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Abstract We illustrate the composition properties for an extended family of SG
Fourier integral operators. We prove continuity results on modulation spaces, and
study mapping properties of global wave-front sets for such operators. These extend
classical results to more general situations. For example, there are no requirements on
homogeneity for the phase functions. Finally, we apply our results to the study of the
propagation of singularities, in the context of modulation spaces, for the solutions to
the Cauchy problems for the corresponding linear hyperbolic operators.
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Micro-local
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1 Introduction

In [26], global wave-front sets with respect to convenient Banach or Fréchet spaces
were introduced, and global mapping properties of pseudo-differential operators
of SG-type were established in terms of these wave-front sets (see, e.g. [14,16,18,
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19,25–27,38,40]). For any such Banach or Fréchet space B and tempered distribution
f , the global wave-front set WFB( f ) is the union of three components WFmB( f ),
m = 1, 2, 3. The first component (for m = 1) describes the local wave-
front set which informs where f locally fails to belong to B, as well as the
directions where the singularities (with respect to B) propagates. The second
and third components (for m = 2 or m = 3) inform where at infinity the
growth and oscillations of f are strong enough such that f fails to belong
to B. We remark that WF1S ( f ), WF2S ( f ) and WF3S ( f ) agree with WFψ

S ( f ),

WFeS ( f ) and WFψe
S ( f ), respectively, in [19]. Note also that for admissible B,

these wave-front sets give suitable information for local and global behavior, since
f belongs to B globally (locally), if and only if WFB( f ) = ∅ (WF1B( f ) =
∅).

It is convenient to formulate mapping properties for pseudo-differential operators
of SG-type in terms of SG-ordered pairs (B, C), where B and C should be appropriate
target and image spaces of the involved pseudo-differential operators. (Cf. [26].) More
precisely, the pair (B, C) of spacesB and C containingS and contained inS ′, is called
SG-ordered with respect to the weight ω0 if the mappings

Op(a) : B → C, Op(b)∗ : C → B,

Op(c) : B → B and Op(c) : C → C (1.1)

are continuous for every a ∈ SG(ω0), b ∈ SG(1/ω0) and c ∈ SG0,0. If it is only
required that the first mapping property in (1.1) holds, then the pair (B, C) is called
weakly SG-ordered. Here SG(ω), the set of all SG-symbols with respect to ω, belongs
to an extended family of symbol classes of SG-type. We refer to [19] for the definition
of (also classical) SG-symbols. We notice that (1.1) is true also after Op(b) is replaced
by its adjoint Op(b)∗, because Op(SG(ω))∗ = Op(SG(ω)).

Important examples on function and distribution spaces which give rise to SG-
ordered pair are the Schwartz space, or the set of tempered distributions. An other
important example appears when these spaces are suitablemodulation spaces, a family
of function and distribution spaces, introduced by Feichtinger in [29] and further
developed in [30,31] by Feichtinger and Gröchenig. More precisely, in [26] it is
noticed that (S ,S ) and (S ′,S ′) are SG-ordered pairs, and for any weight ω and
any modulation space B, there is a (unique) modulation space C such that (B, C) is
an SG-ordered pair with respect to ω. In particular, the family of SG-ordered pairs
is broad in the sense that B can be chosen as a Sobolev space, or, more general,
as a Sobolev–Kato space, since such spaces are special cases of modulation spaces.
Moreover, if SG(ω) is a classical symbol class of SG-type and B is a Sobolev–Kato
space, then C is also a Sobolev–Kato space.

For any SG-ordered pairs (B, C) with respect to ω, it is proved in [25,26] that the
wave-front sets with respect to B and C posses convenient mapping properties. For
example, if f ∈ S ′ and a ∈ SG(ω), then (1.1) is refined as

WFC(Op(a) f ) ⊆ WFB( f ),

i.e., WFmC (Op(a) f ) ⊆ WFmB( f ), m = 1, 2, 3, (1.2)
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and that reversed inclusions are obtained by adding the set of characteristic points
to the left-hand sides in (1.2). In particular, since the set of characteristic points is
empty for elliptic operators, it follows that equalities are attained in (1.2) for such
operators.

