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Abstract Compressed sensing investigates the recovery of sparse signals from linear
measurements. But often, in awide range of applications, one is given only the absolute
values (squared) of the linear measurements. Recovering such signals (not necessarily
sparse) is known as the phase retrieval problem. We consider this problem in the case
when the measurements are time-frequency shifts of a suitably chosen generator, i.e.
coming from a Gabor frame. We prove an easily checkable injectivity condition for
recovery of any signal from all N 2 time-frequency shifts, and for recovery of sparse
signals, when only some of those measurements are given.

Keywords Phase retrieval · PhaseLift · Gabor frames · Time-frequency analysis ·
Sparse signals · Difference sets
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1 Introduction

Phase retrieval, a common problem in a variety of applications including X-ray crys-
tallography, optical imaging and electronmicroscopy, is the task of recovering a signal
from the squares of the absolute values of its linear measurements. The best one can
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hope for in this case is to recover the signal up to a unimodular constant, because x
and cx, where |c| = 1 will always give the same measurements. To fix notation, let
F = ( fi )mi=1 ⊆ K

N be a set of measurement vectors, where K is R or C. Further, let
T = {c ∈ K : |c| = 1}. The measurement process is then given by the map

MF : KN/T → R
m+, MF (x) =

[∣∣〈x, f1〉
∣∣2 ∣∣〈x, f2〉

∣∣2 . . .
∣∣〈x, fm〉∣∣2

]T
.

The task is to recover x up to a global phase, givenMF (x). We say that F allows
phase retrieval, if the map MF is injective.

There are three main directions of questions that one is interested in when looking
into this problem:

• Injectivity: Which properties of the measurement vectors can give us necessary
and/or sufficient conditions on the injectivity of the map MF?

• Minimal number of measurements: How many measurements are needed for a set
F to allow phase retrieval?

• Algorithms: How can one practically find x, given the intensity measurements
MF (x)?

Comprehensive answers to these questions and open problems can be found in [1,4–
6]. Motivated by different applications, these general questions can also be asked for
only a particular type ofmeasurements, and/or signals. In this paperwe focus onGabor,
or differently said, short-time Fourier measurements, which are time-frequency shifts
of a suitably chosen generator. This type of measurements is of particular interest for
many applications in speech and audio processing [21], ptychographical CDI [16] etc.
On the signal side, we are looking at the sparsity constraint—a natural assumption that
the signal we want to recover has only few non-zero entries, or is a linear combination
of few vectors (has sparse representation). The sparsity constraint is a novel paradigm
for signal- and image processing, and utilized, in particular, for compressed sensing
methodologies [11]. Sparse phase retrieval is studied in [22,26].

A combination of phase retrieval from Gabor measurements for sparse signals
was firstly considered in [10]. The theoretical results there are about the recovery of
non-vanishing signals from a full set of N 2 Gabor measurements, and some intuition
about the difficulty of recovery of sparse signals is given. Numerical results show
that recovering sparse signals can be effectively conducted with modification of the
GESPAR algorithm [24], using less than N 2 measurements.

In the very recentwork [17], both theoretical and numerical investigations show, that
O(N log3(N )) measurements are enough for recovering general signals from block
circulant Fourier basedmeasurements, and if the signal is k-sparse, only O(k log5(N ))

measurements. The structure of the measurements is similar to the one of Gabor
systems, but at this moment it is not clear how their results transfer to the Gabor
setting that we consider here.

In this paper, we investigate the problem of phase retrieval from Gabor measure-
ments, for both full and sparse signals.

Our main concern is the question of injectivity. Using the characterization of phase
retrievability via the properties of the kernel of the PhaseLift operator [5], we provide
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a condition on the generator, sufficient for the corresponding Gabor system to allow
phase retrieval. We show how this condition can be eased, if the signal that needs to be
recovered is non-vanishing. We further provide two examplary classes of generators,
complex random signals and characteristic functions of difference sets, which satisfy
the above mentioned condition. The common Gabor generators, which are short win-
dows or Alltop sequences, on the other hand—as we will show—are not suitable for
phase retrieval of general signals (they fail to recover sparse signals), this problem
was also considered in [17].

Further, we extend the injectivity condition from [5] to the sparse setting, and
provide a similar, but more involved condition on the generator which can guarantee
us phase retrievability of sparse signals, additionally with less than N 2 measurements.
We generalize this result also to signals which are sparse in a Fourier domain. When
N is prime, we construct generators such that the Gabor system can do k-sparse phase
retrieval from O(k3) measurements. As we will see, the result can also be interpreted
as an injectivity condition for recovery of structured k2-sparse vectors from O(k3)
linear measurements.

Both the injectivity theorems naturally provide a simple algorithm for recovery of
signals up to a global phase. When all N 2 measurements are given, the recovery of
any signal is possible by using solely the fast Fourier transform, making the algorithm
extremely fast. If some of the measurements are lost, we can employ �1 minimization
to get the signal back. We provide several numerical experiments to test this idea for
various settings. Although the number of measurements for recovery in our work is
still of relatively high order, the ideas we use are novel, and might be of interest for
the community for better understanding of this problem, and its future development.

The remainder of this paper is organized as follows: Sect. 2 is dedicated to the phase
retrievability question for general signals, from all N 2 Gabor measurements. In Sect.
3, we focus on the sparse setting, and show that k-sparse phase retrieval is possible
with order of k3 Gabor measurements. A detailed description of the algorithm that we
propose, and its empirical evaluation is presented in Sect. 4.

2 An Injectivity Condition for Arbitrary Signals

2.1 Notation and Basic Objects

We will be working in the signal space CN , as a space of complex valued, N periodic
functions with integer argument, x = x( j), j ∈ Z, which therefore always has to be
assumed modulo N . We will use the customary domain [0, . . . , N − 1] of j, but we
will often write j ∈ ZN for convenience. The scalar product between two signals x
and y is defined as

〈x, y〉 =
N−1∑
j=0

x̄( j)y( j),
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and the Hilbert Schmidt scalar product between two N × N matrices A and B as

〈A, B〉HS = tr(A∗B) =
∑
i∈ZN

〈Aei , Bei 〉 .

The N th root of unity will be denoted byω = e
2π i
N .We define the (discrete) Fourier

transform x̂ and the inverse Fourier transform x̌ of x ∈ C
N as follows:

x̂( j) =
N−1∑
n=0

x(n)ω−nj , x̌( j) = 1

N

N−1∑
n=0

x(n)ωnj .

A family of vectors (φi )
M
i=1 in C

N is called a finite frame for CN [7], if there exist
constants 0 < A ≤ B < ∞ such that

A‖x‖2 ≤
M∑
i=1

|〈x, φi 〉|2 ≤ B‖x‖2 for all x ∈ C
N .

