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Abstract We reduce the boundedness of operators in Morrey spaces Lr
p (Rn), its pre-

duals, H�L p(R
n), and their preduals

◦
Lr
p (Rn) to the boundedness of the appropriate

operators in Lebesgue spaces, L p(R
n). Hereby, we need a weak condition with respect

to the operators which is satisfied for a large set of classical operators of harmonic
analysis including singular integral operators and theHardy-Littlewoodmaximal func-
tion. The given vector-valued consideration of these issues is a key ingredient for
various applications in harmonic analysis.
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1 Introduction

Let
◦
Lr
p (Rn) be the completion of D(Rn) in Lr

p(R
n), where
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∥
∥
∥ f |Lr

p

(

R
n)
∥
∥
∥ = sup

x∈Rn ,
R>0

R
−
(
n
p +r

)

∥
∥ f |L p (BR(x))

∥
∥ , 1 < p < ∞,− n

p
≤ r < 0.

Then we have

( ◦
Lr
p

(

R
n)
)′′ ∼= (H�L p′

(

R
n))′ ∼= Lr

p

(

R
n) , (1)

where the second duality assertion is due to [1,9,14,22,30] and the first assertion is
observed by [2] and proved by [22]. Roughly speaking in this paper we prove that the
L p(R

n)-boundedness of an operator T satisfying the condition

|(T f )(y)| ≤ c
∫

Rn

| f (z)|
|y − z|n dz for all f ∈ D

(

R
n) and y /∈ supp ( f ), (2)

implies its boundedness in
◦
Lr
p (Rn). Therefrom, under some additional conditionswith

respect to T we get also the boundedness of T in H�L p(R
n) and Lr

p(R
n) by (1) and

duality arguments. Our paper can be considered as an extension of the new approach
given in [21] and [22] to a wider class of operators and to the vector-valued situation.
Let us mention that the extension of operators of this type and related norm estimates
have to be treated with greater care than in many related papers investigating mapping
properties of operators in Lr

p(R
n). We refer to Remark 4.5 for the relation of our paper

to the existing literature. In particular, we cannot expect an unique extension toMorrey
spaces Lr

p(R
n). On the contrary it turned out that there are infinitely many possible

extension operators (cf. [22, Remark5.3]). Let us also mention that the vector-valued
situation under consideration is crucial having in mind applications as a Michlin–
Hörmander type theorem (and hence applications to Navier–Stokes equations cf. [26]
and [21, Remark4.3]), Littlewood–Paley theory for Morrey spaces and its preduals as
well as for Lizorkin representations of Triebel–Lizorkin–Morrey spaces. The given
results are partially contained in [20]. Condition (2) is due to Soria and Weiss [23]
who transferred the boundedness of singular operators on Lebesgue spaces to the
boundedness of these operators in some weighted Lebesgue spaces.

The paper is organized as follows. Basic definitions and preliminaries which are
needed later on are collected in Sect. 2. Duality theory for vector-valued Morrey-type
spaces is treated in Sect. 3. The main results can be found in Theorem 3.1 (predu-
als of Morrey spaces) and Theorem 3.3 (Morrey spaces as bidual spaces). In final
Sect. 4 we prove our main results concerning the transference of mapping properties
of operators satisfying condition (2) to vector-valuedMorrey type spaces. The general
theorem is presented in Sect. 4.1 (Theorem 4.3) following the method developed in
[21] and [22]. As a consequence of our main theorem we obtain mapping proper-
ties for various classes of operators in vector-valued Morrey-type spaces. Section 4.2
is concerned with Calderón–Zygmund operators. Here we present also an alternative
approach via weighted spaces (Theorem 4.9).Maximal operators of Hardy-Littlewood
and Calderón–Zygmund type as well as related vector-valued inequalities are consid-
ered in Sect. 4.3. The final Sect. 4.4 is devoted to some classes of Fourier multipliers
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such as characteristic functions, smooth multipliers and Bochner–Riesz mulipliers at
the critical index.

2 Definitions and Preliminaries

2.1 Notation

We use standard notation. Let N be the collection of all natural numbers and N0 =
N ∪ {0}. Let Rn be the Euclidean n-space, where n ∈ N. Put R = R

1. Let S(Rn) be
the Schwartz space of all complex-valued rapidly decreasing infinitely differentiable
functions on R

n and let S′(Rn) be the space of all tempered distributions on R
n .

Let D(Rn) = C∞
0 (Rn) be the collection of all infinitely differentiable complex-

valued functions with compact support in R
n , where the support of a function f is

abbreviated by supp ( f ). Moreover, denotes C(Rn) and Lip(Rn) the collection of
all continuous and Lipschitz continuous, respectively, and bounded complex-valued
functions defined on R

n .
Furthermore, L p(R

n) with 1 ≤ p < ∞, is the standard complex Banach space
with respect to the Lebesgue measure, normed by

‖ f |L p
(

R
n) ‖ =

(∫

Rn
| f (x)|p dx

)1/p

.

For a measurable subset M of Rn we similarly define L p(M). Moreover, |M | stands
for the Lebesgue measure of M and χM for the characteristic function on M . As usual
Z is the collection of all integers; and Zn where n ∈ N denotes the lattice of all points
m = (m1, . . . ,mn) ∈ R

n with m j ∈ Z. As usual, L loc
p (Rn) collects all equivalence

classes of almost everywhere coinciding measurable complex locally p-integrable
functions, hence f ∈ L p(M) for any bounded measurable set M in R

n . For any
p ∈ (1,∞) we denote by p′ the conjugate index, namely, 1/p + 1/p′ = 1. For
Banach spaces X and Y and an operator T : X → Y

T : X ↪→ Y

means, that the operator is bounded, that is,

‖T x |Y‖ ≤ c ‖x |X‖

where the the constant c is independent of x ∈ X . Let D(Rn) ↪→ X . A bounded
operator T̃ acting in X , hence T̃ : X ↪→ X , is called an extension of T to X if
it coincides on D(Rn) with T . We denote the Fourier transform of f on S(Rn) or
S′(Rn) by f̂ and its inverse by f̌ where the normalisation of f̂ does not matter for our
estimates. The concrete value of constants may vary from one formula to the next, but
remains the same within one chain of (in)equalities. Finally, A ∼= B is an abbreviation
that there are two constants c, C > 0 such that cA ≤ B ≤ CA.
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2.2 Morrey Spaces, Duals and Preduals

Definition 2.1 For 1 < p < ∞ and − n
p ≤ r < 0 we define Morrey spaces as

Lr
p

(

R
n) ≡ { f ∈ L loc

p

(

R
n) :

∥
∥
∥ f |Lr

p

(

R
n)
∥
∥
∥ < ∞}

with the norm

∥
∥
∥ f |Lr

p

(

R
n)
∥
∥
∥ ≡ sup

M∈Zn
sup
J∈Z

2
J
(
n
p +r

)

∥
∥ f |L p(QJM )

∥
∥

∼= sup
x∈Rn

sup
R>0

R
−
(
n
p +r

)

∥
∥ f |L p (BR(x))

∥
∥ ,

where QJM ≡ QJ,M ≡ 2−J (M + [−1, 1]n) and BR(x) denotes the ball with radius
R centered at x .

Moreover,
◦
Lr
p (Rn) denotes the closure of D(Rn) with respect to

∥
∥
∥·|Lr

p (Rn)

∥
∥
∥.

Definition 2.2 Let 1 < p < ∞ and −n < � < −n/p. Then the predual Morrey
spaces H�L p(R

n) collects all h ∈ S′(Rn) which can be represented as

h =
∑

J∈Z,M∈Zn

λJ,MaJ,M in S′(Rn) with

supp aJ,M ⊂ QJ,M , ‖aJ,M |L p(R
n)‖ ≤ 2

−J
(
n
p +�

)

, (3)

such that

∑

J∈Z,M∈Zn

|λJ,M | < ∞. (4)

Furthermore,

‖h |H�L p(R
n)‖ ≡ inf

∑

J∈Z,M∈Zn

|λJ,M |

where the infimum is taken over all representations (3), (4).

Remark 2.3 The notation of H�L p(R
n) as a predual will be justified in the Theorem

3.1. By triangular andHölder’s inequality (3) and (4) ensure that the convergence in (3)
is unconditionally in Lu(R

n), where �u = −n. In particular it holds H�L p(R
n) ↪→

Lu(R
n) and we have 1 < u < p (cf. [22, (3.10)]). Let L p(R

n, wα) with 1 < p < ∞
and wγ (x) = (1 + |x |2)γ /2, γ ∈ R, be the weighted Lebesgue spaces, normed by

‖ f |L p(wα,Rn)‖ = ‖wα f |L p(R
n)‖. (5)
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Then it holds

L p(wα,Rn) ↪→ H�L p(R
n) (6)

with α > n/p′ (cf. [22, (3.5)]). Furthermore, D(Rn), S(Rn) are dense both in
◦
Lr
p (Rn) and H�L p(R

n). H�L p(R
n) and Lr

p (Rn) are Banach spaces and Lu(R
n) ↪→

Lr
p (Rn) ↪→ L p(wα,Rn) for u = −n/r and α < −n/p (cf. [22, Theorem 3.1]). The

last embedding as well as (6) can be sharpened cf. (20) below.

Definition 2.4 Let 1 < p < ∞,−n < � < −n/p. Let H�L p(R
n)εF be the following

subspace of H�L p(R
n) defined as

H�L p(R
n)εF ≡

{

ϕ ∈ H�L p(R
n)
∣
∣ there exists an L ∈ N

such that ϕ =
∑

J∈Z,M∈Zn

|J |≤L ,|M|≤L

h J,M , supp hJ,M ⊂ QJ,M and

∑

|J |≤L
|M|≤L

2J
(
n
p +�
)
∥
∥hJ,M |L p(QJ,M )

∥
∥ ≤ (1 + ε)‖ϕ|H�L p(R

n)‖
}

.

