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Abstract Weestablish aHörmander type spectralmultiplier theoremfor aSchrödinger
operator H = −� + V (x) in R

3, provided V is contained in a large class of short
range potentials. This result does not require the Gaussian heat kernel estimate for
the semigroup e−t H , and indeed the operator H may have negative eigenvalues. As
an application, we show local well-posedness of a 3d quintic nonlinear Schrödinger
equation with a potential.
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1 Introduction

1.1 Statement of the Main Theorem

In this paper, we establish a Hörmander type spectral multiplier theorem for a
Schrödinger operator H = −�+V inR

3, provided that V is contained in a large class
of short range potentials. Precisely, we assume that V is contained in K0 ∩ L3/2,∞,
whereK0 is the norm closure of bounded, compactly supported functions with respect
to the global Kato norm
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‖V ‖K := sup
x∈R3

∫
R3

|V (y)|
|x − y|dy, (1.1)

and L3/2,∞ is the weak L3/2-space. We also assume that H has no eigenvalue or
resonance on the positive real-line [0,+∞). By a resonance, we mean a complex
number λ such that the equation ψ+ (−�−λ± i0)−1Vψ = 0 has a slowly decaying
solution ψ ∈ L2,−s \ L2 for any s > 1

2 , where L2,s = {〈x〉s f ∈ L2}.
By the above assumptions, the operator H is self-adjoint on L2. Moreover, its

spectrum σ(H) consists of purely absolutely continuous spectrum on the positive
real-line [0,+∞) and at most finitely many negative eigenvalues [2]. Therefore, for
a bounded Borel function m : σ(H) ⊂ R → C, one can define a spectral multiplier
m(H) as a bounded operator on L2 via functional calculus.

A natural question is then to find a sufficient condition to extend boundedness of
the multiplier m(H) to L p for p 
= 2. Such a condition is typically given in terms of
regularity of symbols. To measure regularity of a symbol m : σ(H) → C, we define
a Sobolev type norm by

‖m‖H(s) :=
∑

λ j :negative eigenvalues
|m(λ j )| + sup

t>0
‖χ(λ)m((tλ)2)‖Ws,2

λ ((0,+∞))
, (1.2)

where χ ∈ C∞c (R) is a standard dyadic partition of unity function such that χ is
supported in [ 12 , 2] and

∑
N∈2Z χ( ·N ) ≡ 1 on (0,+∞), and Ws,2 is the L2-Sobolev

space of order s.
Our main result is the following.

Theorem 1.1 (Spectral multiplier theorem) Suppose that V ∈ K0∩ L3/2,∞ and H =
−�+ V has no eigenvalue or resonance on [0,+∞). We also assume that for s > 2,
the symbol m : σ(H)→ C satisfies ‖m‖H(s) <∞. Then, we have

‖m(H)‖L p→L p � ‖m‖H(s), ∀1 < p <∞. (1.3)

When V = 0, Theorem 1.1 is simply the classical Hörmander–Mikhlin multiplier
theorem [4].

There are several ways to prove the spectral multiplier theorem for Schrödinger
operators. For an operator A, we say that the semigroup e−t A satisfies the Gaussian
heat kernel estimate if the kernel of e−t A, denoted by e−t A(x, y), obeys

e−t A(x, y) � t−3/2e−
|x−y|2

ct , ∀t > 0 (1.4)

for some c > 0. Gaussian upper bounds for the heat kernels have been used suc-
cessfully to prove spectral multiplier theorems for rather general operators, not
necessarily Schrödinger operators (see [4,5,16] and references therein). In the case of
the Schrödinger operator H = −� + V in R

3, if V+ = max(V, 0) is in local Kato
class, that is,

lim
r→0+ sup

x∈R3

∫
|x−y|≤r

|V+(y)|
|x − y| dy = 0, (1.5)
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and if V− = min(V, 0) ∈ K0 and ‖V−‖K < 4π , then it is known that the semigroup
e−t H satisfies the Gaussian heat kernel estimate (1.4) [7,20]. The spectral multiplier
theorem for H then follows from [5, Theorem 3.1]. However, for Gaussian upper
bounds (1.4), operators need to be positive definite, while the Schrödinger operator in
Theorem 1.1 may have negative eigenvalues.

One can also use the wave operators to show the spectral multiplier theorem. The
forward-in-time (backward-in-time, resp) wave operator of the Schrödinger operator
H = −�+ V is defined by

W+ = s- lim
t→+∞eit H e−i t (−�)

(
W− = s- lim

t→−∞eit H e−i t (−�), resp
)
. (1.6)

An important feature of wave operators is its intertwining property, that is, Pc f (H) =
W± f (−�)(W±)∗, where Pc is the spectral projection to the continuous spectrum and
(W±)∗ is the dual of W±. In [22], Yajima proved that the wave operators W± are
bounded on L p for all 1 ≤ p ≤ ∞, provided that |V (x)| � 〈x〉−5−ε for ε > 0, and
zero is not an eigenvalue or a resonance of H . Later, in [1], Beceanu extended this
result to a larger space

B :=
{
V :

∞∑
k=−∞

2k/2‖V (x)‖L2
x (2

k≤|x |<2k+1) <∞
}

. (1.7)

The spectral multiplier theorem then follows immediately from the intertwining
property and boundedness of wave operators and the classical Hörmander–Mikhlin
multiplier theorem, since

‖Pc f (H)‖L p→L p = ‖W± f (−�)(W±)∗‖L p→L p

� ‖ f (−�)(W±)∗‖L p→L p � ‖(W±)∗‖L p→L p <∞ (1.8)

and (I − Pc) f (H) is bounded on L p by Lemma 3.6. Theorem 1.1 improves the
spectral multiplier theorem as a consequence boundedness of the wave operator, in
that the potential class K0 ∩ L3/2,∞ is larger than the potential class B. Note that a
potential having many singular points, such as

∑N
k=1 1|x−x j |≤1 1

|x−x j |2−ε with x j 
= xk

and ε > 0, is contained in K0 ∩ L3/2,∞, but not in B.
Our proof of the spectral multiplier theorem is perturbative, and it relies heavily

on the explicit integral representation of the kernel of the multiplier. We consider the
spectral multiplier m(H)Pc as a perturbation of the Fourier multiplier m(−�), and
then we show that the difference (m(H)Pc − m(−�)) is bounded on L p. In order to
estimate the difference, we first decompose it into its dyadic pieces

∑
N∈2Z

χ
(√

H
N

) (
m(H)− m(−�)

)
, (1.9)

where χ is the function given in (1.2). Then, we generate a formal series expansion
for each dyadic piece to get explicit integral representations of kernels of terms in the
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series using the free resolvent formula

((−�− z)−1 f )(x) =
∫
R3

ei
√
z|x−y|

4π |x − y| f (y)dy. (1.10)

We estimate these integral kernels. Summing them up, we prove the spectral multiplier
theorem.

A key observation is that in spite of the singular integral nature of both m(H)Pc
and m(−�) as Calderon–Zygmund operators, the kernel of their difference is less
singular than usual Calderon–Zygmund operators. This fact is essential in our analysis,
since it allows us to avoid using the delicate classical Calderon–Zygmund theory for
the complicated operator m(H) (see Remark 4.4). Instead, we just make use of the
fractional integration inequality and Hölder inequality.

1.2 Application to NLS

The choice of the potential class in the main theorem is motivated by the following
nonlinear application.

First, we recall the Strichartz estimates for the linear propagator e−i t H .

Proposition 1.2 (Strichartz estimates) If V ∈ K0 and H has no eigenvalue or reso-
nance on [0,+∞), then

‖e−i t H Pc f ‖Lq
t Lrx

� ‖ f ‖L2 , (1.11)
∥∥∥
∫ t

0
e−i(t−s)H PcF(s)ds

∥∥∥
Lq
t Lrx

� ‖F‖
L2
t L

6/5
x

, (1.12)

where 2
q + 3

r = 3
2 and 2 ≤ q, r ≤ ∞.

Proof Beceanu–Goldberg [2] proved the dispersive estimate

‖e−i t H Pc‖L1→L∞ � |t |−3/2, (1.13)

where Pc is the spectral projection to the continuous spectrum. Strichartz estimates
then follow by the argument of Keel–Tao [15]. ��
Remark 1.3 The dispersive estimate of the form (1.13) was first proved by Journé–
Soffer–Sogge under suitable assumptions on potentials [14]. The assumptions have
been relaxed by Rodnianksi–Schlag [17], Goldberg–Schlag [10] and Goldberg [8,9].
Recently, Beceanu–Goldberg established (1.13) for a scaling-critical potential class
K0 [2].

An interesting question is then whether one can use the above Strichartz estimates
to show the local well-posedness (LWP), for instance, for a 3d quintic nonlinear
Schrödinger equation with a potential

iut +�u − Vu ± |u|4u = 0; u(0) = u0 ((NLSV ))
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assuming that V satisfies the conditions in Proposition 1.2. However, if one tries to
show local well-posedness by the standard contractionmapping argument as in [4,21],
one will realize that there is a subtle problem, mainly because the linear propagator
e−i t H does not commute with the differential operators from the Sobolev norms.

We overcome this subtle problem by the two norm estimates lemma, whose proof
relies on the spectral multiplier theorem.

Lemma 1.4 (Two norm estimates) If V ∈ K0 ∩ L3/2,∞ and H has no eigenvalue or
resonance on the positive real-line [0,+∞), then

‖H s
2 Pc(−�)−

s
2 f ‖Lr � ‖ f ‖Lr , (1.14)

‖(−�)
s
2 H−

s
2 Pc f ‖Lr � ‖ f ‖Lr . (1.15)

for 0 ≤ s ≤ 2 and 1 < r < 3
s .

Together with Strichartz estimates and the two norm estimates lemma, we prove
local well-posedness.

Theorem 1.5 (LWP) Suppose that V ∈ K0 ∩ L3/2,∞ and H has no eigenvalue or
resonance on the positive real-line [0,+∞). Then, (NLSV ) is locally well-posed in
Ḣ1.

Remark 1.6 (i) The range of r in the two norm estimates lemma is sharp. See the
counterexample in [19].

(ii) The additional hypothesis V ∈ L3/2,∞, compared to Strichartz estimates, is from
the two norm estimates lemma. In the proof of the two norm estimates lemma,
we used this additional assumption.

