
J Fourier Anal Appl (2016) 22:623–674
DOI 10.1007/s00041-015-9426-x

Kakeya-Type Sets Over Cantor Sets of Directions in
R
d+1

Edward Kroc1 · Malabika Pramanik1

Received: 18 June 2014 / Revised: 2 July 2015 / Published online: 14 September 2015
© Springer Science+Business Media New York 2015

Abstract Given a Cantor-type subset � of a smooth curve in R
d+1, we construct

examples of sets that contain unit line segments with directions from � and exhibit
analytical features similar to those of classical Kakeya sets of arbitrarily small (d+1)-
dimensional Lebesgue measure. The construction is based on probabilistic methods
relying on the tree structure of �, and extends to higher dimensions an analogous
planar result of Bateman and Katz (Math Res Lett 15(1):73–81, 2008). In contrast
to the planar situation, a significant aspect of our analysis is the classification of
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1 Introduction

1.1 Background

A Kakeya set (also called a Besicovitch set) in R
d+1 is a set that contains a unit line

segment in every direction. The study of such sets spans approximately a hundred
years. The first major analytical result in this area, due to Besicovitch [5], shows that
there exist Kakeya sets with Lebesgue measure zero. Over the past forty-plus years,
dating back at least to the work of Fefferman [10], the study of Kakeya sets has been a
simultaneously fruitful and vexing endeavor. On one hand its applications have been
found in many deep and diverse corners of analysis, PDEs, additive combinatorics and
number theory. On the other hand, certain fundamental questions concerning the size
and dimensionality of such sets have eluded complete resolution.

In order to obtain quantitative estimates for analytical purposes, it is often con-
venient to work with the δ-neighborhood of a Kakeya set, rather than the set itself.
Here δ is an arbitrarily small positive constant. The δ-neighborhood of a Kakeya set
is therefore an object that consists of many thin δ-tubes. A δ-tube is by definition
a cylinder of unit axial length and spherical cross-section of radius δ. The defining
property of a zero measure Kakeya set dictates that the volume of its δ-neighborhood
goes to zero as δ → 0, while the sum total of the sizes of these tubes is roughly a
positive absolute constant. Indeed, a common construction of thin Kakeya sets in the
plane (see for example [23, Chap. 10]) relies on the following fact: given any ε > 0,
there exists an integer N ≥ 1 and a collection of distinct 2−N -tubes, i.e., a family of
1× 2−N rectangles, {Pt : 1 ≤ t ≤ 2N } in R

2 such that

∣
∣
∣
∣
∣

⋃

t

Pt

∣
∣
∣
∣
∣
< ε, and

∑

t

|P̃t | = 1. (1.1)

Here | · | denotes Lebesgue measure (in this case two-dimensional), and P̃t denotes
the “reach” of the tube Pt , namely the tube obtained by translating Pt by two units in
the positive direction along its axis. While it is not known that every Kakeya set in two
or higher dimensions shares a similar feature, the ones that do have found repeated
applications in analysis. Fundamental results have relied on the existence of such sets,
for example the lack of differentiation for integral averages over parallelepipeds of
arbitrary orientation, and the counterexample of the ball multiplier [23, Chap. 10].
The property described above continues to be the motivation for the Kakeya-type sets
that we will study in the present paper.

Definition 1.1 For d ≥ 1, we define a set of directions � to be a compact subset
of R

d+1. We say that a tube in R
d+1 has orientation ω ∈ � or a tube is oriented in

direction ω if its axis is parallel to ω. We say that � admits Kakeya-type sets if one
can find a constant C0 ≥ 1 such that for any N ≥ 1, there exists δN > 0, δN → 0 as
N → ∞ and a collection of δN -tubes {P(N )

t } ⊆ R
d+1 with orientations in � with the

following property:
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if EN :=
⋃

t

P(N )
t , E∗

N (C0) :=
⋃

t

C0P
(N )
t , then lim

N→∞
|E∗

N (C0)|
|EN | = ∞. (1.2)

Here | · | denotes (d + 1)-dimensional Lebesgue measure, and C0P
(N )
t denotes the

tube with the same centre, orientation and cross-sectional radius as P(N )
t , butC0 times

its length. We will refer to {EN : N ≥ 1} as sets of Kakeya-type.
Specifically in this paper, we will be concerned with certain subsets of a curve, either
on the sphere S

d , or equivalently on a hyperplane at unit distance from the origin, that
admit Kakeya-type sets.

Kakeya and Kakeya-type sets of zero measure have intrinsic structural properties
that continually prove useful in an analytical setting. Themost important of these prop-
erties is arguably the so-called stickiness property, originally observed by Wolff [25].
Roughly speaking, if a Kakeya-type set is a collection of many overlapping line seg-
ments, then stickiness dictates that the map which sends a direction to the line segment
in the set with that direction is almost Lipschitz, with respect to suitably defined met-
rics. Another way of expressing this is that if the origins of two overlapping δ-tubes
are positioned close together, then the angle between these thickened line segments
must be small, resulting in the intersection taking place far away from the respective
bases. This idea, which has been formalized in several different ways in the literature
[13–15,25], will play a central role in our results, as we will discuss in Sect. 6.

Geometric and analytic properties of Kakeya and Kakeya-type sets are often stud-
ied using a suitably chosen maximal operator. Conversely, certain blow-up behavior
for such operators typically follow from the existence of such sets. We introduce
two such well-studied operators for which the existence of Kakeya-type sets implies
unboundedness.

Given a set of directions �, consider the directional maximal operator D� defined
by

D� f (x) := sup
ω∈�

sup
h>0

1

2h

∫ h

−h
| f (x + ωt)|dt, (1.3)

where f : R
d+1 → C is a function that is locally integrable along lines. Also, for

any locally integrable function f on R
d+1, consider the Kakeya–Nikodym maximal

operator M� defined by

M� f (x) := sup
ω∈�

sup
P	x
P‖ω

1

|P|
∫

P
| f (y)|dy, (1.4)

where the inner supremum is taken over all cylindrical tubes P containing the point
x , oriented in the direction ω. The tubes are taken to be of arbitrary length l and have
circular cross-section of arbitrary radius r , with r ≤ l. If � is a set with nonempty
interior, then due to the existence of Kakeya sets with (d + 1)-dimensional Lebesgue
measure zero [5], D� and M� are both unbounded as operators on L p(Rd+1) for all
1 ≤ p < ∞. More generally, if � admits Kakeya-type sets, then these operators are
unbounded on L p(Rd+1) for all 1 ≤ p < ∞ (see Sect. 1.2 below).
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The complementary case when � has empty interior has been studied exten-
sively in the literature. It is easy to see that the operators in (1.3) and (1.4) exhibit
a kind of monotonicity: if � ⊂ �′, then D� f (x) ≤ D�′ f (x) and M� f (x) ≤
M�′ f (x), for any suitable function f . Since these operators are unbounded when
�′ = the unit sphere S

d , treatment of the positive direction—identifying “small”
sets of directions� for which these operators are bounded on some L p—has garnered
much attention [1,2,6,20–22]. These types of results rely on classical techniques in
L p-theory, such as square function estimates, Littlewood-Paley theory and almost-
orthogonality principles.

For a general dimension d ≥ 1, Nagel et al. [20] showed that D� is bounded on all
L p(Rd+1), 1 < p ≤ ∞, when � = {(va1i , . . . , v

ad+1
i ) : i ≥ 1}. Here 0 < a1 < · · · <

ad+1 are fixed constants, and {vi : i ≥ 1} is a sequence obeying 0 < vi+1 ≤ λvi for
some lacunary constant 0 < λ < 1. Carbery [6] showed that D� is bounded on all
L p(Rd+1), 1 < p ≤ ∞, in the special case when � is the set given by the (d + 1)-
fold Cartesian product of a geometric sequence, namely � = {(rk1, . . . , rkd+1) :
k1, . . . , kd+1 ∈ Z

+} for some 0 < r < 1. Very recently, Parcet and Rogers [21]
generalized an almost-orthogonality result of Alfonseca [1] to extend the boundedness
of D� on all L p(Rd+1), 1 < p ≤ ∞, for sets� that are lacunary of finite order, defined
in a suitable sense. Building upon previous work of Alfonseca, Soria, and Vargas [2],
Sjögren and Sjölin [22] and Nagel et al. [20], the recent result of Parcet and Rogers
[21] recovers those of its predecessors.

Aside from this set of positive results with increasingly weak hypotheses, there has
also beenmuchdevelopment in the negative direction, pioneered byBateman,Katz and
Vargas [3,4,7,8,12,24]. Of special significance to this article is the work of Bateman
and Katz [4], where the authors establish that D� is unbounded in L p(R2) for all
1 ≤ p < ∞ if � = {(cos θ, sin θ) : θ ∈ C1/3}, where C1/3 is the Cantor middle-third
set. A crowning success of the methodology of [4] combined with the aforementioned
work in the positive direction (in particular [1]) is a result by Bateman [3] that gives
a complete characterization of the L p-boundedness of D� and M� in the plane,
while also describing all direction sets � that admit planar sets of Kakeya-type. The
distinctive feature of this latter body of work [3,4] dealing with the negative point of
view is the construction of counterexamples using a random mechanism that exploits
the property of stickiness. We too adopt this approach to construct Kakeya-type sets
in R

d+1, d ≥ 2 consisting of tubes whose orientations lie along certain subsets of a
curve on the hyperplane {1} × R

d .

1.2 Results

As mentioned above, Bateman and Katz [4] establish the unboundedness of D� and
M� on L p(R2), for all p ∈ [1,∞), when� = {(cos θ, sin θ) : θ ∈ C1/3} by construct-
ing suitable Kakeya-type sets in the plane. In this paper, we extend their construction
to the general (d+1)-dimensional setting. To this end, we first describe what wemean
by a Cantor set of directions in (d + 1) dimensions.

Fix some integer M ≥ 3. Construct an arbitrary Cantor-type subset of [0, 1) as
follows.
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• Partition [0, 1] into M subintervals of the form [a, b], all of equal length M−1.
Among these M subintervals, choose any two that are not adjacent (i.e., do not
share a common endpoint); define C[1]

M to be the union of these chosen subintervals,
called first stage basic intervals.

• Partition each first stage basic interval into M further (second stage) subintervals
of the form [a, b], all of equal length M−2. Choose two non-adjacent second stage
subintervals from each first stage basic one, and define C[2]

M to be the union of the
four chosen second stage (basic) intervals.

• Repeat this procedure ad infinitum, obtaining a nested, non-increasing sequence
of sets. Denote the limiting set by CM :

CM =
∞
⋂

k=1

C[k]
M .

We call CM a generalized Cantor-type set (with base M).

While conventional uniform Cantor sets, such as the Cantor middle-third set, are
special cases of generalized Cantor-type sets, the latter may not in general look like the
former. In particular, sets of the form CM need not be self-similar, although the actual
sequential selection criterion leading up to their definition will be largely irrelevant
for the content of this article. It is well-known (see [9, Chap. 4]) that such sets have
Hausdorff dimension at most log 2/ logM . By choosing M large enough, we can thus
construct generalized Cantor-type sets of arbitrarily small dimension.

In this paper, we prove the following.

Theorem 1.2 Let CM ⊂ [0, 1] be a generalized Cantor-type set described above. Let
γ : [0, 1] → {1}× [−1, 1]d be an injective map that satisfies a bi-Lipschitz condition

∀ x, y, c|x − y| ≤ |γ (x) − γ (y)| ≤ C |x − y|, (1.5)

for some absolute constants 0 < c < 1 < C < ∞. Set � = {γ (t) : t ∈ CM }. Then
(a) the set � admits Kakeya-type sets,
(b) the operators D� and M� are unbounded on L p(Rd+1) for all 1 ≤ p < ∞.

The condition in Theorem 1.2 that γ satisfies a bi-Lipschitz condition can be
weakened, but it will help in establishing some relevant geometry. Throughout this
exposition, it is instructive to envision γ as a smooth curve on the plane x1 = 1, and
we recommend the reader does this to aid in visualization. Our underlying direction
set of interest � = γ (CM ) is essentially a Cantor-type subset of this curve.

The main focus of this article, for reasons explained below, is on (a), not on (b).
Indeed, the implication (a) �⇒ (b) is well-known in the literature; let f = 1EN ,

where EN is as in (1.2), and let P(N )
t = Pt be one of the tubes that constitute EN . If

x ∈ C0Pt , then

M� f (x) ≥ 1

|C0Pt |
∫

C0Pt
f (y)dy.
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The integrand is pointwise bounded from below by 1Pt ; thus,

M� f (x) ≥ 1

|C0Pt |
∫

C0Pt
1Pt (y)dy = |Pt |

|C0Pt | =
1

C0
.

Asimilar conclusion holds for D� f (x). Thus there exists a constant c0 = c0(C0) >

0 such that
min

[

D� f (x), M� f (x)
] ≥ c0 for x ∈ E∗

N (C0). (1.6)

This shows that

min
[||D�||p→p, ||M�||p→p

] ≥ c0

( |E∗
N (C0)|
|EN |

) 1
p

, which → ∞ if 1 ≤ p < ∞.

On the other hand, the condition (a) of Theorem 1.2 is not a priori strictly necessary
in order to establish part (b) of the theorem. Suppose that {GN : N ≥ 1} and {G̃N :
N ≥ 1} are two collections of sets with |G̃N |/|GN | → ∞, enjoying the additional
property that for any point x ∈ G̃N , there exists a finite line segment originating at x
and pointing in a direction of �, which spends at least a fixed positive proportion of
its length in GN . By an easy adaptation of the argument in (1.6), the sequence of test
functions fN = 1GN would then prove the claimed unboundedness of D�. Kakeya-
type sets, if they exist, furnish one such family of test functions with GN = EN and
G̃N = E∗

N .
In [21], Parcet and Rogers construct, for certain examples of direction sets, families

of sets GN that supply a different class of test functions sufficient to prove unbound-
edness of the associated directional maximal operators. The direction sets considered
in [21] are different from those under examination here, and we are currently unaware
if Theorem 1.2 (b) could be proved using a similar construction. A set as constructed
in [21] is typically a Cartesian product of a planar Kakeya-type set with a cube, and
as such not of Kakeya-type according to Definition 1.1. In particular, it consists of
rectangular parallelepipeds with possibly different sidelengths, with these sides not
necessarily pointing in a direction from the underlying direction set �, although there
are line segments with orientations from� contained within them. Further, in contrast
with Definition 1.1, G̃N need not be obtained by translating GN along its longest side.
Our main goal is to prove Theorem 1.2 (a), which in turn would imply Theorem 1.2 (b)
via the argument above. This requires us to understand several technical differences
between the two-dimensional and higher-dimensional settings.

The reason for considering Kakeya-type sets in this paper is twofold. First, they
appear as natural generalizations of a classical feature of planar Kakeya set con-
structions, as explained in (1.1). Studying higher-dimensional extensions of this
phenomenon is of interest in its own right, and this article provides a concrete illus-
tration of a sparse set of directions that gives rise to a similar phenomenon. Perhaps
more importantly, we use the special direction sets in this paper as a device for intro-
ducing certain machinery whose scope reaches beyond these examples. In [16], we
prove Theorem 1.2 for a much more general class of direction sets that include but
could be far sparser than the Cantor-like sets described in this paper. In addition to the
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framework introduced in [4], the methods developed in the present article, specifically
the investigation of root configurations and slope probabilities in Sects. 7 and 8 are
central to the analysis in [16]. While the consideration of general direction sets in [16]
necessarily involves substantial technical adjustments, many of the main ideas of that
analysis can be conveyed in the simpler setting of the Cantor example that we treat
here. As such, we recommend that the reader approach the current paper as a natural
first step in the process of understanding properties of direction sets that give rise to
unbounded directional and Kakeya–Nikodym maximal operators on L p(Rd+1).

