, VYneN(A). (4.3)

For the norm X = ¢; it was established in [5] that instance optimality of order k
can indeed be achieved, e.g. for a Gaussian matrix A, withm = O (klog(N/k)). The
authors also considered more generally taking different norms on both sides of (4.1).
Following [5], we say the pair (A, A) has (p, q)-instance optimality of order k with
constant Cy if

11
lx — ACAx) |, < Cokd Por(x)y, VYx e RY, 4.4)

with 1 < g < p <2.Itwasshown in [5] that the (p, ¢)-instance optimality of order k
can be achieved at the cost of havingm = O(k(N/ k)2—2/9) log(N / k) measurements.

4.2 Phaseless Instance Optimality

A natural question here is whether an analogous result to Theorem 4.1 exists for
phaseless instance optimality defined in (1.3). We answer the question by presenting
such a result in the case of real phase retrieval.

Recall that a pair (A, A) is said to be have the phaseless instance optimality of
order k with constant Cq for the norm ||.|| x if

min{ Il = AQAxDx, llx + AQA¥DIx ] = Coor()x *5)

holds for all x € RV,
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Theorem 4.2 Let A € R™*N 1 <k < N and | - ||x be a norm. Then a sufficient
condition for the existence of a decoder A satisfying the phaseless instance optimality
4.5)is: Forany I C{1,...,m}andn; € N(Ay), 12 € N(Ajc) we have

. Co Co
min{||n1llx, In2llx} < Tak(m —n)x + TUk(U] +m)x. (4.6)

A necessary condition for the existence of a decoder A satisfying (4.5) is: For any
IC{l,....m}andn € N(Ay), n2 € N(Arc) we have

) Co Co
min{|Inllx, In2llx} < 701((771 —m)x + 7(fk(ﬂ1 +m)x. 4.7

Proof We first assume (4.6) holds, and show that there exists a decoder A satisfying
the phaseless instance optimality (4.5). To this end, we define a decoder A as follows:

A(|Axol) = argmin oy (x)x.
|Ax|=|Axo

Suppose X := A(|Axg|). We have |AX| = |Axg| and o3 (X)x < ox(x0)x. Note that
(aj, %) = *(aj, xo). Let I € {1, ..., m} be defined by

I:{j: <a,~,£)=<a,,xo)}.
Then
Aj(o— %) =0, Age(xo+%) = 0.
Set

N =x0—x € N(A)),
N i=x0+x € N(Aje).

A simple observation yields
or(n —m)x =20, (X)x <20k (x0)x, ox(m +m)x =20k (xo)x. (4.8)
Then (4.6) implies that

min{[|X — xollx, IX + xollx} = min{lnillx. [n2]lx}

Co Co
< Tak(m —m)x + TUk(Ul +m)x

< Cooy(x0)x.

Here the last equality is obtained by (4.8). This proves the sufficient condition.
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We next turn to the necessary condition. Let A be a decoder for which the phaseless
instance optimality (4.5) holds. Let I C {1, ..., m}. For any n; € N (A;) and n; €
N(Ajc) we have

A1 +m) =AM —n)| = [AM2 —n)l. (4.9)
The instance optimality implies

min{ I AUAG +n2)D) + 1+ mallx, IAGAG +m)) = (n + 0]
< Coor(m + m)x. (4.10)

Without loss of generality we may assume that
IAGAG+n2)D) +n1+m2lx = IAJAG +n2)D) — (1 +m2)llx-
Then (4.10) implies that
IAGAM +n2)D) + 01+ n2llx < Coox(n1 +n2)x. (4.11)

By (4.9), we have

IAUAGM +n2)D) + 01+ n2llx = IATAM2 — 0D — (2 — n0) + 2021 x

> 2[n2llx — 1AJA(m2 —nDD — (12 — Dl x.
(4.12)

Combining (4.11) and (4.12) yields
2mlix < Coox(ni +n2)x + IAGAGM2 —nDD) — (2 —nDllx.  (4.13)
At the same time, (4.9) also implies