1.3 Organization of the Paper

The outline of the proof of Theorem 1.1 is given in Sect. 2. We decompose the spectral
representation of the difference (m(H)Pc − m(−�)) into the low, medium and high
frequencies, and then analyze them separately in Sects. 4, 5 and 6. In Sect. 7, we
establish LWP of a 3d quintic nonlinear Schrödinger equation with a potential.

1.4 Notations

For an integral operator T , its integral kernel is denoted by T (x, y). We denote by
A“ = ”B the formal identity which will be proved later.

2 Reduction to the Key Lemma

Suppose that V ∈ K0 and H has no eigenvalue or resonance on [0,+∞). Then,
the spectrum of H , denoted by σ(H), consists of purely continuous spectrum on
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the positive real-line [0,+∞) and at most finitely many negative eigenvalues. For
z /∈ σ(H), we define the resolvent by RV (z) := (H − z)−1, and denote

R±V (λ) := s− lim
ε→0+

RV (λ± iε). (2.1)

Let Pc be the spectral projection on the continuous spectrum. Then, by the Stone’s
formula, the spectral multiplier operator m(H)Pc is represented by

m(H)Pc = 1

2π i

∫ ∞

0
m(λ)[R+V (λ)−R−V (λ)]dλ = 1

π

∫ ∞

0
m(λ) Im R+V (λ)dλ. (2.2)

Applying the identity

R+V (λ) = R+0 (λ)(I + V R+0 (λ))−1

= R+0 (λ)
(
I − (I + V R+0 (λ))−1V R+0 (λ)

)
(2.3)

= R+0 (λ)− R+0 (λ)(I + V R+0 (λ))−1V R+0 (λ),

we split m(H)Pc into the pure and the perturbed parts,

m(H)Pc = 1

π

∫ ∞

0
m(λ) Im R+0 (λ)dλ

− 1

π

∫ ∞

0
m(λ) Im[R+0 (λ)(I + V R+0 (λ))−1V R+0 (λ)]dλ (2.4)

=: m(−�)+ Pb,

where m(−�) is the Fourier multiplier such that ̂m(−�) f (ξ) = m(|ξ |2) f̂ (ξ). For
the pure part m(−�), it follows from the classical Hörmander–Mikhlin multiplier
theorem [13] that for s > 3

2 ,

‖m(−�)‖L p→L p � ‖m‖H(s), ∀1 < p <∞. (2.5)

Therefore, it suffices to show boundedness of the perturbed part. For the perturbed part
Pb, we further decompose it into dyadic pieces. Let χ be the smooth dyadic partition
of unity function chosen in (1.2), and decompose

Pb =
∑
N∈2Z

PbN , (2.6)

where

PbN := − 1

π

∫ ∞

0
m(λ)χN (

√
λ) Im[R+0 (λ)(I + V R+0 (λ))−1V R+0 (λ)]dλ. (2.7)
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For a small dyadic number N0 and a large dyadic number N1 to be chosen later, we
denote the low (high, resp) frequency part by

Pb≤N0 :=
∑
N≤N0

PbN

⎛
⎝Pb≥N1 :=

∑
N≥N1

PbN , resp

⎞
⎠ . (2.8)

In the next four sections, we will show the following lemma.

Lemma 2.1 (Key lemma) Suppose that V ∈ K0 ∩ L3/2,∞ and H has no eigenvalue
or resonance on [0,+∞). Let s > 2. Then, there exists p > 1 but sufficiently close to
1 such that the following hold.

(i) (High frequency) There exists N1 = N1(V )� 1 such that

‖Pb≥N1‖L p,1→L p,∞ � ‖m‖H(s), (2.9)

where L p,1 and L p,∞ are the Lorentz spaces (see “Appendix”).
(ii) (Low frequency) There exists N0 = N0(V ) � 1 such that

‖Pb≤N0‖L p,1→L p,∞ � ‖m‖H(s). (2.10)

(iii) (Medium frequency) For N0 < N < N1,

‖PbN‖L p,1→L p,∞ �N0,N1 ‖m‖H(s). (2.11)

Proof of Theorem 1.1, assuming Lemma 2.1 Let p > 1 be sufficiently close to 1 as
in Lemma 2.1. Summing the estimates in Lemma 2.1, we prove that Pb is bounded
from L p,1 to L p,∞. Then, it follows from the classical Hörmander–Mikhlin multiplier
theorem that m(H)Pc = m(−�)+ Pb is bounded from L p,1 to L p,∞. Moreover, by
Lemma 3.6 (see below), m(H) : L p,1 → L p,∞ is bounded.

Recall that by functional calculus, m(H) is bounded on L2. Thus, by the real
interpolation lemma (Corollary 7.8), m(H) is bounded on L p for all 1 < p ≤ 2.
Finally, applying the spectral multiplier theorem to the symbol m̄ and the standard
duality argument with m(H) = m̄(H)∗, we conclude that m(H) is bounded on L p

for 2 < p <∞. ��

3 Preliminaries

3.1 Resolvent Estimates

FollowingBeceanu–Goldberg [2],we collect kernel estimates forV R+0 (λ),V (R+0 (λ)−
R+0 (λ0)), (V R+0 (λ))4 and (I + V R+0 (λ))−1, all of which will play as building blocks
to analyze the kernel of PbN .

Lemma 3.1 (Resolvent estimates) Suppose that V ∈ K0.
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(i) For λ ≥ 0,

‖V R+0 (λ) f ‖L1 ≤ ‖V ‖K
4π

‖ f ‖L1 . (3.1)

(ii) Define the difference operator by

Bλ,λ0 := V (R+0 (λ)− R+0 (λ0)). (3.2)

For ε > 0, there exist δ > 0 and an integral operator B : L1 → L1 such
that for |λ− λ0| ≤ δ and λ, λ0 ≥ 0,

|Bλ,λ0(x, y)| ≤ B(x, y), and‖B(x, y)‖L∞y L1
x
≤ ε. (3.3)

(iii) For ε > 0, there exist N1 � 1 and an integral operator D = Dε : L1 → L1

such that for λ ≥ N1,

|(V R+0 (λ))4(x, y)| ≤ D(x, y), and‖D(x, y)‖L∞y L1
x
≤ ε. (3.4)

Proof (i) By the free resolvent formula R+0 (λ)(x, y) = ei
√

λ|x−y|
4π |x−y| , the Minkowski

inequality and the definition of the global Kato norm (1.1), we have

‖V R+0 (λ) f ‖L1 ≤
∫
R3

∥∥∥ |V (x)|
4π |x − y|

∥∥∥
L1
x

| f (y)|dy ≤ ‖V ‖K
4π

‖ f ‖L1 . (3.5)

(i i) For ε > 0, decompose V = V1 + V2 such that V1 is bounded and compactly
supported and ‖V2‖K ≤ ε. We choose δ > 0 such that |√λ −√λ0| ≤ ε‖V1‖−1L1 for
all λ, λ0 ≥ 0 with |λ− λ0| ≤ δ. By the mean-value theorem,

|Bλ,λ0(x, y)| ≤
∣∣∣V1(x)(e

i
√

λ|x−y| − ei
√

λ0|x−y|)
4π |x − y|

∣∣∣+
∣∣∣V2(x)(e

i
√

λ|x−y| − ei
√

λ0|x−y|)
4π |x − y|

∣∣∣

≤ |V1(x)||
√

λ−√λ0|
4π

+ |V2(x)|
2π |x − y| (3.6)

≤ ε|V1(x)|
4π‖V1‖L1

+ |V2(x)|
2π |x − y| =: Bε(x, y).

Then, we have

‖Bε(x, y)‖L∞y L1
x
≤ ε

4π
+ ‖V2‖K

2π
≤ ε. (3.7)

(i i i) Similarly, for ε > 0, decompose V = V1 + V2 such that V1 is bounded and
compactly supported and ‖V2‖K ≤ ε‖V ‖−3K . We then write

|(V R+0 (λ))4(x, y)| ≤ |(V1R+0 (λ))4(x, y)|+|(V R+0 (λ))4(x, y)− (V1R
+
0 (λ))4(x, y)|.

(3.8)
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For the first term, by the fractional integration inequalities, the Hölder inequalities in
the Lorentz spaces (Lemma 7.5) and the free resolvent estimate ‖R+0 (λ)‖L4/3→L4 �
〈λ〉−1/4 [11, Lemma 2.1], we get

‖R+0 (λ)(V1R
+
0 (λ))3 f ‖L∞

� ‖(V1R+0 (λ))3 f ‖L3/2,1 ≤ ‖V1‖L3,1‖R+0 (λ)(V1R
+
0 (λ))2 f ‖L3,∞

� ‖(V1R+0 (λ))2 f ‖L1 ≤ ‖V1‖L4/3‖R+0 (λ)V1R
+
0 (λ) f ‖L4

� 〈λ〉−1/4‖V1R+0 (λ) f ‖L4/3 � 〈λ〉− 1
4 ‖V1‖L∞‖R+0 (λ) f ‖

L4/3
x∈supp V1

� 〈λ〉− 1
4

∫
R3

∥∥∥ 1

|x − y|
∥∥∥
L4/3
x∈supp V1

| f (y)|dy � 〈λ〉− 1
4 ‖ f ‖L1 . (3.9)

Taking f → δ(· − y), we obtain that |R+0 (λ)(V1R
+
0 (λ))3(x, y)| → 0 as λ → +∞.

Thus, there exists N1 = N1(ε, V1) � 1 such that if λ ≥ N1, then

|(V1R+0 (λ))4)(x, y)| ≤ ε|V1(x)|
2‖V1‖L1

=: D1(x, y). (3.10)

Then, it is obvious that ‖D1(x, y)‖L∞y L1
x
≤ ε

2 . For the second term, we split

(V R+0 (λ))4(x, y)− (V1R
+
0 (λ))4(x, y)

= (V2R
+
0 (λ)(V R+0 (λ))3)(x, y)+ (V1R

+
0 (λ)V2R

+
0 (λ)(V R+0 (λ))2)(x, y) (3.11)

+ ((V1R
+
0 (λ))2V2R

+
0 (λ)V R+0 (λ))(x, y)+ ((V1R

+
0 (λ))3V2R

+
0 (λ))(x, y).