2 Overview of the Proof of Theorem 1.2

2.1 Steps of the Proof and Layout

The basic structure of the proof is modeled on [4], with some important distinctions
that we point out below. Our goal is to construct a family of tubes rooted on the
hyperplane {0} × [0, 1)d , the union of which will eventually give rise to the Kakeya-
type set. The slopes of the constituent tubes will be assigned from � via a random
mechanism involving stickiness akin to the one developed by Bateman and Katz [4].
The description of this random mechanism is in Sect. 6, with the required geometric
and probabilistic background collected en route in Sects. 3, 4 and 5. The essential
elements of the construction, barring the details of the slope assignment, have been
laid out in Sect. 2.2 below. The main estimates leading to the proof of Theorem 1.2 are
(2.5) and (2.6) in Proposition 2.1 in this section. Of these the first, a precise version of
which is available in Proposition 6.4, provides a lower bound of aN = √

log N/N on
the size of the part of the tubes lying near the root hyperplane. The second inequality,
also quantified in Proposition 6.4, yields an upper bound of bN = 1/N for the portion
away from it. The disparity in the relative sizes of these two parts is the desired
conclusion of Theorem 1.2

The language of trees was a key element in the random construction of [3,4].
We continue to adopt this language, introducing the relevant definitions in Sect. 4 and
providing somedetail on the connection between the geometry of� and a tree encoding
it. Specifically, the notion of Bernoulli percolation on trees plays an important role in
the proof of (2.6) with bN = 1/N , as it did in the two-dimensional setting. The higher-
dimensional structure of� does however result in minor changes to the argument, and
the general percolation-theoretic facts necessary for handling (2.6) have been compiled
in Sect. 5. Other probabilistic estimates specific to the random mechanism of Sect.
6 and central to the derivation of (2.5) are separately treated in Sect. 7. The proof is
completed in Sects. 8 and 9.

Of the two estimates (2.5) and (2.6) necessary for the Kakeya-type construction, the
first is the most significant contribution of this paper. A deterministic analogue of (2.5)
was used in [3,4], where a similar lower bound for the size of the Kakeya-type set was
obtained for every slope assignment σ in a certain measure space. The counting argu-
ment that led to this bound fails to produce the necessary estimate in higher dimensions
and is replaced here by a probabilistic statement that suffices for our purposes. More
precisely, the issue is the following. A large lower bound on a union of tubes follows
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if they do not have significant pairwise overlap among themselves; i.e., if the total size
of pairwise intersections is small. In dimension two, a good upper bound on the size of
this intersection was available uniformly in every sticky slope assignment. Although
the argument that provided this bound is not transferable to general dimensions, it
is still possible to obtain the desired bound with large probability. A probabilistic
statement similar to but not as strong as (2.5) can be derived relatively easily via an
estimate on the first moment of the total size of random pairwise intersections. Unfor-
tunately, this is still not sharp enough to yield the disparity in the sizes of the tubes
and their translated counterparts necessary to claim the existence of a Kakeya-type
set. To strengthen the bound, we need a second moment estimate on the pairwise
intersections. Both moment estimates share some common features; for instance,

– Euclidean distance relations between roots and slopes of two intersecting tubes,
– interplay of the above with the relative positions of the roots and slopes within the
respective trees that they live in, which affects the slope assignments.

However, the technicalities are far greater for the second moment compared to the
first. In particular, for the secondmomentwe are naturally led to consider not just pairs,
but triples and quadruples of tubes, and need to evaluate the probability of obtaining
pairwise intersections among these. Not surprisingly, this probability depends on the
structure of the root tuple within its ambient tree. It is the classification of these
root configurations, computation of the relevant probabilities and their subsequent
application to the estimation of expected intersections that we wish to highlight as the
main contributions of this article.

2.2 Construction of a Kakeya-Type Set

We now choose some integer M ≥ 3 and a generalized Cantor-type set CM ⊆ [0, 1)
as described in Sect. 1.2, and fix these items for the remainder of the article. We also
fix an injective map γ : [0, 1] → {1} × [−1, 1]d satisfying the bi-Lipschitz condition
in (1.5). These objects then define a fixed set of directions � = {γ (t) : t ∈ CM } ⊆
{1} × [−1, 1]d .

Next,we define the thin tube-like objects thatwill comprise ourKakeya-type set. Fix
an arbitrarily large integer N ≥ 1, typically much bigger than M . Let {Qt : t ∈ TN },
parametrized by the index set TN , be the collection of disjoint d-dimensional cubes
of sidelength M−N generated by the lattice M−N

Z
d in the set {0} × [0, 1)d . More

specifically, each Qt is of the form

Qt = {0} ×
d
∏

l=1

[
jl

MN
,
jl + 1

MN

)

, (2.1)

for some j = ( j1, . . . , jd) ∈ {0, 1, . . . , MN − 1}d , so that #(TN ) = MNd .
For technical reasons, we also define Q̃t to be the κd -dilation of Qt about its center

point, where κd is a small, positive, dimension-dependent constant. The reason for
this technicality, as well as possible values of κd , will soon emerge in the sequel, but
for concreteness choosing κd = d−d will suffice.
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Recall that the N th iterate C[N ]
M of the Cantor construction is the union of 2N disjoint

intervals each of length M−N . We choose a representative element of CM from each
of these intervals, calling the resulting finite collection D[N ]

M . Clearly dist(x,D[N ]
M ) ≤

M−N for every x ∈ CM . Set

�N := γ
(

D[N ]
M

)

, (2.2)

so that dist(ω,�N ) ≤ CM−N for any ω ∈ �, with C as in (1.5).
For any t ∈ TN and any ω ∈ �N , we define

Pt,ω := {

r + sω : r ∈ Q̃t , 0 ≤ s ≤ 10C0
}

, (2.3)

where C0 is a large constant to be determined shortly [for instance, C0 = ddc−1 will
work, with c as in (1.5)]. Thus the set Pt,ω is a cylinder oriented along ω. Its (vertical)
cross-section in the plane x1 = 0 is the cube Q̃t . We say that Pt,ω is rooted at Qt .
WhilePt,ω is not strictly speaking a tube as defined in the introduction, the distinction
is negligible, sincePt,ω contains and is contained in constant multiples of δ-tubes with
δ = κd · M−N . By a slight abuse of terminology but no loss of generality, we will
henceforth refer to Pt,ω as a tube.

If a slope assignment σ :TN → �N has been specified, we set Pt,σ := Pt,σ (t).
Thus {Pt,σ : t ∈ TN } is a family of tubes rooted at the elements of an M−N -fine grid in
{0}× [0, 1)d , with essentially uniform length in t that is bounded above and below by
fixed absolute constants. Two such tubes are illustrated in Fig. 1. For the remainder,
we set

KN (σ ) :=
⋃

t∈TN

Pt,σ . (2.4)

For a certain choice of slope assignment σ , this collection of tubes will be shown
to generate a Kakeya-type set in the sense of Definition 1.1. This particular slope

Fig. 1 Two typical tubes Pt1,σ
and Pt2,σ rooted, respectively at
t1 and t2 in the
{x1 = 0}-coordinate plane

t1 Pt1,σ

Pt2,σt2
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assignment will not be explicitly described, but rather inferred from the contents of
the following proposition.

Proposition 2.1 For any N ≥ 1, let �N be a finite collection of slope assignments
from the lattice TN to the direction set �N . Every σ ∈ �N generates a set KN (σ ) as
defined in (2.4). Denote the power set of �N by P(�N ).

Suppose that (�N ,P(�N ),Pr) is a discrete probability space equipped with the
probabilitymeasurePr, forwhich the randomsets KN (σ )obey the following estimates:

Pr
(

{σ : |KN (σ ) ∩ [0, 1] × R
d | ≥ aN }

)

≥ 3

4
, (2.5)

and
Eσ |KN (σ ) ∩ [C0,C0 + 1] × R

d | ≤ bN , (2.6)

where C0 ≥ 1 is a fixed constant, and {aN }, {bN } are deterministic sequences satisfy-
ing

aN
bN

→ ∞, as N → ∞.

Then � admits Kakeya-type sets.

Proof Fix any integer N ≥ 1. Applying Markov’s Inequality to (2.6), we see that

Pr
(

{σ : |KN (σ ) ∩ [C0,C0 + 1] × R
d | ≥ 4bN }

)

≤ Eσ |KN (σ ) ∩ [C0,C0 + 1] × R
d |

4bN
≤ 1

4
,

so,

Pr
(

{σ : |KN (σ ) ∩ [C0,C0 + 1] × R
d | ≤ 4bN }

)

≥ 3

4
. (2.7)

Combining this estimate with (2.5), we find that

Pr
({

σ :|KN (σ ) ∩ [0, 1]×R
d |≥aN

}⋂{

σ :|KN (σ ) ∩ [C0,C0 + 1]×R
d |≤4bN

})

≥ Pr
({|KN (σ ) ∩ [0, 1] × R

d | ≥ aN
})

+ Pr
({|KN (σ ) ∩ [C0,C0 + 1] × R

d | ≤ 4bN
})− 1

≥ 3

4
+ 3

4
− 1 = 1

2
.

We may therefore choose a particular σ ∈ �N for which the size estimates on
KN (σ ) given by (2.5) and (2.7) hold simultaneously. Set

EN :=KN (σ ) ∩ [C0,C0+1]×R
d , so that E∗

N (2C0 + 1) ⊇ KN (σ ) ∩ [0, 1]×R
d .
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Then EN is a union of δ-tubes oriented along directions in �N ⊂ � for which

|E∗
N (2C0 + 1)|
|EN | ≥ aN

4bN
→ ∞, as N → ∞,

by hypothesis. This shows that � admits Kakeya-type sets, per condition (1.2). ��
The conclusion of Proposition 2.1 proves part (a) of our Theorem 1.2. The implica-

tion (a) �⇒ (b) has already been discussed in Sect. 1.2. The remainder of this paper
is devoted to establishing a proper randomization over slope assignments �N that
will then allow us to verify the hypotheses of Proposition 2.1 for suitable sequences
{aN } and {bN }. We return to a more concrete formulation of the required estimates in
Proposition 6.4.

3 Geometric Facts

In this section, we will take the opportunity to establish some geometric facts about
two intersecting tubes in Euclidean space. These facts will be used in several instances
within the proof of Theorem 1.2. Nonetheless they are really general observations that
are not limited to our specific arrangement or description of tubes (Fig. 2).

Lemma 3.1 For v1, v2 ∈ �N and t1, t2 ∈ TN , t1 �= t2, let Pt1,v1 and Pt2,v2 be the
tubes defined as in (2.3). If there exists p = (p1, . . . , pd+1) ∈ Pt1,v1 ∩Pt2,v2 , then the
inequality

∣
∣cen(Qt2) − cen(Qt1) + p1(v2 − v1)

∣
∣ ≤ 2κd

√
dM−N , (3.1)

holds, where cen(Q) denotes the centre of the cube Q.

Proof The proof is described in the diagram below. If p ∈ Pt1,v1 ∩ Pt2,v2 , then there
exist x1 ∈ Q̃t1 , x2 ∈ Q̃t2 such that p = x1 + p1v1 = x2 + p1v2, i.e., p1(v2 − v1) =

Fig. 2 A simple triangle is
defined by two rooted tubes,
Pt1,v1 and Pt2,v2 , and any point
p in their intersection

x1

Pt1,v1

Pt2,v2

x2

p
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x1− x2. The inequality (3.1) follows since |xi −cen(Qti )| ≤ κd
√
dM−N for i = 1, 2.

��
The inequality in (3.1) provides a valuable tool whenever an intersection takes

place. For the reader who would like to look ahead, the Lemma 3.1 will be used along
with Corollary 3.2 to establish Lemma 8.5. The following Corollary 3.3 will be needed
for the proofs of Lemmas 8.6 and 8.10.

Corollary 3.2 Under the hypotheses of Lemma 3.1 and for κd > 0 suitably small,

|p1(v2 − v1)| ≥ κdM
−N . (3.2)

Proof Since t1 �= t2, we must have |cen(Qt1)− cen(Qt2)| ≥ M−N . Thus an intersec-
tion is possible only if

p1|v2 − v1|≥|cen(Qt2)−cen(Qt1)|−2κd
√
dM−N ≥(1− 2κd

√
d)M−N ≥ κdM

−N ,

where the first inequality follows from (3.1) and the last inequality holds for an appro-
priate selection of κd . ��
Corollary 3.3 If t1 ∈ TN , v1, v2 ∈ �N and a cube Q ⊆ R

d+1 of sidelength C1M−N

with sides parallel to the coordinate axes are given, then there exists at most C2 =
C2(C1) choices of t2 ∈ TN such that Pt1,v1 ∩ Pt2,v2 ∩ Q �= ∅.
Proof As p = (p1, . . . , pd+1) ranges in Q, p1 ranges over an interval I of length
C1M−N . If p ∈ Pt1,v1 ∩ Pt2,v2 ∩ Q, the inequality (3.1) and the fact diam(�) ≤
diam({1} × [−1, 1]d) = 2

√
d implies

∣
∣cen(Qt2) − cen(Qt1)+cen(I )(v2 − v1)

∣
∣≤|(p1 − cen(I ))(v2 − v1)| + 2κd

√
dM−N

≤ 2
√
d(C1 + κd)M

−N ,

restricting cen(Qt2) to lie in a cube of sidelength 2
√
d(C1 + κd)M−N centred at

cen(Qt1) − cen(I )(v2 − v1). Such a cube contains at most C2 sub-cubes of the form
(2.1), and the result follows. ��

While the above formulation of Corollary 3.3 is more convenient for later use, we
point out that the intersection of tubes is not the important feature here. In fact, given
v ∈ �N and a cube Q one can show that there exist at most C choices of t ∈ TN such
thatPt,v∩Q �= ∅. For purposes of our application, Q will always bePt1,v1 intersected
with a slab of thickness O(M−N ) transverse to it.

A recurring theme in the proof of Theorem 1.2 is the identification of a criterion
that ensures that a specified point lies in the Kakeya-type set KN (σ ) defined in (2.4).
With this in mind, we introduce for any p = (p1, p2, . . . , pd+1) ∈ [0, 10C0] × R

d a
set

Poss(p) := {

Qt : t ∈ TN , there exists v ∈ �N such that p ∈ Pt,v
}

. (3.3)
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(a)

p

(b)

Fig. 3 a depicts the cone generated by a second stage Cantor construction, �2, on the set of directions
given by the curve {(1, t, t2): 0 ≤ t ≤ C} in the {1} × R

2 plane. In b, a point p = (p1, p2, p3) has been
fixed and the cone of directions has been projected backward from p onto the coordinate plane, p− p1�2.
The resulting Poss(p) set is thus given by all cubes Qt , t ∈ TN such that Q̃t intersects a subset of the curve
{(0, p2 − p1t, p3 − p1t

2) : 0 ≤ t ≤ C}

This set captures all the possible M−N -cubes of the form (2.1) in {0}×[0, 1)d such
that a tube rooted at one of these cubes has the potential to contain p, provided it is
given the correct orientation. Note that Poss(p) is independent of any slope assignment
σ . Depending on the location of p, Poss(p) could be empty. This would be the case
if p lies outside a large enough compact subset of [0, 10C0] ×R

d , for example. Even
if Poss(p) is not empty, an arbitrary slope assignment σ may not endow any Qt in
Poss(p) with the correct orientation.

In the next lemma, we list a few easy properties of Poss(p) that will be helpful later,
particularly during the proof of Lemma 9.3. Lemma 3.4 establishes the main intuition
behind the Poss(p) set, as we give a more geometric description of Poss(p) in terms
of an affine copy of the direction set �N . This is illustrated in Fig. 3 for a particular
choice of directions �N .

Lemma 3.4 (a) For any slope assignment σ ,

{

Qt : t ∈ TN , p ∈ Pt,σ
} ⊆ Poss(p).

(b) For any p ∈ [0, 10C0] × R
d ,

Poss(p) = {

Qt : Q̃t ∩ (p − p1�N ) �= ∅} (3.4)

⊆ {Qt : t ∈ TN , Qt ∩ (p − p1�N ) �= ∅}. (3.5)

Note that the set in (3.4) could be empty, but the one in (3.5) is not.

Proof If p ∈ Pt,σ , then p ∈ Pt,σ (t) with σ(t) equal to some v ∈ �. ThusPt,v contains
p and hence Qt ∈ Poss(p), proving part (a). For part (b), we observe that p ∈ Pt,v
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for some v ∈ �N if and only if p − p1v ∈ Q̃t , i.e., Q̃t ∩ (p − p1�N ) �= ∅. This
proves the relation (3.4). The containment in (3.5) is obvious. ��

We will also need a bound on the cardinality of Poss(p) within a given cube, and
on the cardinality of possible slopes that give rise to indistinguishable tubes passing
through a given point.We now prescribe these. Lemmas 3.5 and 3.6 are not technically
needed for the remainder, but can be viewed as steps toward establishing Lemma 3.7
which will prove critical throughout Sect. 9. Not surprisingly, the Cantor-like con-
struction of � plays a role in all these estimates.

