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1 Introduction

The modulation spaces M), s 4 were introduced by Feichtinger [10] in 1983 using the
short-time Fourier transform His initial motivation was to use a different space from
the L” to measure the smoothness of a function. Since their introduction, it became
increasingly clear that the modulation spaces are quite natural and useful for the
studying time-frequency behavior of functions and that they play a significant role
in harmonic analysis and partial differential equations. Particularly, these spaces and
their applications received extensive studies in the last 10 years. For instance, the
reader may see [1,2,7,10,11,16,20-22] and the references therein.

The definition of classical Besov spaces B;, 4 1s based on a dyadic decomposition
of the frequency space, while the definition of modulation spaces is based on the unit
square decomposition of the frequency space (uniform frequency decomposition).
Thus, it is natural to build a bridge connecting modulation spaces and Besov spaces.
To this end, under the guidance of Feichtinger, in his PhD thesis Grobner introduced
the o-modulation space M;’,Z , which form a family of intermediate spaces between
these two types of spaces. The parameter « controls the *mixture’ between both kinds
of spaces. Grobner used the general framework of decomposition spaces considered
by Feichtinger and Grobner in [8] and [9] to build the «-modulation spaces. Borup and
Nielsen [4] and Fornasier [12] constructed Banach frames for «-modulation spaces in
the multivariate setting. Borup and Nielsen [5,6] also discussed, in the framework of
a-modulation spaces, the boundedness of certain pseudo-differential operators with
symbols in the Hormander class.

The modulation spaces arise as special @-modulation spaces in the case « = 0, and
the (inhomogeneous) Besov space B;y 4 can be regarded as the limit case of M;;’f; as
o — 1 (see [13]). So, for the sake of convenience, we can view the Besov spaces as
special @-modulation spaces and use M;”L to denote the inhomogeneous Besov space

p.q- The interested reader should also consult the recent paper [15], which contains
a more comprehensive study of «-modulation spaces.

As we mentioned above, the e-modulation space M) plays the role of an inter-
mediate space between the spaces M), , and B), ;. One may ask how it plays, or in
what sense, as an intermediate space. For instance, in [23] it was shown that, from the
view as the action of certain unimodular Fourier multipliers, the «-modulation space
is an intermediate function space between modulation space and Besov space. But this
intuition is false in some other cases. Thus, one motivation of this paper is to explore
this fact in the sense of complex interpolation.

A natural long standing question on modulation, ¢-modulation and Besov spaces is:
Can we obtain the ¢-modulation spaces by interpolation between certain modulation
spaces and Besov spaces? More specifically, if s = (1 — «)sg 4+ as1, can we conclude

S0 s1,0 52,1
My =My M) o (1.1
Here [X, Y]y denotes the complex interpolation space of exponent 6 (0 < 6 < 1)

between X and Y (see [3]).
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In [15], the authors pointed out that the answer of the question is negative in some
special cases. The main technique used in [15] is based on the fact that, for two
a-modulation spaces M,\'5 and M} %% which are multiplication algebras, the com-
plex interpolation spaces of M\'5 and M7} are also multiplication algebras. This
method, which deeply depends on the multiplication algebra property of «-modulation
spaces, leads to some unnatural constrains that seemingly can not be diminished. The
algebra property seems not to be the most suitable tool for characterizing the complex
interpolation between a-modulation spaces.

Instead, in our proof, the solution is obtained by taking full advantage of the prop-
erties of complex interpolation. Actually, in this paper we give a complete answer in
a more general sense. We construct some specific functions and operators to test the
operator interpolation inequalities, making the arguments more clear and efficient. As
a consequence, we show that no «-modulation space can be regarded as the interpola-
tion space between M7} and M2, unless «; is equal to oz, essentially. Also, our
conclusion gives the solution of the question mentioned above.

It is known that the theory of complex interpolation is a powerful tool in the study
of linear and multi-linear operators on function spaces. In order to obtain the bound-
edness of a linear or multi-linear operator between certain function spaces, we only
need to obtain its boundedness on endpoint spaces. Then boundedness on the full
range of function spaces (interpolation spaces) can be easily obtained by complex
interpolation. In view of this motivation, establishing a theory of complex interpo-
lation for the o-modulation spaces seems worthwhile. We notice that the known
results imply [M)\5,, M;Y%, 1o = My, for 6 € (0,1). This indicates that the
complex interpolation theory indeed works for the «-modulation spaces if « is fixed.
But the situation becomes complicated for the modulation spaces of different «. To
clarify this matter, on the analogy of the known results, one might wonder whether
(M5 My 3le = Moy 'dh holds for 6 € (0, 1), where ag = (1 — )y + Oaa.
First, we ask if the interpolation space between Mg and M3} exists if o) # as.
Second, even if the interpolation space between M ,\'4! and M3} exists, for instance
it is a certain o-modulation space, we do not know if M;,‘;ZZ is just the right inter-
polation space. For these reasons, to approach our aim, we will not consider directly
the discrimination of [M},'g1, M)y %2 le = My, %), but try to find conditions on the
pairs (p1, p2), (g1, q2), (s1,52) and (a1, a2), for which [M\5), M2l is an a-
modulation space.

In the spirit of the abstract complex interpolation theory for Quasi-Banach spaces,
we know that the complex interpolation space [My\5}, M5 1o is well-defined for
arbitrary values of the parameters, even for oy # op. However, under the con-
dition o1 # «p, we will show that, for any 6 € (0, 1), the interpolation space
(M5, M3 le is not any a-modulation space. To achieve our target, for three
a-modulation spaces My, g}, My3 '3 and My, to be checked, we will assume towards
a contradiction that [M G}, M3 le = My holds and choose a known triplet of
complex interpolation spaces Y1, Y» and Yy satisfying [Y71, Y2]p = Y.

By choosing a suitable operator 7', we use the general property of interpolation
spaces to obtain
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]

0
’T|MS2""2 > Y2H (1.2)

HT|M;’Z N YZ]QH < HT|M“"’“ ~ v s

P1,91

and

1-6 )
| iv1, w20 > M3 |77 > Mz

P2.92

< v — my

(1.3)

Theoretically, as long as we collect enough known complex interpolation triplets and
operators, the information of «-modulation spaces to be checked can be characterized
in full. This will yield stronger criteria for disproving the identity [M )G}, M2 310 =
My So, the rest of the work is to establish suitable tools for achieving the goal
mentioned above.

We use

M = {M;”‘; : p,g €(0,00],s eR,a €0, 1]} (1.4)

to denote the set of all @-modulation spaces.
Now, we state our main theorems.

Theorem 1.1 (Banach case) Let 1 < p;,qi < 00,s; € R, o; € [0,1] fori = 1,2.
Then

(M Mz ], e M .5

for some 6 € (0, 1), if and only if
ar=ay or pi=q1=2 or pr=qy=2. (1.6)
Moreover, we have

59,0 .
Mpyqes a1 =02 =a,
59,02 . _ _
ML s | Mpe,qg’ ifpr=q1 =2, 1.7
p1:491° " P2.92 |y - MEe-% : _ =2 '
poges U P2=¢q2 =2,

H*, ifpr=q1=p2=q =2,

where 1—o P 1 1—6 0
+ 2, == + —, s9 =1 —0)s; +0s7. (1.8)
Do D1 P2 4s 7 92

Theorem 1.2 (Quasi-Banach case) Ler 0 < p,g < oo, 5i € R, o; € [0, 1] for
i=1,2. Then

(M ] e m (1.9)

for some 6 € (0, 1), if and only if
o] = o or p=q=2. (1.10)
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Moreover, we have

o ypme] MG e ==, 111
pag Mpg p ; (L.11)
0 HH, lfp :q :2,

where sg = (1 — 0)s1 + Os».

