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Abstract We establish a Héormander type spectral multiplier theorem for a Schrodinger
operator H = —A + V(x) in R3, provided V is contained in a large class of short
range potentials. This result does not require the Gaussian heat kernel estimate for
the semigroup e ' and indeed the operator H may have negative eigenvalues. As
an application, we show local well-posedness of a 3d quintic nonlinear Schrédinger
equation with a potential.
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1 Introduction
1.1 Statement of the Main Theorem

In this paper, we establish a Hormander type spectral multiplier theorem for a
Schrédinger operator H = —A +V in R, provided that V is contained in a large class
of short range potentials. Precisely, we assume that V is contained in Ko N L3/2%°,
where Ky is the norm closure of bounded, compactly supported functions with respect
to the global Kato norm
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V)l
IVl = sup/ Ly, (1.1)
xeR3 JR3 |x — yl

and L3/% is the weak L3/%-space. We also assume that H has no eigenvalue or
resonance on the positive real-line [0, +00). By a resonance, we mean a complex
number A such that the equation ¥ + (—A — A 4i0) "'V = 0 has a slowly decaying
solution ¥ € L>~ \ L? for any s > %, where L% = {(x)* f € L?}.

By the above assumptions, the operator H is self-adjoint on L?. Moreover, its
spectrum o (H) consists of purely absolutely continuous spectrum on the positive
real-line [0, 400) and at most finitely many negative eigenvalues [2]. Therefore, for
a bounded Borel function m : 6 (H) C R — C, one can define a spectral multiplier
m(H) as a bounded operator on L? via functional calculus.

A natural question is then to find a sufficient condition to extend boundedness of
the multiplier m(H) to L? for p # 2. Such a condition is typically given in terms of
regularity of symbols. To measure regularity of a symbol m : o (H) — C, we define
a Sobolev type norm by

- . 2
Iml7gqs) = > Im )1+ 59 X Wm R ys2(0 400y (1:2)
Ajnegative eigenvalues =
where x € C°(R) is a standard dyadic partition of unity function such that x is

supported in [%, 2] and ZNGZZ x(x)=1lon (0, +00), and W*2 is the L2-Sobolev

space of order s.
Our main result is the following.

Theorem 1.1 (Spectral multiplier theorem) Suppose that V € KoN L3> and H =
—A 4V has no eigenvalue or resonance on [0, +00). We also assume that for s > 2,
the symbol m : o (H) — C satisfies ||m|| 1) < oo. Then, we have

Im(EDllLr—rr S llmll3s), Y1 < p <oo. (1.3)

When V = 0, Theorem 1.1 is simply the classical Hormander—Mikhlin multiplier
theorem [4].

There are several ways to prove the spectral multiplier theorem for Schrédinger
operators. For an operator A, we say that the semigroup e ~*4 satisfies the Gaussian
heat kernel estimate if the kernel of e~’4, denoted by e "4 (x, y), obeys

L=y
e A, y) <t a o, V>0 (1.4)
y ~Y

for some ¢ > 0. Gaussian upper bounds for the heat kernels have been used suc-
cessfully to prove spectral multiplier theorems for rather general operators, not
necessarily Schrodinger operators (see [4,5, 16] and references therein). In the case of
the Schrédinger operator H = —A + V in R3, if V. = max(V, 0) is in local Kato

class, that is,

V.

lim sup/ VO, o, (1.5)
r=>0+ er3 Jx—yl<r X — VI
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and if V_ = min(V,0) € Ko and ||V_||xc < 4m, then it is known that the semigroup
e~'H satisfies the Gaussian heat kernel estimate (1.4) [7,20]. The spectral multiplier
theorem for H then follows from [5, Theorem 3.1]. However, for Gaussian upper
bounds (1.4), operators need to be positive definite, while the Schrédinger operator in
Theorem 1.1 may have negative eigenvalues.

One can also use the wave operators to show the spectral multiplier theorem. The
forward-in-time (backward-in-time, resp) wave operator of the Schrédinger operator
H = —A + V is defined by

W, = s-lime'' =12 (W_ = s—limei’He_i’(_A),resp). (1.6)
t—>+00 t—>—00

An important feature of wave operators is its intertwining property, thatis, P. f (H) =
Wi f(—A)(W1)*, where P, is the spectral projection to the continuous spectrum and
(Wy)* is the dual of Wi. In [22], Yajima proved that the wave operators W are
bounded on L” forall 1 < p < oo, provided that |V (x)| < (x)™>~€fore > 0, and
zero is not an eigenvalue or a resonance of H. Later, in [1], Beceanu extended this
result to a larger space

o0
B = {v 2 2PVl 2@k < <ok < oo}. (1.7)

k=—o00

The spectral multiplier theorem then follows immediately from the intertwining
property and boundedness of wave operators and the classical Hormander—Mikhlin
multiplier theorem, since

| Pef(H)lLr—rr = Wt f(=DYWL) I Lr—1r
SIHFEDW) Irser SITWL) lLrsrr <00 (1.8)

and (I — P.)f(H) is bounded on L” by Lemma 3.6. Theorem 1.1 improves the
spectral multiplier theorem as a consequence boundedness of the wave operator, in
that the potential class Ko N L3/%> is larger than the potential class B. Note that a
potential having many singular points, such as Z,ivzl Lix—xj|<1 W with x; # xi
and € > 0, is contained in o N L3/2%°_ but not in B.

Our proof of the spectral multiplier theorem is perturbative, and it relies heavily
on the explicit integral representation of the kernel of the multiplier. We consider the
spectral multiplier m(H) P, as a perturbation of the Fourier multiplier m(—A), and
then we show that the difference (m(H) P, — m(—A)) is bounded on L?. In order to
estimate the difference, we first decompose it into its dyadic pieces

> 1 () (mee) = m=n), (1.9)

Ne2Z

where y is the function given in (1.2). Then, we generate a formal series expansion
for each dyadic piece to get explicit integral representations of kernels of terms in the
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series using the free resolvent formula

ei\/axfy‘

(a7 W= [ . (1.10)
ko Alx — |

We estimate these integral kernels. Summing them up, we prove the spectral multiplier
theorem.

A key observation is that in spite of the singular integral nature of both m (H) P,
and m(—A) as Calderon—Zygmund operators, the kernel of their difference is less
singular than usual Calderon—Zygmund operators. This fact is essential in our analysis,
since it allows us to avoid using the delicate classical Calderon—Zygmund theory for
the complicated operator m(H) (see Remark 4.4). Instead, we just make use of the
fractional integration inequality and Holder inequality.

1.2 Application to NLS

The choice of the potential class in the main theorem is motivated by the following
nonlinear application.

First, we recall the Strichartz estimates for the linear propagator e /¥ .

Proposition 1.2 (Strichartz estimates) If V € Ko and H has no eigenvalue or reso-
nance on [0, +00), then

le™ ™ Pefllorr S 1712 (1.11)

t
H / eit=9H PL.F(s)ds‘
0

1Ly SIEN 20, (1.12)

2 ,3_3
wherea—i—;—zanngq,rfoo.

Proof Beceanu—Goldberg [2] proved the dispersive estimate
le™ " ™ Pell 1y oo S 10172, (1.13)

where P. is the spectral projection to the continuous spectrum. Strichartz estimates
then follow by the argument of Keel-Tao [15]. O

Remark 1.3 The dispersive estimate of the form (1.13) was first proved by Journé—
Soffer—-Sogge under suitable assumptions on potentials [14]. The assumptions have
been relaxed by Rodnianksi—Schlag [17], Goldberg—Schlag [10] and Goldberg [8,9].
Recently, Beceanu—Goldberg established (1.13) for a scaling-critical potential class
Ko [2].