If A = B is possible, then (φi )
M
i=1 is called an A-tight frame.

For p ∈ ZN , we define the translation operator Tp : CN �→ C
N through

(Tpx)(n) = x(n − p)

Further, we define for � ∈ ZN , the modulation operator M� : CN �→ C
N through

(M�x)(n) = ω�nx(n).

A Gabor frame 1 is the collection of all translations and modulations of a single
vector g ∈ C

N ,

(
MlTpg

)N−1
l,p=0 .

For a pair λ = (p, �) sometimes we will use the short-hand notation �λ := M�Tp,

and gλ := �λg. The matrices of those operators are unitary, and the collection of
them forms a basis of CN×N [23], i.e.

〈
�λ,�μ

〉
HS = Nδμ,λ. (2.1)

Wewill need the followingwell-known commutation relations between translations
and modulations.

1 We in fact always obtain a frame in this way if g �= 0. The frame is even N ‖g‖2-tight [23].
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Lemma 2.1 [15] Let λ = (p, �), μ = (q, j) ∈ Z
2
N . Then, we have

M�Tp = ω�p TpM�,

�λ�μ = ω− j pω�q�μ�λ.

2.2 Injectivity for Full Gabor Measurements

As mentioned before, we want to pose the question under what conditions a signal
x from some class C ⊆ C

N can be recovered from a set of its Gabor intensity mea-
surements (|〈x, gλ〉|2)λ∈	, 	 ⊆ Z

2
N . Since these measurements are invariant under

multiplication with c ∈ T = {c ∈ C, |c| = 1}, the best we can hope for is to recover
x up to a global phase. If we denote by CN/T the set of equivalence classes under the
equivalence relation x ∼ y ⇔ ∃c ∈ T : x = cy, we can formally pose the problem as
follows: Under what conditions on g is the map

MG : C/T → R
|	|
+ , x �→ (|〈x, gλ〉|2)λ∈	

injective?

Definition 2.1 We say that the Gabor system G = (gλ)λ∈	 associated to a generator
g ∈ C

N is allowing phase retrieval for C (or has the phase retrieval property), if the
map MG is injective.

We start by considering the problem of recovering arbitrary signals from all mea-
surements, i.e. C = C

N and 	 = Z
2
N . In order to investigate which Gabor frames

are allowing phase retrieval for this class, we will use a well known characterization
of the phase retrieval property in the complex case, given via the properties of the
kernel of the PhaseLift operator, also called super analysis operator in [5]. For a set
of measurement vectors ( fi )mi=1 in C

N this operator is defined as

A : CN×N → C
m, H �→ (〈

H, fi f
∗
i

〉
HS

)m
i=1

, (2.2)

Note that when H is in the form xx∗,
〈
H, fi f ∗

i

〉
HS = 〈 fi , H fi 〉 = |〈x, fi 〉|2. Also

note that the authors of [5] chose the set of Hermitian matrices as the domain of A.
We define A in this way in order to avoid some technicalities. However, the space of
Hermitian matrices is a very natural domain in the context of phase retrieval, as the
next theorem suggests.

Theorem 2.1 [5] A set of measurement vectors ( fi )mi=1 allows phase retrieval if and
only if the kernel of the associated map A does not contain any Hermitian matrices
of rank 1 or 2.

With this theorem,wecanprove that the full set of N 2 Gabor intensitymeasurements
allows phase retrieval, as long as a simple condition is satisfied.
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Theorem 2.2 Let g ∈ C
N be a generator for which

〈g, gλ〉 �= 0 (2.3)

for every λ ∈ Z
2
N . Then the corresponding Gabor frame G = (gλ)λ∈Z2

N
allows phase

retrieval.

Proof Theorem 2.1 suggests that we should investigate 〈gλ, Hgλ〉 for H ∈ H
N×N .

Equality (2.1) implies that

H = 1

N

∑

μ∈Z2
N

〈
�μ, H

〉
HS �μ.

If μ = (p, �), we have

〈
�μ, H

〉
HS =

∑
i∈ZN

〈
�μei , Hei

〉

=
∑
i∈ZN

〈
ω�(i+p)ei+p, Hei

〉

=
∑
i∈ZN

ω−�i 〈ei , Hei−p
〉

= Ĥp(�),

where Ĥp denotes the (discrete) Fourier transform of the vector Hp, defined by
Hp(i) = Hi,i−p . Note that Hp is in some sense the pth ’band’ of the matrix H .

It hence holds

N
〈
H, gλg

∗
λ

〉
HS = N 〈gλ, Hgλ〉 =

∑
p,�

〈
gλ, Ĥp(�)�(p,�)gλ

〉

=
∑
p,�

Ĥp(�)
〈
gλ,�(p,�)gλ

〉
.

If we write λ = (q, j), we know by Lemma 2.1 that �(p,�)gλ = �(p,�)�(q, j)g =
ω− j pω�q�(q, j)�(p,�)g. Using this, and the fact that �λ is unitary, we arrive at

N 〈gλ, Hgλ〉 =
∑
p,�

ω− j pω�qĤp(�)
〈
g, gp,�

〉
. (2.4)

Now, assume that this vanishes for all λ = (q, j) ∈ Z
2
N . Fixing j , we see that the

above expression is just the value of the Fourier transform of the vector Vq ∈ C
N

with pth entry

V q(p) =
∑

�

ω�qĤp(�)
〈
g, gp,�

〉
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evaluated at j . Since (2.4) equals zero for all j , the vector Vq vanishes for every
q. Further, we observe that Vq(p) is N times the value at q of the inverse Fourier
transform of the vector w p ∈ C

N , where

w p(l) = Ĥp(�)
〈
g, gp,�

〉
. (2.5)

This expression must therefore be equal to zero for all p and �. With the assumption
on the generator, we conclude that all the vectors Ĥp must vanish, and therefore also
H . H can hence not have rank 1 or 2, and the proof is finished. ��

Carefully going through the argument of the last proof, we see that it shows that the
only matrix in the kernel of A is the zero matrix. Therefore, the proof actually shows
that, under the assumption (2.3), A is an injective map. We use this idea to prove the
following theorem.

Theorem 2.3 Let g ∈ C
N be such that 〈g, gλ〉 �= 0 for all λ ∈ Z

2
N . Then, the N

2 rank-
1 operators

(
gλg∗

λ

)
λ∈Z2

N
form a frame for CN×N (equipped with the Hilbert-Schmidt

norm) and hence a basis. The frame bounds are given by

A = N · min
λ∈Z2

|〈g, gλ〉|2 , B = N · max
λ∈Z2

|〈g, gλ〉|2 .