Remark 1.3 In Theorem 1.1, the constrains p;, ¢; > 1 are convenient for us to use the
dual method. If p; < 1 or g¢; < 1, then the dual method does not work in most cases.
Heuristically, this indicates that we may not be able to catch enough information about
p from it’s dual p’ in the case p < 1. So, we have to establish more delicate estimates
to make up for the loss of duality. We handle this situation in Theorem 1.2 based on the
restrictive conditions p; = p» and g1 = ¢». However, we believe that the additional
assumption in Theorem 1.1 or Theorem 1.2 can be eliminated. In other words, it is
our conjecture that the results in Theorem 1.1 remain true when 0 < p;, g; < oo.

The organization of this paper is as follows. In Sect. 2, we introduce some nota-
tions and definitions that will be used throughout this paper. We recall the definitions
of a-modulation spaces and Besov spaces and collect some of their properties that
will be used later on. We also present some basic results about the technique of com-
plex interpolation which will be our main tools in the proof. In Sect. 3, we establish
some relations among p;, g;, s;, under the assumption that the convexity inequality
associated with certain a-modulation spaces holds for all Schwartz functions. These
estimates are the key for the discrimination of the complex interpolation in Theo-
rem 1.1. In Sect. 4, we establish some additional estimates for the proof of Theorem
1.2. These estimates allow us to obtain a new proof for the sharpness of embed-
dings between «-modulation spaces. We complete the proof of our main theorems in
Sect. 5. Since the assumptions in our theorems are fairly weak, we must first obtain
some priori estimates, then the estimates obtained in Sects. 3 and 4 can be used for
further determination of the parameters. In combination with the positive results of
complex interpolation for ¢-modulation spaces, we obtain the sufficient and necessary
conditions and complete our proofs.

2 Preliminary

We recall some notations. Let C be a positive constant that may depend on
n, pi, qi, Si, &, where i = 1, 2. The notation X < Y denotes the statement X < CY.
The notation X ~ Y means the statement X < Y < X, and the notation X >~ Y
denotes the statement X = CY. We write a A b = min{a, b}, a V b = max{a, b}.
For a multi-index k = (k1, k2, ..., k,) € Z", we denote |k|oo := maxj=12., |kil,
and (k) := (1 + |k|2)%. The translation operator is defined by 7, f(t) = f(r — x),
t,x € R". For any p € (0, oo], we denote by p’ the dual number of p, i.e.,

2.1)

p
o= T 1 <p=<oo,
00, O0<p<l.
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Let .7 := .Z(R") be the set of all Schwartz functions and .’ := ./(R") be
the space of all tempered distributions. We define the Fourier transform .% f and the
inverse Fourier transform .% ~! f of f € .7 (R") by

FrE) = F6) = /R Fe T, 7 ) = Flen) = /R FEeTde.

We use L? (R™), to denote the Banach space (or Quasi-Banach space when0 < p < 1)
of measurable functions f : R” — C whose norm (or Quasi-norm)

1

1 £lzr @ = ( /. If(x)l”dx) ' 22)

is finite, with the usual modification when p = oo.

We recall some definitions and properties of the function spaces to be discussed
in this paper. For the convenience of doing calculations pertaining to «-modulation
spaces, we give the definition of «-modulation spaces based on decomposition meth-
ods, without introducing them in full generality. Now, we give the partition of unity on
frequency space for o € [0, 1). We suppose that ¢ > 0 and C > 0 are two appropriate
constants, and choose a Schwartz function sequence {1} };cz» satisfying

2 @) = 1, if |§ — (k) Tak| < c(k) T

suppng C (& : |& — (k) T-ak| < C(k)Ta };

Siem M) =1,VE € R”;

97 12 (E)] < Cotk) T, VE € R,y & (ZF U {O]".

(2.3)

Then {1} (§)}xez» constitutes a smooth partition of unity on R". The frequency decom-
position operators associated with above function sequence can be defined by

Oy =7 'nf (2.4)
fork € Z".Let0 < p,q < 00,5 € R, € [0, 1). The @-modulation space associated
with the above decomposition is defined by

1

MN(RH)_[feym"):||f||M;;(Rn)=(Z )T I 11 ) <oo]

keZr

with the usual modification when ¢ = oo. For simplicity, we denote M ;, g = Mf,’g

and ng (&) = n2(&).

Remark 2.1 We recall that the above definition is independent of the choice of exact
1} (see [15]). Also, for sufficiently small § > 0, one can construct a function sequence
{ng (§)}kezn such that nf (§) = 1 and ng (§)n}'(§) = 0if k # [, when & lies in the ball

B((k)Tak, (k) Ta8) (see [4,12,14]).
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Next we introduce the dyadic decomposition of R"”. Let ¢ be a smooth bump
function supported in the ball {£ : |§| < %}Which isequalto 1 ontheball {£ : |&]| < %}.
Denote

V(&) = @&) — 28), 2.5

and a function sequence

Vi) =yQ27E), jeN 2.6)
YoE) = 1= 3,y ¥ (&) = p().
For integers j € N U {0}, we define the Littlewood-Paley operators
AT ® = v, ). @7
Let0 < p,g < 00,5 € R.For f € . we set
. 1/q
1fllss, = [ D 271 111, 2.8)
j=0

with the usual modification when ¢ = oo. The (inhomogeneous) Besov space is the
space of all tempered distributions f for which the quantity || f| B, is finite.

Remark 2.2 As for the a-modulation space, the definition of Besov space is indepen-
dent of the choice of the bump functions ¢. So one can choose an appropriate ¢ as one
needs. Also, one can easily verify that the function sequence {{/;} <oy |y satisfies

suppy C (€ e R" : 3 < [£| < 3);
Yo(§) = Land, Yo(§)y¥i1(§) =0, § € B(0,d); (2.9)

WY€) =1and ¥;(E)Yi(§) =0, 2/ —2/8 < |§| <2/ +2/5, 1 # .,
forl, j € N, where § = 1/4.
We list some basic properties about e-modulation spaces.

Lemma 2.3 (see [13,15]) Let 0 < pi,qi < oo, si € Rfori =1,2, a € [0, 1]. Then
we have

51,0 52,0 _ 59,0
[Mpll,ql ’ A/Ipzz,qz](9 = M[?%,qg (2.10)

for 0 € (0, 1), where
1 1-0 & 1 1-0 0

+—, — = +—, s = (1 —0)s1 +0s3.
Po P1 P2 46 qi q2

Lemma 2.4 (see [15]) Mg’g(R") = H*(R") with equivalent norms. Here H® (R")
denotes the Sobolev space of order s.
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We also need the following proposition which will be used in our proof.