Proposition 2.5 Let 1 < p < ∞, −n < � < −n/p. Then H�L p(R
n)εF is dense in

H�L p(R
n).

Proof Let h ∈ H�L p(R
n) and ε > 0. Let h =∑J∈Z,M∈Zn λJ,MaJ,M in S′(Rn) such

that
∑

J∈Z,M∈Zn |λJ,M | ≤ (1 + ε/2)‖h |H�L p(R
n)‖ with supp aJ,M ⊂ QJ,M and

‖aJ,M |L p(R
n)‖ ≤ 2

−J
(
n
p +�

)

. We define then hJ,M ≡ λJ,MaJ,M for J ∈ Z, M ∈ Z
n

and obtain

∑

J∈Z,M∈Zn

2
J
(
n
p +�

)

∥
∥hJ,M |L p(QJ,M )

∥
∥ ≤

∑

J∈Z,M∈Zn

|λJ,M |

≤
(

1 + ε

2

) ∥
∥h |H�L p(R

n)
∥
∥ .

Let

hL =
∑

|J |≤L ,|M|≤L

h J,M , L ∈ N.

Then

∥
∥
∥h − hL |H�L p(R

n)

∥
∥
∥→ 0 if L → ∞.
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Hence,

∑

|J |≤L
|M|≤L

2
J
(
n
p+�

)

∥
∥hJ,M |L p(QJ,M )

∥
∥ ≤

(

1 + ε

2

) ∥
∥h |H�L p(R

n)
∥
∥

≤ (1 + ε)

∥
∥
∥hL |H�L p(R

n)

∥
∥
∥ .


�

2.3 Vector-Valued Morrey Spaces

Definition 2.6 Let 1 < p < ∞, − n
p ≤ r < 0 and 1 < q < ∞. Let Lr

p(
q ,R
n) be

the collection of all sequences of functions f j belonging to Lr
p(R

n) such that

∥
∥
∥ f j |Lr

p(
q ,R
n)

∥
∥
∥ ≡

∥
∥
∥

{

f j
} |Lr

p(
q ,R
n)

∥
∥
∥ ≡

∥
∥
∥
∥
∥
∥
∥

⎛

⎝

∞
∑

j=0

∣
∣ f j (·)

∣
∣
q

⎞

⎠

1
q

∣
∣
∣
∣
∣
∣
∣

Lr
p

(

R
n)

∥
∥
∥
∥
∥
∥
∥

is finite. Moreover,

◦
Lr
p (
q ,R

n) ≡
{{

f j
}

j∈N0
∈ Lr

p(
q ,R
n)

∣
∣
∣ there exist f kj ∈ D(Rn) for all

j ∈ N0, k ∈ N and f kj = 0 for j > k with
∥
∥
∥
∥

{

f j − f kj

}

j

∣
∣
∣
∣
Lr
p(
q ,R

n)

∥
∥
∥
∥

→ 0 (k → ∞)

}

.

Furthermore, for α ∈ R we define the space L p(
q , wα,Rn) as Lr
p(
q ,R

n) using
the norm of L p(wα,Rn) instead the norm of Lr

p (Rn). If α = 0, we simply write
L p(
q ,R

n).

Definition 2.7 Then H�L p(
q ,R
n) denotes the collection of all sequences of func-

tions g j belonging to H�L p(R
n) such that

∥
∥g j (·)|
q

∥
∥ is in H�L p(R

n). Moreover,
H�L p(
q ,R

n)εF stands for the collection of all sequences of functions g j belonging
to H�L p(
q ,R

n) such that
∥
∥g j (·)|
q

∥
∥ is in H�L p(R

n)εF .

3 Duals and Preduals: The Vector-Valued Case

3.1 Predual Spaces

The duality with respect to Morrey spaces is discussed in the scalar case in detail
with complete proofs in [22]. Here we give complete proofs in the vector-valued case
following their approach.

Theorem 3.1 Let 1 < p < ∞, − n
p < r < 0, r + � = −n and 1 < q < ∞. Then the

predual space of Lr
p(
q ,R

n) is H�L p′(
q ′ ,Rn). Moreover,
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g ∈ (H�L p′(
q ′ ,Rn)
)′

if, and only if, it can be uniquely represented as

g( f ) =
∫

Rn

∑

j∈N0

g j (x) f j (x)dx (7)

for all f ≡ { f j } ∈ L p′(
q ′, wα,Rn) ↪→ H�L p′(
q ′ ,Rn), α > n/p, where

{g j } ∈ Lr
p(
q ,R

n) and
∥
∥
∥g
∣
∣
∣

(

H�L p′(
q ′ ,Rn)
)′ ∥∥
∥ =

∥
∥
∥g j |Lr

p(
q ,R
n)

∥
∥
∥ .

Moreover, if {g j } ∈ Lr
p(
q ,R

n), then

∥
∥
∥g j |Lr

p(
q ,R
n)

∥
∥
∥ = sup

f

∣
∣
∣
∣
∣
∣

∫

Rn

∑

j∈N0

g j (x) f j (x)dx

∣
∣
∣
∣
∣
∣

(8)

where the supremum is taken over all f ≡ { f j } ∈ H�L p′(
q ′ ,Rn) with
∥
∥ f |H�

L p′(
q ′ ,Rn)
∥
∥ ≤ 1.

Proof Let g ≡ {g j } ∈ Lr
p(
q ,R

n) and { f̃ j } ∈ H�L p′(
q ′ ,Rn) such that
∥
∥
∥ f̃ j (·)

∣
∣
∣ 
q ′

∥
∥
∥

is in H�L p′(Rn)εF . Hölder’s inequality yields

∫

Rn

∑

j∈N0

∣
∣
∣g j (y) f̃ j (y)

∣
∣
∣ dy ≤

∫

Rn

∥
∥
∥

{

g j (y)
}

j |
q
∥
∥
∥

∥
∥
∥
∥

{

f̃ j (y)
}

j
|
q ′

∥
∥
∥
∥
dy

≤
∑

J∈Z,M∈Zn

|J |≤L ,|M|≤L

∫

Rn

∥
∥
∥

{

g j (y)
}

j |
q
∥
∥
∥ hJ,M (y)dy

≤
∑

J∈Z,M∈Zn

|J |,|M|≤L

2
J
(
n
p +r

) ∥
∥
∥

∥
∥
∥

{

g j (·)
}

j |
q
∥
∥
∥

∣
∣
∣ L p(QJ,M )

∥
∥
∥ 2

J
(

n
p′ +�

)

∥
∥hJ,M |L p′

(

QJ,M
)∥
∥

≤ (1 + ε)

∥
∥
∥g j |Lr

p(
q ,R
n)

∥
∥
∥

∥
∥
∥ f̃ j |H�L p′(
q ′ ,Rn)

∥
∥
∥

where
∥
∥
∥ f̃ j (·)

∣
∣
∣ 
q ′

∥
∥
∥ is represented as in Definition 2.4 and r + � + n = 0. Therefore

the operator Tg given by

Tg
(

{ f̃ j }
)

≡
∫

Rn

∑

j∈N0

∣
∣
∣g j (y) f̃ j (y)

∣
∣
∣ dy

is bounded on H�L p′(
q ′ ,Rn)εF . We get the (unique) continuous extension Tg :
H�L p′(
q ′,Rn) ↪→ R bymeans of Proposition 2.5, where this extension is justified as
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in the linear case cf. (15) and (17) below. Let { f j } ∈ H�L p′(
q ′ ,Rn). By Proposition
2.5 there is furthermore a sequence { f kj } of H�L p′(
q ′,Rn)εF such that { f kj } tends to{ f j } in H�L p′(
q ′ ,Rn) for k → ∞. For u such that �u = −n by H�L p′(Rn) ↪→
Lu(R

n) exists a subsequence such that
∥
∥
∥ f klj (·) − f j (·)

∣
∣
∣ 
q ′

∥
∥
∥→ 0 almost everywhere

with respect to the Lebesgue measure in R
n for l → ∞. This implies f klj → f j

almost everywhere for all j ∈ N0 if l → ∞. The Lemma of Fatou yields then
∫

Rn

∑

j∈N0

∣
∣g j (y) f j (y)

∣
∣ dy =

∫

Rn

∑

j∈N0

∣
∣
∣
∣
g j (y) lim

l→∞ f klj (y)

∣
∣
∣
∣
dy

≤ lim
l→∞ Tg({ f klj }) = Tg({ f j })

Thus, for ε ↘ 0 we obtain
∣
∣
∣
∣
∣
∣

∫

Rn

∑

j∈N0

g j (y) f j (y)dy

∣
∣
∣
∣
∣
∣

≤
∫

Rn

∑

j∈N0

∣
∣g j (y) f j (y)

∣
∣ dy

≤
∥
∥
∥g j |Lr

p(
q ,R
n)

∥
∥
∥

∥
∥ f j |H�L p′(
q ′,Rn)

∥
∥ (9)

for {g j } ∈ Lr
p(
q ,R

n) and { f j } ∈ H�L p′(
q ′,Rn). Hence, in particular, any
{g j } ∈ Lr

p(
q ,R
n) induces a bounded linear functional on H�L p′(
q ′ ,Rn).