Proof What we need to prove that for every H ∈ C
N×N

A ‖H‖2HS ≤
∑

λ∈Z2

∣∣〈H, gλg
∗
λ

〉
HS

∣∣2 ≤ B ‖H‖2HS .

In other words, we need to prove that A ‖H‖2HS ≤ ‖A(H)‖2 ≤ B ‖H‖2HS , where
A is the PhaseLift operator (2.2). Using the notation of the proof of Theorem 2.2, the
formula (2.4) states that the N -tuple (Vq)Nq=1 ∈ (CN )N is obtained by performing

inverse Fourier transforms of the columns of the matrix (N
〈
H, gλg∗

λ

〉
HS)λ∈Z2

N
=

NA(H). Hence, their norms are related as follows:

‖NA(H)‖2 = ‖(V̂ q)Nq=1‖2 = N
∥∥∥(Vq)Nq=1

∥∥∥
2
.

Using the same argument, we obtain

∥∥∥(Vq)Nq=1

∥∥∥
2 =

∥∥∥(N w̌ p)Np=1

∥∥∥
2 = N 2

N

∥∥∥(w p)Np=1

∥∥∥
2

and
∥∥∥(Ĥp)Np=1

∥∥∥
2 = N

∥∥∥(Hp)Np=1

∥∥∥
2
.

The N -tuples (Ĥp)Np=1 and (w p)Np=1 are related through (2.5). Therefore, if we
define α = minλ∈Z2 |〈g, gλ〉|, β = maxλ∈Z2 |〈g, gλ〉|, we have
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∥∥∥(w p)Np=1

∥∥∥
2 =

∑

(p,�)∈Z2
N

∣∣w p(�)
∣∣2 =

∑

(p,�)∈Z2
N

∣∣Ĥp(�)
〈
g, gp,�

〉∣∣2 ≤ β2
∥∥∥(Ĥp)Np=1

∥∥∥
2

≥ α2
∥∥∥(Ĥp)Np=1

∥∥∥
2 .

Finally, the matrix H is obtained by merely permuting the elements of the array

(Hp)Np=1. Hence ‖H‖2HS =
∥∥∥(Hp)Np=1

∥∥∥
2
. Combining everything, we obtain

‖A(H)‖2HS = N

N 2

∥∥∥(Vq)Nq=1

∥∥∥
2

=
∥∥∥(w p)Np=1

∥∥∥
2 ≤ β2

∥∥∥(Ĥp)Np=1

∥∥∥
2 = Nβ2

∥∥∥(Hp)Np=1

∥∥∥
2 = Nβ2 ‖H‖2HS

≥ α2
∥∥∥(Ĥp)Np=1

∥∥∥
2 = Nα2

∥∥∥(Hp)Np=1

∥∥∥
2 = Nα2 ‖H‖2HS

,

which is exactly what we wanted to prove. ��

2.2.1 Non-vanishing Vectors

We will now show that if we are interested in recovery of only non-vanishing vectors,
weaker conditions on the generator can be assumed.

Definition 2.2 A vector x ∈ C
N is called non-vanishing (or full), if all its entries are

nonzero, i.e.

x(n) �= 0, for all n = 0, . . . , N − 1.

By C f we denote the class of all non-vanishing signals in C
N .

This situation is much easier to handle, because, intuitively, the non-presence of
”holes” in the signals keeps the phases of the entries coupled. We will use the same
technique as in Theorem 2.2 to prove that the injectivity condition can be weakened
in this setting. Note that we are still assuming that all measurements are known.

Theorem 2.4 Assume that

〈
g, gp,�

〉 �= 0 for p = 0, 1 and � ∈ ZN . (2.6)

Then the Gabor frame G = (gλ)λ∈Z2
N
allows phase retrieval for C f .

Proof Assume that (2.6) is satisfied, and that x and y are full vectors which are
measured equally by the Gabor frame. Then H := xx∗ − yy∗ is in the kernel of A,
since for every λ ∈ Z

2
N we have

A(xx∗ − yy∗)(λ) = 〈
gλ, (xx

∗ − yy∗)gλ

〉 = |〈gλ, x〉|2 − |〈gλ, y〉|2 = 0.
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The proof of Theorem 2.2 then implies that Ĥp = 0 for p = 0, 1, i.e. that H0 =
H1 = 0. Remembering that Hp(i) = Hi,i−p, we arrive at

0 = x(i)x̄(i) − y(i)ȳ(i) = x(i)x̄(i − 1) − y(i)ȳ(i − 1), i = 0, . . . , N − 1.

The first equality simply says that |x(i)| = |y(i)| , i.e. that there exists numbers
εi ∈ T so that x(i) = εi y(i) for all i . Inserting this into the second equation yields

0 = y(i)ȳ(i − 1)(εi ε̄i−1 − 1).

Since all entries of y are assumed to be nonzero, it follows that εi = εi−1, i.e.
εi = ε0 =: c ∈ T for all i . Hence x = cy for a c ∈ T, and x and y are equal mod T. ��
Remark 2.1 A similar result was proven in [10]. There, it was only assumed that〈
g, gp,�

〉 �= 0 for p = 0 and all � ∈ ZN . However, in this case further constraints
on the generators need to be made: g must be a window of length W ≥ 2, where
N ≥ 2W − 1 and N and W − 1 are coprime. Our result, on the other hand, works for
more general generators and any N .

2.3 Generators Which Allow Phase Retrieval

Wewill present two types of signals, one random and one deterministic, which satisfy
condition (2.3), and thus can be used for phase retrieval of signals from all N 2 Gabor
measurements.

2.3.1 Complex Random Vectors as Generators

We start by considering a probabilistic approach, a common strategy in signal recovery
in general.

Proposition 2.1 Let g be a vector in CN, randomly distributed according to the com-
plex standard normal distribution. Then, the condition 〈g, gλ〉 �= 0 for all λ ∈ Z

2
N is

satisfied with probability 1.

Proof Since there are only finitely many λ’s, it suffices to prove that 〈g,�λg〉 �= 0
with probability 1 for one arbitrary λ. Since �λ is a unitary operator, there exists an
orthonormal basis (qi )Ni=1 of C

N and ci ∈ T with

�λ =
N∑
i=1

ciqiq
∗
i .

If we expand g in this basis, i.e. g = ∑
i hi qi , then the vector h ∈ C

N will also
be distributed according to the complex standard normal distribution [13]. We have
�λg = ∑

i ci hiqi , and hence
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〈g,�λg〉 =
N∑
i=1

ci |hi |2 .