An interesting question is then whether one can use the above Strichartz estimates
to show the local well-posedness (LWP), for instance, for a 3d quintic nonlinear
Schrddinger equation with a potential

iu; + Au—Vu £+ |u|4u =0; u(0) =ug ((NLSy))
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assuming that V satisfies the conditions in Proposition 1.2. However, if one tries to
show local well-posedness by the standard contraction mapping argument as in [4,21],
one will realize that there is a subtle problem, mainly because the linear propagator
e~ does not commute with the differential operators from the Sobolev norms.

We overcome this subtle problem by the two norm estimates lemma, whose proof
relies on the spectral multiplier theorem.

Lemma 1.4 (Two norm estimates) If V € Ko N L3/%° and H has no eigenvalue or
resonance on the positive real-line [0, +00), then

IH> Pe(—A) "2 flir S fllers (1.14)
(A2 H 2 Pofllir S fller (1.15)

forOgngand1<r<%.
Together with Strichartz estimates and the two norm estimates lemma, we prove
local well-posedness.

Theorem 1.5 (LWP) Suppose that V € Ko N L3/>% and H has no eigenvalue or
resonance on the positive real-line [0, 400). Then, (NLSy) is locally well-posed in
H'.

Remark 1.6 (i) The range of r in the two norm estimates lemma is sharp. See the
counterexample in [19].

(ii) The additional hypothesis V e L3/%° compared to Strichartz estimates, is from
the two norm estimates lemma. In the proof of the two norm estimates lemma,
we used this additional assumption.

1.3 Organization of the Paper
The outline of the proof of Theorem 1.1 is given in Sect. 2. We decompose the spectral
representation of the difference (m(H) P, — m(—A)) into the low, medium and high

frequencies, and then analyze them separately in Sects. 4, 5 and 6. In Sect. 7, we
establish LWP of a 3d quintic nonlinear Schrddinger equation with a potential.

1.4 Notations

For an integral operator T, its integral kernel is denoted by 7' (x, y). We denote by
A =B the formal identity which will be proved later.

2 Reduction to the Key Lemma

Suppose that V € Ky and H has no eigenvalue or resonance on [0, +00). Then,
the spectrum of H, denoted by o (H), consists of purely continuous spectrum on
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the positive real-line [0, +00) and at most finitely many negative eigenvalues. For
z ¢ o (H), we define the resolvent by Ry (z) := (H — z)~!, and denote

REM) := s—limRy (» £ ie). 2.1
e—>0+

Let P, be the spectral projection on the continuous spectrum. Then, by the Stone’s
formula, the spectral multiplier operator m (H) P, is represented by

m(H)P, = /Oom(x)[R;f(x)—R;(x)]dx = l/mm(x) Im R}, (Mdr. (2.2)
2mi 0 T Jo

Applying the identity

R = RO + VRS (W)™
=Rj() (1 -+ VR(J{(A))_IVRSL(A)) (2.3)
=RI (W) — RFO)UT +VRF ) 'VRS (0,

we split m(H) P, into the pure and the perturbed parts,
1 oo
m(H)P, = —/ m(A) Im R (L)dr
T Jo

- % / N m()Im[RS (W) (I + VRS (W) ' VRS (W)1dA (2.4)
0

:m(—A) + Pb,

where m(—A) is the Fourier multiplier such that m(/—A\) f& =m(é& |2) f (&). For
the pure part m(—A), it follows from the classical Hormander—Mikhlin multiplier
theorem [13] that for s > %,

Im(=M)lLr—srr S My, V1< p<oo. (2.5

Therefore, it suffices to show boundedness of the perturbed part. For the perturbed part
Pb, we further decompose it into dyadic pieces. Let x be the smooth dyadic partition
of unity function chosen in (1.2), and decompose

Pb= > Pby. (2.6)
Ne2Z

where
Pby := —%/ m()xny (VA Im[RS O + VR W) T'VRE W)1dr. (2.7
0
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For a small dyadic number Ny and a large dyadic number N to be chosen later, we
denote the low (high, resp) frequency part by

Pboy, == »_ Pby [Pboy, := D Pby.resp|. (2.8)
N<Ny N=>N;

In the next four sections, we will show the following lemma.

Lemma 2.1 (Key lemma) Suppose that V € Ko N L3/>% and H has no eigenvalue
or resonance on [0, +00). Let s > 2. Then, there exists p > 1 but sufficiently close to
1 such that the following hold.

(i) (High frequency) There exists N1 = N1(V) > 1 such that

IPo= N, Lt oo S llmllqs). 2.9

where LP"! and LP->° are the Lorentz spaces (see “Appendix”).
(ii) (Low frequency) There exists No = No(V) < 1 such that

IPb<no Lo e S Imllngcs)- (2.10)

(iii) (Medium frequency) For No < N < Ny,

IPbn Il L pt s oo S/N(),Nl ”m”H(s)- (2.11)

Proof of Theorem 1.1, assuming Lemma 2.1 Let p > 1 be sufficiently close to 1 as
in Lemma 2.1. Summing the estimates in Lemma 2.1, we prove that Pb is bounded
from L?'! to LP-°°. Then, it follows from the classical Hormander—Mikhlin multiplier
theorem that m(H)P. = m(—A) + Pb is bounded from L?-! to L?:°°. Moreover, by
Lemma 3.6 (see below), m(H) : LP*' — L7 is bounded.

Recall that by functional calculus, m(H) is bounded on L2. Thus, by the real
interpolation lemma (Corollary 7.8), m(H) is bounded on L” forall 1 < p < 2.
Finally, applying the spectral multiplier theorem to the symbol m and the standard
duality argument with m(H) = m(H)*, we conclude that m(H) is bounded on L?
for2 < p < oo. O

3 Preliminaries
3.1 Resolvent Estimates
Following Beceanu—Goldberg [2], we collect kernel estimates for V RS’ n),V (Rar A)—

Ry (%0)), (VRF (\)* and (I + VR (1)1, all of which will play as building blocks
to analyze the kernel of Pby.

Lemma 3.1 (Resolvent estimates) Suppose that V € K.
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(i) Forx >0,
IIVII;c
IVRG W) fllpr < £l 3.1)
(ii) Define the difference operator by
By s i= V(RS (L) — Rf (ho)). (3.2)

For € > 0, there exist 8 > 0 and an integral operator B : L' — L' such
that for |A — Lol < 8 and ), Ly > 0,

|BA.,A.0(‘X’ )’)| S B(xa y),and”B(X, y)“LSOL,]( S €. (33)

(iii) Fore > 0, there exist N1 > 1 and an integral operator D = D, : L' — L'
such that for A > N,

|(VRS 0))*(x, )| < D(x,y), and|| D(x, MLy = e (3.4)
Proof (i) By the free resolvent formula RaL M x,y) = 4’7;@” :,“ , the Minkowski

inequality and the definition of the global Kato norm (1.1), we have

x)| ||/c

IVRy () fligr < / S ODldy = Al @35)

”47l’|(

(ii) For € > 0, decompose V = V; + V> such that V; is bounded and compactly
supported and || V2||xc < €. We choose § > 0 such that |\/_ VAol < e||V1|| ! for
all &, Ao > 0 with |L — X¢| < §. By the mean-value theorem,

Vi () (e VA=Y givRole=yly ’ ‘ Vo (x) (e VA =31 _ givRol =1y

B )| <
[ Bj 5o (X, V)| < pr— prrr—
IVIOIVA = Vol [Va(x)]
=< 3.6)
4 21 |x — y|
€|Vi(x)] [Va(x)|
= =: Bc(x, y).
r([Villpr o 27lx =yl
Then, we have
||V2||lc
1Be (s M liLgert = 4— too =€ (3.7)