Conversely, suppose that g is a bounded linear functional on H�L p′(
q ′ ,Rn) with
the norm ‖g‖. Taking into account (6) the linear functional g induces a bounded linear
functional on L p′(
q ′ , wα,Rn) for α > n/p and therefore we have the representation
formula

g({ f j }) =
∫

Rn

∑

j

g j (y) f j (y)dy (10)

for some {g j } ∈ L p(
q , w−α,Rn) and for all { f j } ∈ L p′(
q ′ , wα,Rn). Let { f̃ j } ∈
L p′(
q ′ , wα,Rn) with supp f̃ j ⊂ QJ,M for all j ∈ N0. Then

∥
∥
∥ f̃ j |H�L p′(
q ′ ,Rn)

∥
∥
∥ ≤ 2

J ( n
p′ +�)

∥
∥
∥‖{ f̃ j (·)} j |
q ′ ‖

∣
∣
∣ L p′(QJ,M )

∥
∥
∥ .

With n
p′ + � = − n

p − r one obtains

∣
∣g
({ f j }

)∣
∣ ≤ ‖g‖

∥
∥
∥ f̃ j

∣
∣
∣ H�L p′(
q ′,Rn)

∥
∥
∥

≤ ‖g‖ 2−J
(
n
p+r

) ∥
∥
∥‖{ f̃ j (·)} j |
q ′ ‖

∣
∣
∣ L p′(QJ,M )

∥
∥
∥ .

Then one has by duality in L p′(
q ′, QJ,M ) and (10)

‖g j |L p(
q , QJ,M )‖ ≤ 2
−J
(

n
p′ +r

)

‖g‖.
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Hereby, L p′(
q ′ , QJ,M ) is defined similarly as Lr
p(
q ′,Rn) using L p′(QJ,M ) instead

of Lr
p (Rn). Note also that an element of L p′(
q ′, QJ,M ), say { f̃ j }, is also in

L p′(
q ′ , wα,Rn) if one extends f̃ j , j ∈ N0, outside of QJ,M by zero. The last inequal-
ity proves {g j } ∈ Lr

p(
q ,R
n) and
∥
∥
∥g j |Lr

p(
q ,R
n)

∥
∥
∥ ≤ ‖g‖.


�

3.2 Dual Spaces

In the proof of the next theorem, which is a vector-valued extension of [22, Theo-
rem 4.1, (4.5)], we benefit from the following general assertion.

Proposition 3.2 ([4, p. 73] and [24, Lemma in Sect. 1.11.1]) Let {A j } j∈N0 be a
sequence of complex Banach spaces and {A′

j } j∈N0 their respective duals. Moreover,
we put

c0({A j }) ≡
{

a ≡ {a j
}

j∈N0

∣
∣
∣ a j ∈ A j ,

∥
∥a|c0(A j )

∥
∥ ≡ ∥∥a|
∞(A j )

∥
∥ ≡ sup

j

∥
∥a j |A j

∥
∥ < ∞,

∥
∥a j |A j

∥
∥→ 0

}

,


1({A′
j }) ≡

⎧

⎨

⎩
a′ ≡

{

a′
j

}

j∈N0

∣
∣
∣
∣
a′
j ∈ A′

j ,

∥
∥
∥a′|
1(A′

j )

∥
∥
∥ ≡

∑

j

∥
∥
∥a j |A′

j

∥
∥
∥ < ∞

⎫

⎬

⎭
.

Then

(

c0({A j })
)′ = 
1({A′

j }) with a′(a) =
∞
∑

j=0

a′
j (a j ) and

∥
∥· ∣∣(c0(A j ))

′ ∥∥ =
∥
∥
∥·
∣
∣
∣
1(A

′
j )

∥
∥
∥ .

Theorem 3.3 Let 1 < p < ∞, − n
p < r < 0, r + � = −n and 1 < q < ∞. Then the

dual space of
◦
Lr
p(
q ,R

n) is H�L p′(
q ′ ,Rn). Moreover, g ∈
( ◦
Lr
p(
q ,R

n)

)′
if, and

only if, it can be uniquely represented as

g( f ) =
∫

Rn

∑

j∈N0

g j (x) f j (x)dx

for all f ≡ { f j } ∈ L− n
r
(
q ,R

n) ↪→ ◦
Lr
p(
q ,R

n), where

{g j } ∈ H�L p′(
q ′,Rn) and

∥
∥
∥
∥
g

∣
∣
∣
∣

( ◦
Lr
p(
q ,R

n)

)′ ∥∥
∥
∥

= ∥∥g j |H�L p′(
q ′ ,Rn)
∥
∥ .
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Moreover, if {g j } ∈ H�L p′(
q ′ ,Rn), then

∥
∥g j |H�L p′(
q ′ ,Rn)

∥
∥ = sup

f

∣
∣
∣
∣
∣
∣

∫

Rn

∑

j∈N0

g j (x) f j (x)dx

∣
∣
∣
∣
∣
∣

(11)

where the supremum is takenover all f ≡ { f j } ∈ ◦
Lr
p(
q ,R

n)with
∥
∥
∥ f
∣
∣
∣Lr

p(
q ,R
n)

∥
∥
∥ ≤

1.

Proof It follows from (9) that any {g j } ∈ H�L p′(
q ′,Rn) induces a bounded linear

functional on
◦
Lr
p(
q ,R

n).

Conversely, suppose g is a bounded linear functional on
◦
Lr
p(
q ,R

n) with norm
‖g‖. We observe that

∥
∥
∥{ f j }|Lr

p(
q ,R
n)

∥
∥
∥ = sup

J∈Z,M∈Zn

⎛

⎜
⎝

∫

QJ,M

⎛

⎝
∑

j∈N0

| f j (x)|q
⎞

⎠

p
q

2J (n+pr) dx

⎞

⎟
⎠

1
p

=
∥
∥
∥ f

j
J M |c0

(

L p(
q , μJ , QJM )
)
∥
∥
∥ ,

where f j
J M ≡ f jχQJM , μJ (dx) ≡ 2J (n+pr) and

∥
∥
∥ f

j
J M |c0

(

L p(
q , μJ , QJM )
)
∥
∥
∥

≡ sup
J∈Z,M∈Zn

⎛

⎜
⎝

∫

QJM

⎛

⎝
∑

j∈N0

| f j
J M (x)|q

⎞

⎠

p
q

2J (n+pr) dx

⎞

⎟
⎠

1
p

.

This shows that
◦
Lr
p(
q ,R

n) is isomorphic to a closed subspaceof c0
(

L p(
q , μJ , QJM )
)

analogously to the scalar-valued case in [22, (4.18)–(4.20)]. More precisely, we have

a linear, surjective and isometric map I : { f j } �→ { f j
J M } from ◦

Lr
p(
q ,R

n) onto the

closed subspace {{ f j
J M }|{ f j } ∈ ◦

Lr
p(
q ,R

n)} of c0
(

L p(
q , μJ , QJM )
)

and

I
◦
Lr
p(
q ,R

n) = {{ f j
J M }|{ f j } ∈ ◦

Lr
p(
q ,R

n)} ↪→ c0
(

L p(
q , μJ , QJM )
)

.

Hahn-Banach’s theoremyields g ∈
( ◦
Lr
p(
q ,R

n)

)′
if, andonly if, g ∈ (c0

(

L p(
q , μJ ,

QJM )
))′ and by Proposition 3.2 we have the representation
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g({ f j }) =
∑

J∈Z,M∈Zn

∫

QJM

∑

j∈N0

f j (x)g
j
JM (x)2J (n+pr)dx (12)

for any { f j } ∈ ◦
Lr
p(
q ,R

n) with {g j
JM } ∈ 
1

(

L p′(
q ′, μJ , QJM )
)

, where

∥
∥
∥{g j

JM }|
1
(

L p′(
q ′, μJ , QJM )
)
∥
∥
∥

=
∑

J∈Z,M∈Zn

⎛

⎜
⎜
⎝

∫

QJM

⎛

⎝
∑

j∈N0

|g j
JM (x)|q ′

⎞

⎠

p′
q′

2J (n+pr) dx

⎞

⎟
⎟
⎠

1
p′

.

Moreover, Hahn-Banach’s theorem implies that

∥
∥
∥
∥
g

∣
∣
∣
∣

( ◦
Lr
p

(

R
n)
)′ ∥∥
∥
∥

= inf
{∥
∥
∥g

j
JM

∣
∣
1
(

L p′(
q ′, μJ , QJM )
)
∥
∥
∥

∣
∣
∣g({ f j }) = g j

JM ({ f j })

for all { f j } ∈ ◦
Lr
p(
q ,R

n) and g j
JM ∈ 
1

(

L p′(
q ′, μJ , QJM )
)
}

.

Using Lebesgue’s dominated convergence theorem we deduce from (12) (cf. (13) for
an integrable majorant) the representation

g({ f j }) =
∫

Rn

∑

j∈N0

f j (x)
∑

J∈Z,M∈Zn

g j
JM (x)χQJM (x)2J (n+pr)dx

for { f j } ∈ L− n
r
(
q ,R

n). Let ε > 0. For h j
JM ≡ g j

JMχQJM 2
J (n+pr) we obtain

∥
∥
∥g

j
JM |L p′(
q ′, μJ , QJM )

∥
∥
∥ = 2

−J
(
n
p +r

) ∥
∥
∥h

j
JM |L p′(
q ′ ,Rn)

∥
∥
∥ ≡ λJM .