In order for g to not satisfy (2.3), the random variable h = (|hi |2
)N
i=1 on R

N+ must
hence lie in the subspace of RN defined by

{
v :

n∑
i=1

civi = 0

}
.

Since this space has dimension N − 1, the set has Lebesgue measure zero. If
we prove that h has a distribution which has a density with respect to the Lebesgue
measure on R

N+ which is almost never zero, we are done. This is however not hard
to see, since the variables |hi |2 = |ai |2 + |bi |2 , i = 1, . . . , N are independently
distributed according to the χ2

2 -distribution, which has density ρ(x) = 1
2 exp(−x/2)

on R+. ��

2.3.2 Difference Sets as Generators

The second example are so-called difference sets, a construction coming from com-
binatorial design theory [9]. The set of all modulations of a characteristic function of
difference set was shown to achieve the Welch bound in [27]. We will show that the
set of all modulations and translations of a difference set has the property desired for
phase retrieval.

Definition 2.3 A subset K = {u1, . . . , uK } of ZN is called an (N , K , ν) difference
set if the K (K − 1) differences

(uk − ul) mod N , k �= l

take all possible nonzero values 1, 2, . . . , N − 1, with each value appearing exactly ν

times.

Example 2.1 Let N = 7. The subset K = {1, 2, 4} is then a (7, 3, 1) difference set.
We can check this by considering all possible differences modulo 7,

− 1 2 4
1 − 6 4
2 1 − 5
4 3 2 −

and confirming that indeed every value from 1 to 6 appears exactly one time.

Given a difference setK with parameters (N , K , ν) we denote by χK ∈ {0, 1}N its
characteristic function:
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χK( j) =
{
1, if j ∈ K
0, if j /∈ K.

We now prove that if such characteristic functions are used as generators, the corre-
sponding Gabor frames will satisfy (2.3), and hence allow phase retrieval for arbitrary
signals.

Proposition 2.2 Let N be an integer with a prime factorization N = pa11 , . . . , parr .

Let K be a difference set with parameters (N , K , ν), such that

ν, K < min{p1, . . . , pr }. (2.7)

Then, for g = χK,

〈g, gμ〉 �= 0 for every μ ∈ Z
2
N . (2.8)

Proof Let μ = (q, j), with both q, j �= 0. By just using the definition of gμ and K
we obtain

〈g, gμ〉 =
∑
n∈ZN

g(n)(MjTqg)(n) =
∑
n∈ZN

g(n)g(n − q)ω jn =
∑

n∈K and
n−q∈K

ω jn . (2.9)

Now, taking into account the nature of a difference set, we can conclude that in the
set

{n : n ∈ K, n − q ∈ K}

there will be always exactly ν elements (because for q ∈ ZN there are exactly ν ways
to be written as a difference of elements in K, and n − (n − q) are such differences).

If ν = 1, we are left with a single ω jn0 and then certainly the sum is different from
zero.

If ν �= 1, we have a sum of ν different N th roots of unity, and we will show that
with the given assumptions on the difference set, (2.8) holds.

We use the following result from [18] about the vanishing sums of roots of unity.
The main theorem in this article states that for any N = pa11 , . . . , parr , the only

possible amounts of N th roots of unity that can sum up to zero is given by M1 p1 +
. . . + Mr pr . Here the Mi are any non-negative integers (0 is included). Now it is
clear that the condition ν < min{p1, . . . , pr } will ensure that we will never have a
vanishing sum.

If nowμ = (0, j) the sumwill goover the full setK, and since K < min{p1, . . . , pr }
again this sum is non vanishing.

Finally, in the last caseμ = (q, 0),we have a sum of ν ones, and therefore we have
proven (2.8) for all cases μ ∈ Z

2
N . ��

Example 2.2 We now provide some examples of families of difference sets, which
satisfy the condition from Proposition 2.2.
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Family 1Quadratic Difference Sets. Let q = pr = 3 (mod 4) be a power of a prime
and

N = q, K = q − 1

2
, ν = q − 3

4
.

Then u = {t2 : t ∈ ZN\{0}} is a (N , K , ν) difference set. If r = 1, condition (2.7)
is satisfied.

Family 2 Quartic Difference Sets. Let p = 4a2 + 1 be a prime with a odd, and

N = p, K = p − 1

4
, ν = p − 5

16
.

Then u = {t4 : t ∈ ZN\{0}} is a (N , K , ν) difference set and additionally
K , ν < N .

Many other examples can be found in the paper [27], or in the La Jolla Difference
Set Repository at http://www.ccrwest.org/ds.html.

2.4 Generators Which do not Allow Phase Retrieval

We now consider two cases for which condition (2.3) is not satisfied, and show that
this in fact implies that the Gabor frames do not allow phase retrieval in these cases.

Proposition 2.3 Let g ∈ C
N be a generator such that one of the following two con-

ditions is satisfied

〈
g, gp̂,�

〉 = 0, for fixed p̂ ∈ ZN\{0} and all � ∈ ZN . (2.10)〈
g, gp̂,�

〉 = 0, for p̂ = 0 and all � ∈ ZN\{0}. (2.11)

Then, the corresponding Gabor frame G = (gλ)λ∈Z2
N
does not allow phase retrieval

for CN .

Proof Let us first assume that condition (2.10) is satisfied. We consider the matrix
H1 ∈ H

N×N, defined by

H1 = e0e
∗
− p̂ + e− p̂e

∗
0

(e0 is the ’first unit vector’—remember that we are always considering indices from
ZN ). Thismatrix has rank 2, and it lies in the kernel of the PhaseLift operator associated
to the Gabor frame defined in (2.2). To see this, note that using the notation of the
proof of Theorem 2.2 we have

Hp(i) = Hi,i−p =

⎧⎪⎨
⎪⎩

1 if i = 0, p = p̂,

1 if i = − p̂, p = − p̂,

0 else.

http://www.ccrwest.org/ds.html
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In other words, Hp = 0 for all p �= ± p̂. Since
〈
g, gp,�

〉 = ω−�p
〈
g, g−p,−�

〉
,

Eq. (2.10) also implies
〈
g, g− p̂,�

〉 = 0 for all � ∈ ZN . These two facts prove that

Ĥp(�)
〈
g, gp,�

〉 = 0

for all � and p. Using the technique of the proof of Theorem 2.2 backwards, it follows
A(H1) = 0. The matrix H1 that we have found has rank 2 and it is in the kernel ofA.

Therefore, by Theorem 2.1, the Gabor frame can not allow phase retrieval.
Now we assume that (2.11) is satisfied. In this case we define a rank 2 matrix in

H
N×N by

H2 = e0e
∗
0 − e1e

∗
1 .