Since the kernel of R+0 (λ) is bounded by the kernel of (−�)−1, we have

|(V R+0 (λ))4(x, y)− (V1R
+
0 (λ))4(x, y)|

≤ (|V2|(−�)−1(|V |(−�)−1)3)(x, y)
+ (|V1|(−�)−1|V2|(−�)−1(|V |(−�)−1)2)(x, y)
+ ((|V1|(−�)−1)2|V2|(−�)−1|V |(−�)−1)(x, y)
+ ((|V1|(−�)−1)3|V2|(−�)−1)(x, y)
=: D2(x, y). (3.12)
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Then,

‖D2(x, y)‖L∞y L1
x
= ‖D2‖L1→L1

≤ ‖|V2|(−�)−1‖L1→L1‖|V |(−�)−1‖3L1→L1

+‖|V1|(−�)−1‖L1→L1‖|V2|(−�)−1‖L1→L1‖|V |(−�)−1‖2L1→L1

+‖|V1|(−�)−1‖2L1→L1‖|V2|(−�)−1‖L1→L1‖|V |(−�)−1‖L1→L1

+ ‖|V1|(−�)−1‖3L1→L1‖|V2|(−�)−1‖L1→L1

≤ 4
(‖V ‖K + ‖V2‖K

4π

)3 ‖V2‖K
4π

≤ ε

2
, (3.13)

where D2 is an integral operator with kernel D2(x, y). Therefore, we conclude that

|(V R+0 (λ))4(x, y)| ≤ D(x, y) := D1(x, y)+ D2(x, y) (3.14)

and ‖D(x, y)‖L∞y L1
x
≤ ε. ��

By algebra, the resolvent R+V (λ) can be written as

R+V (λ)“ = ”R+0 (λ)(I + V R+0 (λ))−1. (3.15)

Let L(L1) be the space of bounded operators on L1. The following lemmas say that
(I+V R+0 (λ)) is invertible inL(L1) forλ ≥ 0, its inverse (I+V R+0 (λ))−1 is uniformly
bounded in L(L1), and is the sum of the identity map and an integral operator.

Lemma 3.2 (Invertibility of (I + V R+0 (λ))) If V ∈ K0 and H has no eigenvalue or
resonance on [0,+∞), then (I + V R+0 (λ)) is invertible in L(L1) for λ ≥ 0.

Proof If it is not invertible, there exists ϕ ∈ L1, ϕ 
= 0, such that (I+V R+0 (λ))ϕ = 0.
Then, ψ := R+0 (λ)ϕ solves the eigenvalue equation (−�+ V )ψ = (λ+ i0)ψ ⇐⇒
ψ + R+0 (λ)Vψ = 0. Moreover, by the resolvent formula R+0 (λ)(x, y) = ei

√
λ|x−y|

4π |x−y| , if
s > 1

2 , then

‖〈x〉−sψ‖L2 = ‖〈x〉−s R+0 (λ)ϕ‖L2 ≤
∫
R3

∥∥∥ 1

〈x〉s4π |x − y|
∥∥∥
L2
x

|ϕ(y)|dy � ‖ϕ‖L1 .

(3.16)

Hence, λ is an eigenvalue or a resonance (contradiction!). ��
Lemma 3.3 (Uniform bound for (I + V R+0 (λ))−1) If V ∈ K0 and H has no eigen-
value or resonance on [0,+∞), then Sλ := (I + V R+0 (λ))−1 : [0,+∞) → L(L1)

is uniformly bounded.
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Proof Iterating the resolvent identity, we get the formal identity

(I + V R+0 (λ))−1“ = ”(I − V R+0 (λ)+ (V R+0 (λ))2 − (V R+0 (λ))3)

∞∑
n=0

(V R+0 (λ))4n .

(3.17)
Indeed, by Lemma 3.1 (i i i), ‖(V R+0 (λ))4‖L1→L1 < 1

2 for all sufficiently large λ.
Hence, the formal identity (3.16) makes sense, and (I + V R+0 (λ))−1 is uniformly
bounded for all sufficiently large λ. Thus, it suffices to show that (I + V R+0 (λ))−1 is
continuous. To see this, we fix λ0 ≥ 0 and write

(I + V R+0 (λ))−1 − (I + V R+0 (λ0))
−1 = (I + V R+0 (λ0)+ Bλ,λ0)

−1 − Sλ0

= [(I + V R+0 (λ0)(I + Sλ0Bλ,λ0)]−1 − Sλ0 = (I + Sλ0Bλ,λ0)
−1Sλ0 − Sλ0

“ = ”
∞∑
n=0

(−Sλ0Bλ,λ0)
n Sλ0 − Sλ0“ = ”

∞∑
n=1

(−Sλ0Bλ,λ0)
n Sλ0 . (3.18)

Then, by Lemma 3.1 (i i), we have

‖(I + V R+0 (λ))−1 − (I + V R+0 (λ0))
−1‖L1→L1 ≤

∞∑
n=1

‖Sλ0‖n+1L1→L1‖Bλ,λ0‖nL1→L1

= ‖Sλ0‖2L1→L1‖Bλ,λ0‖L1→L1

1− ‖Sλ0‖L1→L1‖Bλ,λ0‖L1→L1
→ 0 as λ→ λ0. (3.19)

Therefore, the formal identity (3.17) makes sense, and (I+V R+0 (λ))−1 is continuous.
��

Lemma 3.4 If V ∈ K0 and H has no eigenvalue or resonance on [0,+∞), then
S̃λ := (Sλ − I ) = (I + V R+0 (λ))−1 − I : [0,+∞) → L(L1) is not only uniformly
bounded but also an integral operator with kernel S̃λ(x, y):

S̃ := sup
λ≥0
‖S̃λ‖L1→L1 = sup

λ≥0
‖S̃λ(x, y)‖L∞y L1

x
<∞. (3.20)

Proof By algebra, we have

S̃λ = (I + V R+0 (λ))−1 − I = −(I + V R+0 (λ))−1V R+0 (λ) = −SλV R+0 (λ). (3.21)

Since S̃λ : L1 → L1 is bounded, sending fε → δ(· − y0) as ε → 0, we get

(S̃λ fε)(x) = (−SλV R+0 (λ) fε)(x) →−Sλ

(
V (·)ei

√
λ|·−y0|

4π | · −y0|

)
(x) =: S̃λ(x, y0).

(3.22)

Consider FV (x; y, λ) := V (x) e
i
√

λ|x−y|
4π |x−y| as a function of x with parameters y ∈ R

3

and λ ∈ R. Then, FV (x; y, λ) is bounded in L1
x uniformly in y and λ. Therefore, by
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Lemma 3.3, we conclude that S̃λ(x, y) = −Sλ

(
V (·)ei

√
λ|·−y|

4π |·−y|
)
(x) is also bounded in L1

x

uniformly in λ and y. ��

3.2 Spectral Projections and Eigenfunctions

Letχ be the dyadic partition of unity function chosen in (1.2), and let χ̃N (λ) ∈ C∞c (R)

such that χ̃N (λ) = χ(
√

λ
N ) if λ ≥ 0; χ̃N (λ) = 0 if λ < 0. By functional calculus,

we define the Littlewood-Paley projections by PN = χ̃N (H), P≤N0 =
∑

N<N0
PN ,

PN0<·<N1 =
∑

N0<N<N1
PN and P≥N1 =

∑
N≥N1

PN .

Lemma 3.5 Suppose that V ∈ K0 ∩ L3/2,∞ and H has no eigenvalue or resonance
on [0,+∞). Let S := { f ∈ L1 ∩ L∞ : Pc f = PN0<·<N1 f for some N0, N1 > 0}.
For 1 < r <∞, S is dense in Lr .

Proof L1∩L∞ is dense in Lr . Fix f ∈ L1∩L∞.Weclaim that limN0→0 ‖P<N0 f ‖Lr =
0. By the spectral theory, limN0→0 ‖P<N0 f ‖L2 = 0. On the other hand, replacing χ̃N

by
∑

N<N0
χ̃N in the proof of [12, Corollary 1.6], one can show that ‖P<N0 f ‖L1 and

‖P<N0 f ‖L∞ are bounded uniformly in N0. Hence the claim follows from interpola-
tion. By the same argument, one can show that limN1→∞ ‖P>N1 f ‖Lr = 0. Thus, S
is dense in Lr . ��

Lemma 3.6 (Boundedness of eigenfunctions) Suppose that V ∈ K0 ∩ L3/2,∞ and H
has no eigenvalue or resonance on [0,+∞). Letψ j be an eigenfunction corresponding
to the negative eigenvalue λ j .

(i) For all 1 ≤ p <∞,ψ j ∈ L p and Pλ j is bounded on L p, where Pλ j is the spectral
projection onto the point {λ j }.

(ii) ∇ψ j ∈ Lr for 1 < r < 3.

Proof (i) We prove the lemma following the argument in [1]. We decompose V =
V1 + V2 such that V1 is compactly supported and bounded, and ‖V2‖K ≤ 1. Then,

ψ j + R0(λ j )Vψ j = ψ j + R0(λ j )(V1 + V2)ψ j = 0

⇒ ψ j = −(I + R0(λ j )V2)
−1R0(λ j )V1ψ j = −

∞∑
n=0

(−R0(λ j )V2)
n R0(λ j )V1ψ j .

(3.23)

Observe that, since V1 is compactly supported, and λ j < 0, R0(λ j )V1ψ j is exponen-
tially decaying. To see this, we choose sufficiently small ε > 0 such that ε <

√−λ j

for any negative eigenvalue λ j . Indeed, there exists such ε, since by the assumptions,
there are at most finitely many negative eigenvalues (see [2]). Then, by the fractional
integration inequality and the Hölder inequality in the Lorentz spaces (Lemma 7.5),



J Fourier Anal Appl (2016) 22:591–622 603

we get

|eε|x |(R0(λ j )V1 f )(x)| ≤ eε|x |
∫
R3

ei
√

λ j |x−y|

4π |x − y| |V1(y)||ψ j (y)|dy

≤
∫
R3

e−(
√−λ j−ε)|x−y|

4π |x − y| eε|y||V1(y)||ψ j (y)|dy (3.24)

≤ ‖eε|·|V1ψ j‖L3/2,1 � ‖eε|·|V1‖L6,2‖ψ j‖L2 .