Therefore {λJM }J,M ∈ 
1 and for an appropriate choice of g j
JM we obtain also

‖λ|
1‖ ≤ (1 + ε) ‖g‖. For a j
JM given by h j

JM = λJMa j
JM we have then

∥
∥
∥a

j
JM

∣
∣
∣ L p′(
q ′ ,Rn)

∥
∥
∥ ≤ 2

J
(
n
p +r

)

with supp
(

a j
JM

)

⊂ QJM . Finally, it holds
{
∑

J∈Z,M∈Zn λJMa j
JM

}

j
∈ H�L p′(
q ′,Rn) and

⎧

⎨

⎩

∑

J∈Z,M∈Zn

g j
JMχQJM 2

J (n+pr)

⎫

⎬

⎭

j

∈ H�L p′(
q ′,Rn).
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Indeed, we have

⎛

⎜
⎜
⎜
⎝

∑

j∈N0

∣
∣
∣
∣
∣
∣
∣
∣

∑

J∈Z,
M∈Zn

λJMa j
JM

∣
∣
∣
∣
∣
∣
∣
∣

q ′⎞

⎟
⎟
⎟
⎠

1
q′

≤
∑

J∈Z,
M∈Zn

λJM

⎛

⎝
∑

j∈N0

∣
∣
∣a

j
JM

∣
∣
∣

q ′
⎞

⎠

1
q′

∈ H�L p′(Rn)

using bJM ≡
(
∑

j∈N0

∣
∣
∣a

j
JM

∣
∣
∣

q ′) 1
q′
with supp (bJM ) ⊂ QJM and

∥
∥bJM |L p′(Rn)

∥
∥ ≤

2
J
(
n
p +r

)

= 2
−J
(

n
p′ +�

)

. Finally,

∥
∥
∥
∥
∥
∥

⎧

⎨

⎩

∑

J∈Z,M∈Zn

g j
JM (x)χQJM (x)2J (n+pr)

⎫

⎬

⎭

j

∣
∣
∣
∣
∣
∣

H�L p′(
q ′,Rn)

∥
∥
∥
∥
∥
∥

≤ ‖λ|
1‖

≤ (1 + ε) ‖g‖ .

By the same argumentation we obtain also

⎧

⎨

⎩

∑

J∈Z,M∈Zn

∣
∣
∣g

j
JMχQJM

∣
∣
∣ 2J (n+pr)

⎫

⎬

⎭

j

∈ H�L p′(
q ′ ,Rn) ↪→ L− n
�
(
q ,R

n).

Together with { f j } ∈ L− n
r
(
q ,R

n) and Hölder’s inequality

∑

j∈N0

| f j |
∑

J∈Z,M∈Zn

∣
∣
∣g

j
JMχQJM

∣
∣
∣ 2J (n+pr) (13)

is an integrablemajorant.Moreover,weobserve L− n
r
(
q ,R

n) ↪→ ◦
Lr
p(
q ,R

n). Indeed,

for { f j } ∈ L− n
r
(
q ,R

n) there is a sequence { f kj } j tending to { f j } in L− n
r
(
q ,R

n) as

k → ∞ with f kj ∈ D(Rn) and f kj = 0 for j > k (and f kj ↗ f j as k → ∞) which

also implies { f kj } j → { f j } in
◦
Lr
p(
q ,R

n) as k → ∞ by L− n
r
(Rn) ↪→ Lr

p (Rn). 
�

4 Mapping Properties of Operators

4.1 The Main Theorem

Next we extend the approach developed in [21] and [22] to a wider class of operators
and to vector-valued spaces.
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Proposition 4.1 Let 1 < p < ∞, − n
p < r < 0 and 1 < q < ∞. Then

◦
Lr
p(
q ,R

n)

coincides with the completion of finite sequences of continuous compactly supported
functions. More precisely, it holds

◦
Lr
p(
q ,R

n) =
{{

f j
}

j∈N0
∈ Lr

p(
q ,R
n)

∣
∣
∣ there exist f kj ∈ C(Rn)

compactly supported for all j ∈ N0, k ∈ N and f kj = 0 for j > k

with

∥
∥
∥
∥

{

f j − f kj

}

j

∣
∣
∣
∣
Lr
p(
q ,R

n)

∥
∥
∥
∥

→ 0

}

≡ C0(
q ,Rn)
‖·|Lrp(Rn)‖

.

Proof Let { f j } ∈ C0(
q ,Rn)
‖·|Lrp(Rn)‖

. Let ε > 0. Then there exists a sequence {g j }
with g j ∈ C(Rn) compactly supported with g j = 0 for | j | > k and some k ∈ N

such that
∥
∥
∥ f j − g j |Lr

p(
q ,R
n)

∥
∥
∥ < ε. Let x ∈ R

n , R > 0. Let R̄ > 1 such that

supp
∑k

j=0 |g j |q ⊂ BR̄−1(0). Let y ∈ R
n with |y| < 1. Moreover, for R ≥ R̄

∥
∥g j (· − y) − g j (·)|L p(
q , BR(x))

∥
∥ ≤ ε R̄r

c

∣
∣BR̄(0)

∣
∣
1
p ≤ εR

n
p +r

whenever

k
∑

j=0

|g j (z − y) − g j (z)| <
ε R̄r

c
for all z ∈ R

n (14)

which holds by the uniform continuity of g j , j = 0, . . . , k, for |y| < δ =
δ(ε, R̄, r, g0, . . . , gk), where c is a constant depending on n. Furthermore, for R < R̄
again by (14)

∥
∥g j (· − y) − g j (·)|L p(
q , BR(x))

∥
∥ ≤ ε R̄r

c
|BR(x)| 1p ≤ εR

n
p +r

Let ψ ∈ D(Rn) with suppψ ⊂ B1(0),
∫

Rn ψ(y)dy = 1, 0 ≤ ψ ≤ 1 and ψl(·) ≡
lnψ(l·), l ∈ N. Then it holds

∥
∥
∥{g j ∗ ψl − g j } j |Lr

p(
q ,R
n)

∥
∥
∥ < ε for l sufficient large

where g j ∗ ψl ∈ D(Rn), j ∈ N0. Indeed, by means of Minkowski’s inequality and
the properties of ψl we find

∥
∥g j ∗ ψl − g j |L p(
q , BR(x))

∥
∥

≤ R
n
p +r

∫

|y|≤ 1
l

|ψl(y)|R−
(
n
p +r

)

∥
∥g j (· − y) − g j (·)|L p(
q , BR(x))

∥
∥ dy

≤ εR
n
p +r

where l is sufficiently large (depending on ε). 
�
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Remark 4.2 In the last Propositionwe adapted the proof in scalar-valued case Lr
p (Rn)

given in [30, Proposition 3] to the vector-valued situation.

Theorem 4.3 Let 1 < p < ∞, − n
p < r < 0, r + � = −n, 1 < q < ∞ and let

{

Tj
}

j∈N0
be a sequence of operators with the following properties:

(i) Tj : D(Rn) → C(Rn), j ∈ N0, and Tj , j ∈ N0, are
(a) either linear or
(b)

(

Tj ( f1 + f2)
)

(y) ≤ (Tj f1)(y) + (Tj f2)(y),

(Tj f )(y) = (Tj (− f )
)

(y), Tj0 = 0 (15)

for f , f1, f2 ∈ D(Rn) and y ∈ R
n;

(ii) we have

|(Tj f )(y)| ≤ c1

∫

Rn

| f (z)|
|y − z|n dz (16)

for all f ∈ D(Rn) and all y /∈ supp ( f ), where c1 does not depend on j ∈ N0,
f and y;

(iii) there is a constant c2 such that

∥
∥Tj f j |L p(
q ,R

n)
∥
∥ ≤ c2

∥
∥ f j |L p(
q ,R

n)
∥
∥

for all { f j } j∈N0 ⊂ D(Rn).

Then, the following statements hold true.

(1) There are unique continuous and bounded extensions T̃ j of Tj to
◦
Lr
p (Rn) for

j ∈ N0 such that

{

T̃ j
}

j∈N0
: ◦
Lr
p(
q ,R

n) ↪→ ◦
Lr
p(
q ,R

n).

(2) If Tj are linear for j ∈ N0, then the dual operators of the unique linear and

bounded extensions T̃ j of Tj to
◦
Lr
p (Rn), T̃ j

′ : H�L p′(Rn) ↪→ H�L p′(Rn),
satisfy

{

T̃ j
′}

j∈N0
: H�L p′(
q ′ ,Rn) ↪→ H�L p′(
q ′ ,Rn).

If the extensions of Tj to L p(R
n) due to assumption (iii) are formally self-adjoint

for all j ∈ N0, then T̃j
′
are the unique linear and bounded extensions of Tj acting

in H�L p′(Rn).
(3) If Tj are linear for j ∈ N0, then there are linear and bounded extensions T̃ j of Tj

to Lr
p (Rn) such that

{

T̃ j
}

j∈N0
: Lr

p(
q ,R
n) ↪→ Lr

p(
q ,R
n).
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Proof Step 1We start showing Assertion (1).

At first we will show that
{

Tj
}

j∈N0
: ◦
Lr
p(
q ,R

n) ↪→ Lr
p(
q ,R

n). Let { f j }∞j=0 ∈
◦
Lr
p(
q ,R

n) with f j ∈ D(Rn) for all j . Let x ∈ R
n and R > 0. We decompose

f j = f 0j +
∞
∑

i=1

f ij ,

where f 0j ≡ ϕ0 f j and f ij ≡ ϕi f j for i, j ∈ N with {ϕi }i∈N0 ⊂ D(Rn) such that

ϕ0 = 1 on B2R(x), suppϕ0 ⊂ B4R(x)

and

suppϕi ⊂ B2i+2R(x) \ B2i R(x),
∑

i∈N0

ϕi = 1.