For this matrix, Hp = 0 for p �= 0. Also Ĥ0(0) = ∑
i Hi,i = 0. Because of these

two facts and the assumption on g, we again have

Ĥp(�)
〈
g, gp,�

〉 = 0 for all (p, �) ∈ Z
2
N ,

and H2 will by the same argument as before be in the kernel of A. Phase retrieval is
again not possible. ��
Example 2.3 We now give two examples, for which the conditions of the previous
proposition are satisfied.

Short windows: The condition (2.10) is satisfied if the generator g is a “short win-
dow”. More precisely, if supp g ⊆ [K1, K2] for |K1 − K2| < N

2 , then g and M�Tpg
will have disjoint supports for some p’s and hence have a vanishing scalar product.
Using a window as a generator is a core idea in short-time Fourier analysis [23].

Alltop sequence: It can be easily shown that the much celebrated Alltop
sequence [2], defined as

( 1√
N

ωn3
)N−1
n=0 , has the property (2.11). This generator is

often and successfully used in sparse signal recovery from linear Gabor measure-
ments [3,23].

However, both these families of signals can not be used for phase retrieval, when
we are interested in recovery of all signals in CN .

3 An Injectivity Condition for Sparse Signals

3.1 Sparse Phase Retrieval via the PhaseLift Operator

We will now consider signals which are sparse in a dictionary. A dictionary D is a
set of d vectors in CN , and it is identified with the matrix formed when writing the d
vectors as its columns. The class of signals which are k-sparse in the dictionary D, or
simply kD-sparse signals, is

Ck,D =
{
x ∈ C

N | ∃ z ∈ C
d , ‖z‖0 ≤ k, s.t. x = Dz

}
,
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where ‖z‖0 denotes the number of non-zero coefficients in z. If D = I , we will
omit the dictionary and simply speak of k-sparse vectors Ck . We will also, to increase
readability, speak of kD-phase retrieval instead of phase retrieval for Ck,D .

Since sparse vectors in some sense are k—and not N -dimensional, one would hope
that the number of measurements required to recover them is smaller (for us,	 should
contain less elements.) This, and other, questions were considered and answered for
general measurement vectors in [22,26].

A counterpart of Theorem 2.1 in the sparse setting has up to know not been stated
and proved. We will prove now an injectivity condition for sparse signals, and then
use it for the case of Gabor measurements as in the previous section.

For a given dictionary D = (di )di=1 and a set of indices K ⊆ {1, . . . d}, we denote
WK = span{di }i∈K.

With the help of this notion, we can characterize sets or measurement vectors which
allow kD-phase retrieval. Let A be the PhaseLift operator defined in (2.2).

Theorem 3.1 Given the notations from above, the following two statements hold.

(1) If for everyKwith |K| = 2k, the kernel ofA does not contain rank 1 or 2Hermitian
matrices whose range is in WK, then the vectors ( fi )mi=1 allow kD-phase retrieval.

(2) If ( fi )mi=1 is allowing kD-phase retrieval, then for every K with |K| = k, the
kernel of A does not contain rank 1 or 2 Hermitian matrices with range in WK.

Proof Let us start byproving (1)bycontraposition.Assume that ( fi )mi=1 is not allowing
kD-phase retrieval. Then there exists x �= y mod T, both kD-sparse, for which

〈
xx∗, fi f

∗
i

〉
HS = |〈 fi , x〉|2 = |〈 fi , y〉|2 = 〈

yy∗, fi f
∗
i

〉
HS ,

i.e. xx∗ − yy∗ is a Hermitian matrix in the kernel of A. If the sparse representations
of x and y are given by x = Dzx and y = Dzy , we see that ran(xx∗ − yy∗) ⊆
(Wsupp zx∪supp zy ) and further it has rank less than or equal to 2. If we knew that the
rank is at least one,

∣∣supp zx ∪ supp zy
∣∣ ≤ 2k would imply the claim.

To see that the condition x �= y mod T in fact implies this, assume, towards a
contradiction, that this is not the case, i.e that xx∗ − yy∗ = 0. Since x �= y mod T,

both vectors are non-zero. Hence there exists a vector v ∈ C
N such that 〈x, v〉 �= 0.

Multiplying 0 = xx∗ − yy∗ with this v and rearranging terms, we arrive at

x = 〈y, v〉
〈x, v〉 y,

i.e x = λy for a λ ∈ C. Again plugging this into 0 = xx∗ − yy∗ yields |λ| = 1. This
is a contradiction.

Let us now turn to (2). Suppose that there exists aK such that the kernelA contains
aHermitianmatrix H with rank 1 or 2with range inWK. By the spectral theorem, there
exists an orthonormal basis (ϕ j ) ofCN consisting of eigenvectors of H , corresponding
to real eigenvalues (λ j ). It is clear that H may be written as

∑
j λ jϕ jϕ

∗
j .

Because of the bounded rank and the fact that H �= 0, either one or two of the eigen-
values are non-zero. It is clear that the eigenvectors corresponding to those eigenvalues
are vectors inWK, since they form a basis of the range of H . Thus, they are kD-sparse.
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Let us first consider the case where only one eigenvalue is different from zero. If
we write x = √|λ1|ϕ1, then we have H = ±xx∗ and hence

0 = 〈
xx∗, fi f

∗
i

〉 = |〈 fi , x〉|2 = 0.

This means that the two kD-sparse vectors x and 0 have the same phaseless measure-
ments, although x �= 0 mod T.

The other case is dealt with similarly: here we write x = √|λ1|ϕ1, y = √|λ2|ϕ2
and conclude that H = ±xx∗ ± yy∗, where the signs depend on the signs of the
eigenvalues. If the signs are equal, we see that |〈 fi , x〉|2 + |〈 fi , y〉|2 = 0 and we have
again found kD-sparse vectors which are measured 0. If the signs are not equal, we
see that |〈 fi , x〉|2 − |〈 fi , y〉|2 = 0, and hence x and y are measured equally. They are
kD-sparse and cannot be equal mod T, since they are orthogonal. ��

3.2 Signals Sparse in the Standard Basis

Let us start by considering vectors which are sparse in the standard sense, i.e. D = I .
We will prove a condition under which a subset of our Gabor frame

{
gλ , λ ∈ Z

2
N

}
with ∼k3 elements allows k-sparse phase retrieval, when N is prime. For general
N , it would still be possible to go below the full set of measurements, N 2. We will
need a special form of the discrete uncertainty principle, which involves the sum
of the “spread” of the signal and its Fourier transform. Let us start with a general
observation.