Similarly, one can check that eε|·|R0(λ j )V2e−ε|·| is bounded on L∞ and its operator
norm is strictly <1. Thus, we prove that

‖eε|·|ψ j‖L∞ ≤
( ∞∑
n=0

‖eε|·|R0(λ j )V2e
−ε|·|‖nL∞→L∞

)
‖eε|·|R0(λ j )V1ψ j‖L∞ <∞.

(3.25)
Therefore, ψ j ∈ L p and Pλ j f = 〈ψ j , f 〉L2ψ j is bounded on L p for all 1 ≤ p ≤ ∞.

(i i) Let δ1, δ2 > 0 be arbitrarily small numbers. Then, since λ j < 0, by the
inhomogeneous Sobolev inequality, we get

‖∇ψ j‖
L

1
1−δ1

= ‖∇R+0 (λ j )Vψ j‖
L

1
1−δ1

� ‖Vψ j‖
L

1
1−δ1

≤ ‖V ‖L3/2,∞‖ψ j‖
L

3
1−3δ1 ,1 <∞,

‖∇ψ j‖
L

3
1+δ2

= ‖∇R+0 (λ j )Vψ j‖
L

3
1+δ2

� ‖Vψ j‖
W
−1, 3

1+δ2

� ‖Vψ j‖
L

3
2+δ2

≤ ‖V ‖L3/2,∞‖ψ j‖
L

3
δ2

, 3
2+δ2

<∞. (3.26)

Thus, interpolation gives (i i). ��

4 High Frequency Estimate: Proof of Lemma 2.1 (i)

4.1 Construction of the Formal Series Expansion

For a large dyadic number N1 to be chosen later, we construct a formal series for
Pb≥N1 as follows. First, iterating the resolvent identity

(I + V R+0 (λ))−1 = I − (I + V R+0 (λ))−1V R+0 (λ), (4.1)

we generate a formal series expansion

(I + V R+0 (λ))−1“ = ”
∞∑
n=0

(−V R+0 (λ))n . (4.2)
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Plugging (4.2) into (2.7), we write

Pb≥N1“ = ”−
∑
N≥N1

∞∑
n=0

1

π

∫ ∞

0
m(λ)χN (

√
λ) Im[R+0 (λ)(−V R+0 (λ))nV R+0 (λ)]dλ.

(4.3)
Then, writing the first and the last free resolvents explicitly by the free resolvent

formula R+0 (λ)(x, y) = ei
√

λ|x−y|
4π |x−y| and collecting terms having λ by Fubini theorem,

we write the kernel of Pb≥N1 as

Pb≥N1(x, y)

“ = ”
∑
N≥N1

∞∑
n=0

(−1)n+1
π

∫ ∞

0
m(λ)χN (

√
λ)

× Im

[∫
R6

ei
√

λ|x−x̃ |

4π |x − x̃ | (V R+0 (λ))n(x̃, ỹ)V (ỹ)
ei
√

λ|ỹ−y|

4π |x̃ − y|dx̃d ỹ
]
dλ

=
∫
R6

V (ỹ)

16π3|x − x̃ ||ỹ − y|

⎧⎨
⎩

∑
N≥N1

∞∑
n=0

(−1)n+1PbnN (x, x̃, ỹ, y)

⎫⎬
⎭ dx̃d ỹ, (4.4)

where

PbnN (x, x̃, ỹ, y) =
∫ ∞

0
m(λ)χN (

√
λ) Im[ei

√
λ(|x−x̃ |+|ỹ−y|)(V R+0 (λ))n(x̃, ỹ)]dλ.

(4.5)
We note that the series (4.4) makes sense only formally at this moment, but it will be
shown that the sum is absolutely convergent, and that it satisfies the bound we want
to have.

4.2 Intermediate Kernel Estimates

We estimate the intermediate kernel PbnN (x, x̃, ỹ, y) in two ways. First, we show that
the sum of PbnN (x, x̃, ỹ, y) in N ≥ N1 is absolutely convergent, and moreover each
PbnN (x, x̃, ỹ, y) decays away from x = x̃ and ỹ = y.

Lemma 4.1 (Summability in N ) For s1, s2 ≥ 0, we have

|PbnN (x, x̃, ỹ, y)| � N 2‖m‖H(s1+s2)
〈N (x − x̃)〉s1〈N (ỹ − y)〉s2 k

n
1 (x̃, ỹ) (4.6)

and

‖kn1 (x̃, ỹ)‖L∞ỹ L1
x̃
≤

(‖V ‖K
4π

)n

. (4.7)

For the proof, we need the following lemma.
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Lemma 4.2 (Oscillatory integral) For s ≥ 0,

∣∣∣∣
∫ ∞

0
m(λ)χN (

√
λ) Im(ei

√
λσ )dλ

∣∣∣∣ � N 2

〈Nσ 〉s ‖m‖H(s). (4.8)

Proof By abuse of notation, we denote by χ the even extension of itself. Making
change of variables λ �→ N 2λ2, we write

∫ ∞

0
m(λ)χN (

√
λ) Im(ei

√
λσ )dλ = N 2

∫ ∞

0
2λm(N 2λ2)χ(λ) sin(Nλσ)dλ

= N 2
∫
R

λm(N 2λ2)χ(λ)eiλNσdλ

= N 2
(
m(N 2λ2)λχ(λ)

)∨
(Nσ)

= N 2

〈Nσ 〉s
(
〈∇〉s(m(N 2λ2)λχ(λ))

)∨
(Nσ). (4.9)

Thus, it follows from Hausdorff–Young inequality and the fractional Leibniz rule that

∣∣∣
∫ ∞

0
m(λ)χN (

√
λ) Im(ei

√
λσ )dλ

∣∣∣ ≤ N 2

〈Nσ 〉s ‖m(N 2λ2)λχ(λ)‖Ws,1

� N 2

〈Nσ 〉s ‖m(N 2λ2)χ(λ)‖Ws,2

≤ N 2

〈Nσ 〉s ‖m‖H(s). (4.10)

��
Proof of Lemma 4.1 First, using the free resolvent formula, we write

PbnN (x, x̃, ỹ, y)

=
∫ ∞

0
m(λ)χN (

√
λ) Im

{ ∫
R3(n−1)

n∏
k=1

V (xk)

∏n+1
k=0 ei

√
λ|xk−xk+1|∏n

k=1 4π |xk − xk+1|dx(2,n)

}
dλ

=
∫
R3(n−1)

∏n
k=1 V (xk)∏n

k=1 4π |xk − xk+1|
{ ∫ ∞

0
m(λ)χN (

√
λ) Im(ei

√
λσn+1)dλ

}
dx(2,n),

(4.11)

where x0 := x , x1 := x̃ , xn+1 := ỹ, xn+2 := y, dx(2,n) := dx2 . . . dxn and σn :=∑n
j=0 |x j − x j+1|. Then, by Lemma 4.2 with s = s1 + s2 and the trivial inequality

|x0 − x1| = |x − x̃ |, |xn+1 − xn+2| = |ỹ − y| ≤ σn+1 =
n+1∑
j=0
|x j − x j+1|, (4.12)
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we obtain that

|PbnN (x, x̃, ỹ, y)|� N 2‖m‖H(s1+s2)
〈N (x − x̃)〉s1〈N (ỹ − y)〉s2

∫
R3(n−1)

∏n
k=1 |V (xk)|∏n

k=1 4π |xk − xk+1|dx(2,n).

(4.13)
We define

kn1 (x̃, ỹ) :=
∫
R3(n−1)

∏n
k=1 |V (xk)|∏n

k=1 4π |xk − xk+1|dx(2,n). (4.14)

Then, by the definition of the global Kato norm, we have

‖kn1 (x̃, ỹ)‖L∞ỹ L1
x̃
≤ sup

xn+1∈R3

∫
R3n

∏n
k=1 |V (xk)|∏n

k=1 4π |xk − xk+1|dx(1,n)

≤
(

sup
xn∈R3

∫
R3(n−1)

∏n−1
k=1 |V (xk)|∏n−1

k=1 4π |xk − xk+1|
dx(1,n−1)

)

×
(

sup
xn+1∈R3

∫
R3

|V (xn)|
4π |xn − xn+1|dxn

)

≤
(

sup
xn∈R3

∫
R3(n−1)

∏n−1
k=1 |V (xk)|∏n−1

k=1 4π |xk − xk+1|
dx(1,n−1)

)(‖V ‖K
4π

)

≤ · · · (repeat) · · · ≤
(‖V ‖K

4π

)n
. (4.15)

��

Next, we show summability of the intermediate kernel in n.

Lemma 4.3 (Summability in n) For ε > 0, there exist N1 = N1(V, ε) � 1 and
kn2 (x̃, ỹ) ∈ L∞ỹ L1

x̃ such that for N ≥ N1,

|PbnN (x, x̃, ỹ, y)| � εnN 2‖m‖H(0)k
n
2 (x̃, ỹ). (4.16)

and
‖kn2 (x̃, ỹ)‖L∞ỹ L1

x̃
� εn . (4.17)

Proof By Lemma 3.1 (i i i), given ε > 0, there exist N1 � 1 and an operator D :
L1 → L1 such that ‖D(x, y)‖L∞y L1

x
≤ ε4 and |(V R+0 (λ))4(x, y)| ≤ D(x, y). We also

observe that

|(V R+0 (λ))(x, y)| =
∣∣∣∣∣V (x)

ei
√

λ|x−y|

4π |x − y|

∣∣∣∣∣ =
|V (x)|

4π |x − y| =
(
|V |(−�)−1

)
(x, y).