IAAGH +n2)D) +m + n2llx = 1AGAGM2 — DD + (2 —n0) +2mlix

> 2mllx — IAUAG2 —nD)D) + (12 —nD)llx.
(4.14)

Putting (4.11) and (4.14) together, we obtain
2{mllx = Coox(n +m2)x + 1AJAM2 — DD + (2 —no)llx.  (4.15)
It follows from (4.13) and (4.15) that
min (I lx. s lx) = SCowtnn +m)x
+ %min{llA(lA(nz —nDD—m—nDllx, IAJAM2 —nDD)

Co Co
+ (m—nlx} < 70/{(771 +m)x + TUk(nl —n2)x.
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Here the last inequality is obtained by the instance optimality of (A, A). For the case
where

IA(AM +m)) — (1 +n2)llx < IA(AG +n)]) + 1 + n2llx,

we obtain

} Co Co
min{|In |l x, In2llx} < 76/{(711 +m)x + 7%(771 —n2)x

via the same argument. The theorem is now proved. O

We next present a null space property for phaseless instance optimality, which
allows us to establish parallel results for sparse phase retrieval.

Definition 4.1 We say a matrix A € R"*V satisfies the strong null space property
(S-NSP) of order k with constant C if for any index set I C {1, ..., m} with |I| > m/2
and n € N'(A;) we have

Inllx = C - ox(mx.
Theorem 4.3 Assume that a matrix A € R™ N has the strong null space property of

order 2k with constant Cy /2. Then there must exist a decoder A having the phaseless
instance optimality (1.3) with constant Cy. In particular, one such decoder is

A(|Axg|) = argmin or(x)x.
[Ax|=|Axo|

Proof Assume that I € {1,...,m}. Forany n; € N'(A;) and n, € N'(Ajc) we must
have either [|n;]x < %UZk(Tll)X or [m|lx < %sz(nz)x by the strong null space

property. If [|n1]lx < S2oo(n1)x then
Co Co Co
Imllx < 702k(?71)x < Tak(m —m)x + T(Tk(rll +n2)x.

Similarly if ||n2]|x < %UZk(nz)x we will have

Co Co Co
mllx < —ou(m)x < —or(m —m)x + —or(m +m)x.

-2 =4 4
It follows that
. Co Co
min{[Inllx, In2llx} < TUk(m —m)x + Tak(fll +n2)x. (4.16)

Theorem 4.2 now implies that the required decoder A exists. Furthermore, by the
proof of the sufficiency part of Theorem 4.2,
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A(JAxol) = argmin oy (x)x
[Ax|=|Axo|

is one such decoder. O

4.3 The Case X = {4

We will now apply Theorem 4.3 to the £1-norm case. The following lemma establishes
a relation between S-RIP and S-NSP for the £{-norm.

Lemma 4.1 Let a, b, k be integers. Assume that A € R™*N satisfies the S-RIP of
order (a + b)k with constants 6_, 64 € (0,2). Then A satisfies the S-NSP of order
ak under the £1-norm with constant

. a(l+596)
C0_1+‘/—b(1—8)’

where § is the restricted isometry constant and § = max{l —0_,604 — 1} < 1.

We remark that the above lemma is the analogous to the following lemma providing
a relationship between RIP and NSP, which was shown in [5]:

Lemma 4.2 ([5, Lemma 4.1]) Leta = I/k, b = I'/k where 1,I' > k are integers.
Assume that A € R™N gatisfies the RIP of order (a + b)k with § = Sa+bk < 1.
Then A satisfies the null space property under the £1-norm of order ak with constant
Co=1+ 20D

Vb(1-5)
Proof By the definition of S-RIP, for any index set I € {1, ..., m} with [I| > m /2,
the matrix A; € RI*N satisfies the RIP of order (a + b)k with constant 8¢,y =
6 :=max{l —6_,0, — 1} < 1. It follows from Lemma 4.2 that

146
Il < (1 + %)%k(m]

for all € N'(A). This proves the lemma. m]