(iii) Similarly, for € > 0, decompose V = V| + V; such that V; is bounded and
compactly supported and | Va2 ||ic < €|V ||,E3. We then write

I(VRS ) (x, 1 < I[(VIRG O e, IV RS 00 (x, ) — (VIR ) (x, vl
(3.8)

) Birkhduser
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For the first term, by the fractional integration inequalities, the Holder inequalities in
the Lorentz spaces (Lemma 7.5) and the free resolvent estimate || R(')" MNgans S
(\)~14[11, Lemma 2.1], we get

IRG ) (Vi RG (3))* f oo
SHVIRG W) fllpaza < IVillaa RS QY (ViRG ) f 3o
SHVARS O flipr < IVillganlIRG GIVIRG (W) £l 4

S W TVHIVIRE G fll s S IV IR GO £ 47

xesupp Vy
/1%3

Taking f — 8(- — y), we obtain that |[RJ () (ViR; (1)) (x, y)| — 0as A — +o0.
Thus, there exists N1 = N (e, V1) > 1 such that if . > Ny, then

1

|x — y

i

S ) IR VACOIADS WIS N0, (3.9)

xesupp Vy

L

(ViR 0)H )] = AOL b ey, (3.10)
20Vl

Then, it is obvious that || D1 (x, y)|l 7~ JA % For the second term, we split
y

(VR ) (x, ) — (ViR§ O)*(x, )
= (VaRF (VRS OGN (x, y) + (ViRF WVaRE (VRS (W) (x,y)  (3.11)
+ (ViR§ O)*VaRE MV RS )Y (x, y) + (ViRF O VaRE (WD) (x, y).

Since the kernel of RaL () is bounded by the kernel of (—A)~!, we have

(VR O (x, y) — (ViR (W) (x, v

< (V=)' (VI=A) D), y)
+ (VI(=A) T VA=) T (VI=A) DD, y)
+ (Vi) "D Vol (=) TVI(=A) ()

+ (V=AW (=A) "D, )
=: Dy(x, y). (3.12)
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Then,

I1D20x, Mliggert = D2l g1 1
< V2l s VIEA TG,
HIVHED oL o V2l D) L VIEA T,
HHVIHEA T V2 D) s VIEA) L,
F VAT VAl (=A) i g
3
<4HWW+H%M»IWNK<5’
- 4 dr  — 2

(3.13)

where D5 is an integral operator with kernel D> (x, y). Therefore, we conclude that
[(VRS 0N} (x, y)| < D(x,y) := Di(x, ) + Da(x. ) (3.14)
and ||D(x’y)||Lg<>L}c <e. o
By algebra, the resolvent R‘J,‘()\) can be written as
Ry ="RSf U + VR ()~ (3.15)

Let £(L") be the space of bounded operators on L'. The following lemmas say that
(I+V Ry (A)isinvertiblein £(L") for A > 0, itsinverse (/+V Ry (1))~ is uniformly
bounded in £(L'), and is the sum of the identity map and an integral operator.

Lemma 3.2 (Invertibility of (I + VR§ M) IfV € Ko and H has no eigenvalue or
resonance on [0, +00), then (I + V Ry (1)) is invertible in L(LY) for » > 0.

Proof Tfitis not invertible, there exists ¢ € L', ¢ # 0, such that (1 + VRS' AM)e =0.
Then, ¢ := Rar (M) solves the eigenvalue equation (—A + V)Y = (A +i0)y <

v+ R(J)r (M) Vi = 0. Moreover, by the resolvent formula Rar()»)(x, y) = el if

Iy !
s > %, then

leIdy < llelip

1wz = 1)~ R ol = || :
R3 Ly
(3.16)

(x)*4m|x —y| ‘

Hence, X is an eigenvalue or a resonance (contradiction!). O

Lemma 3.3 (Uniform bound for (I + VR(')|r W)Y IfV € Ko and H has no eigen-
value or resonance on [0, +00), then S = (I + VRJ()L))’1 . [0, +00) — L(LY
is uniformly bounded.
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Proof Tterating the resolvent identity, we get the formal identity

(I + VRS (0™ =" = VR{ () + (VR () = (VR ())*) D (VRS ()™

n=0
(3.17)

Indeed, by Lemma 3.1 (iii), ||(VR+()»))4||L1_)L1 < 1 for all sufficiently large A.
Hence, the formal identity (3.16) makes sense, and (I + VR+(A)) s unlformly
bounded for all sufficiently large A. Thus, it suffices to show that (I + VR+(A)) L
continuous. To see this, we fix Lo > 0 and write

(I+VRFO) ™ = U+ VR{ o)™ =T+ VR 00)+ Bisy) ™' =Sy
= [ + VRS () + S35 Biig)] ™ = Sip = (L + S3yBrag) ™' Sag — Sig
o o
=" (=80 Brng) " Sag — Sao" =" D (= Sag Brng)" Sao- (3.18)

n=0 n=l1

Then, by Lemma 3.1 (ii), we have

I+ VRSO — (I + VRS o) "Mt < Z||Sxo||L1qL1||BA,A0||';.%.

n=1

18201171 ;1 I Bagll i g

= — 0as A — Ag. (3.19)
L= 1Sx el Baag oo o

Therefore, the formal identity (3.17) makes sense, and (I + \/Rar (A))~!is continuous.
O

Lemma 3.4 If V € Ko and H has no eigenvalue or resonance on [0, +00), then
S, = —D=U+VRfW)™' —1:[0,+00) — L(L") is not only uniformly
bounded but also an integral operator with kernel Sy.(x, y):

S :=sup ISl ;1 11 = sup [|S; (x, Mlzgery < oo (3.20)
2>0 >0

Proof By algebra, we have
S, =U+VRfON ' =T =—-U+VRF W) 'VRIf (W) = =S, VR (b). 3.21)

Since S’,\ - L' — L' is bounded, sending fe — §(- — yo) as € — 0, we get

B N V(,)gi«/xl'—,\’o\ N
Saf(x) = (=S VRy M) f)(x) = =S| ————— ) (x) =t Sa(x, yo).
4r |- —yol
(3.22)
Consider Fy(x;y, 1) := V(x) 4;/‘;” ; “ as a function of x with parameters y € R3

and A € R. Then, Fy (x; y, A) is bounded in L )1( uniformly in y and XA. Therefore, by
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V ()elVH . A
e (x) is also bounded in L,

uniformly in A and y. O

Lemma 3.3, we conclude that §k (x,y) = —S;L(

3.2 Spectral Projections and Eigenfunctions

Let yx be the dyadic partition of unity function chosen in (1.2), and let xy (1) € C2°(R)
such that xy(A) = x(%x) if A > 0; xy(A) = 0if A < 0. By functional calculus,
we define the Littlewood-Paley projections by Py = xn(H), P<n, = > n- Ny PN
PNy<-<Ny = 2 ng<N<n; PN and Poyy =3 oy, Py

Lemma 3.5 Suppose that V € Ko N L3> and H has no eigenvalue or resonance
on [0,400). Let & :={f e L'NL® : P.f = Pny<.<n, f for some Ny, N1 > 0}.
Forl <r <00, SisdenseinL".