(4.18)
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We denote by �a� the largest integer less than or equal to a. Then, we have

|PbnN (x, x̃, ỹ, y)| ≤
∫ ∞

0
|m(λ)|χN (

√
λ)|(V R+0 (λ))n(x̃, ỹ)|dλ

≤
∫ ∞

0
|m(λ)|χN (

√
λ)

∣∣∣
(
D�

n
4 �(|V |(−�)−1)n−4�

n
4 �
)
(x̃, ỹ)

∣∣∣dλ

� N 2
∫ ∞

0
|m(N 2λ)|χ(λ)dλ ·

∣∣∣
(
D�

n
4 �(|V |(−�)−1)n−4�

n
4 �
)
(x̃, ỹ)

∣∣∣
� N 2‖m‖H(0)

∣∣∣
(
D�

n
4 �(|V |(−�)−1)n−4�

n
4 �
)
(x̃, ỹ)

∣∣∣. (4.19)

We define
kn2 (x̃, ỹ) :=

∣∣∣
(
D�

n
4 �(|V |(−�)−1)n−4�

n
4 �
)
(x̃, ỹ)

∣∣∣. (4.20)

Then, by Lemma 3.1, one can check (4.17). ��

4.3 Proof of Lemma 2.1 (i)

Let δ > 0 be a sufficiently small number to be chosen later. Let ε > 0 be a small
number depending on ‖V ‖K and δ > 0 [see (4.30)]. Then, we pick a large dyadic

number N1 from Lemma 4.3. We will show that Pb≥N1 is bounded from L
3

3−δ
,1 to

L
3

3−δ
,∞.

Let s = 2
1−δ

> 2 and θ = 2−δ
2 (⇒ 2θ = 2 − δ, (s − 2)θ > δ and sθ > 2). Then,

by Lemma 4.1 with s1 = 2 and s2 = s − 2 and Lemma 4.3, we get

|PbnN (x, x̃, ỹ, y)| = |PbnN (x, x̃, ỹ, y)|θ |PbnN (x, x̃, ỹ, y)|1−θ

� N 2‖m‖H(s)

〈N (x − x̃)〉2θ 〈N (ỹ − y)〉(s−2)θ
(
kn1 (x̃, ỹ)

)θ(
kn2 (x̃, ỹ)

)1−θ

.

(4.21)

We claim that ∑
N∈2Z

N 2

〈Nx〉2θ 〈Ny〉(s−2)θ � 1

|x |2−δ|y|δ . (4.22)

Fix x, y ∈ R
3, and consider the following four cases.

(Case 1 N < min(|x |−1, |y|−1))

∑
Case 1

N 2

〈Nx〉2θ 〈Ny〉(s−2)θ ≤
∑
Case 1

N 2 ≤ min
( 1

|x | ,
1

|y|
)2 ≤ 1

|x |2−δ|y|δ . (4.23)
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(Case 2 |x |−1 ≤ N < |y|−1)

∑
Case 2

N 2

〈Nx〉2θ 〈Ny〉(s−2)θ ≤
∑
Case 2

N 2

|Nx |2θ =
∑
Case 2

N 2(1−θ)

|x |2θ =
∑
Case 2

N δ

|x |2−δ

≤ 1

|x |2−δ|y|δ . (4.24)

(Case 3 |y|−1 ≤ N < |x |−1)

∑
Case 3

N 2

〈Nx〉2θ 〈Ny〉(s−2)θ ≤
∑
Case 3

N 2

|Ny|δ =
∑
Case 3

N 2−δ

|y|δ ≤ 1

|x |2−δ|y|δ . (4.25)

(Case 4 N ≥ max(|x |−1, |y|−1))

∑
Case 4

N 2

〈Nx〉2θ 〈Ny〉(s−2)θ � 1

|x |2θ |y|(s−2)θ
∑
Case 4

1

Nsθ−2

≤ 1

|x |2−δ|y|(s−2)θ |y|
sθ−2 ≤ 1

|x |2−δ|y|2−2θ =
1

|x |2−δ|y|δ .

(4.26)

Collecting all, we prove the claim.
Applying (4.22) to (4.21) and summing in N ≥ N1, we obtain

∑
N≥N1

|PbnN (x, x̃, ỹ, y)| � ‖m‖H(s)

|x − x̃ |2−δ|ỹ − y|δ
(
kn1 (x̃, ỹ)

)θ(
kn2 (x̃, ỹ)

)1−θ

. (4.27)

Let

K (x, y) =
∞∑
n=0

(
kn1 (x̃, ỹ)

)θ(
kn2 (x, y)

)1−θ

. (4.28)

Then, K ∈ L∞y L1
x , since if N1 is large enough,

‖K (x, y)‖L∞y L1
x
≤

∞∑
n=0

∥∥∥
(
kn1 (x̃, ỹ)

)θ(
kn2 (x, y)

)1−θ∥∥∥
L∞y L1

x

≤
∞∑
n=0

‖kn1 (x̃, ỹ)‖θL∞y L1
x
‖kn2 (x, y)‖1−θ

L∞y L1
x

≤
∞∑
n=0

(‖V ‖K
4π

)nθ

εn <∞, (4.29)
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where ε > 0 is chosen so that ( ‖V ‖K4π )θ ε < 1 with θ = 2−δ
2 . Therefore, we obtain the

kernel estimates for Pb≥N1(x, y),

|PbN1(x, y)| ≤
∫
R6

V (ỹ)

16π3|x − x̃ ||ỹ − y|
∑
N≥N1

∞∑
n=0

|PbnN (x, x̃, ỹ, y)|dx̃d ỹ

�
∫
R6

|V (ỹ)|
|x − x̃ |3−δ|ỹ − y|1+δ

K (x̃, ỹ)dx̃d ỹ, (4.30)

with K ∈ L∞y L1
x .

Let TK be the integral operator with kernel K (x, y), which is bounded on L1 by
(4.29). By the fractional integration inequality and Hölder inequality in the Lorentz
spaces (see “Appendix”), we conclude that

‖Pb≥N1 f ‖
L

3
3−δ

,∞

�
∥∥∥
∫
R9

|V (ỹ)|
|x − x̃ |3−δ|ỹ − y|1+δ

K (x̃, ỹ)| f (y)|dx̃d ỹdy
∥∥∥
L

3
3−δ

,∞
x

� ‖|∇|−δTK (|V ||∇|−(2−δ)(| f |))‖
L

3
3−δ

,∞ � ‖TK (|V ||∇|−(2−δ)(| f |))‖L1
x

(4.31)

� ‖|V ||∇|−(2−δ)(| f |)‖L1
x
≤ ‖V ‖L3/2,∞‖|∇|−(2−δ)| f |‖L3,1 � ‖ f ‖

L
3

3−δ
,1 .

Remark 4.4 In (4.31),we only used the fractional integration inequality and theHölder
inequality. Note that after applying the fractional integration inequality, we always
have the L p,q -norm with smaller p on the right hand side, although we want to show

the L
3

3−ε
,1 − L

3
3−ε

,∞ boundedness. Hence, one must have at least one chance to raise
the number p to compensate the decrease of p caused by the fractional integration
inequalities. In (4.31), the potential V plays such a rolewith theHölder inequality. This
is themain reason that we keep one extra potential term V in the spectral representation
by considering the perturbationm(H)Pc−m(−�) insteadofm(H)Pc, and introducing
intermediated kernels PbnN (x, x̃, ỹ, y), even though they look rather artificial.

5 Low Frequency Estimate: Proof of Lemma 2.1 (i i)

5.1 Construction of the Formal Series Expansion

We prove Lemma 2.1 (i i) bymodifying the argument in Sect. 4. Note that for small N ,
the formal series expansion (4.2) may not be convergent, since (V R+0 (λ))4 in (4.2) is
not small anymore. Hence, we introduce a new series expansion for (I +V R+0 (λ))−1,
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(I + V R+0 (λ))−1 = (I + V R+0 (λ0)+ Bλ,λ0)
−1

= [(I + Bλ,λ0 Sλ0)(I + V R+0 (λ0))]−1
= (I + V R+0 (λ0))

−1(I + Bλ,0Sλ0)
−1

“ = ”Sλ0

∞∑
n=0

(−Bλ,λ0 Sλ0)
n, (5.1)

where Bλ,λ0 = V (R+0 (λ) − R+0 (λ0)) and Sλ0 = (I + V R+0 (λ0))
−1. Plugging the

formal series (5.1) with λ0 = 0 into (2.7), we write

PbN “ = ”
∞∑
n=0

(−1)n+1
π

∫ ∞

0
m(λ)χN (

√
λ) Im[R+0 (λ)S0(Bλ,0S0)

nV R+0 (λ)]dλ.

(5.2)
As in the previous section, writing the first and the last free resolvents explicitly by

the free resolvent formula R+0 (λ)(x, y) = ei
√

λ|x−y|
4π |x−y| and collecting terms having λ by

Fubini theorem, we write the kernel of PbN as

PbN (x, y)

“ = ”
∞∑
n=0

(−1)n+1
π

∫ ∞

0
m(λ)χN (

√
λ)

× Im
[ ∫∫

R6

ei
√

λ|x−x̃ |

4π |x − x̃ | [S0(Bλ,0S0)
n](x̃, ỹ)V (ỹ)

ei
√

λ|ỹ−y|

4π |x̃ − y|dx̃d ỹ
]
dλ

=
∫∫

R6

V (ỹ)

16π3|x − x̃ ||ỹ − y|
[ ∞∑
n=0

(−1)n+1PbnN (x, x̃, ỹ, y)
]
dx̃d ỹ, (5.3)

where

PbnN (x, x̃, ỹ, y) =
∫ ∞

0
m(λ)χN (

√
λ) Im[ei

√
λ(|x−x̃ |+|ỹ−y|)[S0(Bλ,0S0)

n](x̃, ỹ)]dλ.

(5.4)
By Lemma 3.1 (i i), Bλ,0 in (5.3) is small for sufficiently small N . This fact will
guarantee the convergence of the formal series.

5.2 Intermediate Kernel Estimates

We will show the kernel estimates analogous to Lemmas 4.1 and 4.3. Then, Lemma
2.1 (i i) will follow from exactly the same argument in Sect. 4.3, thus we omit the
proof.

Lemma 5.1 (Summability in N ) There exists kn1 (x̃, ỹ) such that for s1, s2 ≥ 0,

|PbnN (x, x̃, ỹ, y)| � N 2‖m‖H(s1+s2)
〈N (x − x̃)〉s1〈N (ỹ − y)〉s2 k

n
1 (x̃, ỹ) (5.5)
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and

‖kn1 (x̃, ỹ)‖L∞ỹ L1
x̃
≤ (S̃ + 1)n+1

(‖V ‖K
2π

)n
, (5.6)

where S̃ is the positive number given by (3.20).