Seta =2 and b = | in Lemma 4.1 we infer that if A satisfies the S-RIP of order
3k with constants 6_, 64 € (0,2), then A satisfies the S-NSP of order 2k under
the £1-norm with constant Co = 1 + @ Hence by Theorem 4.3, there must
exist a decoder that has the instance optimality under the £-norm with constant 2Cy.
According to Theorem 2.1, by taking m = O (k log(N/k)) a Gaussian random matrix
A satisfies S-RIP of order 3k with high probability. Hence, there exists a decoder A
so that the pair (A, A) has the the £;-norm phaseless instance optimality at the cost
of m = O(klog(N/k)) measurements, as with the traditional instance optimality.

We are now ready to prove the following theorem on phaseless instance optimality

under the £;-norm.
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Theorem 4.4 Let A € R™*N satisfy the S-RIP of order tk with constants 0 < 6_ <
1 < 64 < 2, where

)
t > max { — > 2.

0.7 2—6,
Let
A(|Axol) = argmin {||lx|[y : |Ax| = [Axol} . (4.17)
xeRV
Then (A, A) has the £1-norm phaseless instance optimality with constant C = 22_%

where Cp = 1 + ‘/% and as before
2

8:=max{1—0_,9+—1}§1—;.

Proof of Lemma 4.1 Let xo € RY and set £ = A(]Axo|). Then by definition
£l < llxolli and [AX| = |Axol.
Denote by I C {1, ..., m} the set of indices
1={j:(a;,%) = (aj,x)},
and thus (a;, X) = —(a;, xo) for j € I¢. It follows that
Aj(x —x0) =0 and Ajc(X +x9) =0.
Set
n:=x—x9€N(Ap.

We know that A satisfies the S-RIP of order ¢tk with constants 0_, 6, where

2 2
t>max{—, ——t > 2.
0 2—064

For the case |I| > m/2, A satisfies the RIP of order tk with RIP constant
2
8=y =max{l—60_.0, —1) <1-~ <1

Takea := 1, b :=t — 1 in Lemma 4.1. Then A satisfies the £{-norm S-NSP of order
k with constant
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/ 146
C()—1+ m<2.

Inlly < Collnzell, (4.18)

This yields

where T is the index set for the k largest coefficients of x¢ in magnitude. Hence
Inrlli < (Co — Dlnrells. Since || X]l1 < [lxoll1 we have

lxollt = %11 = llxo + nlli = llxo,7 + x0,7¢ +n7 + nrelly
> llxo,7llt — llxo,7ellt + Imzellt — lnrll-

It follows that

In7ells < lInrllh + 20k (x0)1 < (Co — DInzells + 20k (x0)1

and thus
c < .
Inrell < 2_C00'k(X())1
Now (4.18) yields
Il < Collrells < =< oy (x0)
¢ or(x0)1,
771_077T1_2_C0k 0)1
which implies
R 0
- < C c < .
I —xoll1 < Collntellt < 2_C00k(x0)1

For the case |1¢| > m /2 identical argument yields

R 0
X+ x < C el < ok (x0)1.
I ollt < Collnrellr < -G ©(x0)1

The theorem is now proved. O
By Theorem 2.1, an m x N random Gaussian matrix with m = O(tk log(N/k))
satisfies the S-RIP of order tk with high probability. We therefore conclude that the

£1-norm phaseless instance optimality of order k£ can be achieved at the cost of m =
O(tklog(N /k)) measurements.
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4.4 Mixed-Norm phaseless Instance Optimality

We now consider mixed-norm phaseless instance optimality. Let 1 < g < p <2 and
s = 1/q — 1/p. We seek estimates of the form

min{[lx — A(AxDp, lx + A(JAxD ]} < Cok™ ox(x)g (4.19)

for all x € RV. We shall prove both necessary and sufficient conditions for mixed-
norm phaseless instance optimality.