Proposition 2.5 (Dual method for « modulation spaces) Suppose 0 < p, g < oco. Let
f € % and define

Tr(p) = (e, f) 2.11)

for ¢ € ' Then Ty is a bounded linear functional on M), and

||Tf||(M )~ [ (2.12)

ra

S,
r-q

The only thing we must point out is that this proposition works also in the endpoint
case p = oo or ¢ = 00. One can verify this proposition by the same method used in
determining the dual spaces of a-modulation spaces (see [15]). We omit the details
here, but refer the reader to [15] for a further discussion.

We recall some basic results about complex interpolation. The following well-
known results are the main reason why complex interpolation plays an important role
for proving boundedness of linear operators. For a proof of the following result, see
[15, Proposition 2.11] and the references therein.

Lemma 2.6 (Operator interpolation for complex interpolation) Let (X1, X2) and
(Y1, Y2) be two compatible couples of Quasi Banach spaces, 8 € (0, 1). If a linear
operator T belongs to L(X1, Y1) N L(X2, Y2), then we have

IT|[X1, X2lo — [Y1, Yaloll < IT| X1 — 17T X2 — ¥afl?. (2.13)

Taking X; = Xo = Cor Y] = Y, = C, one can easily verify two direct corollaries
from the above Lemma 2.6.

Lemma 2.7 (Convexity Inequality) Let (X1, X2) be a compatible couple of Quasi
Banach spaces. For every 6 € (0, 1), we have

L e xa < DA P11, (2.14)
for f e X1 N Xy,

Lemma 2.8 (Dual Convexity Inequality) Let (X1, X2) be a compatible couple of
Quasi Banach spaces. Let T be a linear functional defined in X1 and X,. Then for
every 6 € (0, 1), we have

1T llox, gy < 1T 1T 1 (2.15)
forT e X7 NXJ.
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3 The Convexity Inequality

In this section, we deduce some estimates about the indices p;, g; under the assumption

that the convexity inequality || f | M5 <7 /1\/1_5(19’”1 IIf ”?vf?‘“z holds for all Schwartz
’ P2:q2

pP1-41
functions f. If MG is the complex interpolation space between Mf,ll.’,‘;l] and M2 %,
the convexity inequality follows. We construct some specific functions to test the
convexity inequality and obtain some relationship among the parameters.

Fora € (0, 1), j € {0} UN, denote
rel={lez": Ajol #0} 3.1
For ay,ay € (0, 1), k € Z", we denote

Fee = ez O o Of" #0). (3.2)

1 1
By the above definition, we deduce (I) =21 ~ (k)'=*2 forl € F,i”’“z. We also have
n(ap—ay)
l—-[‘:lﬂz ~ (k) "2 fora; < ay, lel,az ~ 1 for o > an.
For f € . with compact Fourier support and f(£) = 1 in a open subset of R”,
we denote

M ={keZ: O¥f£0}, TS ={keZ": Off=F"nf}. (33

For g € . with compact support and g(x) = 1 in a open subset of R”, we denote

suppg = {x € R" : g(x) # 0}, suppg = {x e R" : g(x) = 1}. (3.4)
We recall a convolution lemma which will be used frequently in this paper.

Lemma 3.1 (Convolution in L? with p < 1, see Proposition 2.1 in [15]) Let 0 <
p<1,x0€R" r>0. Suppose f, g € L? with Fourier support in B(xg, r). Then

If*gler S Y2 DY flirligler. (3.5)

Lemma 3.2 Suppose 0 < pi,qi < o0, s; € R, o; € [0, 1] fori = 1,2. We assume
a1 < ap. For fixed 0 € (0, 1), we denote

1 1-6 0

1 1-6 6
- + =, s=(1—0)s +0s, (3.6)
P P P2 q q1 92

For any o € [0, 1], if the convexity inequality

sa < 1-60 6
1 g, S 15 Ui 1 (3)
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holds for all f € ., then we have

1 >, L1

< fa>a
pl—i- ,pl]_qll, if 1,

<1, —>—, ifa=« 3.8
If+1 m if 1, (3.3)
—4+-=-<1, === ifoa <aj.
pTa=b 2y if 1

Proof We only show the proof for the case o1 < a» < 1, since the proofs of the other
cases are similar. For the sake of simplicity, we write M = M5 and M; = M, for
i = 1, 2 in this proof. Let f be a smooth function with small Fourier support near the

origin such that supp]/‘k\“ C suppyy forevery k € Z", a € [0, 1], where we denote

= AWk
fK=\——= (3.9)
(k)l a
We divide the proof into several cases.
Case 1: o € (aq, a2).

For each k € Z", we choose j € {0} UZ™ such that (k)ﬁ ~ 2,
Firstly, a direct calculation yields

o ~ 25| £ ,szszjna(lfl/P)’
{Ilfk M 1L (3.10)

£l ~ 22 @ ~ 2220ne1= V),

To estimate || /i || s, , we use Young’s inequality for p; > 1 or Lemma 3.1 for p; < 1
to deduce

107 £ e = ICF 0y % £ e

< 2/”“(1/(””\1)_1)IIff‘IILmM ||ﬁ—1n?‘1 et
SIZ 7 e
< pijnar(1=1/p1) (3.11)
Noting that _
|1‘*l‘;%| ~ pJjn(a—ar) (3.12)
and :
(l)q ~ 2j (3.13)

forl e FfL, we have

L

1, = (Z< T o e nw)”“

=/
< pisigjnai(1=1/p1)yjn(e—a1)/q1 (3.14)
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The convexity inequality
I ficllar < Wl 1 el (3.15)
then yields that
qispjna(l=1/p) < (zmzjnal<1—1/m>2jn<a—a1)/q1)1‘9 (2jszzjm(1—l/m>)9 (3.16)
as j — oo, which implies
s +na(l—=1/p) < (1 —=0) (s1 +nai(1 —=1/p1) +ne —a1)/q1)
+0 (s2 +na(l —1/p2)). (3.17)
Recalling
1 1-6 6
- = +—, s=(-0)s1 +0s3,
p P1 P2
we have
n(e—a)(1—=0)(1—1/p1) <n(ae —ad —0)/q:. (3.18)
Hence
1—=1/p1 =1/q1, (3.19)
and we obtain : :
— 4+ —=>1 (3.20)
P1 q1
Secondly, we set
Fen= > Twif". (3.21)
IEFZI’Q
Here Ty, denotes the translation operator: Ty; f(x) = f(x — NI).
Obviously for [ € I';"*, we have
D?l Fe.n = Tlela] , (3.22)
and :
107 Fenlle,, = 1Tnef e = 1 om ~ 27 d=ten, (3.23)
So
1
S141 q1
— I—«a (23] q1
| Fivll = ( Zajam [ Fk,NuLm)
lert (3.24)

~ 213121n041(1—1/p1)|r~]fjl,0‘|1/q1

~ 2Js1pjnar(1=1/p1)yjn(e—a1)/q1
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On the other hand, we have

F ~ 255||F;
[u el ~ 27 Ficx L, (325)

| Fie,n i, ~ 27520 Fe N llLp2.