Lemma 3.5 Given C0,C1 > 0, there exists C2 = C2(C0,C1, M, d) > 0 with the
following property. Let p = (p1, . . . , pd+1) ∈ (0, 10C0] ×R

d , and Q be any cube in
{0} × [0, 1)d with sidelength in [M−�, M−�+1) for some � ≤ N − 1. Then

#
{

Qt : t ∈ TN , Qt ∩ Q �= ∅, dist(Qt , p − p1�N ) ≤ C1M
−N} ≤ C22

N−�. (3.6)

Proof Let j ∈ Z be the index such thatM− j ≤ p1 < M− j+1. By scaling, the left hand
side of (3.6) is comparable to (i.e., bounded above and below by constant multiples
of) the number of p−1

1 M−N -separated points lying in

Q′ := {

x ∈ p−1
1 Q : dist(x, p−1

1 p − �N ) ≤ C1 p
−1
1 M−N}.

But p−1
1 p − �N = (1, c) − �N is an image of �N following an inversion and

translation. This implies that there is a subset �′
N of �N , depending on p and p−1

1 Q
and with diameter O(M j−�), such that Q′ is contained in a O(M j−N )-neighborhood
of −�′

N + (1, c). The number of M j−N -separated points in Q′ is comparable to that
in �′

N .

Suppose first that j ≤ �. If C′ ⊆ C[N ]
M is defined by the requirement �′

N =
γ (C′), then (1.5) implies that diam(C′) = O(M j−�). Thus C′ is contained in at most
O(1) intervals of length M j−� chosen at step � − j in the Cantor-type construction.
Each chosen interval at the kth stage gives rise to two chosen subintervals at the next
stage, with their centres being separated by at least M−k−1. So the number of M j−N -
separated points in C′, and hence γ (C′) is O(2(N− j)−(�− j)) = O(2N−�) as claimed.
The case j ≥ � is even simpler, since the number of M j−N -separated points in C′ is
trivially bounded by 2N− j ≤ 2N−�. ��

Lemma 3.6 Fix t ∈ TN and p = (p1, . . . , pd+1) ∈ [M−�, M−�+1] × R
d , for some

0 ≤ � � N. Let Q be a cube centred at p of sidelength C1M−N . Then

#
{

v ∈ �N : Q ∩ Pt,v �= ∅} ≤ C22
�.

Proof If both Pt,v and Pt,v′ have nonempty intersection with Q, then there exist
q = (q1, . . . , qd+1), q ′ = (q ′1, . . . , q ′d+1) ∈ Q such that both q − q1v and q ′ − q ′1v′
land in Q̃t . Thus,
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p1|v − v′| ≤ |(q − p1v) − (q ′ − p1v
′)| + |q − q ′|

≤ |(q − q1v) − (q ′ − q ′1v′)| + |q1 − p1||v| + |q ′1 − p1||v′| + |q − q ′|
≤ (κd

√
d + 10C1

√
d)M−N .

In other words, |v − v′| ≤ (10C1 + κd)
√
dM�−N . Recalling that v = γ (α) and

v′ = γ (α′) for some α, α′ ∈ D[N ]
M , combining the last inequality with (1.5) implies

that |α − α′| ≤ C2M�−N . Thus there is a collection of at most O(1) chosen intervals
at step N − � of the Cantor-type construction which α (and hence α′) can belong to.
Since each interval gives rise to two chosen intervals at the next stage, the number of
possible α and hence v is O(2�). ��

A slight modification of the proof above yields a stronger conclusion, stated below,
when p is far away from the root hyperplane. We will return to this result several times
in the sequel (see for example Lemma 6.3 for a version of it in the language of trees),
and make explicit use of it in Sect. 9, specifically in the proofs of Lemmas 9.1 and 9.2.

Lemma 3.7 There exists a constant C0 ≥ 1 with the following properties.

(a) For any p ∈ [C0,C0 + 1] × R
d and t ∈ TN , there exists at most one v ∈ �N

such that p ∈ Pt,v . In other words, for every Qt in Poss(p), there is exactly one
δ-tube rooted at t that contains p.

(b) For any p as in (a), and Qt , Qt ′ ∈ Poss(p), let v = γ (α), v′ = γ (α′) be the
two unique slopes in �N guaranteed by (a) such that p ∈ Pt,v ∩ Pt ′,v′ . If k is
the largest integer such that Qt and Qt ′ are both contained in the same cube
Q ⊆ {0} × [0, 1)d of sidelength M−k whose corners lie in M−k

Z
d , then α and

α′ belong to the same kth stage basic interval in the Cantor construction.

Proof (a) Suppose v, v′ ∈ �N are such that p ∈ Pt,v ∩ Pt,v′ . Then p − p1v and
p − p1v′ both lie in Q̃t , so that p1|v − v′| ≤ κd

√
dM−N . Since p1 ≥ C0 and

(1.5) holds, we find that

|α − α′| ≤ κd
√
d

cC0
M−N < M−N ,

where the last inequality holds if C0 is chosen large enough. Let us recall from
the description of the Cantor-like construction in Sect. 1.2 that any two basic r th
stage intervals are non-adjacent, and hence any two points in CM lying in distinct
basic r th stage intervals are separated by at least M−r . Therefore the inequality
above implies that both α and α′ belong to the same basic N th stage interval in
C[N ]
M . But D[N ]

M contains exactly one element from each such interval. So α = α′
and hence v = v′.

(b) If p ∈ Pt,v ∩ Pt ′,v′ , then p1|v − v′| ≤ diam(Q̃t ∪ Q̃t ′) ≤ diam(Q) = √
dM−k .

Applying (1.5) again combined with p1 ≥ C0, we find that |α−α′| ≤
√
d

cC0
M−k <

M−k, forC0 chosen large enough. By the same property of theCantor construction
as used in (a), we obtain that α and α′ lie in the same kth stage basic interval in
C[k]
M . ��
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4 Rooted, Labelled Trees

4.1 The Terminology of Trees

An undirected graph G := (V, E) is a pair, where V is a set of vertices and E is a
symmetric, nonreflexive subset of V × V , called the edge set. By symmetric, here we
mean that the pair (u, v) ∈ E is unordered; i.e., the pair (u, v) is identical to the pair
(v, u). By nonreflexive, we mean E does not contain the pair (v, v) for any v ∈ V .

A path in a graph is a sequence of vertices such that each successive pair of vertices
is a distinct edge in the graph. A finite path (with at least one edge) whose first and last
vertices are the same is called a cycle. A graph is connected if for each pair of vertices
v �= u, there is a path in G containing v and u. We define a tree to be a connected
undirected graph with no cycles.

All our trees will be of a specific structure. A rooted, labelled tree T is one whose
vertex set is a nonempty collection of finite sequences of nonnegative integers such
that if 〈i1, . . . , in〉 ∈ T , then

(i) for any k, 0 ≤ k ≤ n, 〈i1, . . . , ik〉 ∈ T , where k = 0 corresponds to the empty
sequence, and

(ii) for every j ∈ {0, 1, . . . , in}, we have 〈i1, . . . , in−1, j〉 ∈ T .

We say that 〈i1, . . . , in−1〉 is theparent of 〈i1, . . . , in−1, j〉 and that 〈i1, . . . , in−1, j〉
is the ( j + 1)th child of 〈i1, . . . , in−1〉. If u and v are two sequences in T such that u
is a child of v, or a child’s child of v, or a child’s child’s child of v, etc., then we say
that u is a descendant of v (or that v is an ancestor of u), and we write u ⊂ v (see the
remark below). If u = 〈i1, . . . , im〉 ∈ T , v = 〈 j1, . . . , jn〉 ∈ T , m ≤ n, and neither u
nor v is a descendant of the other, then the youngest common ancestor of u and v is
the vertex in T defined by

D(u, v) = D(v, u) :=
{

∅, if i1 �= j1
〈i1, . . . , ik〉 if k = max{l: il = jl}. (4.1)

One can similarly define the youngest common ancestor for any finite collection of
vertices.

Remark At first glance, using the notation u ⊂ v to denote when u is a descendant
of v may seem counterintuitive, since u is a descendant of v precisely when v is a
subsequence ofu.However,wewill soonbe identifyingvertices of rooted labelled trees
with certain nested families of cubes in R

d . Consequently, as will become apparent
in the next two subsections, u will be a descendant of v precisely when the cube
associated with u is contained within the cube associated with v.

We designate the empty sequence ∅ as the root of the tree T . The sequence
〈i1, . . . , in〉 should be thought of as the vertex in T that is the (in + 1)th child of
the (in−1 + 1)th child,. . ., of the (i1 + 1)th child of the root. All unordered pairs of
the form (〈i1, . . . , in−1〉, 〈i1, . . . , in−1, in〉) describe the edges of the tree T . We say
that the edge originates at the vertex 〈i1, . . . , in−1〉 and that it terminates at the vertex
〈i1, . . . , in−1, in〉. Note that every vertex in the tree that is not the root is uniquely
identified by the edge terminating at that vertex. Consequently, given an edge e ∈ E ,
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we define v(e) to be the vertex in V at which e terminates. The vertex 〈i1, . . . , in〉 ∈ T
also prescribes a unique path, or ray, from the root to this vertex:

∅ → 〈i1〉 → 〈i1, i2〉 → · · · → 〈i1, i2, . . . , in〉.

We let ∂T denote the collection of all rays in T of maximal (possibly infinite)
length. For a fixed vertex v = 〈i1, . . . , im〉 ∈ T , we also define the subtree (of T )
generated by the vertex v to be the maximal subtree of T with v as the root, i.e., it is
the subtree

{〈i1, . . . , im, j1, . . . , jk〉 ∈ T : k ≥ 0}.

The height of the tree is taken to be the supremum of the lengths of all the sequences
in the tree. Further, we define the height h(·), or level, of a vertex 〈i1, . . . , in〉 in the
tree to be n, the length of its identifying sequence. All vertices of height n are said to
be members of the nth generation of the root, or interchangeably, of the tree. More
explicitly, a member vertex of the nth generation has exactly n edges joining it to the
root. The height of the root is always taken to be zero.

If T is a tree and n ∈ Z
+, we write the truncation of T to its first n levels as

Tn = {〈i1, . . . , ik〉 ∈ T : 0 ≤ k ≤ n}. This subtree is a tree of height at most n. A tree
is called locally finite if its truncation to every level is finite, i.e., consists of finitely
many vertices. All of our trees will have this property. In the remainder of this article,
when we speak of a tree we will always mean a locally finite, rooted labelled tree,
unless otherwise specified.

Roughly speaking, two trees are isomorphic if they have the same collection of
rays. To make this precise we define a special kind of map between trees that will turn
out to be very important for us later.

Definition 4.1 Let T1 and T2 be two trees with equal (possibly infinite) heights. Let
σ : T1 → T2; we call σ sticky if

• for all v ∈ T1, h(v) = h(σ (v)), and
• u ⊂ v implies σ(u) ⊂ σ(v) for all u, v ∈ T1.

We often say that σ is sticky if it preserves heights and lineages.

A one-to-one and onto sticky map between two trees, whose inverse is then auto-
matically sticky, is an isomorphism and the two trees are said to be isomorphic; we will
write T1 ∼= T2. Two isomorphic trees can be treated as essentially identical objects.

4.2 Encoding Bounded Subsets of the Unit Interval by Trees

The language of rooted labelled trees is especially convenient for representing bounded
sets in Euclidean spaces. This connection is well-studied in the literature. We refer the
interested reader to [19] for more information.

We start with [0, 1) ⊂ R. Fix any positive integer M ≥ 2. We define an M-adic
rational as a number of the form i/Mk for some i ∈ Z, k ∈ Z

+, and an M-adic interval
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as [i · M−k, (i + 1) · M−k). For any nonnegative integer i and positive integer k such
that i < Mk , there exists a unique representation

i = i1M
k−1 + i2M

k−2 + · · · + ik−1M + ik, (4.2)

where the integers i1, . . . , ik take values in ZM := {0, 1, . . . , M − 1}. These integers
should be thought of as the “digits” of i with respect to its base M expansion. An easy
consequence of (4.2) is that there is a one-to-one and onto correspondence between
M-adic rationals in [0, 1) of the form i/Mk and finite integer sequences 〈i1, . . . , ik〉 of
length k with i j ∈ ZM for each j . Naturally then, we define the tree of infinite height

T ([0, 1);M) = {〈i1, . . . , ik〉 : k ≥ 0, i j ∈ ZM }. (4.3)

The tree thus defined depends of course on the base M ; however, if M is fixed, as
it will be once we fix the direction set � = γ (CM ) (see Sect. 1.2), we will omit its
usage in our notation, denoting the tree T ([0, 1);M) by T ([0, 1)) instead.

Identifying the root of the tree defined in (4.3) with the interval [0, 1) and the
vertex 〈i1, . . . , ik〉 with the interval [i · M−k, (i + 1) · M−k), where i and 〈i1, . . . , ik〉
are related by (4.2), we observe that the vertices of T ([0, 1);M) at height k yield a
partition of [0, 1) into M-adic subintervals of length M−k . This tree has a self-similar
structure: every vertex of T ([0, 1);M) has M children and the subtree generated by
any vertex as the root is isomorphic to T ([0, 1);M). In the sequel, we will refer to
such a tree as a full M-adic tree.

Any x ∈ [0, 1) can be realized as the intersection of a nested sequence of M-adic
intervals, namely

{x} =
∞
⋂

k=0

Ik(x),

where Ik(x) = [ik(x) · M−k, (ik(x)+ 1) · M−k). The point x should be visualized as
the destination of the infinite ray

∅ → 〈i1(x)〉 → 〈i1(x), i2(x)〉 → · · · → 〈i1(x), i2(x), . . . , ik(x)〉 → · · ·

in T ([0, 1);M). Conversely, every infinite ray

∅ → 〈i1〉 → 〈i1, i2〉 → 〈i1, i2, i3〉 · · ·

identifies a unique x ∈ [0, 1) given by the convergent sum

x =
∞
∑

j=1

i j
M j

.

Thus the tree T ([0, 1);M) can be identified with the interval [0, 1) exactly. Any
subset E ⊆ [0, 1) is then given by a subtree T (E;M) of T ([0, 1);M) consisting of
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Fig. 4 A pictorial depiction of the isomorphism between a standard middle-thirds Cantor set and its
representation as a full binary subtree of the full base M = 3 tree

all infinite rays that identify some x ∈ E . As before, we will drop the notation for the
base M in T (E;M) once this base has been fixed.

Any truncation of T (E;M), say up to height k, will be denoted by Tk(E;M) and
should be visualized as a covering of E by M-adic intervals of length M−k . More
precisely, 〈i1, . . . , ik〉 ∈ Tk(E;M) if and only if E ∩ [i · M−k, (i + 1) · M−k) �= ∅,
where i and 〈i1, . . . , ik〉 are related by (4.2).

We now state and prove a key structural result about our sets of interest, the gener-
alized Cantor sets CM .

Proposition 4.2 Fix any integer M ≥ 3. Define CM as in Sect. 1.2. Then

T (CM ;M) ∼= T ([0, 1); 2).

That is, the M-adic tree representation of CM is isomorphic to the full binary tree,
illustrated in Fig. 4.

Proof Denote T = T (CM ;M) and T ′ = T ([0, 1); 2). We must construct a bijective
sticky map ψ : T → T ′. First, define ψ(v0) = v′0, where v0 is the root of T and v′0
is the root of T ′.

Now, for any k ≥ 1, consider the vertex 〈i1, i2, . . . , ik〉 ∈ T . We know that i j ∈
ZM for all j . Furthermore, for any fixed j , this vertex corresponds to a kth level
subinterval of C[k]

M . Every such k-th level interval is replaced by exactly two arbitrary

(k + 1)-th level subintervals in the construction of C[k+1]
M . Therefore, there exists

N1 := N1(〈i1, . . . , ik〉), N2 := N2(〈i1, . . . , ik〉) ∈ ZM , with N1 < N2, such that
〈i1, . . . , ik, ik+1〉 ∈ T if and only if ik+1 = N1 or N2. Consequently, we define

ψ(〈i1, i2, . . . , ik〉) = 〈l1, l2, . . . , lk〉 ∈ T ′, (4.4)

where

l j+1 =
{

0 if i j+1 = N1(〈i1, . . . , i j 〉),
1 if i j+1 = N2(〈i1, . . . , i j 〉).
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Themappingψ is injective by construction and surjectivity follows from the binary
selection of subintervals at each stage in the construction of CM . Moreover,ψ is sticky
by (4.4). ��

The following corollary is an easy consequence of the above and left to the reader.