Theorem 4.5 Let A € R™*N and1 < q < p < 2.Sets = 1/q—1/p. Then adecoder
A satisfying the mixed norm phaseless instance optimality (4.19) with constant Cy
exists if: for any index set I C {1,...,m} and any n; € N(Aj), mo € N(Aje) we
have

. Co,_
min{||n1l p, Im2llp} < Tk S(ok(m —n2)g +or(m + nz)q)- (4.20)

Conversely, assume a decoder A satisfying the mixed norm phaseless instance opti-
mality (4.19) exists. Then for any index set I C {1,...,m} and any n1 € N(A)),
12 € N(Aje) we have

. Co, _
min{||n1lp, In2llp} < Tk S(Uk(nl —m2)g +or(nm + nz)q)-

Proof of Lemma 4.1 The proof is virtually identical to the proof of Theorem 4.2. We
shall omit the details here in the interest of brevity. O

Definition 4.2 (Mixed-Norm Strong Null Space Property) We say that A has the mixed
strong null space property in norms (€, £,) of order k with constant C if for any index
set I € {1, ..., m} with |[I| > m/2 the matrix A; € RI/I*N satisfies

Inllp < Ck ox(n)q
foralln € N(A;), wheres = 1/g — 1/p.

The above is an extension of the standard definition of the mixed null space property
of order k in norms (£, £4) (see [5]) for a matrix A, which requires

Inll, < Ck or(n)g

for all n € N (A). We have the following straightforward generalization of Theorem
4.3.

Theorem 4.6 Assume that A € R™*N has the mixed strong null space property of
order 2k in norms (£, £y) with constant Cy/2, where 1 < g < p < 2. Then there
exists a decoder A such that the mixed-norm phaseless instance optimality (4.19)
holds with constant Cy.
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We establish relationships between mixed-norm strong null space property and the
S-RIP. First we present the following lemma that was proved in [5].

Lemma 4.3 ([5, Lemma 8.2]) Let k > 1 and k = [k({)?>~2/97. Assume that A €

R™*N satisfies the RIP of order 2k + k with § = Syrii < L Then A satisfies
the mixed null space property in norms (£p, Ly) of order 2k with constant Cy =

1/p+1/2 [148 1/p—1
21/p+1/ m_|_2/p /4.

Proposition 4.1 Let k > 1 and k = [k()?72/9]. Assume that A € R™*N satisfies
the S-RIP of order 2k + k with constants 0 < 6_ < 1 < 0+ < 2. Then A satisfies
the mixed strong null space property in norms (£, £,) of order 2k with constant
Co = 21/”"'1/2\/% + 2VP=Ya \yhere § is the RIP constant and § = §
max{l —6_,04 — 1}.

2k+k —

Proof of Lemma 4.1 By definition for any index set I < {l,...,m} with |[I| >
m/2, the matrix A; € RVI*N satisfies RIP of order 2k + k with constant Cy =

21/”“/21/ 1” +21/P=1/4 where § is the RIP constant and § := = 85,47 = max{l
0_,04 — 1}. By Lemma 4.3, we know that A; satisfies the mixed null space property

in norms (€, £,) of order 2k with constant Co = 21/P+1/2 /130 4 51/p=1/4 in other
words for any n € N'(A)),

Inll, < Ck™ o (n)g.

So A satisfies the mixed strong null space property. O

Corollary 4.1 Letk > 1 and k = k(%)2—2/q_ Assume that A € R™N satisfies the

S-RIP of order 2k + k with constants 0 < 0_ < 1 < O < 2. Let$ 1= 6y ;=
max{l — 6_, 04 — 1} < 1. Define the decoder A for A by

A(JAxg|) = argmin oy (x)g. 4.21)
|Ax|=]Axo]

Then (4.19) holds with constant 2Co, where Co = 2/P+1/2 [1£8 4 ol/p=1/q,

Proof of Lemma 4.1 By the Proposition 4.1, the matrix A satisfies the mixed strong
null space property in (£, £;) of order 2k with constant Cy = 21/p+1/2 -|—

21/p=1/4 The corollary now follows immediately from Theorem 4.6. O

Remark 4.1 Combining Theorem 2.1 and Corollary 4.1, the mixed phaseless instance
optimality of order k in norms (¢, £,) can be achieved for the price of O(k(N / k)>—2/4
log(N/k)) measurements, just as with the traditional mixed (£, £,)-norm instance
optimality. Theorem 3.1 implies that the £; decoder satisfies the (p, g) = (2, 1) mixed-
norm phaseless instance optimality at the price of O(k log(N/k)) measurements.
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Appendix: Proof of Lemma 2.1

We will first need the following two Lemmas to prove Lemma 2.1.