By the almost orthogonality of {7y, ff[1 1 eré1e as N — o0, we deduce that

. . p .
lim |Fr n|Pdx = lim E Tlelal‘ dx = lim E / \Tne f; 1Pdx
N—oo JRn ! N—oo JRn ~ N—oo ~ o JR?
ler, ler, b

S [ s 2o

o,
lely,

~ pJjnar(p—Dyjn(a—ar)

With a small modification when p = oo, we obtain

NILmOO | FinllLr = pJjnar(1=1/p)qy jn(a—a1)/p (3.26)

for p € (0, o0]. So

| Fi nllp ~ 2782nen(=1/p)pjn(a—a)/p
I Fen gy ~ 2Js2pjnar(1=1/p2)p jn(a—a1)/ p2 (3.27)
as N — oo. Letting N tend to infinity in the convexity inequality
1Fen e S 0w s 1 Fev 1y, (3.28)

we deduce that
2Jspinai(1=1/p)y jn(a—ai)/p

< (zjslZjnm(l—l/m)z/’n(a—ao/ql)1*9 (2/S22j"‘11(1—1/172)2./’1(0!—“1)/172)9 (3.29)

as j — oo. Recalling

1 1-6 %
—=—4+—, s =1 —-0)s1 +0s2,
p P1 p2
we obtain
(@—oa1)/p =1 —=0)a—a1)/q+0(—a1)/p2, (3.30)
which yields
(I =0)a—a/p1 =1 —0)a—a1)/q1, (3.31)
and
1/p1 < 1/q1. (3.32)
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Case 2: o > «ay.
1 .
For each k € Z", we choose j € {0} UZ™ such that (k) =22 ~ 2/,
Firstly, a direct calculation yields
£ e ~ 255 f2 Lo ~ 2F52mea=1p),
£ lagy ~ 2952 f2 Nl ~ 2I5220me2(1=1/p2), (3.33)
To estimate || £ || y,, we have
IO A2 e SUF e S 27 =1ew, (3.34)
Noting that _
|er2 ~ 2in(er—ar) (3.35)
k
and 1
(o1 ~ 2/ (3.36)
forl € I'L,, we have
i
1
o2 LHL X 02191 n
LA ey = D O™ 107 £21),
leZ"
< pJstgjnar(1=1/pi)gjn(@—a/q (3.37)
The convexity inequality
L2 e S 12 0 12 15, (3.38)

then yields that

pJsojnaa(1=1/p) < (zjﬂ2jna1(I*I/Pl)zjn(azfm)/ql)1_9 (zjnzjnaz(l*l/m))e

as j — oo, which implies that

s +noy(l—1/p) = (1 —=6)(s1+nar(l—1/p1)

+n(ay —a1)/q1) + 0 (s2 + naz(l — 1/p2)) .

Recalling
1 1-6 6
— = + —, s =(1—-0)s1 +0s2,
p pP1 P2

we have

n(ay —a))(1 =60)(1 —1/p1) <n(az —a)(1 —0)/q1.

(3.39)
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Hence, we obtain

1—1/p1 =< 1/q1,
that is,
1 1
—+—=>1
P1 q1

Secondly, we set

Fen= D Tuf".

ap,a)

lel,

Obviously for [ € I';""*?, we have

o o
O Fenv =Ty fi

and
o o o j 1-1
107 Finlie,, = 1T em = 1L om ~ 27mer =10,
So

€L

S1q1 a1
||Fk,N||M1=( > T ||D7'Fk,N||z‘pl)

o),

lel,
~ 2]312j”(¥l(1—1/P1)|I‘]‘:1’a2|1/‘]1

~ pJstpjnar(1=1/p1)g jn(@—a)/q1
On the other hand, we have

| Fe,nllse ~ 2751 Fre v llp
| Fi, N llmy ~ 272 || Fi NIl Le2

By an orthogonality argument as above, we have that

| Fin vty ~ pJjs2pinai(1=1/p2)p jn(ea—a1)/p2

[”Fk Nl ~ 2782inerd=1/p)pjn(er—e1)/p
as N — oo. Letting N tend to infinity in the convexity inequality

1-6 0
I Fien v S 1w g, 1Fi N gy
we deduce that

2Jsojnar(1=1/p)qjnl@r—e1)/p

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

< (zjslzjnou(1—1/p1)2jn(az—a1>/q1)1’9 (2js22jna1(l—l/pz)zjn<az—a1>/pz)9
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as j — oo. Recalling
1 1-6 6
—= +—, s=(1-0)s1 +0s2,
p p1 P2
we obtain
(a2 —a1)/p = (1 =0) (2 —a1)/q1 + O(x2 — 1)/ p2, (3.50)
and
(I =0)(a2 —a)/p1 = (1 = 0) (2 —a1)/q1. (3.51)
So it follows
1/p1 < 1/q1. (3.52)
Case 3: o = .
1 .
For each k € Z", we choose j € {0} UZ™ such that (k) =22 ~ 2/,
Firstly, direct calculations give that
1 1
5q_ ! sq 0
L N = (Zm ||D?f,:’2||‘zp) 2 ( > e F ln,“n‘zp)
lezn lefe, (3.53)
/i

&
> 2]’82]0!"(1*1/17)21(0!2701)"/(1’

1

4 1
141 a sian ar
L2 Ny =(Z<I>l-a1 ||D?“f,f‘2|‘;'m) 5( > T 1n?‘|‘£m)

leZr 1 eFj‘paz

f
< 2]S12jotn(1—1/171)2j(0!2—04)n/1117

(3.54)
and ' o
A2 aty ~ 2720 f llpa ~ 27022702212, (3.55)
The convexity inequality
LA e S L 1A G, (3.56)
then yields that
pispian(1=1/p)pj@—cn/q
< (2]512]01’1(1_1/171)2j(0¢2—a)"/¢11)1_9 (21'522]0!211(1—1/172))9
as j — oo, which implies
O(a —az)(1 —1/p2) +0(a2 —a)/q2 < 0. (3.57)
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So
1 1
—+—<1. (3.58)
P2 q2
Secondly, we set
Fon= Y, Tuff (3.59)
IEI‘Z"O‘2
Obviously for [ € I';"**, we have
D?l Fien = Tlela, (3.60)
and
107 Fenlle,, = 1T lm = 15 m ~ 27071 en, (3.61)
So
1
q1
141
| Fenling = | D O 10 Fenl,
leri2 (3.62)

~ 2./512./'710(1—1/171)“-*;:’“2 |1/41

~ Jstpjna(=1/pyjnlea—a)/q1

Similarly, we have
| Fre, N 11 ae

On the other hand, we have

~ Dispina(1=1/p)yjn(er—a)/q_ (3.63)

I Fn oy ~ 272 Fi |l o (3.64)

By an orthogonality argument as above, we have that

Il Fi. 1l a2,

~ DJs29jna(1=1/p2)q jn(ar—a)/pa (3.65)

as N — oo. Letting N tend to infinity in the convexity inequality

1Fen e S 0w s 1 Fe v 1y, (3.66)

we deduce that

2isnina(1=1/p)yjn(ar-a)/q

< (2/s1zjna(l—l/pnzjn(az—m/ql)1’9 (2js22jna(1—1/pz)21n(az—a)/pz)9

as j — o0o. We obtain
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Cased: o < «;.
1

For k € 7", we choose j € {0} UZ™ such that (k) =1 ~ 2/,
Firstly, a direct calculation yields