Corollary 4.3 Recall the definition of D[N ]
M from Sect. 2.2. Then

TN (D[N ]
M ;M) ∼= TN ([0, 1); 2).

Proposition 4.2 and Corollary 4.3 guarantee that the tree encoding our set of direc-
tions will retain a certain binary structure. This fact will prove vital to establishing
Theorem 1.2.

4.3 Encoding Higher-Dimensional Bounded Subsets of Euclidean Space by
Trees

The approach to encoding abounded subset ofEuclidean space by a tree extends readily
to higher dimensions. For any i = 〈 j1, . . . , jd〉 ∈ Z

d such that i · M−k ∈ [0, 1)d , we
can apply (4.2) to each component of i to obtain

i
Mk

= i1
M

+ i2
M2 + · · · + ik

Mk
,

with i j ∈ Z
d
M for all j . As before, we identify i with 〈i1, . . . , ik〉.

Letφ:Zd
M → {0, 1, . . . , Md−1} be an enumeration ofZd

M . Define the fullMd -adic
tree

T ([0, 1)d ;M, φ) =
{

〈φ(i1), . . . , φ(ik)〉 : k ≥ 0, i j ∈ Z
d
M

}

. (4.5)

The collection of kth generation vertices of this tree may be thought of as the d-fold
Cartesian product of the kth generation vertices of T ([0, 1);M). For our purposes, it
will suffice to fix φ to be the lexicographic ordering, and so we will omit the notation
for φ in (4.5), writing simply, and with a slight abuse of notation,

T ([0, 1)d ;M) =
{

〈i1, . . . , ik〉 : k ≥ 0, i j ∈ Z
d
M

}

. (4.6)

As before, we will refer to the tree in (4.6) by the notation T ([0, 1)d) once the base
M has been fixed.

By a direct generalization of our one-dimensional results, each vertex 〈i1, . . . , ik〉
of T ([0, 1)d ;M) at height k represents the uniqueM-adic cube in [0, 1)d of sidelength
M−k , containing i · M−k , of the form

[
j1
Mk

,
j1 + 1

Mk

)

× · · · ×
[

jd
Mk

,
jd + 1

Mk

)

.
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As in the one-dimensional setting, any x ∈ [0, 1)d can be realized as the intersection
of a nested sequence of M-adic cubes. Thus, we view the tree in (4.6) as an encoding
of the set [0, 1)d with respect to base M . As before, any subset E ⊆ [0, 1)d then
corresponds to a subtree of T ([0, 1)d ;M).

The connection between sets and trees encoding them leads to the following easy
observations that we record for future use in Lemma 9.3.

Lemma 4.4 Let �N be the set defined in (2.2).

(a) Given �N , there is a constant C1 > 0 (depending only on d and C, c from (1.5))
such that for any 1 ≤ k ≤ N, the number of kth generation vertices inTN (�N ;M)

is ≤ C12k .
(b) For any compact set K ⊆ R

d+1, there exists a constant C(K) > 0 with the
following property. For any x = (x1, · · · , xd+1) ∈ K, and 1 ≤ k ≤ N, the
number of kth generation vertices in TN (E(x);M) is ≤ C(K)2k , where E(x) :=
(x − x1�N ) ∩ {0} × [0, 1)d .

Proof There are exactly 2k basic intervals of level k that comprise C[k]
M . Under γ ,

each such basic interval maps into a set of diameter at most CM−k . Since �N =
γ (D[N ]

M ) ⊆ γ (C[k]
M ), the number of kth generation vertices in TN (�N ;M), which is

also the number of kth level M-adic cubes needed to cover �N , is at most C12k . This
proves (a).

Let Q be any kth generation M-adic cube such that Q ∩ �N �= ∅. Then on one
hand, (x−x1Q)∩(x−x1�N ) �= ∅; on the other hand, the number of kth level M-adic
cubes covering (x − x1Q) is ≤ C(K), and part (b) follows. ��

Notation We end this section with a notational update. In light of the discussion
above and for simplicity, we will henceforth identify a vertex u = 〈i1, i2, . . . , ik〉 ∈
T ([0, 1)d) with the corresponding cube {0} × u lying on the root hyperplane {0} ×
[0, 1)d . In this parlance, a vertex t ∈ TN ([0, 1)d) of height N is the same as a root cube
Qt (or Q̃t ) defined in (2.1), and the notation t ⊆ u stands both for set containment as
well as tree ancestry.

5 Electrical Circuits and Percolation on Trees

5.1 The Percolation Process Associated to a Tree

The proof of Theorem 1.2 will require consideration of a special probabilistic process
on certain trees called a (bond) percolation. Imagine a liquid that is poured on top
of some porous material. How will the liquid flow—or percolate—through the holes
of the material? How likely is it that the liquid will flow from hole to hole in at
least one uninterrupted path all the way to the bottom? The first question forms the
intuition behind a formal percolation process, whereas the second question turns out
to be of critical importance to the proof of Theorem 1.2; this idea plays a key role in
establishing the planar analogue of that theorem in Bateman and Katz [4], and again
in the more general framework of [3].
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Although it is possible to speak of percolation processes in far more general terms
(see [11]), wewill only be concernedwith a percolation process on a tree. Accordingly,
given some tree T with vertex set V and edge set E , we define an edge-dependent
Bernoulli (bond) percolation process to be any collection of random variables {Xe :
e ∈ E}, where Xe is Bernoulli(pe) with pe < 1. The parameter pe is called the
survival probability of the edge e. We will always be concerned with a particular type
of percolation on our trees: we define a standard Bernoulli(p) percolation to be one
where the random variables {Xe : e ∈ E} are mutually independent and identically
distributed Bernoulli(p) random variables, for some p < 1. In fact, for our purposes,
it will suffice to consider only standard Bernoulli( 12 ) percolations.

Rather than imagining a tree with a percolation process as the behaviour of a liquid
acted upon by gravity in a porous material, it will be useful to think of the percolation
process as acting more directly on the mathematical object of the tree itself. Given
some percolation process on a tree T , we will think of the event {Xe = 0} as the
event that we remove the edge e from the edge set E , and the event {Xe = 1} as the
event that we retain this edge; denote the random set of retained edges by E∗. Notice
that with this interpretation, after percolation there is no guarantee that E∗, the subset
of edges that remain after percolation, defines a subtree of T . In fact, it can be quite
likely that the subgraph that remains after percolation is a union of many disconnected
subgraphs of T .

For a given edge e ∈ E , we think of p = Pr(Xe = 1) as the probability that we retain
this edge after percolation. The probability that at least one uninterrupted path remains
from the root of the tree to its bottommost level is given by the survival probability
of the corresponding percolation process. More explicitly, given a percolation on a
tree T , the survival probability after percolation is the probability that the random
variables associated to all edges of at least one ray in T take the value 1, i.e.,

Pr (survival after percolation on T ) := Pr

(
⋃

R∈∂T

⋂

e∈E∩R
{Xe = 1}

)

. (5.1)

Estimation of this probability will prove to be a valuable tool in the proof of Theo-
rem 1.2. This estimation will require reimagining a tree as an electrical network.

5.2 Trees as Electrical Networks

Formally, an electrical network is a particular kind of weighted graph. The weights
of the edges are called conductances and their reciprocals are called resistances. In
his seminal works on the subject, Lyons visualizes percolation on a tree as a certain
electrical network. In [17], he lays the groundwork for this correspondence. While
his results hold in great generality, we describe his results in the context of standard
Bernoulli percolation on a locally finite, rooted labelled tree only. We briefly review
the concepts relevant to our application here.

A percolation process on the truncation of any given tree T is naturally associated
to a particular electrical network. To see this, we truncate the tree T at height N and
place the positive node of a battery at the root of TN . Then, for every ray in ∂TN , there
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is a unique terminating vertex; we connect each of these vertices to the negative node
of the battery. A resistor is placed on every edge e of TN with resistance Re defined
by

1

Re
= 1

1− pe

∏

∅⊂v(e′)⊆v(e)

pe′ . (5.2)

Notice that the resistance for the edge e is essentially the reciprocal of the probability
that a path remains from the root of the tree to the vertex v(e) after percolation. For
standard Bernoulli( 12 ) percolation, we have

Re = 2h(v(e))−1. (5.3)

One fact that will prove useful for us later is that connecting any two vertices at a
given height by an ideal conductor (i.e., one with zero resistance) only decreases the
overall resistance of the circuit. This will allow us to more easily estimate the total
resistance of a generic tree.

Proposition 5.1 Let TN be a truncated tree of height N with corresponding electri-
cal network generated by a standard Bernoulli( 12 ) percolation process. Suppose at
height k < N we connect two vertices by a conductor with zero resistance. Then the
resulting electrical network has a total resistance no greater than that of the original
network.

Proof Let u and v be the two vertices at height k that we will connect with an ideal
conductor. Let R1 denote the resistance between u and D(u, v), the youngest common
ancestor of u and v; let R2 denote the resistance between v and D(u, v). Let R3 denote
the total resistance of the subtree of TN generated by the root u and let R4 denote the
total resistance of the subtree of TN generated by the root v. These four connections
define a subnetwork of our tree, depicted in Fig. 5a. The connection of u and v by
an ideal conductor, as pictured in Fig. 5b, can only change the total resistance of this
subnetwork, as that action leaves all other connections unaltered. It therefore suffices

(a)

D(u, v)

u v

+

−

R1 R2

R3 R4

(b)

D(u, v)

u ∼ v

+

−

R1 R2

R3 R4

Fig. 5 a The original subnetwork with the resistors R1, R3 and R2, R4 in series; b the new subnetwork
obtained by connecting vertices u and v by an ideal conductor
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to prove that the total resistance of the subnetwork comprised of the resistors R1, R2,
R3 and R4 can only decrease if u and v are joined by an ideal conductor.

In the original subnetwork, the resistors R1 and R3 are in series, as are the resistors
R2 and R4. These pairs of resistors are also in parallel with each other. Thus, we
calculate the total resistance of this subnetwork, Roriginal:

Roriginal =
(

1

R1 + R3
+ 1

R2 + R4

)−1

= (R1 + R3)(R2 + R4)

R1 + R2 + R3 + R4
. (5.4)

After connecting vertices u and v by an ideal conductor, the structure of our subnet-
work is inverted as follows. The resistors R1 and R2 are in parallel, as are the resistors
R3 and R4, and these pairs of resistors are also in series with each other. Therefore,
we calculate the new total resistance of this subnetwork, Rnew, as

Rnew =
(

1

R1
+ 1

R2

)−1

+
(

1

R3
+ 1

R4

)−1

= R1R2(R3 + R4) + R3R4(R1 + R2)

(R1 + R2)(R3 + R4)
. (5.5)

We claim that (5.4) is greater than or equal to (5.5). To see this, simply cross-
multiply these expressions. After cancellation of common terms, our claim reduces
to

R2
1R

2
4 + R2

2R
2
3 ≥ 2R1R2R3R4.

But this is trivially satisfied since (a − b)2 ≥ 0 for any real numbers a and b. ��

5.3 Estimating the Survival Probability After Percolation

We now present Lyons’ pivotal result linking the total resistance of an electrical net-
work and the survival probability under the associated percolation process.

Theorem 5.2 (Lyons, Theorem 2.1 of [18]) Let T be a tree with mutually associated
percolation process and electrical network, and let R(T ) denote the total resistance
of this network. If the percolation is Bernoulli, then

1

1+ R(T )
≤ Pr(T ) ≤ 2

1+ R(T )
,

where Pr(T ) denotes the survival probability after percolation on T .

We will not require the full strength of this theorem. A reasonable upper bound
on the survival probability coupled with the result of Proposition 5.1 will suffice for
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our applications. For completeness, we state and prove a sufficient simpler version of
Theorem 5.2 as essentially formulated by Bateman and Katz [4].

Proposition 5.3 Let M ≥ 2 and let T be a subtree of a full M-adic tree. Let R(T )

and Pr(T ) be as in Theorem 5.2. Then under Bernoulli percolation, we have

Pr(T ) ≤ 2

1+ R(T )
. (5.6)

Proof We will only focus on the case when R(T ) ≥ 1, since otherwise (5.6) holds
trivially. We prove this by induction on the height of the tree N . When N = 0, then
(5.6) is trivially satisfied. Now suppose that up to height N − 1, we have

Pr(T ) ≤ 2

1+ R(T )
.

Suppose T is of height N . We can view the tree T as its root together with at most
M edges connecting the root to the subtrees T1, . . . , TM of height N − 1 generated
by the terminating vertices of these edges. If there are k < M edges originating from
the root, then we take M − k of these subtrees to be empty. Note that by the induction
hypothesis, (5.6) holds for each T j . To simplify notation, we denote

Pr(T j ) = Pj and R(T j ) = R j ,

taking Pj = 0 and R j = ∞ if T j is empty.
Using independence and recasting Pr(T ) as one minus the probability of not sur-

viving after percolation on T , we have the formula:

Pr(T ) = 1−
M
∏

k=1

(

1− 1

2
Pk

)

.

Note that the function F(x1, . . . , xM ) = 1− (1− x1/2)(1− x2/2) · · · (1− xM/2)
is monotone increasing in each variable on [0, 2]M . Now define

Q j := 2

1+ R j
.

Since resistances are nonnegative, we know that Q j ≤ 2 for all j . Therefore,

Pr(T ) = F(P1, . . . , PM )

≤ F(Q1, . . . , QM )

≤ 1

2

M
∑

k=1

Qk .

Here, the first inequality follows by monotonicity and the induction hypothesis.
Plugging in the definition of Qk , we find that
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Pr(T ) ≤
M
∑

k=1

1

1+ Rk
.

But since each resistor R j is in parallel, we know that

1

R(T )
=

M
∑

k=1

1

1+ Rk
.

Combining this formula with the previous inequality and recalling that R(T ) ≥ 1,
we have

Pr(T ) ≤ 1

R(T )
≤ 2

1+ R(T )
,

as required. ��

6 The Random Mechanism and the Property of Stickiness

As discussed in the introduction of this paper, the construction of a Kakeya-type
set with orientations given by � will require a certain random mechanism. We now
describe this mechanism in detail.

In order to assign a slope σ(·) to the tubes Pt,σ := Pt,σ (t) given by (2.3), we
want to define a collection of random variables {X〈i1,...,ik 〉: 〈i1, . . . , ik〉 ∈ T ([0, 1)d)},
one on each edge of the tree used to identify the roots of these tubes. The tree
T1([0, 1)d) consists of all first generation edges of T ([0, 1)d). It has exactly Md

many edges and we place (independently) a Bernoulli( 12 ) random variable on each
edge: X〈0〉, X〈1〉, . . . , X〈Md−1〉. Now, the tree T2([0, 1)d) consists of all first and sec-
ond generation edges of T ([0, 1)d). It has Md + M2d many edges and we place
(independently) a new Bernoulli( 12 ) random variable on each of the M2d second gen-
eration edges. We label these X〈i1,i2〉 where 0 ≤ i1, i2 < Md . We proceed in this
way, eventually assigning an ordered collection of independent Bernoulli( 12 ) random
variables to the tree TN ([0, 1)d):

XN :=
{

X〈i1,...,ik 〉 : 〈i1, . . . , ik〉 ∈ TN ([0, 1)d), 1 ≤ k ≤ N
}

,

where X〈i1,...,ik 〉 is assigned to the unique edge identifying 〈i1, i2, . . . , ik〉, namely the
edge joining 〈i1, i2, . . . , ik−1〉 to 〈i1, i2, . . . , ik〉. Each realization of XN is a finite
ordered collection of cardinality Md + M2d + · · · + MNd with entries either 0 or 1.

We will now establish that every realization of the random variable XN defines a
sticky map between the truncated position tree TN ([0, 1)d) and the truncated binary
tree TN ([0, 1); 2), as defined in Definition 4.1. Fix a particular realization XN = x =
{x〈i1,...,ik 〉}. Define a map τx : TN ([0, 1)d) → TN ([0, 1); 2), where

τx(〈i1, i2, . . . , ik〉) =
〈

x〈i1〉, x〈i1,i2〉, . . . , x〈i1,i2,...,ik 〉
〉

. (6.1)
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We then have the following key proposition.