Proof L'NL®isdensein L".Fix f € LlﬂLm.WeclaimthatlimNoﬁo | Py fllLr =
0. By the spectral theory, limy,—o || P<n, f 172 = 0. On the other hand, replacing xn
by ZN<N0 X~ in the proof of [12, Corollary 1.6], one can show that || Py, f |l ;1 and
|P<n, f I are bounded uniformly in No. Hence the claim follows from interpola-
tion. By the same argument, one can show that limy, o | P>n, fllzr = 0. Thus, &
is dense in L". O

Lemma 3.6 (Boundedness of eigenfunctions) Suppose that V € KoN L3*>* and H
has no eigenvalue or resonance on [0, +00). Let v j be an eigenfunction corresponding
to the negative eigenvalue A ;.

(i) Foralll < p < oo, ¥j € L? and PAj is bounded on L?, where P;Lj is the spectral
projection onto the point {X;}.
(ii)) Vipj e L" for1 <r < 3.

Proof (i) We prove the lemma following the argument in [1]. We decompose V =
Vi + V5 such that V; is compactly supported and bounded, and || V2| < 1. Then,

Vi+ Ro(A)HVY; =¥+ Ro(Aj)(Vi+ V)Y =0
=Y =—+RANV) 'R )HVIY) = — Z(—Ro()y,’)vz)nRO()\j)Vl‘ﬂj-
n=0
(3.23)

Observe that, since V; is compactly supported, and A; < 0, Ro(A ;) V1, is exponen-
tially decaying. To see this, we choose sufficiently small € > 0 such thate < /—A;
for any negative eigenvalue A ;. Indeed, there exists such ¢, since by the assumptions,
there are at most finitely many negative eigenvalues (see [2]). Then, by the fractional
integration inequality and the Holder inequality in the Lorentz spaces (Lemma 7.5),
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we get
i/hjlx=yl
e (Ro () V1 ) ()] < e€|x‘/ ————IViWIIY;()ldy
R3 47'[|x - yI

o~ W hi—elx—yl "
5/ ¢ Y VI Wldy  (3.24)
o e

< le"WViyilipana S e Vil e llvl 2.

Similarly, one can check that ¢!l Ry (% j)Vze_d" is bounded on L*° and its operator
norm is strictly <1. Thus, we prove that

o
leM sl Lo < (Z ||ef'Ro(x,->v2e—€"'||’zoowo) le T Ry ) Vil oo < oo
n=0
(3.25)
Therefore, yj € L” and Py, f = (Y, f) 2V is bounded on L? forall 1 < p < oco.
(ii) Let 81,82 > O be arbitrarily small numbers. Then, since A; < 0, by the
inhomogeneous Sobolev inequality, we get

. — +y . . < .
IV ”Lﬁ = VR, (A,)V%IIL S IIVtﬂjllLﬁ

< IViipsrell;ll s, < oo,
LT3

1
=5,

. - 0 . < .
IIV%IILﬁ = [IVRy (?»,,)Vlﬂ‘,llLﬁ S IIV%IIW,Lﬁ
< ; s
S |IV%IILﬁ = IVilse IIWJIIL%‘ﬁ < 0o. (3.26)
Thus, interpolation gives (ii). O

4 High Frequency Estimate: Proof of Lemma 2.1 (i)
4.1 Construction of the Formal Series Expansion

For a large dyadic number N; to be chosen later, we construct a formal series for
Pb- y, as follows. First, iterating the resolvent identity

T+VRIO) ™' =1—- T+ VRO 'VRI (), 4.1)

we generate a formal series expansion

I+ VR ="~ Z(—VRJ()\))”. (4.2)
n=0
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Plugging (4.2) into (2.7), we write

oo
1 oo
Phoy,“="—= D> > —/ mO)xny (V) Im[RS () (—=V RS (A)"V RS ()]1dx.
T Jo
N>N; n=0
(4.3)
Then, writing the first and the last free resolvents explicitly by the free resolvent
iﬁhf_v\
formula Rj (W) (x, ¥) = Gy
we write the kernel of Pb> y, as

and collecting terms having A by Fubini theorem,

Pb>y, (x,y)

S (_1)n+1 0
R= Y ZT/O m()xn (V)

N>N| n=0

ol VAx—%| PRNEST
« Im / s VR B G RV e did§ | d
R

6 4 |x — X| |x —
V() < . . .
= —— (=D"PYY (x, %, 5, y) t dXdy, (4.4)
/]R" 1673 — %[5 — y| N>ZN§) N

where

Pbl(x, %, 7, y) = / m() (V) Im[e! VAT T=YD (v RE () (%, §)1d A
0

4.5)
We note that the series (4.4) makes sense only formally at this moment, but it will be
shown that the sum is absolutely convergent, and that it satisfies the bound we want
to have.

4.2 Intermediate Kernel Estimates

We estimate the intermediate kernel Pb}, (x, X, y, y) in two ways. First, we show that
the sum of Pb’;\, (x,x,y,y) in N > N is absolutely convergent, and moreover each
Pb (x, X, y, y) decays away from x = ¥ and y = y.

Lemma 4.1 (Summability in N) For s1, s2 > 0, we have

N2{[ml7(sy +59)
(N(x = X)) (NG — y))2

|Pby (x, ¥, 3, WI < ki (%, 5) (4.6)

and

.~ 49 %
K" (X, oyl < . 4.7
k7 (x y)IIL;_ L _( = 4.7

For the proof, we need the following lemma.

Birkhduser



J Fourier Anal Appl (2016) 22:591-622 605

Lemma 4.2 (Oscillatory integral) For s > 0,

2

‘/O m(O)xn (V1) Im(eiﬁ“)dk' S Il (s) - (4.8)

~ (No)?®

Proof By abuse of notation, we denote by x the even extension of itself. Making
change of variables A — N2A2, we write

/ - mO)xy (Vr) Im(eV29)d), = N2 / - 20m (N2 x (1) sin(NAo )dA
0 0

=N? / Am(N* A x (e N d
R

= N2 (m(NZAZ)A X()\))V(No)

N? .
= N7 (tVF (n(V2Hix 1) (Vo). (4.9)

Thus, it follows from Hausdorff—Young inequality and the fractional Leibniz rule that

[ mon D e < K e

2
< N222) % ) s,
S oy llm( )X W) lyys.2
2
< .. 4.10
= Nop |l #s) (4.10)
o

Proof of Lemma 4.1 First, using the free resolvent formula, we write

PbY, (x, X, 3, y)

=/0 m()xn (VD) m |

"+1 i VAl —xe41]

s HV(xk) dx(z,,,)}dx

I, Vi / i
= 2w VR (e )ydn Y dxo .
/R s T 4H|Xk_Xk+1|{ [ mOyn ) Ime o) faxz.n
4.11)

Hk 147TIXk — Xit11

where xo 1= X, X1 1= X, Xpq1 =Y, Xp42 1= Y, dX@ ) = dxp...dx, and 0, =
Z?:o |x; — xj41|. Then, by Lemma 4.2 with s = 51 + s and the trivial inequality

n+1
o — X1 =[x = &, [Xut1 = Xnp2l = 1F =yl S onpr = D Ixj —xjp1l, (4.12)

j=0
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we obtain that

N2 v
IPb Cr, £ 5 9IS I 46 ) / Ml VeoL
(N(x = X)SUN G — )2 Jrso-n [Temy 471Xk — Xps1]

(4.13)

We define Hn

. —1 1V &)l
Ki(%,5) = / k=l dX.n).- (4.14)
r3e-1 [ [y 4mlxk — Xpq1]

Then, by the definition of the global Kato norm, we have

n
- —1 [Vl
I} E )l peps < sup ey X(1n)

n
Xup1€R3 SR [Tiz 41X — Xiet 1

/ Tz V)l

R0 [14Z1 47 x5 — xp41]

< ( su dX(l,n—l))
x, €R3

( / [V (xn)l )
X sup —dx,
R3 47X — Xp+1]

errle]R3
n—1
—1 1V (x)l IV llx
< sup / ngk 1 dx(l,n—l))( )
xpeR3 JR3®=D Hk:l 47 |xk — Xg1] 4m

3 IViiky”

47

O

Next, we show summability of the intermediate kernel in 7.