In this paper we establish similar properties for Fourier integral operators. More
precisely, for any symbol a in SG(ω) for some weight ω, the Fourier integral operator
(or FIO) Opϕ(a) is given by

f �→ (Opϕ(a) f )(x) ≡ (2π)−d
∫
Rd

eiϕ(x,ξ)a(x, ξ) f̂ (ξ) dξ,

and its formal L2-adjoint by

f �→ (Opϕ(a)∗ f )(x) ≡ (2π)−d
∫∫

R2d
ei(〈x,ξ〉−ϕ(y,ξ))a(y, ξ) f (y) dydξ.

The operator Op∗
ϕ(a) = Opϕ(a)∗ is here called Fourier integral operator of type II,

while Opϕ(a) is called a Fourier integral operator of type I, with phase function ϕ and

amplitude (or symbol) a. The phase function ϕ should be in SG1,1
1,1 and satisfy

〈ϕ′
x (x, ξ)〉 � 〈ξ 〉 and 〈ϕ′

ξ (x, ξ)〉 � 〈x〉. (1.3)

Here and in what follows, A � B means that A � B and B � A, where A � B
means that A ≤ c · B, for a suitable constant c > 0. Furthermore, ϕ should also fulfill
the usual (global) non-degeneracy condition

| det(ϕ′′
xξ (x, ξ))| ≥ c, x, ξ ∈ Rd ,

for some constant c > 0.
In Sect. 4, the notion on SG-ordered pair from [26] is reformulated to include such

Fourier integral operators, where the operators Op(a) and Op(b)∗ in (1.1) are replaced
by Opϕ(a) and Opϕ(b)∗, respectively, and takes into account the phase-function
ϕ.

In order to establish wave-front results, similar to (1.2), it is also required that
the phase functions fulfill some further natural conditions, namely, that they preserve
shapes in certain ways near the points in the phase space T ∗Rd � R2d (see Sect. 5).
In fact, the definitions of wave-front sets of appropriate distributions are based on
the behavior in cones of corresponding Fourier transformations, after localizing the
involved distributions near points or along certain directions.

In order to explain our main results, let φ be the canonical transformation of T ∗Rd

generated by ϕ, and consider an elliptic Fourier integral operator Opϕ(a) with ampli-
tude a ∈ SG(ω0). If (B, C) are (weakly) SG-ordered with respect to ω0 and ϕ (see
Sect. 4 for precise definitions), then, under some natural invariance conditions on the
weight ω0,
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WFC(Opϕ(a) f ) = φ(WFB( f )). (1.4)

A similar result holds for Op∗
ϕ(a) f , namely

WFB̃(Op∗
ϕ(a) f ) = φ−1(WFC̃( f )), (1.5)

when Op∗
ϕ(a) : C̃ → B̃, with a (in general, different) couple of admissible spaces

C̃, B̃, and the inverse φ−1 of the canonical transformation in (1.4). More gen-
erally, by dropping the ellipticity of the amplitude functions, with a ∈ SG(ω1),
b ∈ SG(ω2), (B1, C1,B2, C2) being SG-ordered with respect to ω1, ω2 and ϕ, we show
that

WFC1(Opϕ(a) f ) ⊆ φ(WFB1( f ))
con (1.6)

and

WFB2(Op
∗
ϕ(b) f ) ⊆ φ−1(WFC2( f ))

con, (1.7)

provided the phase function ϕ additionally fulfills conditions similar to those in
Kumano-Go [36]. In (1.6) and (1.7), we denoted by W con the union of the small-
est m-conical subsets which include the three components Wm , m ∈ {1, 2, 3}, of W
(see [36] and Sect. 5 below).