Proposition 6.1 The map τx just defined is sticky for every realization x of XN . Con-
versely, any sticky map τ between TN ([0, 1)d) and TN ([0, 1); 2) can be written as
τ = τx for some realization x of XN .

Proof Recalling Definition 4.1, we need to verify that τx preserves heights and lin-
eages. By (6.1), any finite sequence v = 〈i1, i2, . . . , ik〉 in T ([0, 1)d) is mapped to
a sequence of the same length in T ([0, 1); 2). Therefore h(v) = h(τx(v)) for every
v ∈ T ([0, 1)d).

Next suppose u ⊃ v. Then u = 〈i1, . . . , ih(u)〉, with h(u) ≤ k. So again by (6.1),

τx(u) = 〈

x〈i1〉, . . . , x〈i1,...,ih(u)〉
〉 ⊃ 〈

x〈i1〉, . . . , x〈i1,...,ih(u)〉, . . . , x〈i1,...,ik 〉
〉 = τx(v).

Thus, τx preserves lineages, establishing the first claim in Proposition 6.1.
For the second, fix a sticky map τ : TN ([0, 1)d) → TN ([0, 1); 2). Define x〈i1〉 :=

τ(〈i1〉), x〈i1,i2〉 := π2 ◦ τ(〈i1, i2〉), and in general

x〈i1,...,ik 〉 := πk ◦ τ(〈i1, i2, . . . , ik〉), k ≥ 1,

where πk denotes the projection map whose image is the kth coordinate of the input
sequence. The collection x = {x〈i1,i2,...,ik 〉} is the unique realization ofXN that verifies
the second claim. ��

6.1 Slope Assignment Algorithm

Recall from Sects. 1.2 and 2.2 that � := γ (CM ) and �N := γ (D[N ]
M ), where CM is

the generalized Cantor-type set and D[N ]
M a finitary version of it. In order to exploit

the binary structure of the trees T (CM ) := T (CM ;M) and T (D[N ]
M ) := T (D[N ]

M ;M)

advanced in Proposition 4.2 and Corollary 4.3, we need to map traditional binary
sequences onto the subsequences of {0, . . . , M − 1}∞ defined by CM or D[N ]

M .

Proposition 6.2 Every sticky map τ as in (6.1) that maps TN ([0, 1)d ;M) to
TN ([0, 1); 2) induces a natural mapping σ = στ from TN ([0, 1)d) into �N . The
maps στ obey a uniform Lipschitz-type condition: for any t, t ′ ∈ TN ([0, 1)d), t �= t ′,

∣
∣στ (t) − στ (t

′)
∣
∣ ≤ CM−h(D(τ (t),τ (t ′))), (6.2)

where C is as in (1.5).

Remark While the choice of D[N ]
M for a given C[N ]

M is not unique, the mapping

τ �→ στ is unique given a specific choice. Moreover, if D[N ]
M and D[N ]

M are two
selections of finitary direction sets at scale M−N , then the corresponding maps στ and
σ τ must obey

∣
∣στ (v) − σ τ (v)

∣
∣ ≤ CM−h(v) for every v ∈ TN ([0, 1)d), (6.3)
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whereC is as in (1.5). Thus given τ , the slope in� that is assigned by στ to an M-adic
cube in {0} × [0, 1)d of sidelength M−N is unique up to an error of O(M−N ). As a
consequence Pt,στ and Pt,σ τ are comparable, in the sense that each is contained in a
O(M−N )-thickening of the other.

Proof There are two links that allow passage of τ to σ . The first of these is the
isomorphismψ constructed in Proposition 4.2 that maps T (CM ;M) onto T ([0, 1); 2).
Under this isomorphism, the pre-image of any k-long sequence of 0’s and 1’s is a vertex
w of height k in T (CM ;M), in other words one of the 2k chosen M-adic intervals of
lengthM−k that constituteC[k]

M . The second link is amapping� : TN (CM ;M) → D[N ]
M

that sends every vertex w to a point in CM ∩ w, where, per our notational agreement
at the end of Sect. 4, we have also let w denote the particular M-adic interval that
it identifies. While the choice of the image point, i.e., D[N ]

M is not unique, any two
candidates �, � satisfy

|�(w) − �(w)
∣
∣ ≤ diam(w) = M−h(w) for every w ∈ TN (CM ;M). (6.4)

We are now ready to describe the assignment τ �→ σ = στ . Given a sticky map
τ : TN ([0, 1)d;M) → TN ([0, 1); 2) such that

τ(〈i1, i2, . . . , ik〉) = 〈X〈i1〉, . . . , X〈i1,i2,··· ,ik 〉〉,

the transformed random variable

Y〈i1,i2...,ik 〉 := γ ◦ � ◦ ψ−1 (〈X〈i1〉, X〈i1,i2〉, . . . , X〈i1,i2,...,ik 〉〉
)

associates a random direction in �N = γ (D[N ]
M ) to the sequence t = 〈i1, . . . , ik〉

identified with a unique vertex t ∈ TN ([0, 1)d). Thus, defining

σ := γ ◦ � ◦ ψ−1 ◦ τ (6.5)

gives the appropriate (random) mapping claimed by the proposition. The weak Lip-
schitz condition (6.2) is verified as follows,

∣
∣στ (t) − στ (t

′)
∣
∣ = ∣

∣γ ◦ � ◦ ψ−1 ◦ τ(t) − γ ◦ � ◦ ψ−1 ◦ τ(t ′)
∣
∣

≤ C
∣
∣� ◦ ψ−1 ◦ τ(t) − � ◦ ψ−1 ◦ τ(t ′)

∣
∣

≤ CM−h(D(ψ−1◦τ(t),ψ−1◦τ(t ′)))

= CM−h(D(τ (t),τ (t ′))).

Here the first inequality follows from (1.5), the second from the definition of �.
The third step uses the fact that ψ is an isomorphism, so that h(D(τ (t), τ (t ′))) =
h(D(ψ−1 ◦ τ(t), ψ−1 ◦ τ(t ′))). Finally, any non-uniqueness in the definition of σ

comes from �, hence (6.3) follows from (6.4) and (1.5). ��
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The stickiness of the maps τx is built into their definition (6.1). The reader may be
interested in observing that there is a naturally sticky map already introduced in this
article, which should be viewed as the inspiration for the construction of τ and στ .
We refer to the geometric content of Lemma 3.7, which in the language of trees has a
particularly succinct reformulation. We record this below.

Lemma 6.3 ForC0 obeying the requirement of Lemma 3.7 and p ∈ [C0,C0+1]×R
d ,

let Poss(p) be as in (3.3). Let � and ψ be the maps used in Proposition 6.2. Then the
map t �→ β(t) which maps every t ∈ Poss(p) to the unique β(t) ∈ [0, 1) such that

p ∈ Pt,v(t) where v(t) = γ ◦ � ◦ ψ−1 ◦ β(t), (6.6)

extends as a well-defined sticky map from TN (Poss(p);M) to TN ([0, 1); 2).
Proof By Lemma 3.7(a), there exists for every t ∈ Poss(p) a unique v(t) ∈ �N such
that p ∈ Pt,v(t). Let us therefore define for 1 ≤ k ≤ N ,

β(π1(t), . . . , πk(t)) = (π1 ◦ β(t), . . . , πk ◦ β(t)) (6.7)

where β(t) is as in (6.6) and as always πk denotes the projection to the kth coordinate
of an input sequence. More precisely, πk(t) represents the unique kth level M-adic
cube that contains t . Similarly πk(β(t)) is the kth component of the N -long binary
sequence that identifies β(t). The function β defined in (6.7) maps TN (Poss(p);M)

to TN ([0, 1); 2), and agrees with β as in (6.6) if k = N .
To check that the map is consistently defined, we pick t �= t ′ in Poss(p) with

u = D(t, t ′) and aim to show that β(π1(t), . . . , πk(t)) = β(π1(t ′), . . . , πk(t ′)) for
all k such that k ≤ h(u). But by definition (6.6), v(t) and v(t ′) have the property that
p ∈ Pt,v(t)∩Pt ′,v(t ′). Hence Lemma 3.7(b) asserts that α(t) = γ−1(v(t)) and α(t ′) =
γ−1(v(t ′)) share the same basic interval at step h(u) of the Cantor construction. Thus
β(t) = ψ ◦ �−1 ◦ α(t) and β(t ′) = ψ ◦ �−1 ◦ α(t ′) have a common ancestor in
TN ([0, 1); 2) at height h(u), and hence πk(β(t)) = πk(β(t ′)) for all k ≤ h(u), as
claimed. Preservation of heights and lineages is a consequence of the definition (6.7),
and stickiness follows. ��

6.2 Construction of Kakeya-Type Sets Revisited

As τ ranges over all sticky maps τx: TN ([0, 1)d) → TN ([0, 1); 2) with x ∈ XN , we
now have for every vertex t ∈ TN ([0, 1)d) with h(t) = N a random sticky slope
assignment σ(t) ∈ �N defined as above. For all such t , this generates a randomly
oriented tube Pt,σ given by (2.3) rooted at the M-adic cube Qt identified by t , with
sidelength κd ·M−N in the x1 = 0 plane. We may rewrite the collection of such tubes
from (2.4) as

KN (σ ) :=
⋃

t∈TN
([0,1)d )

h(t)=N

Pt,σ . (6.8)
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On average, a random collection of tubes with the above described sticky slope
assignment will comprise a Kakeya-type set, as per (1.2). Specifically, we will show
in the next section that the following proposition holds. In view of Proposition 2.1,
this will suffice to prove Theorem 1.2.

Proposition 6.4 Suppose (�N ,P(�N ),Pr) is the probability space of sticky maps
described above, equipped with the uniform probability measure. For every σ ∈ �N ,
there exists a set KN (σ ) as defined in (6.8), with tubes oriented in directions from
�N = γ (D[N ]

M ). Then these random sets obey the hypotheses of Proposition 2.1 with

aN = cM

√
log N

N
and bN = CM

N
, (6.9)

where cM andCM are fixed positive constants depending only on M and d. The content
of Proposition 2.1 allows us to conclude that � admits Kakeya-type sets.

7 Slope Probabilities and Root Configurations

Having established the randomization method for assigning slopes to tubes, we are
now in a position to apply this toward the estimation of probabilities of certain events
that will be of interest in the next section. Roughly speaking, we wish to compute
conditional probabilities that one or more cubes on the root hyperplane are assigned
prescribed slopes, provided similar information is available for other cubes.

Lemma 7.1 Let us fix v1, v2 ∈ �N , so that v1 = γ (α1) and v2 = γ (α2) for unique
α1, α2 ∈ D[N ]

M . We also fix t1, t2 ∈ TN ([0, 1)d), h(t1) = h(t2) = N, t1 �= t2. Let

us denote by u ∈ TN ([0, 1)d) and α ∈ TN (D[N ]
M ) the youngest common ancestors of

(t1, t2) and (α1, α2) respectively, i.e., u = D(t1, t2), α = D(α1, α2). Then

Pr
(

σ(t2) = v2
∣
∣σ(t1) = v1

) =
{

2−(N−h(u)) if h(u) ≤ h(α),

0 otherwise.
(7.1)

Proof Keeping in mind the slope assignment as described in (6.5), and the stickiness
of the map τ as given in Proposition 6.1, the proof can be summarized as in Fig. 6.
Since t1 and t2 must map to v1 = γ (α1) and v2 = γ (α2) under σ = στ , the sticky map
ψ−1 ◦ τ must map t1 and t2 to the N th stage basic intervals in the Cantor construction
containing α1 and α2 respectively. Since sticky maps preserve heights and lineages,
we must have h(α) ≥ h(u). Assuming this, we simply count the number of distinct
edges on the ray defining t2 that are not commonwith t1. Themap τ generating σ = στ

is defined by a binary choice on every edge in TN ([0, 1)d), and the rays given by t1
and t2 agree on their first h(u) edges, so we have exactly N − h(u) binary choices to
make. This is precisely (7.1).

More explicitly, if t1 = 〈i1, i2, . . . , iN 〉 and t2 = 〈 j1, . . . , jN 〉, then

〈i1, . . . , ih(u)〉 = 〈 j1, . . . , jh(u)〉. (7.2)
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D(t1, t2)

t2t1

D(α1, α2)

α2α1

Φ ◦ ψ−1 ◦ τ

Fig. 6 Diagram of the sticky assignment between the two rays defining t1, t2 ∈ TN ([0, 1)d ) and the two

rays defining their assigned slopes α1, α2 ∈ D[N ]
M . The bold edges defining t1 are fixed to map to the

corresponding bold edges at the same height defining α1. This leaves a binary choice to be made at each of
the dotted edges along the path between D(t1, t2) and t2. We see that t2 is assigned the slope v2 under σ if
and only if these dotted edges are assigned via � ◦ ψ−1 ◦ τ to the dotted edges on the ray defining α2

The event of interest may therefore be recast as

{

σ(t2) = v2
∣
∣σ(t1) = v1

}

=
{

τ( j1, . . . , jN ) = ψ ◦ �−1(α2)

∣
∣
∣τ(i1, . . . , iN ) = ψ ◦ �−1(α1)

}

=
{

〈X〈 j1〉, . . . , X〈 j1,..., jN 〉〉=ψ ◦ �−1(α2)

∣
∣
∣〈X〈i1〉, . . . , X〈i1,...,iN 〉〉=ψ ◦ �−1(α1)

}

=
{

X〈 j1,..., jk 〉 = πk ◦ ψ ◦ �−1(α2) for h(u) + 1 ≤ k ≤ N
}

,

where πk denotes the kth component of the input sequence. At the second step above
we have used (6.1) and Proposition 6.2, and the third step uses (7.2). The last event
then amounts to the agreement of two (N − h(u))-long binary sequences, with an
independent, 1/2 chance of agreement at each sequential component. The probability
of such an event is 2−(N−h(u)), as claimed. ��

The same idea can be iterated to compute more general probabilities. To exclude
configurations that are not compatible with stickiness, let us agree to call a collection

{(t, αt ) : t ∈ A, h(t) = h(αt ) = N } ⊆ TN ([0, 1)d) × D[N ]
M (7.3)

of point-slope combinations sticky-admissible if there exists a sticky map τ such that
ψ−1 ◦ τ maps t to αt for every t ∈ A. Notice that existence of a sticky τ imposes
certain consistency requirements on a sticky-admissible collection (7.3); for example
h(D(αt , αt ′)) ≥ h(D(t, t ′)), and more generally h(D(αt : t ∈ A′)) ≥ h(D(A′)) for
any finite subset A′ ⊆ A.

For sticky-admissible configurations, we summarize the main conditional proba-
bility of interest, leaving the proof to the interested reader.

Lemma 7.2 Let A and B be finite disjoint collections of vertices in TN ([0, 1)d) of
height N . Then for any choice of slopes {vt = γ (αt ) : t ∈ A ∪ B} ⊆ �N such
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that the collection {(t, αt ) : t ∈ A ∪ B} is sticky-admissible, the following equation
holds:

Pr
(

σ(t) = vt for all t ∈ B
∣
∣ σ(t) = vt for all t ∈ A

) =
(
1

2

)k(A,B)

,

where k(A, B) is the number of distinct edges in the tree identifying B that are not
common with the tree identifying A. If {(t, αt ) : t ∈ A ∪ B} is not sticky-admissible,
then the probability is zero.

7.1 Four Point Root Configurations

For the remainder of this section, we focus on some special events of the form dealt
with in Lemma 7.2 that will be critical to the proof of (2.5). In all these cases of interest
we will have #(A), #(B) ≤ 2. As is reasonable to expect, the configuration of the root
cubes within the tree TN ([0, 1)d) plays a role in determining k(A, B). While there
is a large number of possible configurations, we isolate certain structures that will
turn out to be generic enough for our purposes. Loosely speaking, the classification of
configurations with A = {t1, t ′1}, B = {t2, t ′2} is based on certain algorithms used to
compute k(A, B). For type 1 configurations (defined below), k(A, B) will depend on
u = D(t1, t2) and u′ = D(t ′1, t ′2); for type 2 configurations, u and u′ will be the same
and we will need an additional vertex u1 = D(t1, t ′1), after a possible permutation, to
compute k(A, B).