Lemma 4.3 (Summability in n) For € > 0, there exist Ny = N1(V,€¢) > 1 and
k5 (x,y) € L;"L}lE such that for N > Ny,

IPbly (x, %, 7, )| S €" N2 m|lp0)ks (%, 5). (4.16)

and
I . Plpeps S € (“.17)

Proof By Lemma 3.1 (iii), given € > 0, there exist N; > 1 and an operator D :
L' — L' suchthat | D(x, y)llpoer1 < e*and [(VRS (W))*(x, y)| < D(x, y). We also
observe that (

PR
4rlx — y|

(VR W) (x, y)| = [V(x)

- = (Vi) e .
(4.18)
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We denote by |a] the largest integer less than or equal to a. Then, we have

IPb, (e, £, 5. )] < /0 MO DIV RE WY, 5)ld
< [ meiem| (01 avicay ) @ )l

<N /OOO MmN x| (DEVI=a) 7)) R, 5)|

S Ml | (D AVIEH) ™)) @ 5). (4.19)
We define . .

KG9 = (D AVIEa) 7)) @ ) (4.20)
Then, by Lemma 3.1, one can check (4.17). O

4.3 Proof of Lemma 2.1 (i)

Let 6 > O be a sufficiently small number to be chosen later. Let ¢ > 0 be a small
number depending on ||V|xc and § > O [see (4.30)]. Then, we pick a large dyadic
number N; from Lemma 4.3. We will show that Pb- y, is bounded from L%’1 to
L7,

Lets = 125 > 2and 0 = 252 (= 20 =2 — §, (s — 2)0 > & and 56 > 2). Then,
by Lemma 4.1 with s1 = 2 and s, = s — 2 and Lemma 4.3, we get

IPbY (x, %, 7, y)| = [P (x, %, 3, I |PYY (x, £, 5, y)|' 70

N2[mll7s) woe <N fon - <\
S ING =) (NG — y))e D8 (@) (BE5)
4.21)
We claim that
> N <1 (4.22)
(Nx)20(Ny)(s=20 ™ |x|2=8|y|8" )

Ne2Z

Fixx,y € R3, and consider the following four cases.
(Case 1 N < min(|x|~, [y|™1)

L RS I GET (LA RER e e
= =mmyf{—, — < —. 3
o NPTy D7 = e 1) = PP
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(Case2 |x|"' <N < |y|™h

N? N2 N20-0) N
z (Nx>20<Ny>(s—2)9 = Z |Nx|29 = Z |x|29 = Z |x|278
Case 2 Case 2 Case 2 Case 2
1
< . 4.24)
|x[2=3y)8
(Case3|y|”' <N < |x|™h
N? N? N23 1
> < — = < . (425)
26 (s—2)0 — Z B Z 5 = 1x12=8y|8
Ct (NX) T (Ny)® C= INYIE = ]yl Ix|==° 1yl
(Case4 N > max(|x|~!, [y|™"))
2
Z <Nx>20<137\] )(s 2)6 § |x|29| 1|(s 2)0 Z st 2
Case 4 Y Y Case 4
1 1 1
< s6—2 < — )
= wpope S R T ey
(4.26)
Collecting all, we prove the claim.
Applying (4.22) to (4.21) and summing in N > Nj, we obtain
llm 1 - <)Y A
> PO E 5 S (K ) (MG D). @2
lx —x[7=°ly — ¥l
N>N;
Let
(e N 1-6
Kooy = (M@ D) (o) (428)
n=0
Then, K € L;OL}C, since if Ny is large enough,
1K i . 0 - 1-6
X pgery = ZH( 1(x,y)) (2(x,y)) ’chou
n=0 yor
o0
< 2 MK E D e I y)uml
n=0
o0
IIVIIIC)”9 n
< , 4.29
<> (WY e - o (429)

3
Il
=}
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where € > 0 is chosen so that (%)96 < 1withf = % Therefore, we obtain the
kernel estimates for Pbx v, (x, y),

V() > o o
|PbN (-x9 y)l S/ — |an (x“x’y,y)'dxdy
! RS 167T3|X—x||y_y|N§Vn;) N
[Vl o
S /Rﬁ P05 — y[ie K& y)ddy, (4.30)

with K € L°L}.

Let Tk be the integral operator with kernel K (x, y), which is bounded on L! by
(4.29). By the fractional integration inequality and Holder inequality in the Lorentz
spaces (see “Appendix”), we conclude that

1Py, F1l 2

V@)l . o
< § K&, didyd H :
<| /Rg s e K@ Doy

SIVIPTRAVIVIEED A, 3,00 S ITAVIVIEE2Af DI, @31

SIVIVIEE ALY < IVl VIV 1 Higan SIAI a0

3
3751

Remark 4.4 In (4.31), we only used the fractional integration inequality and the Holder
inequality. Note that after applying the fractional integration inequality, we always
have the L”-9-norm with smaller p on the right hand side, although we want to show

the Lﬁ’1 — L%’Oo boundedness. Hence, one must have at least one chance to raise
the number p to compensate the decrease of p caused by the fractional integration
inequalities. In (4.31), the potential V plays such arole with the Holder inequality. This
is the main reason that we keep one extra potential term V in the spectral representation
by considering the perturbation m (H) P.—m(—A) instead of m (H ) P, and introducing
intermediated kernels Pb’,’\, (x,X,y, ), even though they look rather artificial.

5 Low Frequency Estimate: Proof of Lemma 2.1 (ii)
5.1 Construction of the Formal Series Expansion
We prove Lemma 2.1 (ii) by modifying the argument in Sect. 4. Note that for small N,

the formal series expansion (4.2) may not be convergent, since (V Rg (A)*in (4.2) is
not small anymore. Hence, we introduce a new series expansion for (I + VRS' )
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(I+ VRS0 =+ VRS (ho) + By i)~
= [(I + BasoSx)I + VRS o))]™!
= (I + VRS (1)) "' (I + By.0S1) "
o0
“ =78 D (—=B3Sk)" (5.1)

n=0

where B 3, = V(Ry (A) — R (Ao)) and S, = (I + VR{ (k0))~'. Plugging the
formal series (5.1) with Ao = 0 into (2.7), we write

S —1 n+1 00
Pyt =Y S /0 m )y (V) MRS (S0 (By,050)" V Ry (0)1d.

n=0
(5.2)
As in the previous section, writing the first and the last free resolvents explicitly by
the free resolvent formula R+(A) (x,y) = 47;@ and collecting terms having X by

Fubini theorem, we write the kernel of Pby as
Pby(x, y)

S —1 n+1 0
“=”ZL/ m()xn (V1)
T 0

tf|xx| o l[\)’)\ o
cim[ [ osh(B080"1, IV dza5|a

6 4m|x — X X — ]
V) R
=// e — |[Z(—l)"“Pb’}V(x,x,y,y)]dxdy, (5.3)
R y—yil&

where

PV (x. £, 5. y) = / MO v (VA) Im[e VAT HED (80 B, 0507 (E, )1d
0

5.4
By Lemma 3.1 (ii), B o in (5.3) is small for sufficiently small N. This fact will
guarantee the convergence of the formal series.