Notice that the required conditions on the phase function are automatically satisfied
by all the phase functions arising from the short-time solutions to hyperbolic Cauchy
problems in the SG-classical context, see [14,15,17,18]. We then apply our results to
describe the propagation of singularities from the initial data to the solutions to such
SG-hyperbolic Cauchy problems.

The results above are based on comprehensive investigations of algebraic and
continuity properties of the involved Fourier integral operators. A significant part
of these investigations concern compositions between Fourier integral operators of
type I or II, with pseudo-differential operators. This is performed in [24], where it
is proved that for any Fourier integral operators Opϕ(a) and Op∗

ϕ(b) with a, b ∈
SG(ω1), and some p ∈ SG(ω2), then, under suitable invariance conditions on the
weights,

Op(p) ◦ Opϕ(a) = Opϕ(c1) mod Op(B0),

Op(p) ◦ Op∗
ϕ(b) = Op∗

ϕ(c2) mod Op(B0),

Opϕ(a) ◦ Op(p) = Opϕ(c3) mod Op(B0)

Op∗
ϕ(b) ◦ Op(p) = Op∗

ϕ(c4) mod Op(B0),

for some c j ∈ SG(ω0, j ), j = 1, . . . , 4, and suitable weights ω0, j . Here Op(B0) is
a set of appropriate smoothing operators, depending on the symbols and the phase
function. Furthermore, if a ∈ SG(ω1) and b ∈ SG(ω2), then it is also proved that
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Op∗
ϕ(b) ◦ Opϕ(a) and Opϕ(a) ◦ Op∗

ϕ(b) are equal to pseudo-differential operators

Op(c5) and Op(c6), respectively, for some c5, c6 ∈ SG(ω0, j ), j = 5, 6. We also
present asymptotic formulae for c j , j = 1, . . . , 6, in terms of a and b, or of a, b and
p, modulo smoothing terms. The extensions of the calculus of SG Fourier integral
operators developed in [16] to the classes SG(ω0)

r,ρ , introduced and systematically used
in [25–27], is recalled in Sect. 3.

The formulae (1.4)–(1.7), given by the calculus recalled in Sect. 3, also rely
on certain asymptotic expansions in the framework of symbolic calculus of SG
pseudo-differential operators, as well as on continuity properties for SG-ordered
pairs.

The first of the above two points concerns making sense of expansions of the
form

a ∼
∑

a j ,

in the framework of the generalised SG-classes SG(ω0)
r,ρ . The ideas are similar

to the corresponding properties in the usual Hörmander calculus in Sect. 18.1
in [35]. For this reason, in [22] we have established properties of asymptotic
expansions for symbols classes of the form S(m, g), parameterized by the weight
function m and Riemannian metric g on the phase space (cf. Sect. 18.4 in [35]).
Note here that any SG-class is equal to S(m, g) for some choice of m and g,
and that similar facts hold for the Hörmander classes Srρ,δ . The results therefore
cover several situations on asymptotic expansions for pseudo-differential opera-
tors.

With respect to the second point above, we study in Sect. 4 some specific spaces
which are SG-ordered or weakly SG-ordered. For example, we present necessary
and sufficient conditions for the involved weight functions and parameters, in order
for Sobolev–Kato spaces, Sobolev spaces and modulation spaces should be SG-
ordered or weakly SG-ordered. A direct proof of the continuity from L2(Rd) to
itself of SG Fourier integral operators with a uniformly bounded amplitude (that
is, the amplitude is of order 0, 0, or, equivalently, the weight ω is bounded), sim-
ilar to the one given in [16], can be found in [24]. Moreover, taking advantage of
the calculus developed in [24], recalled in Sect. 3 for the convenience of the reader,
and relying on results in [13,34], we prove that our classes of SG Fourier integral
operators are continuous between suitable couples of weighted modulation spaces
(Mp

(ω1)
(Rd), Mp

(ω2)
(Rd)).