”flf“ ll a2, ~ 2Js1 ||f]:"1 e ~ pJsipjner(1=1/p1) 369
”f/f“ 2z, ~ 2jsz||f;f“ e ~ pis2pjnar(1=1/p2) (3.69)
To estimate || f*" | a7, we have
1 1
sq_ ! sq q
LA I = (Zm e ||OF £ ||3,,) 2 ( > wre|F 1n,°‘||’{p)
ez lel e, (3.70)
il
> pjspina(=1/p)yjn(er—a)/q.
The convexity inequality
A e S A 2 1 15, (3.71)

then yields that
pispina(1=1/p)sjner—a)/q < (zjslzjnm(l—l/m))l‘9 (zjszzjnal(l—l/pz>)9 3.72)

as j — oo, which implies

(@ —a@)/q < (a1 —a)(1 —1/p). (3.73)
So we obtain 1 1
—+-—-<1. (3.74)
P q
Secondly, we set
Fen= Y, Twiff (3.75)
lery®

Obviously for / € I';"*!, we have

O Fi.n = T ff (3.76)

and
IO Finllz, = 1T f e = I e ~ 20 0=1P), (3.77)
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So

1

_ % o q !
||Fk,N||M—( > e Fk,Nan)

ler,™! (3.78)
~ 2]321'"0!(1—1/P)|1"]‘:s0‘l |1/q

~ Jspina(=1/p)pjn@-a)/q.

On the other hand, we have

F) ~ 251\ F,
I, ~ 221yl 379
I Fie,n vy ~ 272 Fie Nl Lea
By an orthogonality argument as above, we have
F, ~ 2Js1pina(1=1/p1) g jn(ar—a)/pi
| Fie, v Il aay e o (3.80)
| Fx vl pg, ~ 27522/ne¢(=1/p2)pjn(@i—a)/p2
as N — oo. Letting N tend to infinity in the convexity inequality
1Fen e S 0w s 1 Fev 1, (3.81)
we deduce that
2ispina(=1/p)yjn(er—)/q
- 3.82
< (2js12jna<1—1/p1)21n(a1—a>/m)‘ ’ (2]322j”<¥(1—1/l’2)2j"(a1—06)/172)9 (382)
as j — oo. Thus we obtain
(a1 —@)/q < (a1 —a)/p. (3.83)
The desired inequality
/g =1/p (3.84)
follows. O

4 Additional Operator Norm Estimates

As we mentioned before, duality arguments are often not applicable in the context of
Quasi-Banach spaces. So the key point for the discrimination of complex interpolation
is how to regain the information without the full duality. To this end, in this section we
bring some additional known complex interpolation spaces into the operator interpo-
lation inequalities (2.13). Our purpose is to establish some asymptotic estimates for
certain operators between the additional spaces and our target spaces. As a corollary,
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we give a direct proof for the sharpness of embedding between «-modulation spaces
(see [15] for an alternative proof).

Lemma 4.1 (Additional operator norm estimates) Let 0 < p,qg < 00, s5; € R, o; €
[0, 1] fori =1, 2. We have

(sp—s+ (Ov[»z(arul Y1/ p=1/@IVIn(ay —ay )(lfl/pfl/q)])
~ (k) I—(ay Vay)

o1V S1,01 52,02
e pgr — mz

4.1)
forayvoay <1, keZ and

, 0, J| (s2=s)+\0VIn(e2—a)(1/p—1/g)IVIn(az—ar)(1-1/p—1/q)]
o ] >J

“4.2)
foragVay=1,je{0JUzZt.

Proof We only give the proof for the case oy < ap = 1, which will be used in the

proof of Theorem 1.2. The other cases can be handled similarly. For instance, in the

case @] < az < 1, one can repeat the following process by replacing A ; with DZZ.
In the case a; < ap» = 1, we need to show

H Aj M S B ‘ il =0+ (Ovin(1—a) 1/ p=1 /) IVin(—a) 11/ p=1/9)]) |

4.3)
For Lower Bound Estimates. We only need to construct some special functions to
test the operator inequalities. Take a smooth function f whose Fourier transform f has

small support near the origin such that suppfka C suppny foreveryk € Z", a € [0, 1],
where we denote

- (k)Tk

7= 7t ). (4.4)
(k)T

Firstly, we have

A 0 5 i 0
I ]fk ”sz,q o 2]SZ||fk llzr > 9J(s2—s1) 4.5)
LA Ny 27 e ™

. 51,07 52
”Aﬂ M,y = Bpy

2

for some suitable k € Z" such that (k) ~ 2/.
Next, we choose a smooth function 4 whose Fourier transform has sufficiently small
support near the origin, such that /1 (§) = h(%) satisfies

suppl; C suppy,. (4.6)
A direct calculation yields that
- — k- ~ 2J . ~ 2J(s2+n(1—=1/p))
ARl e = sl ~ 202yl ~ 2762t =17 @)
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and
1 1
e i q ! e =1 o q g
Ihjlyren = 2O 1T 0E, ) < 20 O™ F g,
leZn ZEFZI. (4.8)
J
< pisigjein(1=1/p)gj(—en/q
So we have

‘ - ARl g2, - 2 (s2+n(1=1/p))
p’q

A.|MS1»011 s B% > > — . .
H 7V b ”hJ'”MZ‘,;,‘” 2Js1jein(1=1/p)p j—ai)n/q (4.9)

— 9J(s2=si+n(l—an(1-1/p=1/q9))

Finally, let
Fin= > Tuf", (4.10)

ap,l

leFj

where Tx; denotes the translation operator: Ty; f(x) = f(x — NI). Using the same
method as in the proof of Lemma 3.2, we have

=

19
1Nl = [ D0 O IO Finlg,
ergt! (4.11)
~ 251 2jn0tl(l—1/l7)|1"‘¥lv1 |1/q
J

~ Jstpjnar(1=1/p)yjn(l-a1)/q
Also, we have that

. . < . 5 ~ 22 F. ~ 2Js29jnar(1=1/p)s jn(l—a1)/p
||A]FJ,N||Bpgq S ”F],N”Bp%q 22| FjNllpe ~ 27722 2
(4.12)
as N — oo. So by definition of the operator norm,

||Aij»N||B;2q 2Jjs2pjnei(1=1/p)y jn(l—e)/p

> i

Aj| M5 — B%2 im — 4
H Jl p.q PAl| ™~ Nso ”F] N”M"]’O‘] 2is12jnai(1-1/p)pjn(1—ai)/q
’ P.q

> oj(s2=s1)pjn(—a)(1/p=1/q)
(4.13)

Now, we have the lower bound

. K J| G2—=s)+0V[n(1—ay)(1/p=1/@)IV[n(1—a)(1=1/p—=1/g)]
o g — B, | 2 2LV | )l

(4.14)
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For Upper Bound Estimates. We only handle the following cases, then the other
cases can be deduced by an easy interpolation argument.
Casel.p =g =2.
||Ajf||B;22 ~ 2js2||Ajf||L2 ~ zj(sz_sl)“Ajf”M;lz’“‘ < 2j(sz—s1)||f||M;12,a1, 4.15)

Moreover, in this case we may write

2Jj(s2=s1) — pjls2=si+tn(l—an)(1/p=1/q)) _ pJjls2=si+n(l—a)(1=1/p=1/q)) (4.16)

Case2. p=00,q < 1.