Proof First, splitting Bλ,0 into V R+0 (λ)− V R+0 (0) in

PbnN (x, x̃, ỹ, y) =
∫ ∞

0
m(λ)χN (

√
λ) Im[ei

√
λ(|x−x̃ |+|ỹ−y|)[S0(Bλ,0S0)

n](x̃, ỹ)]dλ,

(5.7)
we write PbnN (x, x̃, ỹ, y) as the sum of 2n copies of

∫ ∞

0
m(λ)χN (

√
λ) Im[ei

√
λ(|x−x̃ |+|ỹ−y|)[S0V R+0 (α1λ)S0 · · ·V R+0 (αnλ)S0](x̃, ỹ)]dλ

(5.8)
up to ±, where αk = 0 or 1 for each k = 1, . . . , n. Next, splitting all S0 into I and S̃0
in (5.8), we further decompose (5.8) into the sum of 2n+1 kernels.

Among them, let us consider the two representative terms,

Im
∫ ∞

0
m(λ)χN (

√
λ)ei

√
λ(|x−x̃ |+|ỹ−y|)[S̃0V R+0 (α1λ)S̃0 . . . V R+0 (αnλ)S̃0](x̃, ỹ)dλ,

(5.9)

Im
∫ ∞

0
m(λ)χN (

√
λ)ei

√
λ(|x−x̃ |+|ỹ−y|)[V R+0 (α1λ) . . . V R+0 (αnλ)](x̃, ỹ)dλ.

(5.10)

For the first term, by the free resolvent formula (1.10), we write (5.9) in the integral
form,

Im
∫ ∞

0

∫
R6n

m(λ)χN (
√

λ)

n+1∏
k=1

S̃0(x2k−1, x2k)

×
n∏

k=1
V (x2k)

∏n+1
k=0 eiαk

√
λ|x2k−x2k+1|∏n

k=1 4π |x2k − x2k+1|dx(2,2n+1)dλ

=
∫
R6n

∏n+1
k=1 S̃0(x2k−1, x2k)

∏n
k=1 V (x2k)∏n

k=1 4π |x2k − x2k+1|
×

{∫ ∞

0
m(λ)χN (

√
λ) Im(ei

√
λσ̃n+1)dλ

}
dx(2,2n+1) (5.11)

where x0 := x , x1 := x̃ , x2n+2 := ỹ, x2n+3 := y, dx(2,n) := dx2 · · · dxn , σ̃n :=∑n+1
k=0 αk |x2k − x2k+1| and α0 = αn+1 = 1. Then, by Lemma 4.2 with s = s1 + s2

and |x0 − x1|, |x2n+2 − x2n+3| ≤ σ̃n+1, we obtain that
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∣∣∣
∫ ∞

0
m(λ)χN (

√
λ) Im(ei

√
λσ̃n+1)dλ

∣∣∣ � N 2‖m‖H(s1+s2)
〈N (x0 − x1)〉s1〈N (x2n+2 − x2n+3)〉s2 .

(5.12)
Applying (5.12) to (5.9), we get the arbitrary polynomial decay away from x0 = x1,

|(5.9)| � N 2‖m‖H(s1+s2)kn(5.9)(x̃, ỹ)
〈N (x0 − x1)〉s1〈N (x2n+2 − x2n+3)〉s2 =

N 2‖m‖H(s1+s2)kn(5.9)(x̃, ỹ)
〈N (x − x̃)〉s1〈N (ỹ − y)〉s2 ,

(5.13)
where

kn(5.9)(x̃, ỹ) : =
∫
R6n

∏n+1
k=1 |S̃0(x2k−1, x2k)|

∏n
k=1 |V (x2k)|∏n

k=1 4π |x2k − x2k+1| dx(2,2n+1)

= [|S̃0|(|V |(−�)−1|S̃0|)n](x̃, ỹ) (5.14)

and |S̃0| is the integral operator with kernel |S̃0(x, y)|. We claim that

‖kn(5.9)(x̃, ỹ)‖L∞y L1
x1

� S̃n+1(‖V ‖K/4π)n . (5.15)

Indeed, since ‖|S̃0|(|V |(−�)−1|S̃0|)n f ‖L1 ≤ S̃n+1( ‖V ‖K4π )n‖ f ‖L1 and |S̃0|(|V |
(−�)−1|S̃0|)n is an integral operator, sending f → δ(· − y), we prove the claim.

Similarly, we write (5.10) as

Im
∫ ∞

0

∫
R3n−3

m(λ)χN (
√

λ)

n∏
k=1

V (xk)

∏n+1
k=0 eiαk

√
λ|xk−xk+1|∏n

k=1 4π |xk − xk+1| dx(2,n)dλ

=
∫
R3n−3

∏n
k=1 V (xk)∏n

k=1 4π |xk − xk+1|
{∫ ∞

0
m(λ)χN (

√
λ) Im(ei

√
λ ˜̃σn+1)dλ

}
dx(2,n)

(5.16)

where x0 := x , x1 := x̃ , xn+1 := ỹ, xn+2 := y, α0 = αn+2 = 1 and ˜̃σn :=∑n
k=0 αk |xk − xk+1|. Then, by Lemma 4.2 with s = s1 + s2 and |x0 − x1|, |xn+1 −

xn+2| ≤ ˜̃σn+1, we obtain that

|(5.10)| � N 2‖m‖H(s1+s2)kn(5.10)(x̃, ỹ)
〈N (x0 − x1)〉s1〈N (xn+1 − xn+2)〉s2 =

N 2‖m‖H(s1+s2)kn(5.10)(x̃, ỹ)
〈N (x − x̃)〉s1〈N (ỹ − y)〉s2

(5.17)
where

kn(5.10)(x̃, ỹ) :=
∫
R3n−3

∏n
k=1 |V (xk)|∏n

k=1 4π |xk − xk+1|dx(2,n) = (4π)−n(|V |(−�)−1)n(x̃, ỹ).

(5.18)
Then by the definition of the global Kato norm, we prove that

‖kn(5.10)(x̃, ỹ)‖L∞y L1
x1
≤ (‖V ‖K/4π)n . (5.19)
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Similarly, we estimate other kernels, and define kn1 (x̃, ỹ) as the sum of all 22n+1 many
upper bounds including K(5.9)(x̃, ỹ) and K(5.10)(x̃, ỹ). Then, kn1 (x̃, ỹ) satisfies (5.5)
and (5.6). ��
Lemma 5.2 (Summability in n) For any ε > 0, there exist a small number N0 =
N0(V, ε) � 1 and kn2 (x̃, ỹ) ∈ L∞ỹ L1

x̃ such that for N ≤ N0,

|PbnN (x, x̃, ỹ, y)| � N 2‖m‖H(s)k
n
2 (x̃, ỹ) (5.20)

and
‖kn2 (x̃, ỹ)‖L∞ỹ L1

x̃
≤ εn . (5.21)

Proof Fix small ε > 0. Then, by Lemma 3.1 (i i), we choose small N0 := δ = δ(ε) >

0 and an integral operator B such that |Bλ,0(x, y)| ≤ B(x, y) for 0 ≤ λ ≤ N0, and

‖B‖L1→L1 ≤ ε(S̃ + 1)−1, (5.22)

where S̃ is a positive number given from (3.20). We define

kn2 (x̃, ỹ) := [(I + |S̃0|)(B(I + |S̃0|))n](x̃, ỹ),

where |S̃0| is the integral operator with |S̃0(x, y)| as kernel. Then, by definitions [see
(5.4)], one can check that kn2 (x̃, ỹ) satisfies (5.20). For (5.21), splitting (I + |S̃0|) into
I and |S̃0| in kn2 (x̃, ỹ), we get 2n+1 terms,

kn2 (x̃, ỹ) = [|S̃0|(B|S̃0|)n](x̃, ỹ)+ · · · + Bn(x̃, ỹ). (5.23)

For example, we consider |S̃0|(B|S̃0|)n and Bn . Since both |S̃0| and B are integral
operators, by Lemma 3.4 and (5.12), we obtain

‖[|S̃0|(B|S̃0|)n](x̃, ỹ)‖L∞ỹ L1
x̃
= ‖|S̃0|(B|S̃0|)n‖L1→L1 ≤ S̃n+1

(
ε(S̃ + 1)−1

)n
,

‖Bn(x̃, ỹ)‖L∞ỹ L1
x̃
= ‖Bn‖L1→L1 ≤

(
ε(S̃ + 1)−1

)n
. (5.24)

Similarly, we estimate other 2n+1 − 2 terms. Summing them up, we prove (5.21). ��

6 Medium Frequency Estimate: Proof of Lemma 2.1 (i i i)

The proof closely follows from that of Lemma 2.1 (i i), so we only sketch the proof.
For ε > 0, we take δ = δ(ε) > 0 from Lemma 3.1 (i i). We choose a partition
of unity function ψ ∈ C∞c such that suppψ ⊂ [−δ, δ], ψ(λ) = 1 if |λ| ≤ δ

3 and∑∞
j=1 ψ(· − λ j ) ≡ 1 on (0,+∞), where λ j = jδ.
Let N0 and N1 be dyadic numbers chosen in the previous sections. For N0 ≤ N ≤

N1, we first decompose χN (
√

λ) in PbN [see (2.7)] into χN (
√

λ) =∑2N/δ
j=N/2δ χ

j
N (λ)
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where χ
j
N (λ) = χN (

√
λ)ψ(λ − λ j ). Plugging the formal series (5.1) with λ0 = λ j

into each integral, we write the kernel of PbN as

PbN (x, y)“ = ”
∫∫

R6

V (ỹ)

16π3|x − x̃ ||ỹ − y|
[ ∞∑
n=0

(−1)n+1PbnN (x, x̃, ỹ, y)
]
dx̃d ỹ,

(6.1)
where

PbnN (x, x̃, ỹ, y)

=
2N/δ∑
j=N/2δ

∫ ∞

0
m(λ)χ

j
N (
√

λ) Im[ei
√

λ(|x−x̃ |+|ỹ−y|)[Sλ j (Bλ,λ j Sλ j )
n](x̃, ỹ)]dλ.