5.2 Intermediate Kernel Estimates

We will show the kernel estimates analogous to Lemmas 4.1 and 4.3. Then, Lemma
2.1 (ii) will follow from exactly the same argument in Sect. 4.3, thus we omit the
proof.

Lemma 5.1 (Summability in N) There exists k' (X, y) such that for s|, s2 > 0,

N2{m |35y +5)
(N(x — B))YN G — y))

[Pbly (x, X, ¥, VI < Sk 9) (5.5
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and

||V||IC)”, (5.6)

K G ) oot < (S 1"+1(
I 1(x y)”LyL;lE_( +1) o

where § is the positive number given by (3.20).

Proof First, splitting By, o into VR (A) — VR (0) in

PbYy (x, %, 7, ) = / m() xn (V) Im[e! VT [50(B, (S0)"1(F, §)]dA.,
0

5.7
we write PbY, (x, X, y, y) as the sum of 2" copies of

/ m) xn (Vi) Im[e VT[S0 v RE (g 1) So -+ V R (0 2) Sl (E, 7)1dA
0

(5.8)
up to &, where oy = O or 1 foreach k = 1, ..., n. Next, splitting all Sy into / and Sy
in (5.8), we further decompose (5.8) into the sum of 21+1 kernels.

Among them, let us consider the two representative terms,

Im/ m(x)XN(\/X)e"ﬁ“)‘*f'“f'*yl)[SOVRJ(aIA)SO VRS (@) Sol(E, F)da,
0
(5.9)
Im/ m(A)XN(\/X)eiﬁ“**f'“?ﬂ')[VRJ(aI/\) VR (@ MIE, §)doa.
0
(5.10)

For the first term, by the free resolvent formula (1.10), we write (5.9) in the integral
form,

n+l1

Im/ / m(?»)XN(x/_)HSo(sz 1, X2k)

"+1 1“k[|x2k —x2k+1]

X H V(xzk)Hk g

dxom+1dA
k — X2k+1]

TS SoCea—1, x20) TTh—y V (xak)

RO [Tiz1 4o lxor — X211
Oo . ~
x [ / m() xn (V) Im(e Ym0y dn b dx o ong) (5.11)
0
where xo 1= X, X1 1= X, Xpp42 1= Y, Xop43 1= Y, dX@Q,n) = dXx2 - - - dXp, Oy =

ZZ:(% ak|x2k - x2k+1| and o) = Op41 = 1. Then, by Lemma 4.2 with s = s1 + 52
and |xo — x1], [¥2,42 — X2443] < 0y 11, We obtain that
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N2{m |75, 45)

(N(xp — x1))"U (N (x2n42 — X2043))%2
(5.12)

Applying (5.12) to (5.9), we get the arbitrary polynomial decay away from xo = x1,

)/ m() xn (V) Im(e Y 1) an] <

N2||m||7'{(s1+sz)k?5‘9) (i, i) . N2||m||7'((s1+sz)k?5‘9) ()E’ &)

1591 < = - - ,
(N(xo —x)) (N (x2n42 — X2043))°2 (N(x — X)) (N(y — y))(XS2 3

where

HZiI S0 (xak—1, x260) | TRy 1V (x20)]
RO [Tz, 4mlxok — xok411
= [1So1(1VI(=A) " ISoD"I(F, 7) (5.14)

k?jg)(iv y) = dX2,2n41)

and |So| is the integral operator with kernel |So(x, y)|. We claim that

ks 0y Fs Pllzgery, S 8" ANV llc/dm)". (5.15)

Indeed, since [[|Sol(1VI(=2)""SoD" fllpr < S™H A=) £, and 1301V
(=A)"18o))™" is an integral operator, sending f — §(- — y), we prove the claim.
Similarly, we write (5.10) as

”+1 iog /M| Xk —Xp41]

Im/ / m(mN(f)va) iz

[Tizy 4 |xk — xpp1

:/ 0 [iesy VCo0) [/ m() xn (VA) Im(eiﬁg”“)dl] dx(2,n)
r31=3 [Lemy 47013k — Xit1] Lo
(5.16)

dxo,mydX

where xo = x, x| = X, Xpq] ‘= Y, Xpy2 = Y, 00 = dp42 = 1l and 6, =
> k—o 9k|xk — xk41]. Then, by Lemma 4.2 with s = 51 + 52 and |xo — xi], |Xy41 —
Xn+42| < 6n4+1, We obtain that

N2{m |35y +50k(s 10)E ) N2Imlpics, +50k(s 10y, )
(N(xo = X)) (N Qg1 — %242))2 (N(x = D)) H(N(F — y>>(352 "

1(5.10)] <

where

k(s 10 (%> ) '=/ Mt VOOL_y, ) — amyqvi=a) 'z, 5)
GAOS T Jpons Thizy 4 — a0 o
(5.18)
Then by the definition of the global Kato norm, we prove that
15 10y (%, IMigry = IV llxc/4m)". (5.19)
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Similarly, we estimate other kernels, and define k7 (X, y) as the sum of all 22+ 1 many
upper bounds including Ks5.9)(X, ¥) and K(5.10)(X, ¥). Then, kj (¥, y) satisfies (5.5)
and (5.6). O

Lemma 5.2 (Summability in n) For any € > 0, there exist a small number Ny =
No(V,e) < land K3 (%, y) € L§°sz such that for N < N,

IPby (x, £, 7, )| S N [Imllp)k3 (&, 3) (5.20)

and
k5 (%, i)llL;oL; <€ (5.21)

Proof Fix small € > 0. Then, by Lemma 3.1 (ii), we choose small Ny := 6 = 6(¢) >
0 and an integral operator B such that | By o(x, y)| < B(x,y) for 0 <X < Np, and

1Bl <eS+1D7", (5.22)
where S is a positive number given from (3.20). We define
K3 (%, 5) = [+ [SoD(BU + 1S0))"1(F, 3),

where |Sy| is the integral operator with |Sy(x, y)| as kernel. Then, by definitions [see
(5.4)], one can check that k7 (X, ¥) satisfies (5.20). For (5.21), splitting (I + [Sp|) into
I and |Sp| in K3 (%, 5), we get 2" terms,

Ky (%, §) = [1Sol(BISoD"1(%, ) + - - - + B"(%, §). (5.23)

For example, we consider 1Sol(B|So|)" and B". Since both |Sy| and B are integral
operators, by Lemma 3.4 and (5.12), we obtain

~ ~ - ~ ~ y ~ ~ _ n
10801BISoD" &, Dl s = NS0l BISoD" pimr < 3" (e + 171,
n

1B" @5l = 18" p < (S + D7) (5.24)

Similarly, we estimate other 2”1 — 2 terms. Summing them up, we prove (5.21). O

6 Medium Frequency Estimate: Proof of Lemma 2.1 (iii)

The proof closely follows from that of Lemma 2.1 (i7), so we only sketch the proof.
For ¢ > 0, we take § = §(¢) > 0 from Lemma 3.1 (ii). We choose a partition
of unity function ¥ € CZ° such that suppyr C [—6,8], (1) = 1if [A] < % and
Zc;ozl V(- — Aj) = 1on (0, +00), where 1; = j3.