18 gz, ~ 272018 flle =27

>ooras] s 3 Sl

a1 ap,l

lel"j lel“j
1/q
S 20 IO NG | STV Ny
lel“.‘;.‘l'l
Moreover, for p = oo and ¢ = 1, we can write,
2J(s2=s1) _ pJ(a—si+n(l—a)(1-1/p=1/q)) 4.17)
Case3d.p=¢qg < 1.
1/p
18; g ~ 272085 fll = 27200 30 OF A flee 272 [ 30 107 FI7,
lel“jl’1 lel“j."'1
1/q
— 2J52 9t ¢4 < 2J(s2=s1) st
> | [[mraa P S 1F gy
ler‘?l’
Moreover, in this case we have
2J(s2=s1) _ pjlsa—s1+n(l—a)(1/p=1/q)) (4.18)
Cased. p = g = oo.
187 f gz, ~ 272185 f e =22 S oA f]
lel“j."'l
S22 O fllee
rer®!

J
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S22t sup 107 fllze

ap,l

lel"j
< 24/'(S2—51)2]'"(1—011)”f”M(XNI ) (4.19)
Moreover, we have
2J(s2=s1)pjn(l—ar) _ 9jls2=s1)pjn(l—a)(1-1/p=1/q) (4.20)

in this case.
CaseS. p=2,q = oco.

187 F gz, ~ 27208, flle ~ 27218, £ 0
1/2
S22 O f
leret! (4.21)
S22 sup 05 £l
ler‘j.("l

< Zj(Sz—Sl)2]‘11(1—061)(1/2)”f”MO(N1 )

2,00

Moreover, we have
2Js2=s1)pjn(l=a1)(1/2) _ oj(s2=s1+n(—an)(1/p=1/q9)) _ pjls2=si+n(l—a)(A=1/p=1/9))
in this case.

Case 6. p < 1,qg = oo.

18 fllge, ~ 27208 fler =272 D7 O A flee

ap,l

lel“j
1/p
SP2ic IS 1w 422)
lel"j.(l’1 '
<272 P sup (IO il
ler“;ll’l
< 2./(Sz—n)zj"(l—otl)(l/l’)”f”Mal_xl.
~ pioo
Moreover, we have
2Jsa=s1)gjn(l=an)(1/p) _ ojls2=si+n(1—a1)(1/p=1/q)) (4.23)
in this case. O
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In order to characterize the existence of embeddings between «-modulation spaces,
we only need to establish the following proposition, which can be viewed as a mild
characterization of embedding.

Proposition 4.2 (Mild characterization for the embedding between «-modulation
spaces) Let 0 < p,qg < oo, s; € R, o; € [0,1] fori = 1,2. Then the embedding
relationship

Myt C My5” (4.24)

holds if and only if

sup |COFY*2 ) MLt — M2 < (4.25)
keZ

foray Voay < 1, and
~ sup Ajl M;,{’q“” — M;%;I“Z <1 (4.26)
jeloyuz+

foroap Voay =1.

Proof We only give the proof for the case 1, oy < 1, since the proofs of other cases
are similar.

Case 1: o) < ap.

If the embedding M} C M7, holds, we have

02 s <072 spap S s . 4.27
10 Fllygzoe S NO2 Fllygor S 1 ygepen 4.27)

On the other hand, if supycz: |07 My ;" — M;?;?| < 1 holds, we deduce

2
)2 N flle ~ IO £ 1y
o o
= |||:|k2 Z Dl 2f||M;2(.]a2
ZEI‘,‘fZ’O‘2

SO0 B flyge (4.28)
lerz’az

1/q

519
S D D oy,

lel",‘fz'a2 mel"ftl'o‘2
Observing that [T52*"| < 1 and |T*%?| < 1, we obtain
g m ~ 1 ~

1/q
529
1 g2 = (Z (k) o2 ||D§:2f||’1p)

keZn
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Case 2: o) < ;.
If the embedding M

On the other hand, if sup;yn

A

S1,01
p.q

S S Ty £,

keZM 1er>*? mer|1*2

S w1,

mezZ" lel"fr‘lz’o‘l ker;"Z»O‘Q

1/q

S14
T—ay q
> m IO 1L ) = 1 e

mez"

C M;?;” holds, we have

o o]
I F iz S IO Fllygin S 1l

IT7*2] < 1 to deduce deduce

AN

o 1/q
1 e = 20 )2 13 F1IE,
keZ
1/q
529
DUk > IO TE £,
ke lere e
1/q

Then

1S 1l pg52:e2
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A

529
> D (TRIoRoy fIg,

I€Z" ker®2®!

D [ s
R

leZn

1/q

1/q

ST,
U

keZ

215 2 O

kezn Jer®

k

1/q

1/q

(4.29)

(4.30)

O My — M%< 1 holds, we use

(4.31)



J Fourier Anal Appl (2016) 22:427-461 451

1/q
< o] q9
SI20 2 O e
keZ"  jer; 11
1/q
qu
S22 22 o E g
keZr eri
1/q
S14
=2 D OTIESIL | S lype. (432)
leZh ker["I""l
where the last inequality holds for the reason that [I';"*!| < 1. i

Combining Lemma 4.1 and Proposition 4.2, we obtain the following corollary.

Corollary 4.3 (see Theorems 4.1,4.21in [15]) Let0 < p,q < oo, s; € R, o; € [0, 1]
fori =1,2. Then

S1,0 52,0
M[,"q e Mpz’q 2 (4.33)

holds if and only if

52+ (0V [n(az —a)(1/p = 1/@)] V [n(az —a)(1 = 1/p — 1/9)]) < s1.

We remark that the embedding results between «1-modulation and «;-modulation
spaces go back to Grobner’s thesis [ 13] in which he considered thecase 1 < p, ¢ < oco.
In [18], Toft and Wahlberg then obtained some partial sufficient conditions, as well as
some partial necessary conditions for such embedding. Finally, Wang and Han gave
a complete characterization [15]. Embeddings between modulation and Besov spaces
are considered in [17] and [19].