Definition 7.3 Let I = {(t1, t2); (t ′1, t ′2)} be an ordered tuple of four distinct points in
TN ([0, 1)d) of height N such that

h(u) ≤ h(u′) where u = D(t1, t2), u′ = D(t ′1, t ′2). (7.4)

We say that I is in type 1 configuration if exactly one of the following conditions
is satisfied:

(a) either u ∩ u′ = ∅, or
(b) u′ � u, or
(c) u = u′ = D(ti , t ′j ) for all i, j = 1, 2

If I satisfying (7.4) is not of type 1, we call it of type 2. An ordered tuple I not satisfying
the inequality in (7.4) is said to be of type j = 1, 2 if I

′ = {(t ′1, t ′2); (t1, t2)} is of the
same type.

The different structural possibilities are listed in Fig. 7.
The advantage of a type 1 configuration is that, in addition to being overwhelmingly

popular, it allows (up to permutations) an easy computation of the quantity k(A, B)

described in Lemma 7.2 if #(A) = #(B) = 2, A ∪ B = {t1, t ′1, t2, t ′2} and #(A ∩
{t1, t2}) = #(B ∩ {t1, t2}) = 1.
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Type 1 Configurations

u
u

t1 t2 t1 t2

(a)

u

u

t2t1 t1 t2

(c)

u

u

t2 t2 t1 t1

(f)

u

u

t2 t1 t1 t2

(d)

u = u

t1 t1 t2 t2

(b)

u

u

t2 t1 t1 t2

(e)

Fig. 7 All possible four point configurations of type 1, up to permutations

Lemma 7.4 Let I = {(t1, t2); (t ′1, t ′2)} obeying (7.4) be in type 1 configuration. Let
vi = γ (αi ), v′i = γ (α′

i ), i = 1, 2, be (not necessarily distinct) points in �N . Then
there exist two permutations {i1, i2} and { j1, j2} of {1, 2} such that

Pr
(

σ(ti2) = vi2 , σ (t ′j2) = v′j2
∣
∣σ(ti1) = vi1 , σ (t ′j1) = v′j1

) =
(
1

2

)2N−h(u)−h(u′)
.

provided the collection {(ti , αi ), (t ′i , α′
i ); i = 1, 2} is sticky-admissible. If the admis-

sibility requirement is not met, then the probability is zero.

Proof The proof is best illustrated by referring to the above diagram, Fig. 7. If u∩u′ =
∅, then any two permutations will satisfy the conclusion of the lemma, Fig. 7a. In
particular, choosing i1 = j1 = 1, i2 = j2 = 2, we see that the number of edges in
B = {t2, t ′2} not shared by A = {t1, t ′1} is k(A, B) = (N − h(u)) + (N − h(u′)) =
2N−h(u)−h(u′). The same argument applies if u = u′ = D(ti , t ′j ) for all i, j = 1, 2,
Fig. 7b.

We turn to the remaining case where u′ � u. Here there are several possiblities
for the relative positions of t1, t2. Suppose first that there is no vertex w on the ray
joining u and u′ with h(u) < h(w) < h(u′) such that w is an ancestor of t1 or t2.
This means that the rays of t1, t2 and u′ follow disjoint paths starting from u, so any
choice of permutation suffices, Fig. 7c. Suppose next that there is a vertexw on the ray
joining u and u′ with h(u) < h(w) < h(u′) such that w is an ancestor of exactly one
of t1, t2, but no descendant of w on this path is an ancestor of either t1 or t2, Fig. 7d.
In this case, we choose ti1 to be the unique element of {t1, t2} whose ancestor is w.
Note that the ray for ti2 must have split off from u in this case. Any permutation of
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Type 2 Configurations

u = u

u1
u2

t1 t1 t2 t2

(b)

u = u
u1 u2

t1 t1 t2 t2

(a)

u = uu1

u2

t1 t1 t2 t2

(c)

Fig. 8 All possible four point configurations of type 2, up to permutations

{t ′1, t ′2} will then give rise to the desired estimate. If neither of the previous two cases
hold, then exactly one of {t1, t2}, say ti1 , is a descendant of u

′. If u′ = D(ti1, t
′
j ) for

both j = 1, 2, then again any permutation of {t ′1, t ′2} works, Fig. 7e. Thus the only
remaining scenario is where there exists exactly one element in {t ′1, t ′2}, call it t ′j1 , such
that h(D(ti1, t

′
j1
)) > h(u′). In this case, we choose A = {ti1 , t ′j1} and B = {ti2 , t ′j2},

Fig. 7f. All cases now result in k(A, B) = 2N − h(u)− h(u′), completing the proof.
��

Lemma 7.5 Let I = {(t1, t2); (t ′1, t ′2)} obeying (7.4) be in type 2 configuration. Then
there exist permutations {i1, i2} and { j1, j2} of {1, 2} for which we have the relations

u1 ⊆ u, u2 � u with h(u) ≤ h(u1) ≤ h(u2), where

u1 = D(ti1, t
′
j1), u2 = D(ti2 , t

′
j2),

and for which the following equality holds:

Pr
(

σ(ti1) = vi1 , σ (t ′j1) = v′j1
∣
∣ σ(ti2) = vi2 , σ (t ′j2) = v′j2

) =
(
1

2

)2N−h(u)−h(u1)

for any choice of slopes v1, v
′
1, v2, v

′
2 ∈ �N for which {(ti , αi ), (t ′i , α′

i ); i = 1, 2} is
sticky-admissible.

Proof Since I is of type 2, we know that u = u′, and hence all pairwise youngest
common ancestors of {t1, t ′1, t2, t ′2} must lie within u, but that there exist i, j ∈ {1, 2}
such that h(D(ti , t ′j )) > h(u). Let us set (i2, j2) to be a tuple for which h(D(ti2 , t

′
j2
)) is

maximal. The height inequalities and containment relations are nowobvious, andFig. 8
shows that k(A, B) = (N − h(u)) + (N − h(u1)) if A = {ti2 , t ′j2} and B = {ti1 , t ′j1}.��

7.2 Three Point Root Configurations

The arguments in the previous section simplify considerably when there are three root
cubes instead of four. Since the proofs here are essentially identical to those presented
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Type 1 Type 2

u

u

t1 t2 t2

u = u

t2t1 t2

u = u

u2

t1 t2 t2

Fig. 9 Structural possibilities for three point root configurations

in Lemmas 7.4 and 7.5, we simply record the necessary facts with the accompanying
diagram of Fig. 9, leaving their verification to the interested reader.

Definition 7.6 Let I = {(t1, t2); (t1, t ′2)} be an ordered tuple of three distinct points in
TN ([0, 1)d) of height N such that h(u) ≤ h(u′), where u = D(t1, t2), u′ = D(t1, t ′2).
We say that I is in type 1 configuration if exactly one of the following two conditions
holds:

(a) u′ � u, or
(b) u = u′ = D(t2, t ′2).
Else I is of type 2, in which case one necessarily has u = u′ and u2 = D(t2, t ′2) obeys
u2 � u. If h(u) > h(u′), then the type I is the same as that of I

′ = {(t1, t ′2); (t1, t2)}.

Lemma 7.7 Let I = {(t1, t2); (t1, t ′2)} be any three-point configuration with h(u) ≤
h(u′) in the notation of Definition 7.6, and let v1 = γ (α1), v2 = γ (α2) v′2 = γ (α′

2)

be slopes in �N . Then

Pr
(

σ(t2)=v2, σ (t ′2) = v′2
∣
∣σ(t1) = v1

) =
{( 1

2

)2N−h(u)−h(u′)
i f I is o f t ype1,

( 1
2

)2N−h(u)−h(u2) i f I is o f t ype2,

provided the point-slope combination {(t1, α1), (t2, α2), (t ′2, α′
2)} is sticky-admissible.

8 Proposition 6.4: Proof of the Lower Bound (2.5)

If a collection of many thin tubes is to have a large volume, then it is sensible to expect
that the intersection of most pairs of tubes should be small. The following measure-
theoretic lemma of Bateman and Katz [4] quantifies this phenomenon generally.

Lemma 8.1 [4, Proposition 2, p. 75] Suppose (X,A, μ) is a measure space and
A1, . . . , An ∈ A are sets with μ(A j ) = α for every j . If

n
∑

i=1

n
∑

j=1

μ(Ai ∩ A j ) ≤ L ,
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then

μ

(
n
⋃

i=1

Ai

)

≥ α2n2

16L
.

Wedefer the proof of this fact toRefs. [3] or [4]. Using it, we reduce the derivation of
inequality (2.5)with the aN specified in (6.9) via the following lemma. Throughout this
subsection, all probability statements are understood to take place on the probability
space (�N ,P(�N ),Pr) identified in Proposition 6.4.

Proposition 8.2 Fix integers N and R with N � M and N − 1
10 logM N ≤ R ≤

N − 10. Define P∗
t,σ,R to be the portion of Pt,σ contained in the vertical slab

[MR−N , MR+1−N ] × R
d . Then

Eσ

⎡

⎣
∑

t1 �=t2

∣
∣P∗

t1,σ,R ∩ P∗
t2,σ,R

∣
∣

⎤

⎦ � NM−2N+2R, (8.1)

where the implicit constant depends only on M and d.

If one can show that with large probability and for all R specified in Proposition
8.2, the quantity

∑

t1 �=t2

∣
∣P∗

t1,σ,R ∩ P∗
t2,σ,R

∣
∣ is bounded above by the right hand side of

(8.1), then Lemma 8.1 would imply (2.5) with aN = √
log N/N . Unfortunately, (8.1)

only shows this on average for every R, and hence is too weak a statement to permit
such a conclusion. However, with some additional work we are able to upgrade the
statement in Proposition 8.2 to a second moment estimate, given below. While still
not as strong as the statement mentioned above, this suffices for our purposes with a
smaller choice of aN .

Proposition 8.3 Under the same hypotheses asProposition 8.2, there exists a constant
CM,d > 0 such that

Eσ

⎡

⎢
⎣

⎛

⎝
∑

t1 �=t2

∣
∣P∗

t1,σ,R ∩ P∗
t2,σ,R

∣
∣

⎞

⎠

2
⎤

⎥
⎦ ≤ C2

M,d

(

NM−2N+2R
)2

. (8.2)

Corollary 8.4 Proposition 8.3 implies (2.5) with aN as in (6.9).

Proof Fix a small constant c1 > 0 such that 2c1 < 1
10 . Then the range of R satisfied

by the inequalities c1 log N ≤ N − R ≤ 2c1 log N obeys the hypothesis of Proposi-
tion 8.2. This choice is not strictly necessary but simplifies the following calculation
somewhat. By Chebyshev’s inequality, (8.2) implies that there exists a large constant
CM,d > 0 such that for every R in this range,
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Pr
({

σ :
∑

t1 �=t2

∣
∣P∗

t1,σ,R ∩ P∗
t2,σ,R

∣
∣ ≥ 2CM,d N

√

log NM−2N+2R
})

≤
Eσ

[(
∑

t1 �=t2

∣
∣
∣P∗

t1,σ,R ∩ P∗
t2,σ,R

∣
∣
∣

)2]

(

2CM,d N
√
log NM−2N+2R

)2

≤ 1

4 log N
.

Therefore,

Pr

⎛

⎝

2c1 log N⋃

N−R=c1 log N

⎧

⎨

⎩
σ :

∑

t1 �=t2

∣
∣P∗

t1,σ,R ∩ P∗
t2,σ,R

∣
∣ ≥ CM,d N

√

log NM−2N+2R

⎫

⎬

⎭

⎞

⎠

≤ c1 log N

4 log N
<

1

4
.

In other words, for a class of σ with probability at least 3
4 ,

∑

t1 �=t2

∣
∣P∗

t1,σ,R ∩ P∗
t2,σ,R

∣
∣ ≤ CM,d N

√

log NM−2N+2R

for every N − R ∈ [c1 log N , 2c1 log N
]

. For such σ and the chosen range of R, we
apply Lemma 8.1 with At = P∗

t,σ,R , n = MNd , for which α = CdMR−N M−Nd , and

∑

t1,t2

∣
∣P∗

t1,σ,R ∩ P∗
t2,σ,R

∣
∣ =

⎡

⎣
∑

t1=t2

+
∑

t1 �=t2

⎤

⎦
∣
∣P∗

t1,σ,R ∩ P∗
t2,σ,R

∣
∣

≤ αn + CM,d N
√

log NM−2N+2R

� MR−N + N
√

log NM−2N+2R

� N
√

log NM−2N+2R =: L .

The last step above uses the specified range of R. Lemma 8.1 now yields that

∣
∣
∣

⋃

t

P∗
t,σ,R

∣
∣
∣ � (MR−N )2

L
∼ 1

N
√
log N

for every N − R ∈ [

c1 log N , 2c1 log N
]

. Since {∪t P∗
t,σ,R : R ≥ 0} is a disjoint

collection, we obtain

∣
∣KN (σ ) ∩ [0, 1] × R

d
∣
∣ ≥

N−c1 log N∑

R=N−2c1 log N

∣
∣
∣

⋃

t

P∗
t,σ,R

∣
∣
∣ � log N

1

N
√
log N

= aN ,

which is the desired conclusion (2.5). ��
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8.1 Proof of Proposition 8.2

Thus, we are charged with proving Proposition 8.3.Wewill prove Proposition 8.2 first,
since it involves many of the same ideas as in the proof of the main proposition, but in
a simpler setting. We will need to take advantage of several geometric facts, counting
arguments and probability estimates prepared in Sects. 3 and 7 that will be described
shortly. For now, we prescribe the main issues in establishing the bound in (8.1).

Proof Given N and R as in the statement of the proposition, we decompose the slab
[MR−N , MR+1−N ] × R

d into thinner slices Zk , where

Zk :=
[

k

MN
,
k + 1

MN

]

× R
d , MR ≤ k ≤ MR+1 − 1.

Setting Pt,σ,k := Pt,σ ∩ Zk , we observe that P∗
t,σ,R is an essentially disjoint union

of {Pt,σ,k}. Since P∗
t,σ,R is transverse to Zk , we arrive at the estimate

∑

t1 �=t2

∣
∣P∗

t1,σ,R ∩ P∗
t2,σ,R

∣
∣ =

∑

MR≤k<MR+1

∑

t1 �=t2

∣
∣Pt1,σ,k ∩ Pt2,σ,k

∣
∣

� M−(d+1)N
∑

MR≤k<MR+1

∑

t1 �=t2

Tt1t2(k) (8.3)

� M−(d+1)N
∑

MR≤k<MR+1

∑

u∈TN ([0,1)d )
h(u)<N

∑

(t1,t2)∈Su

Tt1t2(k),

(8.4)

where Tt1t2(k) is a random variable that equals one if Pt1,σ,k ∩ Pt2,σ,k �= ∅, and is zero
otherwise. At the last step in the above string of inequalities, we have further stratified
the sum in (t1, t2) in terms of their youngest common ancestor u = D(t1, t2) in the
tree TN ([0, 1)d), with the index set Su of the innermost sum being defined by

Su :=
{

(t1, t2) : t1, t2 ∈ TN ([0, 1)d), h(t1) = h(t2) = N , D(t1, t2) = u
}

.

We will prove below in Lemma 8.8 that

Eσ

[ ∑

(t1,t2)∈Su

Tt1t2(k)
]

� MR−N M−dh(u)+Nd = MR−dh(u)+N (d−1). (8.5)

Plugging this expected count into the last step of (8.4) and simplifying, we obtain

Eσ

[∑

t1 �=t2

∣
∣P∗

t1,σ,R ∩ P∗
t2,σ,R

∣
∣

]

�
∑

MR≤k<MR+1−1

MR−2N
∑

u∈TN ([0,1)d )
h(u)<N

M−dh(u)

�
∑

MR≤k<MR+1−1

MR−2N N � NM2R−2N ,
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which is the estimate claimed by Proposition 8.2. At the penultimate step, we have
used the fact that there are Mdr vertices u in TN ([0, 1)d) of height r , resulting in

∑

u

M−dh(u) =
∑

0≤r<N

M−dr Mdr = N . (8.6)

��

8.2 Proof of Proposition 8.3

Proof To establish (8.2), we take a similar route, with some extra care in summing
over the (now more numerous) indices. Squaring the expression in (8.3), we obtain

⎡

⎣
∑

t1 �=t2

∣
∣P∗

t1,σ,R ∩ P∗
t2,σ,R

∣
∣

⎤

⎦

2

≤ M−2(d+1)N
∑

k,k′∈[MR ,MR+1)

∑

t1 �=t2
t ′1 �=t ′2

Tt1t2(k)Tt ′1t ′2(k
′)

≤ S2 +S3 +S4,

where the index i in Si corresponds to the number of distinct points in the tuple
{(t1, t2); (t ′1, t ′2)}. More precisely, for i = 2, 3, 4,

Si := M−2(d+1)N
∑

k,k′

∑

I∈Ii
Tt1t2(k)Tt ′1t ′2(k

′), where (8.7)

Ii :=
{

I = {(t1, t2); (t ′1, t ′2)}
∣
∣
∣
∣

t j , t ′j ∈ TN ([0, 1)d), h(t j ) = h(t ′j ) = N ∀ j = 1, 2,
t1 �= t2, t ′1 �= t ′2, #({t1, t ′1, t2, t ′2}) = i

}

.