Finally, in Sect. 5 we prove our main propagation results and illustrate their appli-
cation to Cauchy problems, for SG-hyperbolic linear operators and first order systems
with constant multiplicities. In view of the mapping properties proved in Sect. 4, we
observe that such problems are “well-posed with a loss of regularity” when considered
in the environment of Lebesgue and modulation spaces, differently from other known
situations, see, e.g, Bényi et al. [2], Cordero and Nicola [12], Wang and Hudzik [45]
and the references quoted therein.
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2 Preliminaries

We begin by fixing the notation and recalling some basic concepts which will be
needed below. In Sects. 2.1–2.4wemainly summarize parts of the contents of Sect. 2 in
[24,26,27]. Someof the results thatwe recall, comparedwith their original formulation
in the SG context appeared in [16], are here given in a slightly more general form,
adapted to the definitions given in Sect. 2.3.

2.1 Weight Functions

Let ω and v be positive measurable functions on Rd . Then ω is called v-moderate if

ω(x + y) � ω(x)v(y) (2.1)

If v in (2.1) can be chosen as a polynomial, then ω is called a function or weight of
polynomial type. We let P(Rd) be the set of all polynomial type functions on Rd .
If ω(x, ξ) ∈ P(R2d) is constant with respect to the x-variable or the ξ -variable,
then we sometimes write ω(ξ), respectively ω(x), instead of ω(x, ξ), and consider
ω as an element in P(R2d) or in P(Rd) depending on the situation. We say that
v is submultiplicative if (2.1) holds for ω = v. For convenience we assume that all
submultiplicative weights are even, and v and v j always stand for submultiplicative
weights, if nothing else is stated.

Without loss of generality we may assume that every ω ∈ P(Rd) is smooth and
satisfies the ellipticity condition ∂αω/ω ∈ L∞. In fact, by Lemma 1.2 in [41] it
follows that for each ω ∈ P(Rd), there is a smooth and elliptic ω0 ∈ P(Rd) which
is equivalent to ω in the sense

ω � ω0. (2.2)

The weights involved in the sequel often have to satisfy additional conditions.More
precisely let r, ρ ≥ 0. ThenPr,ρ(R2d) is the set of allω(x, ξ) inP(R2d)

⋂
C∞(R2d)

such that

〈x〉r |α|〈ξ 〉ρ|β| ∂
α
x ∂

β
ξ ω(x, ξ)

ω(x, ξ)
∈ L∞(R2d), (2.3)

for every multi-indices α and β. Any weight ω ∈ Pr,ρ(R2d) is called SG-moderate
on R2d , of order r and ρ. Notice that Pr,ρ is different here compared to [25], and
there are elements in P(R2d) which have no equivalent elements in Pr,ρ(R2d). On
the other hand, if s, t ∈ R and r, ρ ∈ [0, 1], then Pr,ρ(R2d) contains all weights of
the form

ϑm,μ(x, ξ) ≡ 〈x〉m〈ξ 〉μ, (2.4)

which are one of the most common type of weights.
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It will also be useful to consider SG-moderate weights in one or three sets of
variables. Let ω ∈ P(R3d)

⋂
C∞(R3d), and let r1, r2, ρ ≥ 0. Then ω is called SG

moderate on R3d , of order r1, r2 and ρ, if it fulfills

〈x1〉r1|α1|〈x2〉r2|α2|〈ξ 〉ρ|β| ∂
α1
x1 ∂

α2
x2 ∂

β
ξ ω(x1, x2, ξ)

ω(x1, x2, ξ)
∈ L∞(R3d).

The set of all SG-moderate weights on R3d of order r1, r2 and ρ is denoted by
Pr1,r2,ρ(R3d). Finally, we denote by Pr (Rd) the set of all SG-moderate weights
of order r ≥ 0 on Rd , which are defined in a similar fashion.