Lemma 3.1 Assume that for all non-zero vectors f ∈ C
N

‖ f ‖0 + ‖ f̂ ‖0 ≥ N − θN (3.1)

holds for some number θN . Then, if f is k-sparse (‖ f ‖0 = k), and f̂ has not less than
θN + k + 1 zero-entries, then f necessarily has to vanish.

This statement follows immediately by contradiction. The question is whether (3.1)
is a reasonable assumption. In [25] it is proved thatwhen N is prime, (3.1) holdswith θN
equal to−1.For general N , by the standardmultiplicative uncertainty principle and the
geometricmean-arithmeticmean inequality, one can derive (3.1)with θN = N−2

√
N .

A more involved inequality for general N was obtained in [19] and will be discussed
later on.

Before we proceed with a condition on the generator g for sparse phase retrieval,
we will first prove a more general statement about recovery of sparse matrices from
linear measurements, which is interesting on its own. We will be interested in the
following class of signals,

HK =
{
H ∈ C

N×N : ∃K ⊆ [1, . . . N ], |K| = K : Hi j = 0 if (i, j) /∈ K × K
}

.
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Theorem 3.2 Let N be such that the uncertainty principle (3.1) holds, and let λ =
(p, l) ∈ Z

2
N . Let g have the following property: for each �, the sequence cp =

(
〈
g, gp,·

〉
) formed by letting � run obeys

θN + K + 1 ≤ ∥∥cp
∥∥
0 ≤ k̂ (3.2)

for some K and k̂. Then, for any subsets A ⊆ ZN , B ⊆ ZN with

|A| ≥ θN + k̂ + 1, |B| ≥ θN + K 2 − K + 2,

the following holds. If a matrix H ∈ HK satisfies (
〈
gλg∗

λ, H
〉
HS)λ∈A×B = 0, then

H = 0.

Proof Let H ∈ HK satisfy
〈
gλg∗

λ, H
〉
HS = 0 for λ ∈ A × B and let K be such that

Hi j = 0 if (i, j) /∈ K × K. We will prove that H then must be 0. Recall the notation
from the proof in Theorem 2.1,Hp(i) = Hi,i−p. Since Hi,i−p is zero, if (i, i − p) is
not in K × K, we can conclude that

Hp(i) = Hi,i−p = 0 if i /∈ K ∩ (K + p).

This proves the following properties:

(1) The vectors Hp are K -sparse.
(2) Hp is zero for all but at most K 2−K +1 different values for p. To see this, notice

first that Hp = 0 if p /∈ K − K. This is because if Hp(i) �= 0, then i ∈ K and
there additionally exists a j ∈ K with i = j + p. It follows p = i − j ∈ K − K.
And we know that the set K − K has at most |K| (|K| − 1) + 1 = K 2 − K + 1
elements.

Now using the same argument as in the proof of Theorem 2.2, we arrive at

0 = N
〈
gλg

∗
λ, H

〉 =
∑
p,�

ω− j pω�qĤp(�)
〈
g, gp,�

〉
for all λ = (q, j) ∈ A × B.

(3.3)

Fixing j , the sum in (3.3) is the value at j of the discrete Fourier transform of the
vector Vq defined as

Vq(p) =
∑

�

ω�qĤp(�)
〈
g, gp,�

〉
. (3.4)

Because of (2), these vectors are all (K 2 − K + 1)-sparse. Further, (3.3) proves
that their Fourier transforms vanish at all j ∈ B, i.e. at θN + (K 2 − K + 2) points.
The discrete uncertainty principle (3.1) implies that Vq must equal zero.

Considering (3.4), the fact that Vq(p) = 0 proves that the inverse Fourier transform
of the vector, which we denote by

w p(�) = Ĥp(�)
〈
g, gp,�

〉
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vanishes at the values q ∈ A, i.e. at θN + k̂ + 1 values. Because of our assumption on
g, w p is however k̂-sparse. We can therefore again conclude that

Ĥp(�)
〈
g, gp,�

〉 = 0 for all (p, �) ∈ Z
2
N .

Hence, if
〈
g, gp,�

〉 �= 0, Ĥp(�)must be 0. Due to our assumption on g, this happens
for at least θN + 2k + 1 �’s for every p. Because of 1, this is sufficient to prove that
Hp = 0 for all p, and H therefore must be 0. ��

We now use the theorem we have just proved, to provide a condition, when a Gabor
frame can do k-sparse phase retrieval.

Theorem 3.3 Let N be such that the uncertainty principle (3.1) holds, and let λ =
(p, l) ∈ Z

2
N . Let g ∈ C

N be a generator which satisfies the following condition: for
each �, the sequence cp = (

〈
g, gp,·

〉
) formed by letting � run obeys

θN + K + 1 ≤ ∥∥cp
∥∥
0 ≤ k̂ (3.5)

for some K = 2k and some k̂. Then, for any subsets A ⊆ ZN , B ⊆ ZN with

|A| ≥ θN + k̂ + 1, |B| ≥ θN + (2k)2 − 2k + 2,

the set

{gλ, λ ∈ A × B} (3.6)

allows k-sparse phase retrieval.

Proof We will use part (1) of Theorem 3.1 for D = I, to show that k-sparse phase
retrieval is possible for the system (3.6). Let H be an Hermitian operator with values
in C

N
K = {x ∈ C

N, supp(x) ⊆ K} for some K with |K| = 2k for which A(H) = 0
(where A is the PhaseLift operator associated with (3.6)). We will prove that H must
be zero, from which the claim follows. Since the range of H is contained in C

N
K, we

know that Hi, j = 0 if i /∈ K. Since Hi, j = Hj,i , we also have Hi, j = 0 if j /∈ K.
We can conclude that H ∈ H2K , and by Theorem 3.2 it immediately follows that H
is zero, thus the theorem is proved. ��
Remark 3.1 Wewould like to state the following remarks related to Theorems 3.3 and
3.2.

(1) If θN + 4k2 − 2k + 2 ≥ N , then the same theorem holds for B = ZN and any
A with |A| ≥ θN + k̂ + 1. We can therefore also in this case reduce the number
of measurements from N 2 to (θN + k̂ + 1)N . Also note that since k̂ must not
be smaller than 2k, the theorem does not yield any enhanced results for non-
sparse vectors (we need the sequences cp to be k̂-sparse to reduce the number of
measurements, but to have at least 2k nonzero elements to ensure injectivity for
k-sparse signals).
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(2) We note, that when N is prime, the conditions of Theorem 3.3 become much
simpler. Namely,

2k ≤ ∥∥cp
∥∥
0 ≤ k̂,

and the sets A and B should fulfill

|A| ≥ k̂, |B| ≥ (2k)2 − 2k + 1.