Lemma 5.1 (Sparse Representation of a Polytope [2,12]) Let s > 1 and « > 0. Set

T(@,5) = [ueR": Julow <0, ulls < sa}.
Forany v € R" let
Ule,s,v) = {u € R" < supp(u) € supp(), ulo < s. lully = Iolly, oo < .

Then v € T(«,s) if and only if v is in the convex hull of U(a, s, v), i.e. v can be
expressed as a convex combination of some uy, ...,uy in U(a, s, v).

Lemma 5.2 ([1, Lemma 5.3]) Assume thata; > ap > --- > a,, > 0. Let r < m and
A>=O0suchthat 3 a; + x> > . . ai. Thenforall @ > 1 we have

o

- o Di_ja¥
> ay<r 2im14) +2 . (5.1

r r

In particular for A = 0 we have
m r
o o
aj = > af’
Jj=r+1 i=1

We are now ready to prove Lemma 2.1.

Proof Set h := X — xg. Let Ty denote the set of the largest k coefficients of xq in
magnitude. Then

Ixolli 4+ o = Xl = llxo + Al
= llxo,7o + b1y + xo0,7¢ + hrglh

> llxo,pllt = 1oz It — llxo,7e e + g Il
It follows that

Ihzelie < Izl + 2lx0, 71t + o
= |lhny I + 20k (x0)1 + p.
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Suppose that Sy is the index set of the k largest entries in absolute value of 4. Then
we can get

gl < llhzrellt < lhgyll + 20k (x0)1 + o
< llhsyll1 + 20k (x0)1 + p.

Set

o s, ll1 + 20k (x0)1 + o
= p :

We divide /¢ into two parts A ¢ = D 4+ 1 where
WY = hsg - Lizingg >a/a-1). B 1= hsg - Lz ol <asa-)-
A simple observation is that V|| < ||k l1 < k. Set
€ := [supp(h )] = [V lo.

Since all non-zero entries of 41 have magnitude larger than «/(t — 1), we have

¢
ak = KV = > wPoI= D> %:“_,

iesupp(hD) iesupp(hD)

which implies ¢ < (¢t — 1)k. Thus we have:

(Ahsy +hD), AR) < |A(hsy + RO |2 - AR < VT+8 - sy +h V2 - e
(5.2)

Here we apply the facts that ||hs, + 2Vl = ¢ + k < tk and A satisfies the RIP
of order tk with § := 5;?(. We shall assume at first that tk as an integer. Note that

1h® 0 < % and
al o
1BP0 = llhsclh — 1AV <ka — —— =kt = 1) —O)——.  (5.3)
0 r—1 t—1

We take s := k(t — 1) — £ in Lemma 5.1 and obtain that 2/ is a weighted mean

where Jlu;illo < k(t — 1) — €, |uilli = [hP |1, luilloo < ot/(t — 1) and supp(u;) <
supp(h®). Hence
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luillz < Vlluillo - lluilloo = vk —1) = € |luilloo
<Vk(@E—1) - luilleo
<avk/(t—1).

Now for 0 < u < 1 and d > 0, which will be chosen later, set
i=hsy +hY fpou;, j=1,...,N.

Then for fixed i € [1, N]

N
z)‘jﬂj —dB; =hsy +hV + - hP —dp;
j=1

= —pu—d)hsy+hD) —duu; + uh.