5 Proof of Theorems 1.1 and 1.2
5.1 Proof of Theorem 1.1

In this subsection, we suppose 1 < p;,g; < 00, s; € R, a; € [0, 1] fori = 1, 2. For

afixed 6 € (0, 1), if
[y Mz ] e m. (5.1)

then there exists a e-modulation space M}, such that

S1,01 52,000 _ s,
[Mpl,fﬂ’ Mpz,q2]0 - MPJJ’ (5.2

where p,g € (0,00], s € R, @ € [0, 1]. We first make some priori estimates to
determine the values of p, g and s.
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Step 1: Priori estimates for p, ¢, s.
For fixed p;, gi, s; under the assumption of Theorem 1.1, we denote

1 1-0 0 1 1-6 6

—=—d4+ —, —=——+ —, 59 = (1 —0)s1 +6s2.
po P1 P2 4o q1 q2
We want to check that
P=D6:9 =45 =S¢ (5.3)
under the assumption
51,0 852,00 — s,
[Mpll,qll’ Mpzz,qi]e - Mp,q (5.4)

for some 6 € (0, 1).
By the convexity inequality, we have

1-6 6
If Mase SN st 1FN 200 (5.5)
1 Mpy .45

X Mp)g1

forall f € S (R") C Mg, N M,5%. On the other hand, take f € ./(R"), and
define
Tr(p) = (e, f) (5.6)

for ¢ € .. Then Ty is a bounded linear functional on M)\'%\, M,>'%% and M), 5. We

use Proposition 2.5 and Lemma 2.8 to deduce that

1-6 0
IIfIIM;,s:, S e LI a0 (5.7

Py Ph.dh
for p > 1. R
Proving p = pg. Take a smooth function /2 whose Fourier transform / has small
compact support with #(£) = 1 near the origin, such that

supph C suppng (5.8)
for any « € [0, 1]. Let
Y
hy(€) = h(X) (5.9
for L € (0, 1). We use (5.5) to deduce
allze < Weall s sl o (5.10)
We then have
J=3) < =50 1=6), n(1=5-)(6) 5.11)
as A |, 0. This yields
1 1—6 % 1
AT A e (5.12)
p P1 P2 Po
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and hence p > pg > 1. Using (5.7), a dual argument then yields that

n(1—§)< n(l— )(l 0) n(l— )(9)

A S A (5.13)
asA — 0.So
l > L (5.14)
P Do
and then
P =Dpo- (5.15)

Proving s = s(g Take i to be the same function as above. For j € N, define
hj(x) = >8P X) j(x) for an arbitrary p; ;€ R", such that

lpj| ~ 27 (5.16)
and R
supph; C Suppry,. Suppny, . Suppr;; (5.17)

for some suitable k;, k1, j, k2, ; € Z". Clearly, we have

1

()T ~ (k)T ~ (k)T ~ 2. (5.18)
We use inequality (5.5) to deduce
17l arse < IR 1t :1 a A ;1% Mz (5.19)
A direct calculation (using p = pg) now yields
278 < 2U=0isigbisa — pise (5.20)
as j — oo. Then s < sp follows. Using a dual argument as in Step 1, we obtain

s = Sp.
Proving g = gg. Let hj be the functions as above. We denote

Ti(f)=h;*f (5.21)

and

N
T =T, (5.22)
for N € N. Recall the complex interpolation of modulation spaces

(M M3, = M3 (523

Birkhauser



454 J Fourier Anal Appl (2016) 22:427-461

Using Lemma 2.6, we have

XY 59,0 S st,ap ) 1—60 §2 52,00 110
1IN My, g = Mppgl S WINI MY, 4 = MG I IN T My, — M2

and

59,0 XY 51,01 S1 1-60 52,00 52 0
1IN Mg = My g | S WINE MG — My g I IN T M — My, 11

Because of p1, p» > 1, one can verify that

1IN My gy = Mg ~ TN M, gy = Mgl ~ 1 (5.24)
and
1IN Mgy = Mgl ~ TN Mgy — M, gl ~ 1 (5.25)
forall N € N. So
1 9N] M;)%,qe — M;',%”‘ZIH <1 (5.26)
and
1N M;Z’,Oq[ — M;,%’%H <1 (5.27)

for all N. These inequalities imply
19 c 4 (5.28)

and
11 1, (5.29)

However, the above two embedding relationships are true if and only if ¢ = gp.
Step 2: Dual argument. From the previous discussion, we know

P =P6,.9=46,5 =S9. (5.30)
So we obtain
1-6 %
Nflpee SNFN g LI 5r (5.31)
Mpg.q0 Ml’ll vq% Mpzzvqg
and
1-60 %
IIfIIMp—/se‘/a S IIfIIMf/Sl‘/a, IIfIIM/sz,,a2 (5.32)
090 P14 Py-4)

for all f € .. We use Lemma 3.2 to deduce that

pr=q1 =2, ifa>oaf,
p=qg=2, ifa=u0q, (5.33)
po=qo =2, ifa <a.

Step 3: Completion of proof for Theorem 1.1. The proof for «; = «; is trivial.

By symmetry of o1 and «», it suffices to consider the case o1 < op. We divide this
proof into several cases.
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Case 1: o < o). We have pg = ggp = 2, so

S1,01 52,000 _oagsa S, g8,02
[Mpwﬂ’ Mpz,qz]e =M, e =My, =My, (5.34)

By the argument in the previous subsection, we have

Pr=q1=p2=q =2 (5.35)
Hence we have
[aype mea] = [mose me] = [ B2), = Y. (5.36)

Case 2: « = «1. We have pp = g» = 2. Thus

S1,01 52,002 — S1,a1 52,001 — AS0,21
[Mmyql’Mpzyqz]g - |:MP1>‘II’M2,2 ]9 =My, g (5:37)

Case 3: o > a1, @ # ap. We have p; = g1 = 2. Thus

81,01 852,02 _ S1,0 52,000
I:MPIJII ’ Mpz.,qz]g - [M2,2 ’ Mpz,qz]g . (5'38)
Since
$1,01 $2,002 — 50,0
I:MPIJII’ MPz,qz]g - MPeyqe’
we have

51,0 §2,000 _ 50,0
|:M2,2 ’ Mpz,qz:lg - Mpe,qe'

which is in Case 2, so we have

P2=qr=2, (5.39)
and
[y ] = [M3se ] = [0 1], =Y. (S40)

Case 4: « = ap. We have p; = g1 = 2. Thus we obtain

S1,01 52,000 — S1,002 52,002 _ 56,002
I:MPMH’ Mpzyqz]g - I:MZ,Z ’Mpz,qz]e - Mpe,qa' (5.41)

5.2 Proof of Theorem 1.2
In this subsection, we suppose 0 < p,g < 00,s; € R, o; € [0, 1] fori = 1, 2. For

o] = ap, the claim is trivial, so that we can assume o1 # «p. By symmetry, we can
furthermore assume o < oz, which implies og < 1.
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For afixed 6 € (0, 1), if

(M ] e m, (5.42)

then there exists a modulation space M;"; such that

I:MShal M[S,%;]az] -M (5.43)

s,o

g 0 pq’

where p, g € (0,00],5s € R, € [0, 1]. R

Take a smooth function 7 whose Fourier transform / has small compact support
with 2(£) = 1 near the origin. Denote T, (f) = h % f. One can easily verify that

. AfS1, 51,0 . AfS2,02 52,0
Th-M,,,q —>Mp’q, Th-Mp,q —>Mp’q, (5.44)
and
. 7510 $1,01 . Ars2.0 §2,02
Th.Mp’q —>Mp’q , Th-M,,,q —>Mp’q . (5.45)

By the operator interpolation inequality (Lemma 2.6), we deduce that
Ty : M;’g — M[S,f;]O and Ty : M;(f;]o — M;’;. (5.46)

Let g be a smooth function with compact support near the origin, g, (§) = g( %). For
sufficiently small A, we have

T(g) = &> lgrllage = llgaller, lgally0 = llgaller. (5.47)
Hence (5.46) implies

lealler Slleallzss Ngallis Sllgallee. (5.48)

Letting A | O, we conclude 1/p < 1/pand 1/p < 1/p. So we have p = p.
In this subsection, since p might be smaller than 1, the dual convexity inequality
(5.7) is replaced by

1-60 0
[/ SIA I/l

7sl+mxl(ﬁfl).ul

(5.49)

_x2+mx2(ﬁ —1),ap :
v v &%

In the case that p < 1, the dual form of Lemma 3.2 is not applicable without an a
priori estimate on «, even in the process of determining s. Additionally, by checking the
proof, one can find that the method for obtaining priori estimates in the last subsection
does not work in the case p < 1. The main difficulty is that we are not able to determine
the values of g, s, @ individually as we did in the last subsection. It seems that we need
to handle all the indices simultaneously.
We denote
so = (1 —0)s1 +6s2,ap = (1 —0)ay + Oay.