Thus, for example, if we can find a Gabor system for which the inequality (3.5) is
fulfilled as an equality, we will be able to do k-sparse phase retrieval with order
of only O(kmin(N , k2)) measurements.

(3) When N is not prime, we have θN = N − 2
√
N , and the number of needed

measurements is not as good as in the prime case, since we obtain

|A| · |B| ≥
(
N − 2

√
N + k̂ + 1

)(
N − 2

√
N + (2k)2 − 2k + 2

)
,

but some improvement over N 2 could still be obtained in some cases. Furthermore,
an extension of [25] from N prime to general N was published in [19], in the form
of the following property:
Let d1 < d2 be two consecutive divisors of N . If d1 ≤ k = ‖ f ‖0 ≤ d2, then

‖ f̂ ‖0 ≥ N

d1d2
(d1 + d2 − k).

Our function θ will in this case explicitly depend on k and be equal to N − k +
N

d1d2
(d1+d2 −k). The smaller this value is, the less measurements will be needed

for k-sparse injectivity.
(4) Theorem 3.2 is interesting from a different perspective, since HK can be viewed

as a set of K 2-sparse vectors in CN2
whose sparsity has a special structure. Thus,

we have provided a deterministic construction which can theoretically recover
those vectors from O(K 3) linear measurements.
This is interesting since we know from conventional compressed sensing results
[12], that deterministic constructions for stable recovery of K 2-sparse vectors
require O(K 4) linear measurements, whereas random constructions only need
O(K 2)measurements. Finding deterministic constructionswhich can accept spar-
sity levels on the order higher than the square root of the number of measurements
is known as breaking the “square-root bottleneck” [20].
Although in our case, O(m) measurements are needed for sparsity level m2/3,

one has to bear in mind that the sparsity of the vectors is structured, and that our
result is only about the injectivity of the measurements.
In particular, we do not prove any recovery guarantees for a specific algorithm.
Hence, we have not broken the square-root bottleneck, but the theorem can be
seen as a step towards providing new results in this direction.
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3.3 Functions Window in the Fourier Domain as Generators

As in the previous section, we now provide an example of a generator g which fulfills
our condition.

Proposition 3.1 Let N be prime and 2k + 1 < N.
Further, let v ∈ C

N be a window of length k + 1, v = χ[0,k], where χA denotes the
characteristic function on the set A ⊆ ZN .

Moreover, let g be defined by ĝ = v, Then, g satisfies (3.5) with k̂ = 2k + 1 and
therefore, (2k + 1)min(4k2 − 2k + 1, N ) measurements from the Gabor frame with
g as generator will do k-sparse phase retrieval.

Proof The Plancherel formula implies that

cp(�) = 〈
ĝ, T�Mpĝ

〉
for all (p, �) ∈ Z

2
N

Therefore,

〈
ĝ, T�Mpĝ

〉 =
∑
m∈ZN

v(m)v(m − �)ωp(m−�) =
∑

m∈[0,k] and
m−�∈[0,k]

ωp(m−�), (3.7)

because of the way we defined v. Note that since 2k < N , this sum is empty for
|�| > k. Therefore, the sequences cp are 2k + 1-sparse for every p, i.e. k̂-sparse.

It remains to prove that for |�| ≤ k, the expression above is not zero, and hence∥∥cp
∥∥
0 = 2k + 1.

It suffices to consider � ≥ 0, since the other case can be obtained from this one by
the substitution � → −�. Using the formula for geometric sums, we obtain

∑
�≤m≤k

ωp(m−�) =
k−�∑
n=0

ωpn =
⎧
⎨
⎩
1 − ωp(k−�+1)

1 − ωp
, if p �= 0,

k − � + 1, if p = 0.

The only way this could be zero when � ≤ k is that p �= 0 and 1 − ωp(k−�+1) = 0.
This would however mean that N is a divisor of p(k − � + 1) �= 0. Since N is prime
and both p and (k − � + 1) are smaller than N , this cannot be the case. Therefore,
from Theorem 3.3 we conclude that any subsets A ⊆ ZN , B ⊆ ZN with

|A| ≥ 2k + 1, |B| ≥ (2k)2 − 2k + 2

will do k-sparse phase retrieval. ��
Remark 3.2 The choice of ĝ as a characteristic function of [0, k] is not necessary—any
generically chosen function with support on [0, k] will also lead to a Gabor system
with the same properties.

To see this, note that if |�| < k, the expression (3.7) is a non-trivial polynomial in
the variables re(v), im(v). Since we have proved that there is a particular choice of v

so that all polynomials do not vanish on v, (3.5) will be satisfied for generic v.
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Remark 3.3 The matrices provided to prove that the frames considered in Sect. 2.4
do not allow phase retrieval were all matrices with range in CN

K for a K with |K| = 2.
Hence, the considerations made there in fact proved that the frames are not allowing
phase retrieval for Ck for any k ≥ 2 (although they might still allow phase retrieval for
some other class of signals).

3.4 Signals Sparse in Fourier domain

After spending some time discussing the standard sparsity case, it is worth noting that
similar results hold for signals which are sparse in the Fourier basis (dictionary) F .
Recall the famous commutation relation of F with translations and modulations:

�(p,�)F = M�TpF = FT�M−p = ω�pF�(−p,�) for all (p, �) ∈ Z
2
N . (3.8)

This formula allows us to translate the results provided in the previous section to this
new setting.

Theorem 3.4 Let N be such that the uncertainty principle (3.1) holds and F denote
the Fourier basis. Let g have the following property: for each �, the sequence c̃� =
(
〈
g, g·,�

〉
) formed by letting p run obeys

θN + 2k + 1 ≤ ‖c̃�‖0 ≤ k̂ (3.9)

for some k and k̂. Then, for any subsets A, B ⊆ ZN with

|A| ≥ θN + (2k)2 − (2k) + 2, |B| ≥ θN + k̂ + 1,

the set {gλ, λ ∈ A × B} allows Fk-sparse phase retrieval.
Proof We would like to apply Theorem 3.1, with D = F. Using the notation of that
theorem, let H be an arbitrary Hermitian matrix with range contained inWK for some
K with |K| = 2k. We may write H = FHF F∗ for some other Hermitian HF, which
then has a range which is contained in C

N
K. Let us now proceed as in the proof of

Theorem 2.2 and calculate

〈
�(p,�), H

〉
HS = tr

(
�∗

(p,�)FHF F∗) = tr
(
F∗�∗

(p,�)FHF) =
〈
F∗�(p,�)F, HF

〉
HS

=
〈
ω�p�−p,�, H

F
〉
HS

= ω−�pĤF−�(p).