Recall that ¢ = w. Thus

luill2 < Vk/(t — Da (54)
725112 N 201(x0)1 + p

V=1 Vit —=T1)

_ lhs, +h WD 20%(x0)1 + p

t—1 Vi —1)
_Z+R
r—1
where z := ||hs, + AV, and R := 2‘7"()‘%. It is easy to check the following

identity:

Q@d—1) > arlAB - I3

1<i<j<N

N
= Z)‘i
i=1

N N
A0~ ~ S —aIABE 55
j=1 i=1

provided that Zf\;l Ai = 1. Choose d = 1/2 in (5.5) we then have

1 1) I 2 s Ai 2
4(G = wtsy + 5D = S ) | = > F14g13 = 0.

i=

N
>
i=1
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Note that for d = 1,2,
HA((% — w)(hs, + ") = Sy + uh) Hz
o - 0|
+ 2<A((% — sy + D) = Bag). h) 4 w2 AR,

It follows from ZlNzl ri=land h® = ZlNzl Aju; that

ﬁxi) A((% — ) (hs, +hV) — %u,- + Mh) Hz

i=1

=>
i

+2(A(G — s, + 5D EhD) wan) 4 21 ani3

=>
i

‘ 2

1 2z
. (hy _ K
A((2 w(hs, +h*) 2“1) )

A(h i 10~ )

N
A
+ 11 = ) Aths, +h). Ak) = 3" TLIAB 1. (56)
i=1

Set u = 4/t(t — 1) — (t — 1). We next estimate the three terms in (5.6). Noting that
Isyllo < k. [1BM o < € and ||uillo < s = k(r — 1) — £, we obtain

IBillo < lsyllo + 1AM o + lluillo <t -k

and [|(§ — 1) (hs, +hD) — Lujllo < t - k. Since A satisfies the RIP of order ¢ - k with
8, we have

1 w 2
Z_ My _ =2,
|4 ik, 440 = Zui)
1 2
< 1+ 0)IG — sy +hD) = Zuil3
1 uz
= (1+8)((5 = Wl s, +h I3 + il
_ 1 22 2
= 1 +0)((GG - w2+ Ejuld)
and

IABi 13 = (1 = &IIBil3 = (1 —8)(Ulhsy, + V13 + 1 - llui|13)
= (1= &G+ 1 uil3).
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Combining the result above with (5.2) and (5.4) we get

N 2
1 2
0<(1+5) 2&- (G =2 + o luall3) + it = VT+3-2- ¢
1=
N Iy
— (=8 @+ uil3)
i=1

(A +0G = w? = =) + Su2Iuil) + it = pVT+3-2- €

Il
'MZ

I
—_

=

(096G -w2 - 170)2+ guz—(zf_’i)z)

-

i=1

ol —WVT+8-z-€

= ((/LZ_M)-FS(% —u+(1+ 5 l_ 1))M2))22

Su*R Su*R?
1 — VT +38- )
+(M( w1+ €+t—1 Z+2(z—1)

_ —t((2t 1 —2/ii = 1))(,/% —5)22
5 t Su*R S’ R?
+(“ Vrogvitder t—l)z+2(t—l)

n? r—1 e e .
N t—_l(_t(\/ —— =) + (it =D + e +5R)z + T)

which is a quadratic inequality for z. We know § < +/(t — 1)/t. So by solving the
above inequality we get

(VI = D +8)e +8R) + (/1T = DT 0)e + 8R)> +21(/T = D]t — )sR?)"?
= 2T =170 —0)
- mﬁ 25+\/2z(~/m—8)6R
BRGNS 2/ =1/t —8)

Finally, noting that [|hg¢lli < llhs,lli + Rk, in the Lemma 5.2, if we set m = N,
r=k, A= Rvk>0and o = 2 then lhsgll2 < ll7syll2 + R. Hence

IRl = /s I3 + g3

< s, 12 + (sl + R)?
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V2llhs 13+ R < V2z+R

V2 +9) V25 + it (J (T = D]t —8)8

IA

1 —Jt/(t—1)8 t(v@ =1/t —9)
Substitute R into this inequality and the conclusion follows.
For the case where 7 - k is not an integer, we set t* := [tk]/k, then t* > ¢ and
Sk = Ok < 4/ % < ’t:l . We can then prove the result by working on ;. O
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