The main contribution to the left hand side of (8.2) will be from Eσ (S4), and we
will discuss its estimation in detail. The other terms, whose treatment will be briefly
sketched, will turn out to be of smaller size.

We decompose I4 = I41 ∪ I42, where I4 j is the collection of 4-tuples of distinct
points {(t1, t2); (t ′1, t ′2)} that are in configuration of type j = 1, 2, as explained in
Definition 7.3. This results in a corresponding decomposition S4 = S41 +S42. For
S41, we further stratify the sum in terms of u = D(t1, t2) and u′ = D(t ′1, t ′2), where
we may assume without loss of generality that h(u) ≤ h(u′). Thus,

Eσ

(

S41
) =

∑

k,k′

∑

u,u′∈TN ([0,1)d )
h(u)≤h(u′)<N

Eσ

(

S41(u, u′; k, k′)) where (8.8)

S41(u, u′; k, k′) := M−2(d+1)N
∑

I∈I41(u,u′)
Tt1t2(k)Tt ′1t ′2(k

′), and

I41(u, u′) := {I ∈ I41 : u = D(t1, t2), u
′ = D(t ′1, t ′2)}.
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In Lemma 8.9 below, we will show that

Eσ

[

S41(u, u′; k, k′)] � M−2(d+1)N M2R−d(h(u)+h(u′))+2N (d−1)

= M2R−4N−d(h(u)+h(u′)). (8.9)

Inserting this back into (8.8), we now follow the same summation steps that led to
(8.1) from (8.5). Specifically, applying (8.6) twice, we obtain

Eσ (S41) � M2R−4N
∑

k,k′

∑

u,u′
M−d(h(u)+h(u′))

�
∑

k,k′
N 2M2R−4N � N 2M4R−4N ,

which is the right hand side of (8.2).
Next we turn to S42. Motivated by the configuration type, and after permutations

of {t1, t2} and of {t ′1, t ′2} if necessary (so that the conclusion of Lemma 7.5 holds),
we stratify this sum in terms of u = u′ = D(t1, t2) = D(t ′1, t ′2), u1 = D(t1, t ′1),
u2 = D(t2, t ′2), writing

S42 =
∑

k,k′

∑

u,u1,u2∈TN ([0,1)d )
u1,u2⊆u

S42(u, u1, u2; k, k′), where

S42(u, u1, u2; k, k′) := M−2(d+1)N
∑

I∈I42(u,u1,u2)

Tt1t2(k)Tt ′1t ′2(k
′), and

I42(u, u1, u2) :=
{

I ∈ I42

∣
∣
∣
∣

u = D(t1, t2) = D(t ′1t ′2),
u1 = D(t1, t ′1), u2 = D(t2, t ′2)

}

(8.10)

for given u1, u2 ⊆ u with h(u) ≤ h(u1) ≤ h(u2). For such u, u1, u2, we will prove
in Lemma 8.10 below that

Eσ

(

S42(u, u1, u2; k, k′)
)

� M−2N−2dh(u2). (8.11)

Accepting this estimate for the time being, we complete the estimation of Eσ (S42)

as follows,

Eσ (S42) �
∑

k,k′

∑

u,u1,u2

M−2N−2dh(u2)

� M−2N
∑

k,k′

∑

u

∑

u2⊆u

M−2dh(u2)
∑

u1⊆u
h(u1)≤h(u2)

1

� M−2N
∑

k,k′

∑

u

∑

u2⊆u

M−2dh(u2)
[

Md(h(u2)−h(u))
]

(8.12)

� M−2N
∑

k,k′

∑

u

M−dh(u)
∑

u2⊆u

M−dh(u2)
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� NM−2N
∑

k,k′

∑

u

M−2dh(u) (8.13)

� NM2R−2N . (8.14)

For the range N − R ≤ 1
2 logM N assured by Proposition 8.3, the last quantity

above is smaller than (NM2R−2N )2. The string of inequalities displayed above involve
repeated applications of the fact used to prove (8.6), namely that there are Mdj−dh(u)

cubes of sidelength M− j contained in u. Thus the estimates

∑

u1⊆u
h(u1)≤h(u2)

1 �
h(u2)∑

j=h(u)

Md( j−h(u)) � Md(h(u2)−h(u)),

∑

u2⊆u

M−dh(u2) �
∑

N≥ j≥h(u)

M−d j Md( j−h(u)) � NM−dh(u), and

∑

u

M−2dh(u) =
N
∑

j=0

Mdj M−2d j =
N
∑

j=0

M−d j � 1

were used in (8.12) (8.13) and (8.14) respectively, completing the estimation ofE(S4).
Arguments similar to and in fact simpler than those above lead to the following

estimates for E(S3) and E(S2), where S3 and S2 are as defined in (8.7):

E(S3) = E(S31) + E(S32)

� NM3R−3N + M3R−3N � NM3R−3N , and (8.15)

E(S2) � NM3R−(d+3)N . (8.16)

Here without loss of generality and after a permutation if necessary, we have
assumed that I = {(t1, t2); (t1, t ′2)} ∈ I3, with h(D(t1, t2)) ≤ h(D(t1, t ′2)). The
subsumS3i then corresponds to tuples I that are in type i configuration in the sense of
Definition 7.6. There is only one possible configuration of pairs inI2. The derivation of
the expectation estimates (8.15) and (8.16) closely follow the estimation of S4, with
appropriate adjustments in the probability counts; for instance, (8.15) uses Lemma
7.7 and (8.16) uses Lemma 7.1. To avoid repetition, we leave the details of (8.15)
and (8.16) to the reader, noting that the right hand term in each case is dominated by
(NM2R−2N )2 by our conditions on R. ��

8.3 Expected Intersection Counts

It remains to establish (8.5), (8.9) and (8.11). The necessary steps for this are laid out
in the following sequence of lemmas. Unless otherwise stated, we will be using the
notation introduced in the proofs of Propositions 8.2 and 8.3.
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M−h(u)

kM−N−h(u)

Fig. 10 A diagram of Au when d = 2, M = 3. Here the largest square is u. The thatched area depicts
Au . The finest squares are the root cubes contained in Au

Lemma 8.5 Fix Zk. Let us define Au = Au(k) to be the (deterministic) collection of
all t1 ∈ TN ([0, 1)d), h(t1) = N that are contained in the cube u and whose distance
from the boundary of some child of u is � kM−N−h(u) (Fig. 10).

For t1 ∈ Au, let Bt1 = Bt1(k) denote the (also deterministic) collection of t2 ∈
TN ([0, 1)d) with h(t2) = N and D(t1, t2) = u such that the distance between the
centres of t1 and t2 is � kM−N−h(u).

(a) Then for any slope assignment σ , the random variable Tt1t2(k) = 0 unless t1 ∈ Au

and t2 ∈ Bt1 . In other words,

∑

(t1,t2)∈Su

Tt1t2(k) =
∑

t1∈Au

∑

t2∈Bt1

Tt1t2(k), so that

Eσ

⎡

⎣
∑

(t1,t2)∈Su

Tt1t2(k)

⎤

⎦ =
∑

t1∈Au

Eσ

⎡

⎣
∑

t2∈Bt1

Tt1t2(k)

⎤

⎦ . (8.17)

(b) The description of Au yields the following bound on its cardinality:

#(Au) �
( k

MN

)

Md(N−h(u)) � MR−dh(u)+(d−1)N .

Proof We observe that Tt1t2(k) = 1 if and only if there exists a point p =
(p1, . . . , pd+1) ∈ Zk and v1, v2 ∈ �N such that p ∈ Pt1,v1 ∩ Pt2,v2 , and σ(t1) = v1,
σ(t2) = v2. By Lemma 3.1, this implies that
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|cen(t1) − cen(t2) + p1(σ (t1) − σ(t2))| ≤ 2κd
√
dM−N , (8.18)

where cen(ti ) denotes the centre of the cube ti . For p ∈ Zk , (8.18) yields

|cen(t1) − cen(t2)| ≤ p1|σ(t1) − σ(t2)| + 2κd
√
dM−N � p1|σ(t1) − σ(t2)|

�
(k + 1

MN

)

|σ(t1) − σ(t2)| �
( k

MN

)

M−h(D(τ (t1),τ (t2)))

� kM−N−h(u). (8.19)

The second inequality in the steps above follows from Corollary 3.2, the third from
the definition of Zk and the fourth from the property (6.2) of the slope assignment.
Here τ is the unique sticky map that generates σ , as specified in Proposition 6.2. Since
τ preserves heights and lineages, h(D(τ (t1), τ (t2))) ≥ h(D(t1, t2)) = h(u), and the
last step follows.

The inequality in (8.19) implies that Tt1t2(k) = 0 unless t2 ∈ Bt1 . Further, t1, t2 lie
in distinct children of u, so t1 must satisfy

dist(t1, ∂u
′) � k

MN
M−h(u) for some child u′ of u,

to allow for the existence of some t2 obeying (8.19). This means t1 ∈ Au , proving (a).
For (b) we observe that u has Md children. The Lebesgue measure of the set

⋃

u′

{

x ∈ u′ : dist(x, ∂u′) � kM−N−h(u), u′ is a child of u
}

(8.20)

is therefore � (Md)kM−N−h(u)M−(d−1)h(u). The cardinality of Au is comparable to
the number of M−N -separated points in the set (8.20), and (b) follows. ��

Our next task is to make further reductions to the expression on the right hand
side of (8.17) that will enable us to invoke the probability estimates from Sect. 7. To
this end, let us fix Zk , t1 ∈ Au(k), v1 = γ (α1) ∈ �N , and define a collection of
point-slope pairs

Eu(t1, v1; k) :=

⎧

⎪⎨

⎪⎩

(t2, v2)

∣
∣
∣
∣
∣
∣
∣

t2 ∈ TN ([0, 1)d) ∩ Bt1 , v2 = γ (α2) ∈ �N ,

h(t2) = h(α2) = N , u = D(t1, t2),

Pt1,v1 ∩ Pt2,v2 ∩ Zk �= ∅, h(D(α1, α2)) ≥ h(u)

⎫

⎪⎬

⎪⎭

.

(8.21)
Thus Eu(t1, v1; k) is non-random aswell. The significance of this collection is clarified
in the next lemma.

Lemma 8.6 For (t2, v2) ∈ Eu(t1, v1; k) described as in (8.21), define a random vari-
able T t2v2(t1, v1; k) as follows:

T t2v2(t1, v1; k) :=
{

1 if σ(t2) = v2,

0 otherwise.
(8.22)
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(a) The random variables Tt1t2(k) and T t2v2(t1, v1; k) are related as follows: given
σ(t1) = v1,

Tt1t2(k) = sup
{

T t2v2(t1, v1; k) : (t2, v2) ∈ Eu(t1, v1; k)
}

. (8.23)

In particular under the same conditional hypothesis σ(t1) = v1, one obtains the
bound

Tt1t2(k) ≤
∑

v2∈�N
(t2,v2)∈Eu(t1,v1;k)

T t2v2(t1, v1; k), (8.24)

which in turn implies

Eσ

⎡

⎣
∑

t2∈Bt1

Tt1t2(k)
∣
∣
∣σ(t1) = v1

⎤

⎦ ≤
∑

(t2,v2)∈Eu(t1,v1;k)
Pr(σ (t2) = v2

∣
∣σ(t1) = v1

)

.

(8.25)
(b) The cardinality of Eu(t1, v1; k) is � 2N−h(u).

Proof We already know from Lemma 8.5 that Tt1t2(k) = 0 unless t2 ∈ Bt1 . Further, if
σ(t1) = v1 is known, then it is clear that Tt1t2(k) = 1 if and only if there exists v2 ∈ �N

such that Pt1,v1 ∩ Pt2,v2 ∩ Zk �= ∅ and σ(t2) = v2. But this means that the sticky
map τ that generates σ must map t2 to the N -long binary sequence that identifies α2.
Stickiness dictates that h(D(α1, α2)) = h(D(τ (t1), τ (t2))) ≥ h(D(t1, t2)) = h(u),
explaining the constraints that define Eu(t1, v1; k). Rephrasing the discussion above,
given σ(t1) = v1, the event Tt1t2(k) = 1 holds if and only if there exists v2 ∈ �N

such that (t2, v2) ∈ Eu(t1, v1; k) and σ(t2) = v2. This is the identity claimed in (8.23)
of part (a). The bound in (8.24) follows easily from (8.23) since the supremum is
dominatedby the sum.Thefinal estimate (8.25) in part (a) followsby taking conditional
expectation of both sides of (8.24), and observing that Eσ (T t2v2(t1, v1; k)|σ(t1) =
v1) = Pr(σ (t2) = v2

∣
∣σ(t1) = v1

)

.
We turn to (b). If v2 ∈ �N is fixed, then it follows from Corollary 3.3 (taking Q in

that corollary to be the cube of sidelength O(M−N ) containing Pt1,v1 ∩ Zk) that there
exist at most a constant number of choices of t2 such that (t2, v2) ∈ Eu(t1, v1; k). But
by Corollary 4.3 the number of points α2 ∈ D[N ]

M (and hence slopes v2 ∈ �N ) that
obey h(D(α1, α2)) ≥ h(u) is no more than 2N−h(u), proving the claim. ��

The same argument above applied twice yields the following conclusion, the veri-
fication of which is left to the reader.

Corollary 8.7 Given t1 ∈ Au(k), t ′1 ∈ Au′(k′), v1, v′1 ∈ �N , define Eu(t1, v1; k) and
Eu′(t ′1, v′1; k′) as in (8.21) and the random variables T t2v2(t1, v1; k), T t ′2v′2(t

′
1, v

′
1; k′)

as in (8.22). Then given σ(t1) = v1 and σ(t ′1) = v′1,

∑

t2∈Bt1
t ′2∈Bt ′1

Tt1t2(k)Tt ′1t ′2(k
′) ≤

∗
∑

T t2v2(t1, v1; k)T t ′2v′2(t
′
1, v

′
1; k′),
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where the notation
∗∑

represents the sum over all indices {(t2, v2); (t ′2, v′2)} ∈
Eu(t1, v1; k) × Eu′(t ′1, v′1; k′).

We are now ready to establish the key estimates in the proofs of Propositions 8.2
and 8.3.

Lemma 8.8 The estimate in (8.5) holds.

Proof We combine the steps outlined in Lemmas 8.5, 8.6 and 7.1. By Lemma 8.5(a),

Eσ

⎡

⎣
∑

(t1,t2)∈Su

Tt1t2(k)

⎤

⎦ =
∑

t1∈Au

Eσ

⎡

⎣
∑

t2∈Bt1

Tt1t2(k)

⎤

⎦

=
∑

t1∈Au

Ev1Eσ

⎡

⎣
∑

t2∈Bt1

Tt1t2(k) |σ(t1) = v1

⎤

⎦ . (8.26)

Applying (8.25) from Lemma 8.6 followed by Lemma 7.1, we find that the inner
expectation above obeys the bound

Eσ

⎡

⎣
∑

t2∈Bt1

Tt1t2(k)
∣
∣σ(t1) = v1

⎤

⎦ ≤
∑

(t2,v2)∈Eu(t1,v1;k)
Pr(σ (t2) = v2|σ(t1) = v1)

≤ #(Eu(t1, v1; k)) × 2−N+h(u)
︸ ︷︷ ︸

Lemma 7.1

� 2N−h(u)
︸ ︷︷ ︸

Lemma 8.6(b)

×2−N+h(u) � 1,

uniformly in v1. Inserting this back into (8.26), we arrive at

Eσ

⎡

⎣
∑

(t1,t2)∈Su

Tt1t2(k)

⎤

⎦ � #(Au),

which according to Lemma 8.5(b) is the bound claimed in (8.5). ��
Lemma 8.9 The estimate in (8.9) holds.

Proof The proof of (8.9) shares many similarities with that of Lemma 8.8, except that
there are now two copies of each of the objects appearing in the proof of (8.5) and the
probability estimate comes from Lemma 7.4 instead of Lemma 7.1. We outline the
main steps below.