By means of (iii) we obtain

⎛

⎜
⎝

∫

BR(x)

⎛

⎝

∞
∑

j=0

∣
∣
∣Tj f

0
j (y)

∣
∣
∣

q

⎞

⎠

p
q

dy

⎞

⎟
⎠

1
p

≤ cR
n
(
1
p + r

n

) ∥
∥
∥ f j |Lr

p(
q ,R
n)

∥
∥
∥ .

Let i ∈ N and y ∈ BR(x). It follows from (16) that

⎛

⎝

∞
∑

j=0

∣
∣
∣Tj f

i
j (y)

∣
∣
∣

q

⎞

⎠

1
q

≤ c(2i−1R)
−n
∫

Rn

⎛

⎝

∞
∑

j=0

∣
∣
∣ f ij (z)

∣
∣
∣

q

⎞

⎠

1
q

dz.

Hölder’s inequality yields

⎛

⎜
⎝

∫

BR(x)

⎛

⎝

∞
∑

j=0

∣
∣
∣
∣
∣
Tj

( ∞
∑

i=1

f ij

)

(y)

∣
∣
∣
∣
∣

q
⎞

⎠

p
q

dy

⎞

⎟
⎠

1
p

≤ c
∞
∑

i=1

(2i−1R)
−n
∫

Rn

⎛

⎝

∞
∑

j=0

∣
∣
∣ f ij (z)

∣
∣
∣

q

⎞

⎠

1
q

dz |BR(x)| 1p

≤ c′
∞
∑

i=1

(2i−1R)
−n

R
n
p (2i+2R)

n(1− 1
p )

(2i+2R)

(
n
p +r

) ∥
∥
∥ f j |Lr

p(
q ,R
n)

∥
∥
∥

≤ c′′R
(
n
p +r

) ∥
∥
∥ f j |Lr

p(
q ,R
n)

∥
∥
∥ .
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By subadditivity of the operators we obtain

∥
∥
∥Tj f j |Lr

p(
q ,R
n)

∥
∥
∥ ≤ c

∥
∥
∥ f j |Lr

p(
q ,R
n)

∥
∥
∥

where c does not depend on { f j } j . We get the unique continuous extension T :
◦
Lr
p(
q ,R

n) ↪→ Lr
p(
q ,R

n) of {Tj } j whenever Tj are linear. If Tj fulfills (15), then
we have for f1, f2 ∈ D(Rn), y ∈ R

n , j ∈ N0

|(Tj f1)(y) − (Tj f2)(y)| ≤ (Tj ( f1 − f2))(y)

and hence for { f j }, { f̃ j } ∈ ◦
Lr
p(
q ,R

n) with f j , f̃ j ∈ D(Rn) for all j ∈ N0

∥
∥
∥Tj f j − Tj f̃ j |Lr

p(
q ,R
n)

∥
∥
∥ ≤

∥
∥
∥Tj ( f j − f̃ j )|Lr

p(
q ,R
n)

∥
∥
∥

≤ c
∥
∥
∥ f j − f̃ j |Lr

p(
q ,R
n)

∥
∥
∥ . (17)

Therefore, {Tj } j is (Lipschitz-)continuous andmoreover we get the unique continuous

extension T : ◦
Lr
p(
q ,R

n) ↪→ Lr
p(
q ,R

n) of {Tj } j using (17) in the same way as in
the linear case.

Step 2 It remains to justify that also T : ◦
Lr
p(
q ,R

n) ↪→ ◦
Lr
p(
q ,R

n). By means of

a density argument we may assume that { f j } j ∈ ◦
Lr
p(
q ,R

n) with f j ∈ D(Rn) for all

j ∈ N0 and a k such that f j = 0 for | j | > k. There is an R̄ such that supp f j ⊂ BR̄(0)
for all j ∈ N0. Then

⎛

⎝

k
∑

j=0

|(Tj f j )(x)|q
⎞

⎠

1
q

≤ c |x |−n if |x | ≥ 2R̄ (18)

using (16) and triangle inequality. Here the constant c depends on { f j } j . Let R ≥ 2R̄.
Then one has for cubes QJM with QJM ⊂ {x ∈ R

n : |x | > R},

2J ( np +r)

∥
∥
∥
∥
∥
∥
∥

⎛

⎝

k
∑

j=0

|(Tj f j )(x)|q
⎞

⎠

1
q

∣
∣
∣
∣
∣
∣
∣

L p(QJM )

∥
∥
∥
∥
∥
∥
∥

≤ c 2Jr R−n if J ∈ N0.

Using in addition 1 < p < ∞ we obtain

2J ( np +r)

∥
∥
∥
∥
∥
∥
∥

⎛

⎝

k
∑

j=0

|(Tj f j )(x)|q
⎞

⎠

1
q

∣
∣
∣
∣
∣
∣
∣

L p(QJM )

∥
∥
∥
∥
∥
∥
∥

≤ c 2J ( np +r) R−n(1− 1
p )
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if−J ∈ N. LetψR ∈ D(Rn) be a smooth cut-off function withψR(x) = 1 if |x | ≤ R.
Then ψR Tj f j ∈ C(Rn) compactly supported for 0 ≤ j ≤ k (by triangle inequality
using Tj : D(Rn) → L∞(Rn)) and it follows

lim
R→∞ ‖{Tj f j − ψRTj f j } j |Lr

p(
q ,R
n)‖ = 0

with 1 < p < ∞ and 0 < n
p + r < n

p . Here one should mention that cubes which
are not completely inside of {x ∈ R

n : |x | > R} are treated analogously and that

Tj f j = 0 for j > k by Tj0 = 0. Hence {Tj f j } ∈ ◦
Lr
p(
q ,R

n) by Proposition 4.1

and therefore T : ◦
Lr
p(
q ,R

n) ↪→ ◦
Lr
p(
q ,R

n) by the unique extension of {Tj } j to
◦
Lr
p(
q ,R

n). Futhermore, we observe that the projection of T to its k − th component

(k ∈ N0) coincides with T̃k where T̃k : ◦
Lr
p (Rn) ↪→ ◦

Lr
p (Rn) is the unique continuous

and bounded extension of Tk . This yields Assertion (1).
Step 3 Finally, Assertions (2) and (3) follow by duality (Theorems 3.1 and 3.3).

As for the abstract background of duality one may consult [28, pp. 112/113] and [18,

pp. 35/36]. We get firstly T̃ j
′ : H�L p′(Rn) ↪→ H�L p′(Rn) and

(

T̃ j
′)′ : Lr

p (Rn) ↪→
Lr
p (Rn) for all j ∈ N0. Moreover, by the linearity of T = {T̃ j } j∈N0 : ◦

Lr
p(
q ,R

n) ↪→
◦
Lr
p(
q ,R

n) duality also implies T ′ : H�L p′(
q ′ ,Rn) ↪→ H�L p′(
q ′,Rn) as well as
(T ′)′ : Lr

p(
q ,R
n) ↪→ Lr

p(
q ,R
n). The projection of T ′ to its k− th component (k ∈

N0) coincides with T̃k
′
. Indeed, let f j ≡ g j ≡ 0 for all j �= k and let fk, gk ∈ D(Rn).

By means of the definition of T ′ and T̃k
′
we have

∫

Rn
fk(x)

(

T ′({g j })
)

k (x)dx = 〈{ f j }, T ′({g j })
〉
( ◦
Lrp(
q ,Rn),H�L p′ (
q′ ,Rn)

)

= 〈T ({ f j }), {g j }
〉
( ◦
Lrp(
q ,Rn),H�L p′ (
q′ ,Rn)

)

= 〈{T̃ j f j }, {g j }
〉
(

L p(
q ,wα,Rn),L p′ (
q′ ,w−α,Rn)
) =

∫

Rn
(T̃k fk)(x)gk(x)dx

= 〈T̃k fk, gk
〉
(

L p(wα,Rn),L p′ (w−α,Rn)
) = 〈T̃k fk, gk

〉
( ◦
Lrp(R

n),H�L p′ (Rn)

)

=
〈

fk, T̃k
′
gk
〉

( ◦
Lrp(R

n),H�L p′ (Rn)

) =
∫

Rn
fk(x)(T̃k

′
gk)(x)dx

for α < −n/p. Analogously, using H�L p′(Rn) ↪→ L−n/�(Rn) we deduce that the

projection of (T ′)′ to its k − th component (k ∈ N0) coincides with
(

T̃k
′)′

on D(Rn).

Moreover, we assume that the extensions of Tj to L p(R
n) due to assumption (iii)

are formally self-adjoint for all j ∈ N0. Then we obtain
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〈

f, T̃ j
′
g
〉

( ◦
Lrp(R

n),H�L p′ (Rn)

) = 〈T̃ j f, g
〉
( ◦
Lrp(R

n),H�L p′ (Rn)

)

= 〈Tj f, g
〉
( ◦
Lrp(R

n),H�L p′ (Rn)

) = 〈Tj f, g
〉
(

L p(wα,Rn),L p′ (w−α,Rn)
)

=
∫

Rn
(Tj f )(x)g(x)dx = 〈Tj f, g

〉
(

L p,L p′
) = 〈 f, Tj g

〉
(

L p,L p′
) (19)

for all f, g ∈ D(Rn) and α < −n/p. Therefore, T̃ j
′
g = Tj g almost everywhere for

all g ∈ D(Rn) and j ∈ N0 which means that T̃ j
′
are extensions of Tj to H�L p′(Rn).