Let Nog and N; be dyadic numbers chosen in the previous sections. For No < N <

N1, we first decompose xy (+/2) in Pby [see (2.7)] into xn (v/A) = Z?Zﬁ/za X/J\./ Q)
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where x{, M) = xn VDY — A ;). Plugging the formal series (5.1) with Ag = A
into each integral, we write the kernel of Pby as

V() S | S
Pb , “w__» -1 n+ an VXY, dxd ,
v =" [[ T | DI L R L

6.1)
where
Pbl (x, X, ¥, y)
NG e .
- / () iy (V) Im[e VNS, (B, L S, (R, §)1d.
j=N/2570
(6.2)

By the arguments in the previous sections, for Lemma 2.1 (iii), it suffices to show the
following two lemmas:

Lemma 6.1 (Summability in N) For Ny < N < Ny, there exists an,l()z’ y) such that
forsy,s2 >0,
N2y 450 Ky (5, )

(NG = D)SUNG =y’

[Pby, (x, X, ¥, WI < (6.3)

and VI
n ~ 0~ < n+1 K\"
iy B Dl = S+ 1" (LK) (64)

Proof For instance, consider
00 : . ~ ~
/ m() 0 Im[e V=TT (g, (B, 5 S, YY(E, PIdL (6.5
; ;53

among O (N)-many similar integrals in (6.2). As we did in Lemma 4.2, we show that

Nllm|l 1)

‘/O m(A)X}{,(A)Im(eiﬁa)d)» SNo.Ny No)

(6.6)

Repeating the proof of Lemma 5.1 [but replacing So and Bj, o by Sy, and B, ,; and
applying (6.6) instead of Lemma 4.2], one can find an, (X, y) suchthatforsy, s; > 0,

N||m||H(51+s2)an’j,1(i» )7)

6.95)| < R 6.7
OIS NG NG — ) ©D
. o IVIKy
Ky 1 G e = S+ D () 6.8)
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Define
5 2N/
K@ 3) =5 20 ka9,
j=N/28
then it satisfies (6.3) and (6.4). O

Lemma 6.2 (Summability inn) Let € > 0 be a small number chosen at the beginning
of this section. For No < N < N1, there exists ky, ,(X, y) such that

IPb, (x, £, 5, )| S N2{Imlpo) Ky o (E, 5. (6.9)

and ~
k2 (F, Il poopr < (1+ Syrtlen, (6.10)

Proof Again, we consider (6.5). By the choice of € and § and Lemma 3.1 (ii), there
exists an integral operator B such that |B; »,(x, y)| < B(x,y) for [A — A < 4,

A, Aj>0,and |Blpi 1 < €. Let |S’M | be the integral operator with integral kernel
|§;LJ. (x, y)|. Then, we have

16.5)] S Nlmlgo) [+ 133, DBU + 15,1, 5) ©6.11)

and
I+ 183, DBU + 15, )" E Dl poegr = A+ 8T (6.12)

Therefore, we define

2N/8
KB 5) = D0 10+ 18, DBU + 15, D)"1E 5). (6.13)
j=N/25
then it satisfies (6.9) and (6.10). O

7 Application to the Nonlinear Schrodinger Equation
7.1 Two Norm Estimates

Following the argument in [6], we begin with proving the boundedness of the imaginary
power operators. For @ € R, the imaginary power operator H® P, is defined as a
spectral multiplier of symbol A/¢ 1[0, +00)- We consider H i@ p_instead of H'® just for
convenience’s sake. Indeed, by the assumptions, H has only finitely many negative
eigenvalues, and the projection P;; is bounded on L" forany 1 < r < oo (see Lemma
3.6). Therefore, the boundedness of H'* P implies that of H'* = H!* P+ > )L;"‘ Py,
where A ;’s are negative eigenvalues of H.

Birkhauser



616 J Fourier Anal Appl (2016) 22:591-622

Lemma 7.1 (Imaginary power operator) If V € KoNL>?% and H has no eigenvalue
or resonance on [0, +00), then for o € R,

IH Pl S (@), 1 <7 < oo. (7.1)

Proof Since ||)J°‘1[0,+oo) lHaE) S (a)?, the lemma follows from Theorem 1.1. O

Proposition 7.2 (Two norm estimates) If V € Ko N L3/>* and H has no eigenvalue
or resonance on [0, +00), then for0 <s <2and 1 <r < %

IH2 Pe(=D) "2 fller S f e (7.2)
I(=A)H 2P fllr S f e (7.3)
Proof (1.2) Pick f, g € L' N L™ such that supp f C B(0, R) \ B(0,r), Py<.<ng =

P.g for some R, r, N,n > 0. Note that by Lemma 3.5, the collection of such f (g,
resp) is dense in L” (L" , resp). We define

F(Z) = (HZPC(—A)_Zf, g>L2 — ((_A)—Rez—ilmzf’ H—i ImZHReZg>L2. (74)
Indeed, F(z) is well-defined, since (—A)~Rez=iImz ¢ p—ilmzpgRez o o 12 More-
over, F(z) is continuous on § = {z : 0 < Rez < 1} C C, and it is analytic in the

interior of S. We claim that H P.(—A)~! is bounded on L” for 1 < r < % Indeed, by
Lemma 3.6 (i),

IHP(—D) " fllr S AN fller < U+ IV AT . (7.5)

By the Holder inequality (Lemma 7.5) and the Sobolev inequality in the Lorentz norms
(Corollary 7.9), we have

v Sl (6

3-2r-

V=2l < IVl (=871
Hence, by the claim and Lemma 7.1, we get

|F(1+i)| < |HP(=A) 7 flir gl S @8 fllerllgh,r, (<r<3),

(7.7)
|F(ia)| < [H™ Pe(=D) " Fller gl St f e ligl s (I<r<o0).
(7.8)
Therefore (7.2) follows from the Stein’s complex interpolation theorem.
(7.3) Pick f and g as above, and consider
G(2) == ((=A)°H *Peg, [ (7.9)

We claim that (—A)H ' P.g is bounded on L” for 1 < r < % By the triangle
inequality,
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I(=A)YH " Pegllyr = I(H = VYH ' Peglir < |1Peglir +IIVH ™ Pegllpr. (7.10)

By Lemma 3.6 (i), || P.gllz- < |gllz-. By the Holder inequality in the Lorentz norms
(Lemma 7.5) and the Sobolev inequality associated with H [12, Theorem 1.9], we get

IVH™ Pegller < IVIigana lH Pegll s, SIVIganslgler. 711

3-2r

Repeating the above argument with the complex interpolation, we complete the proof.
O

7.2 Local Well-Posedness

Now we are ready to show the local well-posedness (LWP) of a 3d quintic nonlinear
Schrodinger equation

iy + Au— Vu =+ [ul*u = 0; u0) = uy. (NLSy)

Theorem 7.3 (LWP) If V € Ko N L3> and H has no eigenvalue or resonance on
[0, 400), then (NLSy) is locally well-posed in Hl. Precisely, for A > 0, there exists
8 = 8(A) > 0 such that for an initial data ug € H' obeying

Vu <A and |e My <8, 7.12
IVuoll 2 < le™ uoll o p10 (7.12)

(NLSy) has a unique solution u € C;(I; HX1 ), with I = [0, T) C [0, Ty, such that

IVull 0 30m5 <00 and fullo o0 < 25. (7.13)