Birkhduser



J Fourier Anal Appl (2016) 22:427-461

457

By Theorem 1.1, we only need to handle the case for p < 1 or g < 1. We divide the

proof into three cases.

Casel: p<1,1>1

By Lemma 4.1, we have

1A Bg . M;’)l;]al | ~ 2Js1 2]‘”(1*011)(1/P+1/11*1)’
||Aj| ng = M;z;]azn ~ 2]‘322]‘"(1*012)(1/P+1/(1*1)7

A Bg,q — M;’%” ~ 2ds9in(1—e)(1/p+1/G-1)

We now use Lemma 2.6 to deduce that

(5.50)

0 s, 0 1, 1-6 0 2, 0
181 BS , — MY S N1Aj] BS,, — M =0 )A 1 BS, — M|, (5.51)

which implies

245 in(=e)(/p+1/G=1) < pisopin(i—ap)(1/p+1/q=1)
Letting j — oo, we obtain

s+n(l—a)1/p+1/g—1) <sg+n(l—ag)(l/p+1/q —1).
On the other hand, we use Lemma 4.1 to deduce

1 AfS1 0 || ~ n—Jsinjn(l—a1)(1/p—1/q)
||A]|Mp1’q —>Bp’q|| 2 2 ,
. 52,02 0 ~ n—Js2njn(1—a2)(1/p=1/q)
||A]|Mp’q —>Bp’q|| 2 2 ,
and
2= Jjspin(=e)(1/p=1/q)
278,

INV
Q=R

s,o 0
1A;| My% — BY Il ~ [

SIERSIE

Using the operator interpolation inequality, one can deduce that

(5.52)

(5.53)

(5.54)

(5.55)

S, 0 S1, 0 1-6 s 0 0
1A M — BS IS A M3 — BS 10 1A 1 M2 — BS 1. (5.56)

q

which implies
—s+n(l—-—a)/p—1/9) = —so +n(l —as)(1/p — 1/9).
Addition of (5.53) and (5.57) yields
n(l—a)2/p—1 =n(l—wp)2/p—1).

So we have

(5.57)

(5.58)

(5.59)
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On the other hand, by the same method as in the last subsection (see the section
“Proving s = sp”’), we can use

IIfIIMw SIS vl al IIfIIG 2,02 (5.60)
and
6
A sty < S it T v 56D
P o g
to deduce
s < sp (5.62)
and
—s+na(l/p—1) < —sg +nag(l/p —1). (5.63)
Adding the above two inequalities (5.62) and (5.63), we conclude
a(l/p—1) <ag(l/p —1) (5.64)

which implies « < ag. So we have o = ag. Putting « = g into (5.63), we deduce
s > sp. So we have s = s¢.

Finally, we put o = g, s = sg into (5.53) and (5.57) and deduce ¢ = g. Now, we
have verified

S1,00 52,0 A g8e.
[Mplq LM, 2]9 — My (5.65)

Lemma 3.2 (together with o = ap € (1, ovp)) immediately yields 1/p < 1/, which
contradicts the assumption 1/p > 1/q. We complete the proof for this case.
Case2: p < l,l < 7
As in Case 1, one can deduce s < sy and o < arp. Using Lemma 4.1, we have

A M3 — BY || ~ 277 (5.66)

and '
1A M2 — BY |l ~277%. (5.67)

Then we use the operator interpolation inequality to deduce
1Aj] My% — BY I <277, (5.68)

However, Lemma 4.1 implies

i 0 2-Jjspin(d-a)1/p=1/q) L 1
1A Mp’,é — Bp’q|| ~ o—is i - i (5.69)
’ p—q
So, we have
—s < —s+n(l—a)ymax{0,1/p — 1/} < —sp, (5.70)

which implies s > sg. Recalling the fact s < sg, we conclude s = sp.

Birkhduser



J Fourier Anal Appl (2016) 22:427-461 459

Additionally, by Corollary 4.3, one can deduce the embedding

M3yt C By MR C B, (5.71)

Then, we use Lemma 2.6 to deduce

56,0 S
M2 C By, (5.72)

This implies )
19 cl, (5.73)

and hence 1/g < 1/4.
On the other hand, we use Lemma 4.1 to deduce that

1A Bg . M;)lvqal | ~ 2J'S12]'1(1—061)(1/P+1/‘I—1)7
||Aj| Bg,q N M;z,;lz” ~ 2./522./”(1—02)(1/17-&-1/!1—1)’ (5.74)

A Bg,q — M;fj;?“” ~ 2dspin(1—a)(1/p+1/G=1)
As in Case 1, we use Lemma 2.6 (and the fact s = sy shown above) to deduce
so+n(l—a)(/p+1/g—1) <sog+n(l—ag)(1/p+1/q — 1), (5.75)
which implies
n(l—a)1/p+1/g—1) =n(l —ag)(1/p+1/g —1). (5.76)

Recalling o < og < 1, one can deduce
n(l-—a)1/p+1/g—1)<n(l—-a)(1/p+1/q—1) (5.77)

which implies 1/ < 1/q. So we have § = ¢. Putting ¢ = ¢ into (5.76), we get
n(1—a)(1/p+1/g —1) <n(l —ag)(1/p+1/q — 1) (5.78)

which implies & > «g. Recalling & < g again, we conclude o = op.
Now, we have verified that

51,01 §2,02
[y v

s, = M, (5.79)

0

We use Lemma 3.2 in the dual convexity inequality

1-60 0
1AL —ayimntrtyieg S 11 171 (5.80)

—.v1+nal(ﬁ—]),a1 7s2+na2(ﬁ71),(12

ra r.q ra
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to deduce | |
—+==1 (5.81)
P q
which contradicts the identity p’ = g’ = oo. This completes the proof for the present
case.
Case3:p>1,q < 1.
By the same method used in the proof of Theorem 1.1, one can verify the relationship

pP=p,4d=q, Sp =S. (5.82)

Then we have

S1,0 52,0 N WAV
I:Ml’l»q g Mngq 2] - Ml?egq : (5.83)

0

If o« < a1, we use Lemma 3.2 to deduce p < ¢, which contradictstog < 1 < p.
If @ > a1, we use Lemma 3.2 in the dual convexity inequality

< 1-6 6 4
”f”Mﬂﬁw(ﬁilm ~ ”f” —Sl‘*"’”l(i%p_l)-oq ”f“ *f2+"012(ﬁ*1),a2 (5.8 )
o ra r.a
to deduce
1 1 1 1
—+5=21L 5=, (5.85)
p q q

which also contradicts to the assumption in this case. This completes the proof. O
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