Moreover, the biduals T̃ j
′′ =

(

T̃ j
′)′

, j ∈ N0, are extensions of Tj to Lr
p (Rn) by

〈

g, T̃ j
′′
f
〉

(

H�L p′ (Rn),Lrp(R
n)
) =

〈

T̃ j
′
g, f

〉

(

H�L p′ (Rn),Lrp(R
n)
)

=
〈

T̃ j
′
g, f

〉

(Lu ,Lu′)
=
∫

Rn
(T̃ j

′
g)(x) f (x)dx =

〈

f, T̃ j
′
g
〉

(
◦
Lrp(R

n),H�L p′ (Rn))

= 〈T̃ j f, g
〉
( ◦
Lrp(R

n),H�L p′ (Rn)

) = 〈Tj f, g
〉
( ◦
Lrp(R

n),H�L p′ (Rn)

)

= 〈Tj f, g
〉
(

L p,L p′
)

for all f, g ∈ D(Rn), u = −n/� and j ∈ N0. Therefore, T̃ j
′′ = Tj on D(Rn) for

j ∈ N0. 
�
Remark 4.4 The extension in Part 3 of the theorem is not unique. There exist infi-
nitely many extensions of Tj acting in Lr

p(R
n). This can be seen following the same

arguments as in [22, Remark 5.3]. Assumption (iii) can be replaced by

T : L p(R
n) ↪→ L p(R

n)

if Tj = T for all j , T is linear and if q is between 2 and p (including 2 and p)
which holds by the fact that the L p-boundedness of a linear operator implies the
L p(
q ,R

n)-boundedness for q ∈ [p, 2] for p ≤ 2 and q ∈ [2, p] for p > 2 cf. [10,
Corollary 4.5.4].

Remark 4.5 There are a lot of papers dealing with singular integrals inMorrey spaces.
However, its well-definedness on the Morrey-type spaces under consideration as well
as the norm estimates in these spaces have to be treated with greater care than usually
done.On the one-hand one has to investigate how to extend singular integrals toMorrey
spaces and on the other hand the estimates (16) are not available in general for functions
belonging to Morrey spaces. Let us emphasize that we used (16) just for functions of
D(Rn). The question if the estimate (16) holds for some singular integrals also for all
f ∈ Lr

p (Rn) leads to an investiation of its maximal truncated versions (cf. [27, Propo-
sition 2.25, Remark 2.26] as well as Sects. 4.2.2 and 4.3). Indeed, for these reasons in

many papers one can only find the weaker mapping property T : ◦
Lr
p (Rn) ↪→ Lr

p (Rn)
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(see, for example [5,17], and [6,12,16] for operators satisfying (16)). In this sense

our results on
◦
Lr
p (Rn) and

◦
Lr
p(
q ,R

n) are new (including even the boundedness of
the Hardy-Littlewood maximal operator), in particular with respect to their general-

ity. Note that results for Calderón–Zygmund operators in
◦
Lr
p (Rn) (scalar case) have

been proved already in [21] and [22]. Moreover, some results in H�L p′(Rn) and in
H�L p′(
q ′,Rn) and Lr

p(
q ,R
n) seem to be new. The paper [2] made the important

observation that the bidual of the completion of D(Rn)with respect to theMorrey norm
coincides with theMorrey space itself (cf. (1)) and provided the basis of our investiga-
tions. To overcome the above mentioned problems investigating Calderón–Zygmund
operators in Lr

p(R
n) they consideredMuckenhouptweighted characterizations ofMor-

rey spaces and their preduals. However, this approach has also some weak points with
respect to norm estimates since it does not take into account that the operator norm
of classical operators of harmonic analysis (as the Hilbert transform) in Muckenhoupt
weighted spaces usually depends on the Muckenhoupt weight.

We want to refer also to a less known forerunner result which can be found in
[3]. There a solution for the above mentioned difficulties has been given for some
Calderón–Zygmund operators in H�L p(R

n).

4.2 Calderón–Zygmund Operators

4.2.1 Duality Approach

Definition 4.6 We define Calderón–Zygmund operators with homogeneous kernels
with degree −n setting,

(T
 f )(y) ≡ p.v.
∫

Rn


(z/|z|)
|z|n f (y − z)dz,

where f ∈ S(Rn) and 
 ∈ L∞(Sn−1) with zero integral and Sn−1 denotes the unit
sphere.

Corollary 4.7 Let 1 < p < ∞, − n
p ≤ r < 0, −n < � < − n

p′ , 1 < q < ∞. Then
the following statements hold true.

(1) There are unique linear and bounded extensions of T
 to
◦
Lr
p (Rn) and to

H�L p′(Rn) denoted again by T
 such that

{

T

}

j∈N0
: ◦
Lr
p(
q ,R

n) ↪→ ◦
Lr
p(
q ,R

n) and
{

T

}

j∈N0
: H�L p′(
q ′,Rn) ↪→ H�L p′(
q ′,Rn).

(2) There are infinitelymany linear and bounded extensions of T
 to Lr
p (Rn) denoted

again by T
 such that

{

T

}

j∈N0
: Lr

p(
q ,R
n) ↪→ Lr

p(
q ,R
n).
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Proof We observe that T
 : D(Rn) → Lip(Rn). Indeed, by the same arguments
as in [21, proof of Step 2 of Theorem 1.1, p. 8] we get the mapping properties
T
 : Wk

p(R
n) ↪→ Wk

p(R
n) for Sobolev spaces which lead to the above assertion

by means of Sobolev type embeddings. Moreover, for 
 ∈ L∞(Sn−1) it holds T
 :
L p(
q ,R

n) ↪→ L p(
q ,R
n) by [7]. Now we obtain T
 : Lr

p(
q ,R
n) ↪→ Lr

p(
q ,R
n)

for 
 ∈ L∞(Sn−1) applying Theorem 4.3. Note that the dual of the extension of

T
(−·) to
◦
Lr
p (Rn) coincides with T
 on D(Rn) by the same arguments as in (19). 
�

4.2.2 Alternative Approach Using Some Muckenhoupt Weights

The following alternative method due to Triebel [27, Sect. 2.5.3, Proposition 2.25,
Remark 2.26] yields extensions of Calderón–Zygmund operators which are bounded
in Lr

p (Rn). He studied the boundedness of T
 with
 ∈ C1(Sn−1). Here we general-
ize his approach to some non-convolution type Calderón–Zygmund operators. At first
we observe that Morrey spaces Lr

p (Rn) are continuously embedded into some Muck-

enhoupt weighted L p-spaces. Recall that wα(·) = (1 + | · |2) α
2 , and that L p(R

n, wα)

be the corresponding weighted L p-space, normed as in (5).

Proposition 4.8 ([27, Proposition 2.10]) Let 1 < p < ∞,− n
p ≤ r < 0,−n < α p <

−n − rp. Then it holds

Lr
p(R

n) ↪→ L p(wα,Rn). (20)

Proof Let f ∈ Lr
p (Rn). Then (20) follows from

∫

Rn
| f (x)wα(x)|pdx

≤ c

⎛

⎝

∫

|x |≤1
| f (x)|pdx +

∑

j∈N0

2 jα p
∫

2 j≤|x |≤2 j+1
| f (x)|pdx

⎞

⎠

≤ ĉ

⎛

⎝

∫

|x |≤1
| f (x)|pdx +

∑

j∈N0

2 j (α p+n+rp)
∥
∥
∥ f |Lr

p

(

R
n)
∥
∥
∥

p

⎞

⎠

≤ c̄
∥
∥
∥ f |Lr

p

(

R
n)
∥
∥
∥

p
.


�

Theorem 4.9 Let 1 < p < ∞, − n
p < r < 0, −n < � < − n

p′ . Let T be an operator
with domain D(Rn) satisfying

∥
∥T f |L2(R

n)
∥
∥ ≤ c1

∥
∥ f |L2(R

n)
∥
∥
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where the constant c1 is independent of f ∈ D(Rn) and

(T f )(y) = lim
ε↘0

∫

z∈Rn ,|y−z|≥ε

K (y, z) f (z)dz (21)

almost everywhere for all f ∈ D(Rn), where the function K (·, ·) defined R
n × R

n \
{(x, x) : x ∈ R

n} satisfies the conditions |K (x, y)| ≤ c2|x − y|−n and

|K (x, y) − K (x ′, y)| ≤ c2
|x − x ′|δ

(|x − y| + |x ′ − y|)n+δ
,

whenever 2|x − x ′| ≤ max(|x − y|, |x ′ − y|),

|K (x, y) − K (x, y′)| ≤ c2
|y − y′|δ

(|x − y| + |x − y′|)n+δ
,

whenever 2|y − y′| ≤ max(|x − y|, |x − y′|).

Then the following statements hold true.

(1) There are linear and bounded extensions of T to Lr
p (Rn).

(2) There is an unique linear and bounded extension of T to
◦
Lr
p (Rn) and to

H�L p′(Rn).