(6.2)

By the arguments in the previous sections, for Lemma 2.1 (i i i), it suffices to show the
following two lemmas:

Lemma 6.1 (Summability in N ) For N0 < N < N1, there exists knN ,1(x̃, ỹ) such that
for s1, s2 ≥ 0,

|PbnN (x, x̃, ỹ, y)| � N 2‖m‖H(s1+s2)knN ,1(x̃, ỹ)

〈N (x − x̃)〉s1〈N (ỹ − y)〉s2 , (6.3)

and

‖knN ,1(x̃, ỹ)‖L∞ỹ L1
x̃
≤ (S̃ + 1)n+1

(‖V ‖K
2π

)n
. (6.4)

Proof For instance, consider

∫ ∞

0
m(λ)χ

j
N (λ) Im[ei

√
λ(|x−x̃ |+|ỹ−y|){Sλ j (Bλ,λ j Sλ j )

n}(x̃, ỹ)]dλ (6.5)

among O(N )-many similar integrals in (6.2). As we did in Lemma 4.2, we show that

∣∣∣
∫ ∞

0
m(λ)χ

j
N (λ) Im(ei

√
λσ )dλ

∣∣∣ �N0,N1

N‖m‖H(s)

〈Nσ 〉s . (6.6)

Repeating the proof of Lemma 5.1 [but replacing S0 and Bλ,0 by Sλ j and Bλ,λ j and
applying (6.6) instead of Lemma4.2], one can find knN , j,1(x̃, ỹ) such that for s1, s2 ≥ 0,

|(6.5)| � N‖m‖H(s1+s2)knN , j,1(x̃, ỹ)

〈N (x − x̃)〉s1〈N (ỹ − y)〉s2 , (6.7)

‖knN , j,1(x̃, ỹ)‖L∞ỹ L1
x̃
≤ (S̃ + 1)n+1

(‖V ‖K
2π

)n
. (6.8)
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Define

knN ,1(x̃, ỹ) :=
δ

N

2N/δ∑
j=N/2δ

knN , j,1(x̃, ỹ),

then it satisfies (6.3) and (6.4). ��
Lemma 6.2 (Summability in n) Let ε > 0 be a small number chosen at the beginning
of this section. For N0 < N < N1, there exists knN ,2(x̃, ỹ) such that

|PbnN (x, x̃, ỹ, y)| � N 2‖m‖H(s)k
n
N ,2(x̃, ỹ), (6.9)

and
‖knN ,2(x̃, ỹ)‖L∞ỹ L1

x̃
≤ (1+ S̃)n+1εn . (6.10)

Proof Again, we consider (6.5). By the choice of ε and δ and Lemma 3.1 (i i), there
exists an integral operator B such that |Bλ,λ j (x, y)| ≤ B(x, y) for |λ − λ j | < δ,

λ, λ j ≥ 0, and ‖B‖L1→L1 ≤ ε. Let |S̃λ j | be the integral operator with integral kernel
|S̃λ j (x, y)|. Then, we have

|(6.5)| � N‖m‖H(s)[(I + |S̃λ j |)(B(I + |S̃λ j |))n](x̃, ỹ) (6.11)

and
‖[(I + |S̃λ j |)(B(I + |S̃λ j |))n](x̃, ỹ)‖L∞ỹ L1

x̃
≤ (1+ S̃)n+1εn . (6.12)

Therefore, we define

kn2 (x̃, ỹ) :=
δ

N

2N/δ∑
j=N/2δ

[(I + |S̃λ j |)(B(I + |S̃λ j |))n](x̃, ỹ), (6.13)

then it satisfies (6.9) and (6.10). ��

7 Application to the Nonlinear Schrödinger Equation

7.1 Two Norm Estimates

Following the argument in [6],webeginwith proving the boundedness of the imaginary
power operators. For α ∈ R, the imaginary power operator HiαPc is defined as a
spectral multiplier of symbol λiα1[0,+∞). We consider HiαPc instead of Hiα just for
convenience’s sake. Indeed, by the assumptions, H has only finitely many negative
eigenvalues, and the projection Pλ j is bounded on Lr for any 1 < r <∞ (see Lemma
3.6). Therefore, the boundedness of HiαPc implies that of Hiα = HiαPc+∑

λiαj Pλ j ,
where λ j ’s are negative eigenvalues of H .
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Lemma 7.1 (Imaginary power operator) If V ∈ K0∩L3/2,∞ and H has no eigenvalue
or resonance on [0,+∞), then for α ∈ R,

‖HiαPc‖Lr→Lr � 〈α〉3, 1 < r <∞. (7.1)

Proof Since ‖λiα1[0,+∞)‖H(3) � 〈α〉3, the lemma follows from Theorem 1.1. ��
Proposition 7.2 (Two norm estimates) If V ∈ K0 ∩ L3/2,∞ and H has no eigenvalue
or resonance on [0,+∞), then for 0 ≤ s ≤ 2 and 1 < r < 3

s ,

‖H s
2 Pc(−�)−

s
2 f ‖Lr � ‖ f ‖Lr , (7.2)

‖(−�)
s
2 H−

s
2 Pc f ‖Lr � ‖ f ‖Lr . (7.3)

Proof (7.2) Pick f, g ∈ L1 ∩ L∞ such that supp f̂ ⊂ B(0, R) \ B(0, r), Pn≤·≤N g =
Pcg for some R, r, N , n > 0. Note that by Lemma 3.5, the collection of such f (g,
resp) is dense in Lr (Lr ′ , resp). We define

F(z) := 〈Hz Pc(−�)−z f, g〉L2 = 〈(−�)−Re z−i Im z f, H−i Im z HRe zg〉L2 . (7.4)

Indeed, F(z) is well-defined, since (−�)−Re z−i Im z f, H−i Im z HRe zg ∈ L2. More-
over, F(z) is continuous on S = {z : 0 ≤ Re z ≤ 1} ⊂ C, and it is analytic in the
interior of S. We claim that HPc(−�)−1 is bounded on Lr for 1 < r < 3

2 . Indeed, by
Lemma 3.6 (i),

‖HPc(−�)−1 f ‖Lr � ‖(−�+V )(−�)−1 f ‖Lr ≤ ‖ f ‖Lr+‖V (−�)−1 f ‖Lr . (7.5)

By theHölder inequality (Lemma 7.5) and the Sobolev inequality in the Lorentz norms
(Corollary 7.9), we have

‖V (−�)−1 f ‖Lr ≤ ‖V ‖L3/2,∞‖(−�)−1 f ‖
L

3r
3−2r ,r � ‖ f ‖Lr . (7.6)

Hence, by the claim and Lemma 7.1, we get

|F(1+iα)| ≤ ‖H1+iαPc(−�)−1−iα f ‖Lr ‖g‖Lr ′ � 〈α〉6‖ f ‖Lr ‖g‖Lr ′ , (1<r < 3
2 ),

(7.7)

|F(iα)| ≤ ‖HiαPc(−�)−iα f ‖Lr ‖g‖Lr ′ � 〈α〉6‖ f ‖Lr ‖g‖Lr ′ , (1<r <∞).

(7.8)

Therefore (7.2) follows from the Stein’s complex interpolation theorem.
(7.3) Pick f and g as above, and consider

G(z) := 〈(−�)z H−z Pcg, f 〉L2 . (7.9)

We claim that (−�)H−1Pcg is bounded on Lr for 1 < r < 3
2 . By the triangle

inequality,
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‖(−�)H−1Pcg‖Lr = ‖(H −V )H−1Pcg‖Lr ≤ ‖Pcg‖Lr +‖V H−1Pcg‖Lr . (7.10)

By Lemma 3.6 (i), ‖Pcg‖Lr � ‖g‖Lr . By the Hölder inequality in the Lorentz norms
(Lemma 7.5) and the Sobolev inequality associated with H [12, Theorem 1.9], we get

‖V H−1Pcg‖Lr ≤ ‖V ‖L3/2,∞‖H−1Pcg‖
L

3r
3−2r ,r � ‖V ‖L3/2,∞‖g‖Lr . (7.11)

Repeating the above argument with the complex interpolation, we complete the proof.
��

7.2 Local Well-Posedness

Now we are ready to show the local well-posedness (LWP) of a 3d quintic nonlinear
Schrödinger equation

iut +�u − Vu ± |u|4u = 0; u(0) = u0. (NLSV )

Theorem 7.3 (LWP) If V ∈ K0 ∩ L3/2,∞ and H has no eigenvalue or resonance on
[0,+∞), then (NLSV ) is locally well-posed in Ḣ1. Precisely, for A > 0, there exists
δ = δ(A) > 0 such that for an initial data u0 ∈ Ḣ1 obeying

‖∇u0‖L2 ≤ A and ‖e−i t H u0‖L10
t∈[0,T0]L

10
x

< δ, (7.12)

(NLSV ) has a unique solution u ∈ Ct (I ; Ḣ1
x ), with I = [0, T ) ⊂ [0, T0], such that

‖∇u‖
L10
t∈I L

30/13
x

<∞ and ‖u‖L10
t∈I L10

x
< 2δ. (7.13)

Proof (Step 1 Contraction mapping argument) Let ψ j be the eigenfunction corre-
sponding to the negative eigenvalue λ j normalized so that ‖ψ j‖L2 = 1. Choose small
T ∈ (0, T0) such that ‖ψ j‖L10

t∈I L10
x

, ‖ψ j‖L2
t∈I L2

x
≤ 1 for all j , where I = [0, T ] and

ψ j (t, x) = ψ j (x) for all t ∈ I . For notational convenience, we omit the time inter-
val I in the norm ‖ · ‖L p

t∈I
if there is no confusion. Following a standard contraction

mapping argument [3,21], we aim to show that

�u0(v)(t) := e−i t H u0 ± i
∫ t

0
e−i(t−s)H (|v|4v(s))ds (7.14)

is a contraction map on the set

Ba,b := {v : ‖v‖L10
t,x
≤ a, ‖∇v‖

L10
t L30/13

x
≤ b}, (7.15)

equipped with the metric d(u, v) = ‖u − v‖L10
t,x
+ ‖∇(u − v)‖

L10
t L30/13

x
, where a, b

and δ will be chosen later.
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We claim that �u0 maps from Ba,b to itself. We write

‖�u0(v)‖L10
t,x
≤ ‖e−i t H u0‖L10

t,x
+

∥∥∥
∫ t

0
e−i(t−s)H Pc(|v|4v(s))ds

∥∥∥
L10
t,x

+
J∑

j=1

∥∥∥
∫ t

0
e−i(t−s)H (〈|v|4v(s), ψ j 〉L2ψ j )ds

∥∥∥
L10
t,x

= I + I I +
J∑

j=1
I I I j . (7.16)

By assumption, I ≤ δ. For I I , by the Sobolev inequality associated with H [12,
Theorem 1.6], Strichartz estimates (Proposition 1.2) and the two norm estimates, we
get

I I �
∥∥∥
∫ t

0
e−i(t−s)H PcH

1/2(|v|4v(s))ds
∥∥∥
L10
t L30/13

x
� ‖H1/2Pc(|v|4v)‖

L2
t L

6/5
x

� ‖∇(|v|4v)‖
L2
t L

6/5
x
≤ 3‖(v2∇v)(v̄)2‖

L2
t L

6/5
x
+ 2‖(v2∇v)(v̄)2‖

L2
t L

6/5
x

(7.17)

� ‖v‖4
L10
t,x
‖∇v‖

L10
t L30/13

x
≤ a4b.