We used the commutation relation (3.8), and the fact that F is unitary. We arrive at

N 〈gλ, Hgλ〉 =
∑
p,�

ω−�pĤF−�(p)
〈
gλ,�(p,�)gλ

〉
.

This formula is very similar to (3.3), essentially, the only difference is that the roles
of p and � have interchanged. Further, the vectors HF have the same properties as
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the vectors H in the proof of Theorem 3.4 (since HF has the same properties as H ).
These two facts makes it clear that we can use the exact same technique as in that
proof to prove this theorem. We leave the details to the reader. ��

It is not hard to construct a concrete example of a generator g which fulfills the
condition (3.9). We only have to note that the roles of translations and modulations
have been interchanged. Hence, we should no longer use a g which has short support
in Fourier domain, but instead one with short support in spatial domain. With this
insight, we may use the exact same steps as in the proof of Proposition 3.1 to deduce
the following.

Proposition 3.2 Let N be prime and 2k + 1 < N.
Then (2k + 1)min(4k2 − 2k + 1, N ) measurements from a Gabor frame generated

by generic windows g of length k + 1 will do Fk-sparse phase retrieval.

4 An Algorithm for Phase Retrieval Using Gabor Measurements

The idea of the proof of Theorem 3.3 can be used to design an algorithm to reconstruct
signals from their Gabor intensity measurements. We start by recovering H , as in the
proof, and then we compute the closest rank 1 operator xx∗ by spectral decomposition
of H . A detailed description is given in Algorithm 1.

Algorithm 1: Simple Gabor Phase Retrieval (SGPR)

Data: A generator g ∈ C
N , sets A, B ⊆ ZN , the measurements

b(q, j) = N
∣∣〈x, gq, j

〉∣∣2 , (q, j) ∈ A × B.

Result: An estimate x0 ∈ C
N of x .

for q = 0 . . . N − 1 do1

Solve V̂ q ( j) = b(q, j), j ∈ B for Vq .

for p = 0 . . . N − 1 do2
Solve N · w̌ p(q) = Vq (p), q ∈ A for w p .

for p = 0 . . . N − 1 do3
for � = 0 . . . N − 1 do

if
〈
g, gp,l

〉 �= 0 then
Set Ĥp(�) = w p(�)/

〈
g, gp,l

〉
.

Add � to the set 	p .

Solve Ĥp(�) = w p(�)/
〈
g, gp,l

〉
, � ∈ 	p forHp .

Reconstruct H from H(i, i − p) = Hp(i)
Calculate the eigenpair (λ, v) of H corresponding to the largest eigenvalue.
Set x0 = √

λx .

In steps (1), (2) and (3) one has to invert a Fourier transform. If all values of the
transformed vector are known, one can simply use the standard fast inverse Fourier
transform to compute this, and the signal will be perfectly recovered. If one on the
other hand does not know all the values (not all Gabor measurements are given),
some other method has to be used, where sparsity can be employed. We have chosen
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Basis Pursuit [8]. This is a standard approach in compressed sensing when looking
for a sparse solution x of the equation Ax = b. The algorithm consists of solving the
following optimization problem:

min ‖x‖1 s.t. Ax = b.

We solve this problem with CVX, a package for specifying and solving convex pro-
grams [14]. All experiments were conducted on a Intel Core i7-3517U Processor
running Windows 8.

We now present the results of the numerical experiments for testing Algorithm 1.
In Fig. 3, we plot the success rate of recovery of sparse signals via Algorithm 1.We

have fixed the length of the signal N = 67 (a prime which gives 3 mod 4, as needed
for difference sets of Family 1). We want to recover two types of signals: k-sparse
signals, where k non-zero random values are distributed on a random support, and
k-sparse block signals, where one random block of k subsequent entries is assigned k
random values (Fig. 1).

In Fig. 2a, we also have chosen two different generators for the Gabor system: a
complex random signal, and a characteristic function of a difference set, described in
Sect. 2. Here, we use 0.5N 2 measurements, namely all N translations, and random
0.5N from the modulations. With this setup, we use �1 minimization only in the Step
(1), and in (2) and (3) we use the fast Fourier transform. For a fixed sparsity from 1
to 15, we repeat the experiment T = 200 times, and count a trial as successful, if the
normalized squared error is smaller than 10−2.

In Fig. 2b, we do the same experiment, but we take partial measurements in both
directions: translation and modulation. Namely, for N = 67, we take 0.52N transla-
tions, and 0.7N modulations at random.Thegenerator here, as described inProposition
3.1, is a short Fourier window, with length 8. Now, we need to use Basis Pursuit in all
steps (1), (2) and (3), which in turn leads to a lower recovery rate. We made T = 100
trials for every sparsity level.

In Fig. 3a, we test the speed of our algorithm in comparison to the PhaseLift
algorithm [6], implemented using the CVXpackage.We also useGabormeasurements
for it, but only 2 log(N )N , taken at random. We plot the average execution time over
T = 50 trials, and see that as the dimension grows, our method becomes faster,
although the number of measurements is much larger. Also, if we are using the full
set of measurements, the time needed is incomparably smaller to both of the other
methods—since then there is no minimization problem included. In this case, also, we
will always recover the signal with probability 1, independently of the sparsity level.

Fig. 1 The matrices H1 and H2
used in the proof of Proposition
2.3
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Fig. 2 Success rate

In Fig. 3b,we compare the execution time ofAlgorithm1 fromall N 2 measurements
to the GESPAR algorithm [24], a greedy algorithm for recovery of sparse signals from
Fourier intensity measurements (in our experiment we use 2N measurements). This
algorithm is very fast for high dimensions, but since it is iterative, it becomes slower
as the sparsity increases for a fixed dimension of the signal. We illustrate this behavior
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Fig. 3 Recovery time

in Fig. 3b, where for every dimension, we measure the average time of recovery of
signals with sparsity k = 5 and k = 10. We see that the GESPAR algorithm is faster,
when we want to recover a signal which has only 5 nonzeros, but if this number is
larger, our algorithm becomes faster than the GESPAR, since it does not strongly
depend on the sparsity level.
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We would like to mention that our algorithm for all N 2 measurements is also
stable to additive noise in the measurements. This follows from Theorem 2.3 and
can be intuitively explained by the fact that the only troublesome part is the division
in Step (3). If the generator g is such, that the values 〈g, gp,l〉 are bounded away
from zero, one can guarantee robustness to noise. For the recovery from less than N 2

measurements, we leave the detailed investigation on this matter for future work.
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