2.2 Modulation Spaces

Let φ ∈ S (Rd). Then the short-time Fourier transform of f ∈ S (Rd) with respect
to (the window function) φ is defined by

Vφ f (x, ξ) = (2π)−d/2
∫
Rd

f (y)φ(y − x)e−i〈y,ξ〉 dy. (2.5)

More generally, the short-time Fourier transform of f ∈ S ′(Rd) with respect to
φ ∈ S ′(Rd) is defined by

(Vφ f ) = F2F, where F(x, y) = ( f ⊗ φ)(y, y − x). (2.5)′

Here F2F is the partial Fourier transform of F(x, y) ∈ S ′(R2d) with respect to the
y-variable, and the Fourier transformF is the linear and continuous map onS ′(Rd)

which takes the form

(F f )(ξ) = f̂ (ξ) ≡
∫
Rd

f (x)e−i〈x,ξ〉dx

when f ∈ L1(Rd ). We refer to [32,33] for more facts about the short-time Fourier
transform. To introduce the modulation spaces, we first recall that a Banach spaceB,
continuously embedded in L1

loc(R
d), is called a (translation) invariant BF-space on

Rd , with respect to a submultiplicative weight v ∈ P(Rd), if there is a constant C
such that the following conditions are fulfilled:

(1) S (Rd) ⊆ B ⊆ S ′(Rd) (continuous embeddings);
(2) if x ∈ Rd and f ∈ B, then f (· − x) ∈ B, and

‖ f (· − x)‖B ≤ Cv(x)‖ f ‖B; (2.6)

(3) if f, g ∈ L1
loc(R

d) satisfy g ∈ B and | f | ≤ |g| almost everywhere, then f ∈ B
and

‖ f ‖B ≤ C‖g‖B;
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(4) if f ∈ B and ϕ ∈ C∞
0 (Rd), then f ∗ ϕ ∈ B, and

‖ f ∗ ϕ‖B ≤ ‖ϕ‖L1
(v)

‖ f ‖B. (2.7)

The following definition of modulation spaces is due to Feichtinger [30]. LetB be
a translation invariant BF-space on R2d with respect to v ∈ P(R2d), φ ∈ S (Rd)\0
and let ω ∈ P(R2d) be such that ω is v-moderate. The modulation space M(ω,B)

consists of all f ∈ S ′(Rd) such that Vφ f · ω ∈ B. We notice that M(ω,B) is a
Banach space with the norm

‖ f ‖M(ω,B) ≡ ‖Vφ f ω‖B (2.8)

(cf. [31]).

Remark 2.1 Assume that p, q ∈ [1,∞], and let L p,q
1 (R2d) and L p,q

2 (R2d) be the sets
of all F ∈ L1

loc(R
2d) such that

‖F‖L p,q
1

≡
(∫ (∫

|F(x, ξ)|p dx
)q/p

dξ

)1/q

< ∞

and

‖F‖L p,q
2

≡
(∫ (∫

|F(x, ξ)|q dξ

)p/q

dx

)1/p

< ∞

(with obvious modifications when p = ∞ or q = ∞). Then M(ω, L p,q
1 (R2d)) is

equal to the classical modulation space Mp,q
(ω) (Rd), and M(ω, L p,q

2 (R2d)) is equal

to the space W p,q
(ω) (Rd), related to Wiener-amalgam spaces (cf. [29–31,33]). We set

Mp
(ω) = Mp,p

(ω) = W p,p
(ω) . Furthermore, if ω = 1, then we write Mp,q , Mp and W p,q

instead of Mp,q
(ω) , M

p
(ω) and W p,q

(ω) respectively.

Remark 2.2 Several important spaces agree with certain modulation spaces. In fact,
let s, σ ∈ R. If ω = ϑs,σ (cf. (2.4)), then M2

(ω)(R
d) is equal to the weighted Sobolev

space (or Sobolev–Kato space) H2
σ,s(R

d) in [19,38], the set of all f ∈ S ′(Rd) such
that 〈x〉s〈D〉σ f ∈ L2(Rd). In particular, if s = 0 (σ = 0), then M2

(ω)(R
d) equals

to H2
σ (Rd) (L2

s (R
d)). Furthermore, if instead ω(x, ξ) = 〈x, ξ 〉s ≡ 〈(x, ξ)〉s , then

M2
(ω)(R

d) is equal to the Sobolev–Shubin space of order s. (Cf. e. g. [37]).