10
Lte[

Proof (Step I Contraction mapping argument) Let ¥; be the eigenfunction corre-
sponding to the negative eigenvalue A ; normalized so that |||/ ;2 = 1. Choose small
T € (0, Tp) such that |l 10 y10, 1¥jll;2 ;2 < 1forall j, where I = [0, T] and
tel =x ‘tel X . . . .
Y¥j(t,x) = ¥;j(x) forall # € I. For notational convenience, we omit the time inter-
val I in the norm || - ||, » , if there is no confusion. Following a standard contraction
te
mapping argument [3,21], we aim to show that

t
D, (V)(1) 1= e_”Huo:I:i/ eI (1y1*y(s))ds (7.14)
0

is a contraction map on the set

Bap = {v i lvlige < a, IVl 10,301 < b}, (7.15)
equipped with the metric d(u, v) = |ju — v”L,‘“ + IV(u — v)||L10L30/13, where a, b
s X t X

and § will be chosen later.
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We claim that ®,, maps from By j to itself. We write

t
1900y <l Puall gy + | [ pGrtuisns|
| 0+

L%
J ! .
+2| | et ve. vy,
" J
=141+ III;. (7.16)

j=1

By assumption, I < §. For 11, by the Sobolev inequality associated with H [12,
Theorem 1.6], Strichartz estimates (Proposition 1.2) and the two norm estimates, we
get

t
—i(t—s)H /21,14 12 4
11 < H/O e it=9) P.H / (Jv| U(S))dsHL}OLf(O/” < ||H / P.(|v]| U)”L%szﬁ
SIVQFDI 2 05 < 3@ VO)@N 2 05 + 2@V @]l 205 (717)
S Il o IVl o 20m5 < @b,

For the last term, by the Holder inequality, the choice of 7" and (7.17), we obtain

t .
1= | /0 eI (v (), i) 2V))ds

L
r 4
< ([ 1rtue welds) 1 g
< VAUt 2,05 11V 951121
SVt sl 2 < a'b. (7.18)
Therefore, we prove that
1Puy (W)l 10 <8 + Ca*b. (7.19)
Next, we write
J
IV @ug W) 10, 30013 = NIV PePug (W] 10, 3013 + Z IV P ; Pug (W)l 10, 30013
j=1
J
=I1+> 11, (7.20)
j=1
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For I , by the two norm estimates, Strichartz estimates and (7.17), we obtain

30/13

IS IHY2Pe®uy )] 10,3

SIHY Peugll 2 + [ H' 2 Peul* o)l 2,05

S IVuoll 2 + I1H P Pe(ol*0)l 2 05 S A +a*b.

For I1, by the Holder inequality, (7.19) and Lemma 3.6, we get

ITj < (@, (v), Vi)l polivllpzons
< 1 Puy @)l o 1951 100 S 6+ ab.

Collecting all, we prove that

013 < CA+ Ca’b.

(7.21)

(7.22)

(7.23)

Let b = 2AC, a = min((2C)_%, (2Cb)_%) and § = % (= Ca*h < AC and
Ca’b < %). Then, by (7.19) and (7.23), ®,, maps from B, ;, to itself. Similarly, one
can show that @, is contractive in B, ;. Thus, we conclude that there exists unique

u € B, p such that
u(t) = () = e Huyg + i/ eI (%) (s)ds.
0

(Step 2 Continuity) In order to show that u(¢) € C;(I,; H): ), we write

J
u(t) =e "M | Paug+ D" Py ug
j=1

t J
:I:i/ e HImH (Pc(|u|4u)(s)+ZPAj(|u|4u)(s))ds
0 O

J t
= e "M Pug+ D e Py ug + i/ e IR P (Jul*u) (s)ds
; 0
j=l1

J t
+i Z/O e 1IN Py (Jul*u)(s)ds
j=1

J J
= 1(t)+ > 11;(t) + 111 (t) + D 1V ().

j=1 j=1

(7.24)

(7.25)
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For (), by the two norm estimates and L>-continuity of e ¥ | we have

II(6) — Tl g S e ™ — e O HY2Pygll,o — 0 ast — 19, (7.26)
since ||H1/2Pcu0||Lz S llull g < oo. I1(z) is continuous in H', since

1Py uoll g1 = Kuo, Vi) 2l g S Nluoll gi il g1 < lluoll gillrjll s < oo.
(7.27)
For 111 (t), by the two norm estimates, Strichartz estimates and (7.17), we have

WITI(e) — TTI(to)ll g1 S WHY(UTT () — 111 (1)) 12

SUH2P.(ul*w)ll . o5 — 0 ast—> 1. (7.28)
s€ltg, ] =X

L
For I'V;(¢), by the Holder inequality and (7.17), we write
11Vi@) = 1V;@o)llg < ||Wj||g1||V(|U|4M)(S)||Lt2 . t]Lﬁ/SIIIVFl%IILz 7
elrg,11x s€ltg.1]7x
S IIV(Iu|4u)(S)||Lz . T]Lé/sllellLtsz — 0 ast — Io.
seltg.r]—x x*

(7.29)

Collecting all, we conclude that u(¢) is continuous in H'. O
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Appendix: Lorentz Spaces and Interpolation Theorem

Following [21], we summarize useful properties of the Lorentz spaces. Let (X, u) be
a measure space. The Lorentz (quasi) norm is defined by

PHIRAISIZIDYPN () 2y When 15 p <00 and 1<g <00
Il i= e

I f Lo when p = ¢ = oo.
(7.30)

Lemma 7.4 (Properties of the Lorentz spaces) Let 1 < p <ocoand 1 < ¢q,q1, g2 <
Q.

(i) LPP = LP, and LP*° is the weak LP-space.
(ii) If g1 < q2, LP1 C LP%2,

Lemma 7.5 (Hélder inequality) If 1 < p, p1, p2. 4, 41,92 < 00, ; = - + - and
L=L 4L then
TR

Ifglzra S U Iranll f8llLran. (7.31)

Birkhduser



J Fourier Anal Appl (2016) 22:591-622 621

Lemma 7.6 (Dual characterization of L”9)If1 < p < oo and 1 < g < oo, then

I lena ~ || radu. (132
HgH / /<1

L4 —

A measurable function f is called a sub-step function of height H and width W if f
is supported on a set E with measure (E) = W and | f (x)| < H almost everywhere.
Let T be a linear operator that maps the functions on a measure space (X, ux) to
functions on another measure space (Y, ;y). We say that T is restricted weak-type
(p, p)if

T fll poe S HWP (7.33)

~

for all sub-step functions f of height A and width W.

Theorem 7.7 (Marcinkiewicz interpolation theorem) Let T be a linear operator such
that

(Tf.g)12 = /Y Tfgduy (7.34)

is well-defined for all simple functions f and g. Let 1 < pog, p1, po, p1 < 00. Suppose
that T is restricted weak-type (p;, p;) with constant A; > 0 fori = 0, 1. Then,

TN pina S Ag AT S llLroa, (7.35)

1-6 9 1 1-6 0 =~
— _ = = = - < <
Po pi’ po p0+p1,p9>1and1_q_oo.

In this paper, we use the interpolation theorem of the following form.

where0 <6 <1, L =
Po

Corollary 7.8 (Marcinkiewicz interpolation theorem) Let T be a linear operator. Let
1 < p1 < p» < oo. Suppose that fori = 0,1, T is bounded from LPi"' to LPi->
Then T is bounded on LP for py < p < pa.

Proof The corollary follows from Theorem 7.7, since T is restricted weak-type
(pi, pi):

o0 H
1 fll et = pi/ w(lf] = MVPids < p,-/ WUPdx = p HWYP, (7.36)
0 0

for a sub-step function f of height H and width W. O

Corollary 7.9 (Fractional integration inequality in the Lorentz spaces)

| [ =]

wherel<p<q<oo,1§r§ooandql:

H /Rd |x f(y|)d s y‘

< 7.37
rorgy < 171 (7:37)

1 s .
> a At the endpoints, we have

S () ” -
/léd |_x — y|dfs dy LOC(R‘]) ~ ||f||Ld/511 .
(7.38)

Sl

d
L= ""°(Rd)
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Proof (7.38) follows from [18, Theorem 1, p. 119] and duality. Then, (7.37) follows
from Corollary 7.8. O
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