In view of Lemma 7.4 and after a permutation of (t1, t2) and of (t ′1, t ′2) if necessary,
we may assume that for every I = {(t1, t2); (t ′1, t ′2)} ∈ I41(u, u′),

Pr
(

σ(t2) = v2, σ (t ′2) = v′2|σ(t1) = v1, σ (t ′1) = v′1
) =

(
1

2

)2N−h(u)−h(u′)
. (8.27)
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Now,

Eσ

(

S41(u, u′; k, k′))

≤ M−2(d+1)N
Eσ

⎡

⎣
∑

I∈I41(u,u′)
Tt1t2(k)Tt ′1t ′2(k

′)

⎤

⎦

= M−2(d+1)N
∑

t1∈Au(k)
t ′1∈Au′ (k′)

Ev1,v
′
1
Eσ

⎡

⎢
⎢
⎢
⎢
⎣

∑

t2∈Bt1
t ′2∈Bt ′1

Tt1t2(k)Tt ′1t ′2(k
′)
∣
∣
∣σ(t1) = v1, σ (t ′1) = v′1

⎤

⎥
⎥
⎥
⎥
⎦

� M−2(d+1)N
(

kk′

M2N Md(2N−h(u)−h(u′))
)

︸ ︷︷ ︸

#(t1,t ′1) from Lemma 8.5

� M2R−4N−d(h(u)+h(u′)),

since according to Corollary 8.7

Eσ

⎡

⎢
⎣

∑

(t2,t ′2)∈Bt1×Bt ′1

Tt1t2(k)Tt ′1t ′2(k
′)
∣
∣
∣σ(t1) = v1, σ (t ′1) = v′1

⎤

⎥
⎦

≤ Eσ

[ ∗
∑

T t2v2(t1, v1; k)T t ′2,v′2(t
′
1, v

′
1; k′)

∣
∣
∣σ(t1) = v1, σ (t ′1) = v′1

]

�
∗
∑

Pr(σ (t2) = v2, σ (t ′2) = v′2 | σ(t1) = v1, σ (t ′1) = v′1)

� (2N−h(u))
︸ ︷︷ ︸

#(Eu(t1,v1;k))
× (2N−h(u′))

︸ ︷︷ ︸

#(Eu′ (t ′1,v′1;k′))
× (2−2N+h(u)+h(u′))
︸ ︷︷ ︸

8.27 via Lemma 7.4

� 1, uniformly in v1, v
′
1.

The proof is therefore complete. ��
Lemma 8.10 The estimate in (8.11) holds.

Proof The proof of (8.11) is similar to (8.9), and in certain respects simpler. But the
configuration type dictates that we set up a different class E∗ of point-slope tuples that
will play a role analogous to Eu(t1, v1; k) in the preceding lemmas. Recall the structure
of a type 2 configuration from Fig. 8 and the definition of I42(u, u1, u2) from (8.10).
Given root cubes t2, t ′2, and u, u1, u2 ∈ TN ([0, 1)d) with the property that

u1 ⊆ u, u2 � u, u2 = D(t2, t
′
2), h(u) ≤ h(u1) ≤ h(u2) ≤ N = h(t2) = h(t ′2),

and slopes v2 = γ (α2), v′2 = γ (α′
2) ∈ �N , we define E∗ (depending on all these

objects) to be the following collection of root-slope tuples:
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E∗ :=

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{(t1, v1); (t ′1, v′1)}

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

I = {(t1, t2); (t ′1, t ′2)} ∈ I42(u, u1, u2),

v1 = γ (α1), v′1 = γ (α′
1) for some α1, α

′
1 ∈ D[N ]

M ,

Pt1,v1 ∩ Pt2,v2 ∩ Zk �= ∅, Pt ′1,v′1 ∩ Pt ′2,v′2 ∩ Zk′ �= ∅,

{(ti , αi ), (t
′
i , α

′
i ) : i = 1, 2} is sticky-admissible .

⎫

⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(8.28)
The relevance of E∗ is this: if σ(t2) = v2 and σ(t ′2) = v′2 are given, then

Tt1t2(k)Tt ′1t ′2(k
′) = 0 unless there exist v1, v

′
1 ∈ �N with {(t1, v1); (t ′1, v′1)} ∈ E∗

and σ(t1) = v1, σ(t ′1) = v′1.
We first set about obtaining a bound on the size of E∗ that wewill needmomentarily.

Stickiness dictates that h(D(α1, α2)) ≥ h(u), and that α1 is an N th level descendant
of α, the ancestor of α2 at height h(u). Thus the number of possible α1 (and hence
v1) is ≤ 2N−h(u), by Corollary 4.3. Again by stickiness, h(D(α1, α

′
1)) ≥ h(u1), so

for a given α1, the number of α′
1 (hence v′1) is no more than the number of possible

descendants of α∗, the ancestor of α1 at height h(u1). This number is thus≤ 2N−h(u1).
Once v1, v

′
1 have been fixed (recall that v2, v

′
2, t2, t

′
2 are already fixed), it follows from

Corollary 3.3 that the number of t1, t ′1 obeying the intersection conditions in (8.28) is
� 1. Combining these, we arrive at the following bound on the cardinality of E∗:

#(E∗) �
(

2N−h(u)
)(

2N−h(u1)
) = 22N−h(u)−h(u1). (8.29)

We use this bound on the size of E∗ to estimate a conditional expectation, essentially
the same way as in the previous two lemmas.

Eσ

⎡

⎢
⎢
⎢
⎣

∑

t1,t ′1
I∈I42(u,u1,u2)

Tt1t2(k)Tt ′1t ′2(k
′)
∣
∣σ(t2) = v2, σ (t ′2) = v′2

⎤

⎥
⎥
⎥
⎦

=
∑

E∗
Pr(σ (t1) = v1, σ (t ′1) = v′1|σ(t2) = v2, σ (t ′2) = v′2)

� #(E∗)
(
1

2

)2N−h(u)−h(u1)

� 1, (8.30)

where the last step follows by combining Lemma 7.5 with (8.29). As a result, we
obtain

Eσ

(

S42(u, u1, u2; k, k′)
)

= M−2(d+1)N
Eσ

⎡

⎣
∑

I∈I42(u,u1,u2)

Tt1t2(k)Tt ′1t ′2(k
′)

⎤

⎦

≤ M−2(d+1)N
∑

t2,t ′2⊆u2

Ev2,v
′
2
Eσ

⎡

⎢
⎢
⎢
⎣

∑

t1,t ′1
I∈I42(u,u1,u2)

Tt1t2(k)Tt ′1t ′2(k
′)
∣
∣σ(t2) = v2, σ (t ′2) = v′2

⎤

⎥
⎥
⎥
⎦
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� M−2(d+1)N
∑

t2,t ′2⊆u2

1

� M−2(d+1)N (M−dh(u2)+Nd)2,

where the estimate from (8.30) has been inserted in the third step above. The final
expression is the bound claimed in (8.11). ��

9 Proposition 6.4: Proof of the Upper Bound (2.6)

Using the theory developed in Sect. 5, we can establish inequality (2.6) with bN =
CM/N as in Proposition 6.4 with relative ease. For x ∈ R

d+1, we write x = (x1, x),
where x = (x2, . . . , xd+1). Since the Kakeya-type set defined by (6.8) is contained in
the parallelepiped [C0,C0 + 1] × [−2C0, 2C0]d , we may write

Eσ

∣
∣
∣KN (σ ) ∩ [C0,C0 + 1] × R

d
∣
∣
∣ = Eσ

(∫ C0+1

C0

∫

[−2C0,2C0]d
1KN (σ )(x1, x)dxdx1

)

=
∫ C0+1

C0

∫

[−2C0,2C0]d
Eσ

(

1KN (σ )(x1, x)
)

dxdx1

=
∫ C0+1

C0

∫

[−2C0,2C0]d
Pr(x) dxdx1, (9.1)

where Pr(x) denotes the probability that the point (x1, x) is contained in the set KN (σ ).
To establish inequality (2.6) then, it suffices to show that this probability is bounded
by a constant multiple of 1/N , the constant being uniform in x ∈ [C0,C0 + 1] ×R

d .
Let us recall the definition of Poss(x) from (3.3). We would like to define a certain

percolation process on the treeTN (Poss(x))whose probability of survival canmajorize
Pr(x). ByLemma3.7(a), there corresponds to every t ∈Poss(x) exactly onev(t) ∈ �N

such that Pt,v(t) contains x . Let us also recall that v(t) = γ (α(t)) for some α(t) ∈
D[N ]

M . By Corollary 4.3, α(t) is uniquely identified by β(t) := ψ(α(t)), which is a
deterministic sequence of length N with entries 0 or 1. Hereψ is the tree isomorphism
described in Lemma 4.2.

Given a slope assignment σ = στ generated by a sticky map τ : TN ([0, 1)d) →
TN ([0, 1); 2) as defined in Proposition 6.2 and a vertex t = 〈i1, . . . , iN 〉 ∈
TN (Poss(x)) with h(t) = N , we assign a value of 0 or 1 to each edge of the ray
identifying t as follows. Let e be the edge identified by the vertex 〈i1, i2, . . . , ik〉. Set

Ye :=
{

1 if πk(τ (t)) = πk(β(t)),
0 if πk(τ (t)) �= πk(β(t)).

(9.2)

To clarify the notation above, recall that both τ(t) and β(t) are N -long binary
sequences, and πk denotes the kth component of the input. Though the definition of
Ye suggests a potential conflict for different choices of t , our next lemma confirms that
this is not the case.
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Lemma 9.1 The description in (9.2) is consistent in t , i.e., it assigns a uniquely
defined binary random variable Ye to each edge of TN (Poss(x)). The collection {Ye}
is independent and identically distributed as Bernoulli( 12 ) random variables.

Proof Let t, t ′ ∈ TN (Poss(x)), h(t) = h(t ′) = N . Set u = D(t, t ′), the youngest
common ancestor of t and t ′. In order to verify consistency, we need to ascertain
that for every edge e in TN (Poss(x)) leading up to u and for every sticky map τ , the
prescription (9.2) yields the same value of Ye whether we use t or t ′. Rephrasing this,
it suffices to establish that

πk(τ (t)) = πk(τ (t ′)) and πk(β(t)) = πk(β(t ′)) for all 0 ≤ k ≤ h(u). (9.3)

Both equalities are consequences of the height and lineage-preserving property of
sticky maps, by virtue of which

h(D(t, t ′)) ≤ min
[

h(D(τ (t), τ (t ′))), h(D(β(t), β(t ′)))
]

.

Of these, stickiness of τ has been proven in Proposition 6.1. The unambiguous defin-
ition and stickiness of β has been verified in Lemma 6.3.

For the remainder, we recall from Sect. 6 (see the discussion preceding Proposition
6.1) that for t = 〈i1, i2, . . . , iN 〉, the projection πk(τ (t)) = X〈i1,...,ik 〉 is a Bernoulli( 12 )
random variable, so Pr(Ye = 1) = 1

2 . Further the random variables Ye associated with
distinct edges e in TN (Poss(x)) are determined by distinct Bernoulli random variables
of the form X〈i1,...,ik 〉. The stated independence of the latter collection implies the same
for the former. ��

Thus the collectionYN = {Ye}e∈E defines a Bernoulli percolation on TN (Poss(x)),
where E is the edge set of TN (Poss(x)). As described in Sect. 5.1, the event {Ye = 0}
corresponds to the removal of the edge e from E , and the event {Ye = 1} corresponds
to retaining this edge.

Lemma 9.2 Let Pr(x) = Pr{τ : x ∈ KN (στ )} be as in (9.1), and {Ye} as in (9.2).

(a) For any x ∈ [C0,C0 + 1] × R
d , the event {τ : x ∈ KN (στ )} is contained in

{τ : ∃ a full-length ray in TN (Poss(x)) that survives percolation via {Ye}}.
(9.4)

(b) As a result,

Pr(x) ≤ Pr
(

survival after percolation on TN (Poss(x))
)

.

Proof It is clear that x ∈ KN (στ ) if and only if there exists t ∈ Poss(x) such that
στ (t) = v(t), where v(t) is the unique slope in �N prescribed by Lemma 3.7(a) for
which x ∈ Pt,v(t). In other words, we have

{τ : x ∈ KN (στ )} =⋃{σ(t) = v(t) : t ∈ Poss(x)}
=⋃{τ(t) = β(t) : t ∈ Poss(x)}, (9.5)
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where the last step follows from the preceding one by unraveling the string of bijective
mappings γ−1,�−1 andψ (described in Proposition 6.2) that leads from σ(t) to τ(t),
and which incidentally also generates β(t) = 〈 j1, . . . , jN 〉 ∈ T ([0, 1); 2) from v(t).
Since t is identified by some sequence 〈i1, i2, . . . , iN 〉, we have its associated random
binary sequence

τ(t) = 〈X〈i1〉, X〈i1,i2〉, . . . , X〈i1,i2,...,iN 〉〉 ∈ TN ([0, 1); 2).

Using this, we can rewrite (9.5) as follows:

⋃

t∈Poss(x)
{σ(t) = v(t)}

=
⋃

t∈Poss(x)

{〈X〈i1〉, X〈i1,i2〉, . . . , X〈i1,i2,...,iN 〉〉 = 〈 j1, j2, . . . , jN 〉
}

=
⋃

t∈Poss(x)

N
⋂

k=1

{X〈i1,...,ik 〉 = jk}

=
⋃

R↔〈i1,...,iN 〉∈∂T

⋂

e↔〈i1,...,ik 〉∈E∩R
{X〈i1,...,ik 〉 − jk = 0}

=
⋃

R∈∂T

⋂

e∈E∩R
{Ye = 1}. (9.6)

In the above steps we have set T := TN (Poss(x)) for brevity and let E be the edge
set of T . The last step uses (9.2), and the final event is the same as the one in (9.4).
Using (9.6), we have

Pr(x) ≤ Pr

(
⋃

R∈∂T

⋂

e∈E∩R
{Ye = 1}

)

. (9.7)

This last expression is obviously equivalent to the right hand side of (5.1), verifying
the second part of the lemma. ��

Our next task is therefore to estimate the survival probability of TN (Poss(x)) under
Bernoulli( 12 ) percolation. For this purpose and in view of the discussion in Sect. 5.3,
we should visualize TN (Poss(x)) as an electrical circuit, the resistance of an edge
terminating at a vertex of height k being 2k−1, per equation (5.2). Let us denote by
R(Poss(x)) the resistance of the entire circuit. In light of the theoremof Lyons, restated
in the form of Proposition 5.3, it suffices to establish the following lemma.

Lemma 9.3 With the resistance of Poss(x) defined as above, we have

R(Poss(x)) � N . (9.8)
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E

V0 V1 V2 VN−1 VN

+ −

R1
R2

RN

Fig. 11 A diagram of the circuit E for a typical Poss(x). Each resistor at height k from the root V0 has
resistance ∼2k . The total resistance between Vk−1 and Vk is denoted by Rk

Proof We begin by constructing a different electrical network from the one naturally
associated to our tree Poss(x). For every k ≥ 1, we connect all vertices at height k by
an ideal conductor to make one node Vk , as in Fig. 11. Call this new circuit E .

The resistance of E cannot be greater than the resistance of the original circuit, by
Proposition 5.1. Now fix k, 1 ≤ k ≤ N , and let Rk denote the resistance between
Vk−1 and Vk . The number of edges between Vk−1 and Vk is equal to the number Nk of
kth generation vertices in TN (Poss(x)). Recalling the containment (3.5) from Lemma
3.4, we find that Nk is bounded above by Nk , the number of kth level vertices in
TN ({0} × [0, 1)d ∩ (x − x1�N )). By Lemma 4.4(b), Nk � 2k , where the implicit
constant is uniform in x ∈ [C0,C0 + 1] × [−2C0, 2C0]d . Thus,

1

Rk
=

Nk∑

1

1

2k−1 = Nk

2k−1 � Nk

2k
� 1,

and this holds for any 1 ≤ k ≤ N . Since the resistors {Rk}Nk=1 are in series,

R(Poss(x)) ≥ R(E) =∑N
k=1 Rk � N , establishing inequality (9.8). ��

CombiningLemmas9.2 and9.3withProposition 5.3 gives us the desired boundof�
1/N on (9.1). This completes the proof of inequality (2.6), and so too Proposition 6.4.
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