2.3 Pseudo-differential Operators and SG Symbol Classes

Let a ∈ S (R2d), and t ∈ R be fixed. Then the pseudo-differential operator Opt (a) is
the linear and continuous operator on S (Rd) defined by the formula

(Opt (a) f )(x) = (2π)−d
∫∫

ei〈x−y,ξ〉a((1 − t)x + t y, ξ) f (y) dydξ (2.9)
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(cf. Chap.XVIII in [35]). For general a ∈ S ′(R2d), the pseudo-differential operator
Opt (a) is defined as the continuous operator fromS (Rd) toS ′(Rd)with distribution
kernel

Kt,a(x, y) = (2π)−d/2(F−1
2 a)((1 − t)x + t y, x − y). (2.10)

If t = 0, then Opt (a) is the Kohn–Nirenberg representation Op(a) = a(x, D), and if
t = 1/2, then Opt (a) is the Weyl quantization.

In most of our situations, a belongs to a generalized SG-symbol class, which we
shall consider now. Letm, μ, r, ρ ∈ R be fixed. Then the SG-class SGm,μ

r,ρ (R2d) is the
set of all a ∈ C∞(R2d) such that

|Dα
x D

β
ξ a(x, ξ)| � 〈x〉m−r |α|〈ξ 〉μ−ρ|β|,

for all multi-indices α and β. Usually we assume that r, ρ ≥ 0 and ρ + r > 0.
More generally, assume that ω ∈ Pr,ρ(R2d). Then SG(ω)

r,ρ (R2d) consists of all
a ∈ C∞(R2d) such that

|Dα
x D

β
ξ a(x, ξ)| � ω(x, ξ)〈x〉−r |α|〈ξ 〉−ρ|β|, x, ξ ∈ Rd , (2.11)

for all multi-indices α and β. We notice that

SG(ω)
r,ρ (R2d) = S(ω, gr,ρ), (2.12)

when g = gr,ρ is the Riemannian metric on R2d , defined by the formula

(
gr,ρ

)
(y,η)

(x, ξ) = 〈y〉−2r |x |2 + 〈η〉−2ρ |ξ |2 (2.13)

(cf. Sect. 18.4–18.6 in [35]). Furthermore, SG(ω)
r,ρ = SGm,μ

r,ρ when ω = ϑm,μ (see
(2.4)).

For conveniency we set

SG
(ωϑ−∞,0)
ρ (R2d) = SG

(ωϑ−∞,0)
r,ρ (R2d) ≡

⋂
N≥0

SG
(ωϑ−N ,0)
r,ρ (R2d),

SG
(ωϑ0,−∞)
r (R2d) = SG

(ωϑ0,−∞)
r,ρ (R2d) ≡

⋂
N≥0

SG
(ωϑ0,−N )
r,ρ (R2d),

and

SG(ωϑ−∞,−∞)(R2d) = SG
(ωϑ−∞,−∞)
r,ρ (R2d) ≡

⋂
N≥0

SG
(ωϑ−N ,−N )
r,ρ (R2d).

Weobserve that SG
(ωϑ−∞,0)
r,ρ (R2d) is independent of r , SG

(ωϑ0,−∞)
r,ρ (R2d) is independent

of ρ, and that SG
(ωϑ−∞,−∞)
r,ρ (R2d) is independent of both r and ρ. Furthermore, for any

x0, ξ0 ∈ Rd we have
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SG
(ωϑ−∞,0)
ρ (R2d) = SG

(ω0ϑ−∞,0)
ρ (R2d), when ω0(ξ) = ω(x0, ξ),

SG
(ωϑ0,−∞)
r (R2d) = SG

(ω0ϑ0,−∞)
r (R2d), when ω0(x) = ω(x, ξ0),

and

SG(ωϑ−∞,−∞)(R2d) = S (R2d).