For the last term, by the Hölder inequality, the choice of T and (7.17), we obtain

I I I j =
∥∥∥
∫ t

0
e−i(t−s)λ j (〈|v|4v(s), ψ j 〉L2ψ j )ds

∥∥∥
L10
t,x

≤
( ∫ T

0
|〈|v|4v(s), ψ j 〉L2 |ds

)
‖ψ j‖L10

t,x

≤ ‖∇(|v|4v)‖
L2
t L

6/5
x
‖|∇|−1ψ j‖L2

t L6
x

� ‖∇(|v|4v)‖
L2
t L

6/5
x
‖ψ j‖L2

t L2
x
≤ a4b. (7.18)

Therefore, we prove that
‖�u0(v)‖L10

t,x
≤ δ + Ca4b. (7.19)

Next, we write

‖∇�u0(v)‖
L10
t L30/13

x
≤ ‖∇Pc�u0(v)‖

L10
t L30/13

x
+

J∑
j=1
‖∇Pλ j �u0(v)‖

L10
t L30/13

x

= Ĩ +
J∑

j=1
˜I I j . (7.20)
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For Ĩ , by the two norm estimates, Strichartz estimates and (7.17), we obtain

Ĩ � ‖H1/2Pc�u0(v)‖
L10
t L30/13

x

� ‖H1/2Pcu0‖L2 + ‖H1/2Pc(|v|4v)‖
L2
t L

6/5
x

(7.21)

� ‖∇u0‖L2 + ‖H1/2Pc(|v|4v)‖
L2
t L

6/5
x

� A + a4b.

For ˜I I , by the Hölder inequality, (7.19) and Lemma 3.6, we get

˜I I j ≤ ‖〈�u0(v), ψ j 〉L2‖L10
t
‖ψ j‖L30/13

≤ ‖�u0(v)‖L10
t,x
‖ψ j‖L10/9

x
� δ + a4b. (7.22)

Collecting all, we prove that

‖∇�u0(v)‖
L10
t L30/13

x
≤ CA + Ca4b. (7.23)

Let b = 2AC , a = min((2C)− 1
4 , (2Cb)− 1

3 ) and δ = a
2 (⇒ Ca4b ≤ AC and

Ca3b ≤ 1
2 ). Then, by (7.19) and (7.23), �u0 maps from Ba,b to itself. Similarly, one

can show that �u0 is contractive in Ba,b. Thus, we conclude that there exists unique
u ∈ Ba,b such that

u(t) = �u0(u) = e−i t H u0 + i
∫ t

0
e−i(t−s)H (|u|4u)(s)ds. (7.24)

(Step 2 Continuity) In order to show that u(t) ∈ Ct (I ; Ḣ1
x ), we write

u(t) = e−i t H
⎛
⎝Pcu0 +

J∑
j=1

Pλ j u0

⎞
⎠

± i
∫ t

0
e−i(t−s)H

(
Pc(|u|4u)(s)+

J∑
j=1

Pλ j (|u|4u)(s)
)
ds

= e−i t H Pcu0 +
J∑

j=1
e−i tλ j Pλ j u0 ± i

∫ t

0
e−i(t−s)H Pc(|u|4u)(s)ds (7.25)

± i
J∑

j=1

∫ t

0
e−i(t−s)λ j Pλ j (|u|4u)(s)ds

=: I (t)+
J∑

j=1
I I j (t)+ I I I (t)+

J∑
j=1

I Vj (t).
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For I (t), by the two norm estimates and L2-continuity of e−i t H , we have

‖I (t)− I (t0)‖Ḣ1 � ‖(e−i t H − e−i t0H )H1/2Pcu0‖L2 → 0 as t → t0, (7.26)

since ‖H1/2Pcu0‖L2 � ‖u‖Ḣ1 <∞. I I j (t) is continuous in Ḣ1, since

‖Pλ j u0‖Ḣ1 = |〈u0, ψ j 〉L2 |‖ψ j‖Ḣ1 � ‖u0‖Ḣ1‖ψ j‖Ḣ−1 � ‖u0‖Ḣ1‖ψ j‖L6/5 <∞.

(7.27)
For I I I (t), by the two norm estimates, Strichartz estimates and (7.17), we have

‖I I I (t)− I I I (t0)‖Ḣ1 � ‖H1/2(I I I (t)− I I I (t0))‖L2

� ‖H1/2Pc(|u|4u)‖
L2
s∈[t0,t]L

6/5
x
→ 0 as t → t0. (7.28)

For I Vj (t), by the Hölder inequality and (7.17), we write

‖I Vj (t)− I Vj (t0)‖Ḣ1 ≤ ‖ψ j‖Ḣ1‖∇(|u|4u)(s)‖
L2
t∈[t0,t]L

6/5
x
‖|∇|−1ψ j‖L2

s∈[t0,t]L6
x

� ‖∇(|u|4u)(s)‖
L2
s∈[t0,t]L

6/5
x
‖ψ j‖L2

t L2
x
→ 0 as t → t0.

(7.29)

Collecting all, we conclude that u(t) is continuous in Ḣ1. ��
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Appendix: Lorentz Spaces and Interpolation Theorem

Following [21], we summarize useful properties of the Lorentz spaces. Let (X, μ) be
a measure space. The Lorentz (quasi) norm is defined by

‖ f ‖L̃ p,q :=
{
p1/q‖λμ({| f |≥λ})1/p‖

Lq
(
(0,+∞),

dλ
λ

) when 1≤ p<∞ and 1≤q≤∞;
‖ f ‖L∞ when p = q = ∞.

(7.30)

Lemma 7.4 (Properties of the Lorentz spaces) Let 1 ≤ p ≤ ∞ and 1 ≤ q, q1, q2 ≤
∞.

(i) L p,p = L p, and L p,∞ is the weak L p-space.
(ii) If q1 ≤ q2, L p,q1 ⊂ L p,q2 .

Lemma 7.5 (Hölder inequality) If 1 ≤ p, p1, p2, q, q1, q2 ≤ ∞, 1
p = 1

p1
+ 1

p2
and

1
q = 1

q1
+ 1

q2
, then

‖ f g‖L p,q � ‖ f ‖L p1,q1 ‖ f g‖L p2,q2 . (7.31)
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Lemma 7.6 (Dual characterization of L p,q ) If 1 < p <∞ and 1 ≤ q ≤ ∞, then

‖ f ‖L p,q ∼ sup
‖g‖

L p
′,q′ ≤1

∣∣∣
∫
X
f ḡdμ

∣∣∣. (7.32)

Ameasurable function f is called a sub-step function of height H and widthW if f
is supported on a set E with measure μ(E) = W and | f (x)| ≤ H almost everywhere.
Let T be a linear operator that maps the functions on a measure space (X, μX ) to
functions on another measure space (Y, μY ). We say that T is restricted weak-type
(p, p̃) if

‖T f ‖L p̃,∞ � HW 1/p (7.33)

for all sub-step functions f of height H and width W .

Theorem 7.7 (Marcinkiewicz interpolation theorem) Let T be a linear operator such
that

〈T f, g〉L2 =
∫
Y
T f ḡdμY (7.34)

is well-defined for all simple functions f and g. Let 1 ≤ p0, p1, p̃0, p̃1 ≤ ∞. Suppose
that T is restricted weak-type (pi , p̃i ) with constant Ai > 0 for i = 0, 1. Then,

‖T f ‖L p̃θ ,q � A1−θ
0 Aθ

1‖ f ‖L pθ ,q , (7.35)

where 0 < θ < 1, 1
pθ
= 1−θ

p0
+ θ

p1
, 1
p̃θ
= 1−θ

p̃0
+ θ

p̃1
, p̃θ > 1 and 1 ≤ q ≤ ∞.

In this paper, we use the interpolation theorem of the following form.

Corollary 7.8 (Marcinkiewicz interpolation theorem) Let T be a linear operator. Let
1 ≤ p1 < p2 ≤ ∞. Suppose that for i = 0, 1, T is bounded from L pi ,1 to L pi ,∞.
Then T is bounded on L p for p1 < p < p2.

Proof The corollary follows from Theorem 7.7, since T is restricted weak-type
(pi , pi ):

‖ f ‖L pi ,1 = pi

∫ ∞

0
μ(| f | ≥ λ)1/pi dλ ≤ pi

∫ H

0
W 1/pi dλ = pi HW 1/pi , (7.36)

for a sub-step function f of height H and width W . ��
Corollary 7.9 (Fractional integration inequality in the Lorentz spaces)

∥∥∥
∫
Rd

f (y)

|x − y|d−s dy
∥∥∥
Lq,r (Rd )

� ‖ f ‖L p,r , (7.37)

where 1 < p < q <∞, 1 ≤ r ≤ ∞ and 1
q = 1

p − s
d . At the endpoints, we have

∥∥∥
∫
Rd

f (y)

|x − y|d−s dy
∥∥∥
L

d
d−s ,∞

(Rd )
� ‖ f ‖L1 ,

∥∥∥
∫
Rd

f (y)

|x − y|d−s dy
∥∥∥
L∞(Rd )

� ‖ f ‖Ld/s,1 .

(7.38)
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Proof (7.38) follows from [18, Theorem 1, p. 119] and duality. Then, (7.37) follows
from Corollary 7.8. ��
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