Proof By [11, Corollary 9.4.7] there is an unique linear and bounded extension T̃
of T to L p(wα,Rn) with −n < α p < n(p − 1). Therefore, Proposition 4.8 yields
T̃ : Lr

p (Rn) ↪→ L p(wα,Rn). We have even

sup
ε>0

∣
∣
∣
∣

∫

z∈Rn ,|y−z|≥ε

K (y, z) f (z)dz

∣
∣
∣
∣
: L p(wα,Rn) ↪→ L p(wα,Rn)

by [11, Theorem 9.4.6]. Together with (21) we see that

(T̃ f )(y) = lim
ε↘0

∫

z∈Rn ,|y−z|≥ε

K (y, z) f (z)dz

almost everywhere for all f ∈ L p(wα,Rn) by [11, Theorem 2.1.14]. Now (16) holds
for all f ∈ Lr

p (Rn) with y /∈ supp f . As in Step 1 of the proof of Theorem 4.3 we

obtain T̃ : Lr
p (Rn) ↪→ Lr

p (Rn) that is Assertion (1). In particular, T̃ : ◦
Lr
p (Rn) ↪→

Lr
p (Rn). For α = 0 by [11, Corollary 9.4.7] we have especially

∥
∥
∥T f

∣
∣
∣L− n

r
(Rn)

∥
∥
∥ ≤ c

∥
∥
∥ f
∣
∣
∣L− n

r
(Rn)

∥
∥
∥

for all f ∈ D(Rn) where the constant c does not depend on f . Hence, T : D(Rn) →
L−n/r (R

n). Because of the embedding L−n/r (R
n) ↪→ Lr

p (Rn) and the density of

D(Rn) in L−n/r (R
n) we even have T : D(Rn) → ◦

Lr
p (Rn). Indeed, let f ∈ D(Rn).
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Then T f ∈ L−n/r (R
n) and thus there is a sequence of functions of D(Rn) which

tends to T f in L−n/r (R
n) and hence in Lr

p (Rn) which shows T f ∈ ◦
Lr
p (Rn). Thus,

T̃ : ◦
Lr
p (Rn) ↪→ ◦

Lr
p (Rn). The adjoint kernel of K (x, y) given by K (y, x) also

satisfies the required assumptions on the kernel. Hence, its corresponding operator is
also bounded in L p(R

n) (cf. [11, Definition 8.1.2]) but its dual coincides by the same
arguments as in Step 3 of the proof of Theorem 4.3 with the operator T (with the
kernel K (x, y)) on D(Rn) which implies Assertion (2).

Remark 4.10 Let us point out that for this method the embedding of Lr
p (Rn) in some

Muckenhoupt weighted space is crucial for extending the domain of the considered
Calderón–Zygmund operators to Lr

p (Rn). Recall the fact that the Hilbert transform
is acting in L p(wα,Rn) if, and only if, wα is a Muckenhoupt weight. Moreover, we
needed

(T̃ f )(y) = lim
ε↘0

∫

z∈Rn ,|y−z|≥ε

K (y, z) f (z)dz

almost everywhere for all f ∈ Lr
p (Rn). This is a rather deep result in comparison

to the L p-boundedness which we require in Theorem 4.3. Finally, let us emphasize
again that the extension in Part 1 is by no means unique.

4.3 Vector-Valued Maximal Inequalities and Maximal Calderón–Zygmund
Operators

Definition 4.11 We define maximal Calderón–Zygmund operators with homoge-
neous kernels with degree −n by setting

(

T
∗ f
)

(y) ≡ sup
ε>0

∣
∣
∣
∣

∫

|z|≥ε


(z/|z|)
|z|n f (y − z)dz

∣
∣
∣
∣

where f ∈⋃1≤p<∞ L p(R
n) and
 ∈ L∞(Sn−1)with zero integral andSn−1 denotes

the unit sphere. As usual, the Hardy-Littlewood maximal operator M is given by

(M f )(y) ≡ sup
R>0

1

|BR(y)|
∫

BR(y)
| f (z)| dz, f ∈ L loc

1

(

R
n) .

Remark 4.12 If f ∈⋃1≤p<∞ L p(R
n) then

∣
∣
∣
∣

∫

|z|≥ε


(z/|z|)
|z|n f (y − z)dz

∣
∣
∣
∣

is bounded for each ε > 0 and y ∈ R
n by Hölder’s inequality. Hence (T
∗ f )(y) is

well-defined for all y ∈ R
n , but might be infinite.
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Corollary 4.13 Let 1 < p < ∞, − n
p ≤ r < 0, −n < � < − n

p′ , 1 < q < ∞. Then

{M} j∈N0 : ◦
Lr
p(
q ,R

n) ↪→ ◦
Lr
p(
q ,R

n) and

{M} j∈N0 : Lr
p(
q ,R

n) ↪→ Lr
p(
q ,R

n). (22)

Moreover, if 
 ∈ C1(Sn−1), then

T
∗ : ◦
Lr
p

(

R
n) ↪→ ◦

Lr
p

(

R
n) and T
∗ : Lr

p

(

R
n) ↪→ Lr

p

(

R
n) . (23)

Proof At first we show that M : D(Rn) → Lip(Rn). Let f ∈ D(Rn) and fh(·) ≡
f (· + h) for h ∈ R

n . By sublinearity of M we obtain

M fh = M( fh − f + f ) ≤ M( fh − f ) + M f and |M fh − M f | ≤ M( fh − f ).

It follows that

|(M f )(x + h) − (M f )(x)| = |(M fh)(x) − (M f )(x)| ≤ [M( fh − f )](x)
≤ Lh,

where L is the Lipschitz constant of f and x ∈ R
n (we even showed M : Lip(Rn) →

Lip(Rn)with the arguments due to [15, Remark 2.2]). A version of Cotlar’s inequality
leads to the estimate

(T
∗ f )(x) ≤ c([M(|T
 f |)](x) + (M f )(x))

for x ∈ R
n (cf. [8, Lemma 5.15]). As above we obtain

|(T
∗ f )(x + h) − (T
∗ f )(x)| = |(T
∗ fh)(x) − (T
∗ f )(x)| ≤ [T
∗ ( fh − f )](x).

Together with T
 : D(Rn) → Lip(Rn) (cf. proof of Corollary 4.7) it follows from
M : Lip(Rn) → Lip(Rn) also that T
∗ : D(Rn) → Lip(Rn). Moreover, we claim that
(16) holds also for M . Indeed, let f ∈ D(Rn) with y /∈ supp ( f ). Then there exists an
i ∈ Z such that B2i (y) ∩ supp f = ∅. Let f j ≡ χB2 j+1 (y)\B2 j (y) f for j ≥ i . Hence,

|(M f )(y)| ≤ sup
R>0

1

|BR(y)|
∫

BR(y)
| f (z)|dz

≤
∞
∑

j=i

sup
R>0

1

|BR(y)|
∫

BR(y)
| f j (z)|dz ≤

∞
∑

j=i

1

|B2 j (y)|
∫

Rn
| f j (z)|dz

≤ c
∞
∑

j=i

∫

B2 j+1 (y)\B2 j (y)
| f (z)|
2 jn

dz ≤ c′
∞
∑

j=i

∫

B2 j+1 (y)\B2 j (y)
| f (z)|

|y − z|n dz

= c′
∫

Rn

| f (z)|
|y − z|n dz.
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Now Theorem 4.3 implies the existence of unique continuous and bounded extensions

of M to
◦
Lr
p(
q ,R

n) and of T
∗ to
◦
Lr
p (Rn). Since (16) also holds for M and all

f ∈ Lr
p (Rn) in place of all f ∈ D(Rn) we achieve at (22) as in Step 1 of the proof

of Theorem 4.3. Moreover, T
∗ is also well-defined on L p(wα,Rn) if −n < α p <

n(p − 1) by [11, Theorem 9.4.6] (and not only on
⋃

1≤p<∞ L p(R
n)) and hence on

Lr
p (Rn) by Proposition 4.8. Thus, (16) also holds for T
∗ and all f ∈ Lr

p (Rn) in place
of all f ∈ D(Rn). This yields (23). 
�

4.4 Fourier Multipliers

4.4.1 Multipliers Generated by Characteristic and Smooth Functions

Corollary 4.14 Let 1 < p < ∞, − n
p ≤ r < 0, −n < � < − n

p′ , 1 < q < ∞. Let
{I j } j∈N0 be a sequence of intervals on the real line, finite or infinite, and let {S j } j be
the sequence of operators defined by

(S j f )ˆ(ξ) = χI j (ξ) f̂ (ξ), f ∈ D(R), ξ ∈ R.

Moreover, let ψ ∈ S (Rn) with ψ(0) = 0. We define

ψ j (ξ) = ψ(2− jξ) and (S̃ j f )ˆ= ψ j f̂ for j ∈ Z, ξ ∈ R
n, f ∈ S′(Rn).

Then the following statements hold true.

(1) There are unique linear and bounded extensions of S j to
◦
Lr
p (Rn) and to

H�L p′(Rn) denoted again by S j and satisfying the mapping properties

{

S j
}

j∈N0
: ◦
Lr
p(
q ,R) ↪→ ◦

Lr
p(
q ,R) and

{

S j
}

j∈N0
: H�L p′(
q ′ ,R) ↪→ H�L p′(
q ′ ,R)

(2) There are infinitely many linear and bounded extensions of S j to Lr
p (Rn) denoted

again by S j such that

{

S j
}

j∈N0
: Lr

p(
q ,R) ↪→ Lr
p(
q ,R).

(3) We have the mapping properties

{

S̃ j

}

j∈Z : ◦
Lr
p(
q ,R

n) ↪→ ◦
Lr
p(
q ,R

n),

{

S̃ j

}

j∈Z : H�L p′(
q ′,Rn) ↪→ H�L p′(
q ′,Rn),

and
{

S̃ j

}

j∈Z : Lr
p(
q ,R

n) ↪→ Lr
p(
q ,R

n) .
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Here we used the notation 
q = 
q(Z).

Proof Part (1) and part (2) are consequences of Theorem 4.3 (see also Corollary
4.7). The required L p(
q ,R

n)-boundedness follows from [8, Corollary 8.2]. Alter-
natively, it suffices the L p(
q ,R

n)-boundedness of the Hilbert transform (H f )(y) ≡
1
π
limε↘0

∫

|z−y|≥ε
f (z)
y−z dz, f ∈ S(Rn) (see e.g., [10, Corollary 4.6.3]) This can be seen

using the formula

S j f j = i

2

(

Maj HM−a j f j − Mbj HM−b j f j
)

,

where I j = (a j , b j ) (with the obvious modifications if the interval is unbounded) and
where Ma f (·) ≡ e2π ia· f (·) [8, (3.9)]. Now the desired result follows from Theorem
4.3 (for n = 1) taking into account also that the dual of the extension of the multiplier
generated by −I j coincides with S j on D(Rn) by the same arguments as for (19).