The following result shows that the concept of asymptotic expansion extends to the
classes SG(ω)

r,ρ (R2d). We refer to [22, Theorem 8] for the proof.

Proposition 2.3 Let r, ρ ≥ 0 satisfy r + ρ > 0, and let {s j } j≥0 and {σ j } j≥0 be
sequences of non-positive numbers such that lim j→∞ s j = −∞ when r > 0 and
s j = 0 otherwise, and lim j→∞ σ j = −∞ when ρ > 0 and σ j = 0 otherwise. Also

let a j ∈ SG
(ω j )
r,ρ (R2d), j = 0, 1, . . ., where ω j = ω · ϑs j ,σ j . Then there is a symbol

a ∈ SG(ω)
r,ρ (R2d) such that

a −
N∑
j=0

a j ∈ SG(ωN+1)
r,ρ (R2d). (2.14)

The symbol a is uniquely determined modulo a remainder h, where

h ∈ SG
ωϑ−∞,0)
ρ (R2d) when r > 0,

h ∈ SG
(ωϑ0,−∞)
r (R2d) when ρ > 0,

h ∈ S (R2d) when r > 0, ρ > 0. (2.15)

Definition 2.4 The notation a ∼ ∑
a j is used when a and a j fulfill the hypothesis in

Proposition 2.3. Furthermore, the formal sum

∑
j≥0

a j

is called an asymptotic expansion.

It is a well-known fact that SG-operators give rise to linear continuous mappings
from S (Rd) to itself, extendable as linear continuous mappings from S ′(Rd) to
itself. They also act continuously between modulation spaces, and in some situations
between suitableSobolev spaces H p

s (Rd) andLebesgue spaces L p
t (Rd).HereH p

σ (Rd)

consists of all f ∈ S ′(Rd) such that 〈D〉σ f ∈ L p(Rd), and L p
s (Rd) consists of all

f ∈ S ′(Rd) such that 〈 · 〉s f ∈ L p(Rd). We also define H p
s,σ (Rd) as the set of all

f ∈ S ′(Rd) such that 〈 · 〉s〈D〉σ f ∈ L p(Rd). Indeed, in the first one of the following
propositions, the first part is a special case of [44, Theorem 3.2], and the second part
follows from [8, Corollary 6]. (See also [26] for the first part and the proof of [34,
Theorem 3.1] for the second part.) The second proposition follows from [46, Theorem
10.7] or [28, Theorem 1.1]. The proofs are therefore omitted.
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Proposition 2.5 Let r, ρ ≥ 0, t ∈ R and ω0 ∈ Pr,ρ(R2d). Then the following is true:

(1) if a ∈ SG(ω0)
r,ρ (R2d), then Opt (a) is continuous from M(ω,B) to M(ω/ω0,B),

for every choice of ω ∈ P(R2d) and every translation invariant BF-spaceB on
R2d;

(2) there exist a ∈ SG(ω0)
r,ρ (R2d) and b ∈ SG(1/ω0)

r,ρ (R2d) such that for every choice of
ω ∈ P(R2d) and every translation invariant BF-spaceB on R2d , the mappings

Opt (a) : S (Rd) → S (Rd), Opt (a) : S ′(Rd) → S ′(Rd)

and

Opt (a) : M(ω,B) → M(ω/ω0,B).

are continuous bijections with inverses Opt (b).

Proposition 2.6 Let r, ρ > 0, t ∈ R, p ∈ (1,∞) and s, σ ∈ R. Then the following is
true:

(1) if μ ∈ R and a ∈ SG0,μ
0,ρ (R2d), then Opt (a) is continuous from H p

σ (Rd) to

H p
σ−μ(Rd);

(2) if m ∈ R and a ∈ SGm,0
r,0 (R2d), then Opt (a) is continuous from L p

s (Rd) to

L p
s−m(Rd);

(3) if m, μ ∈ R and a ∈ SGm,μ
r,ρ (R2d), then Opt (a) is continuous from H p

s,σ (Rd) to
H p
s−m,σ−μ(Rd).