Moreover, we observe that

{

S̃ j

}

j∈Z : L p(
q ,R
n) ↪→ L p(
q ,R

n) . (24)

This follows, for example, from [8, (8.1), p. 158]. The needed Hörmander condition
is fulfilled by (26). Indeed, we have

∥
∥
∥

{|∇� j (x)|
}

j

∣
∣
∣ 
2

∥
∥
∥ ≤ c

|x |n+1 , x ∈ R
n (25)

(cf. [8, p. 161]). Hölder’s inequality yields

|� j (x − y) − � j (x)| ≤ |y|
(∫ 1

0
|(∇� j )(x − t y)|2dt

) 1
2

and furthermore using (25)

∥
∥
{

� j (x − y) − � j (x)
} |
2

∥
∥ ≤ |y|

(∫ 1

0

∥
∥
∣
∣(∇� j )(x − t y)

∣
∣ |
2

∥
∥2 dt

) 1
2

≤ c
|y|

|x |n+1 (26)

for |x | ≥ 2|y|. Using (24) we find
{

S̃ j

}

j∈Z : ◦
Lr
p(
q ,R

n) ↪→ ◦
Lr
p(
q ,R

n) and
{

S̃′
j

}

j∈Z : H�L p′(
q ′,Rn) ↪→ H�L p′(
q ′ ,Rn) by means of Theorem 4.3. Here

we have to show that in particular assumption (16) is fulfilled. If �̂ ≡ ψ and
� j (·) ≡ 2 jn�(2 j ·), then �̂ j = ψ j and S̃ j f = � j ∗ f ∈ C∞(Rn) ∩ S′(Rn) by
Lr
p (Rn) ↪→ S′(Rn). In particular, S̃ j f = � j ∗ f makes sense pointwise for all

f ∈ Lr
p (Rn). Furthermore,
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⎛

⎝
∑

j∈Z

∣
∣� j ∗ f (x)

∣
∣
2

⎞

⎠

1
2

≤
∫

R

| f (y)|
⎛

⎝
∑

j∈Z

∣
∣� j (x − y)

∣
∣
2

⎞

⎠

1
2

dy

≤ c
∫

R

| f (y)|
|x − y|n dy

for all x ∈ R
n and all f ∈ Lr

p (Rn) with x /∈ supp ( f ) where
∥
∥
{

� j (·)
} |
2

∥
∥ ≤ c| · |−n

(cf. [8, p. 161]). This implies (16). We note that dual of the extension of the multiplier
of ψ j (−·) coincides with S̃ j on D(Rn) by the same arguments as for (19). Hence,

{

S̃ j

}

j∈Z : H�L p′(
q ′ ,Rn) ↪→ H�L p′(
q ′ ,Rn).

We obtain

{

S̃ j

}

j∈Z : Lr
p(
q ,R

n) ↪→ Lr
p(
q ,R

n)

with the same norm estimates as in Theorem 4.3. Hereby we emphasize that the
operator S̃ j is well-defined on S′(Rn), in particular on Lr

p (Rn). Moreover, (16) holds
for f ∈ Lr

p (Rn) in place of f ∈ D(Rn). 
�

Remark 4.15 The vector-valued Fourier multiplier assertion proved Corollary 4.14
paves the way to introduce predual Morrey versions H�As

p,q(R
n) of the Besov–

Triebel–Lizorkin spaces As
p,q(R

n). In particular it implies the independence of
admitted resolutions of unity. One replaces the L p(R

n)-norm in the definition of
As
p,q(R

n) by the H�L p′(Rn)-norm in order to define H�As
p,q(R

n). The vector-valued
Fourier multiplier assertion in Corollary 4.14 is also the key ingredient to obtain as in
[25, Sect. 2.3.3] the density of S(Rn) in H�As

p,q(R
n).Moreover as in [25, Sect. 2.11.2]

one can show using our vector-valued duality assertions (Theorems 3.1 and 3.3) also
that the dual of H�A−s

p′,q ′(Rn) is Lr As
p,q(R

n) and furthermore that the dual of the

completion of S(Rn)with respect to Lr As
p,q(R

n) is H�A−s
p′,q ′(Rn). Here Lr As

p,q(R
n)

stands for the morreyfied versions of As
p,q(R

n) which are defined by replacing the
L p(R

n)-norm in the definition of As
p,q(R

n) by the Lr
p(R

n)-norm.
Moreover, in the one-dimensional case (n = 1) Corollary 4.14 implies also

Lizorkin representations of the Triebel–Lizorkin–Morrey spaces. Lr As
p,q(R) (cf. [25,

Sect. 2.5.4]) using in addition Nikol’skij inequalities for Morrey spaces published in
[20, Theorem 2.2.9, Theorem 2.2.20].Wewant tomention that the spaces Lr As

p,q(R
n)

are studied, in particular, in [13,19,20,26,29].

4.4.2 Strongly Singular Integrals

Definition 4.16 Let 0 < b < 1 and let ϕ be a smooth cut-off function with ϕ = 1 on
{|ξ | ≥ 1} and ϕ = 0 on {|ξ | ≤ 1/2}. If f ∈ S(Rn), then we define strongly singular
integrals as
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(Tb f )(x) ≡
∫

ξ∈Rn

ei |ξ |b

|ξ |nb/2 ϕ(|ξ |) f̂ (ξ)e2π i xξdξ

(cf. [23, p. 192]).

Corollary 4.17 Let 1 < p < ∞, − n
p ≤ r < 0, −n < � < − n

p′ and let q ∈ [p, 2]
for p ≤ 2 and q ∈ [2, p] for p > 2. Then the following statements hold true.

(1) There are unique linear and bounded extensions of Tb to
◦
Lr
p (Rn) and to

H�L p′(Rn) denoted again by Tb and satisfying

{Tb} j∈N0 : ◦
Lr
p(
q ,R

n) ↪→ ◦
Lr
p(
q ,R

n) and

{Tb} j∈N0 : H�L p′(
q ′ ,Rn) ↪→ H�L p′(
q ′ ,Rn)

(2) There are infinitely many linear and bounded extensions of Tb to Lr
p (Rn) denoted

again by Tb such that

{Tb} j∈N0 : Lr
p(
q ,R

n) ↪→ Lr
p(
q ,R

n).

Proof Tb satisfies (16) by [23, p. 192], see also [8, Chapter 5, Sect. 6.8]. The strongly
singular integrals Tb are bounded on L p (Rn), 1 < p < ∞, by [8, Sect. 6.8] and the
references given there. Moreover, Tb : Wk

p(R
n) ↪→ Wk

p(R
n) for all k ∈ N using the

lift operator (which is the Fourier multiplier corresponding to (1+| · |2)σ/2 for σ ∈ R)
and, in particular, it follows that Tb f ∈ C∞ for f ∈ D(Rn) by well-known Sobolev
embeddings. Having in mind Remark 4.4 we obtain the assertion by Theorem 4.3. 
�

4.4.3 Bochner–Riesz Multipliers

Definition 4.18 Let λ > 0 and let f ∈ S(Rn). We define Bochner–Riesz multipliers
as

(Bλ f )(x) ≡
∫

|ξ |≤1

(

1 − |ξ |2
)λ

f̂ (ξ)e2π i xξdξ .

It is well-known that Bλ f can be reformulated as

(

Bλ f
)

(x) = c lim
ε↘0

∫

|x−y|≥ε

Jn/2+λ(2π |x − y|)
|x − y|n/2+λ

f (y)dy (27)

where Jα stands for the Bessel function (cf. [8, Lemma 8.18] or [10, (10.2.1)]).

Corollary 4.19 If λ ≥ (n − 1)/2 then the statements of Corollary 4.17 hold with Bλ

in place of Tb.
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Proof Let λ = (n − 1)/2 be the critical index. Using (27) as well as the estimate
Jn/2+λ(|x |) ≤ c|x |−1/2 (see e.g., [10, Appendix B.6]) we see that Bλ satisfies (16).
The L p-boundedness of Bλ at the critical index for 1 < p < ∞ is known (cf. [8,
Theorem 8.15]). We also have Bλ : D(Rn) → Lip(Rn) by the same arguments as in
[21, proof of Step 2 of Theorem 1.1, p. 8] taking into account the convolution structure
of Bλ. Thus the assertion for λ = (n − 1)/2 is a consequence of Theorem 4.3. Let
λ > (n − 1)/2. Then |(Bλ f )| can be dominated pointwise by the Hardy-Littlewood
maximal function M f for f ∈ D(Rn) (cf. [10, Exercise 10.2.8]). Hence,

∥
∥
∥Bλ f j |Lr

p(
q ,R
n)

∥
∥
∥ ≤ c

∥
∥
∥ f j |Lr

p(
q ,R
n)

∥
∥
∥

where c does not depend on { f j }∞j=0 ∈ ◦
Lr
p(
q ,R

n) with f j ∈ D(Rn) for all j . As

above we have Bλ : D(Rn) → Lip(Rn). As in the proof of Theorem 4.3 we find an
unique extension of Bλ denoted again as Bλ such that

Bλ : ◦
Lr
p(
q ,R

n) ↪→ ◦
Lr
p(
q ,R

n).

Hereby,wemention that the constant in (18) is allowed to depend on the fixed sequence
of functions. The proof of the reaming parts of the corollary for λ > (n−1)/2 follows
the same lines as in the proof of Theorem 4.3. 
�
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