2.4 Composition and Further Properties of SG Classes of Symbols, Amplitudes,
and Functions

We define families of smooth functions with SG behaviour, depending on one, two or
three sets of real variables (cfr. also [21]).We then introduce pseudo-differential opera-
tors defined by means of SG amplitudes. Subsequently, we recall sufficient conditions
for maps of Rd into itself to keep the invariance of the SG classes.

In analogy of SG amplitudes defined on R2d , we consider corresponding classes
of amplitudes defined on R3d . More precisely, for any m1,m2, μ, r1, r2, ρ ∈ R, let
SGm1,m2,μ

r1,r2,ρ (R3n) be the set of all a ∈ C∞ (
R3d

)
such that

|∂α1
x1 ∂α2

x2 ∂
β
ξ a(x1, x2, ξ)| � 〈x1〉m1−r1|α1|〈x2〉m2−r2|α2|〈ξ 〉μ−ρ|β|, (2.16)

for everymulti-indices α1, α2, β.We usually assume r1, r2, ρ ≥ 0 and r1+r2+ρ > 0.
More generally, let ω ∈ Pr1,r2,ρ(R3d). Then SG(ω)

r1,r2,ρ(R3d) is the set of all a ∈
C∞ (

R3d
)
which satisfy

|∂α1
x1 ∂α2

x2 ∂
β
ξ a(x, y, ξ)| � ω(x1, x2, ξ)〈x1〉−r1|α1|〈x2〉−r2|α2|〈ξ 〉−ρ|β|, (2.16′)



296 J Fourier Anal Appl (2016) 22:285–333

for every multi-indices α1, α2, β. The set SG
(ω)
r1,r2,ρ(R3n) is equipped with the usual

Fréchet topology based upon the seminorms implicitly given in (2.16)′.
As above,

SG(ω)
r1,r2,ρ = SGm1,m2,μ

r1,r2,ρ when ω(x1, x2, ξ) = 〈x1〉m1〈x2〉m2〈ξ 〉μ.

Definition 2.7 Let r1, r2, ρ ≥ 0, r1 + r2 + ρ > 0, and let a ∈ SG(ω)
r1,r2,ρ(R3d), where

ω ∈ Pr1,r2,ρ(R3d). Then the pseudo-differential operator Op(a) is the linear and
continuous operator fromS (Rd) toS ′(Rd) with distribution kernel

Ka(x, y) = (2π)−d/2(F−1
3 a)(x, y, x − y).

For f ∈ S (Rd), we have

(Op(a) f )(x) = (2π)−d
∫∫

ei〈x−y,ξ〉a(x, y, ξ) f (y) dydξ.

The operators introduced in Definition 2.7 have properties analogous to the usual
SG operator families described in [14]. They coincide with the operators defined
in the previous subsection, where corresponding symbols are obtained by means of
asymptotic expansions, modulo remainders of the type given in (2.4). For the sake of
brevity, we omit the details. Evidently, when neither the amplitude functions a, nor
the corresponding weight ω, depend on x2, we obtain the definition of SG symbols
and pseudo-differential operators, given in the previous subsection.

Next we consider SG functions, also called functions with SG behavior. That is,
amplitudes which depend only on one set of variables in Rd . We denote them by
SG(ω)

r (Rd) and SGm
r (Rd), r > 0, respectively, for a general weight ω ∈ Pr (Rd)

and for ω(x) = 〈x〉m . Furthermore, if φ : Rd1 → Rd2 , and each component
φ j , j = 1, . . . , d2, of φ belongs to SG(ω)

r (Rd1), we will occasionally write φ ∈
SG(ω)

r (Rd1;Rd2). We use similar notation also for other vector-valued SG symbols
and amplitudes.

In the sequel we need to consider compositions of SG amplitudes with functions
with SG behavior. In particular, the latter will often be SG maps (or diffeomorphisms)
with SG0-parameter dependence, generated by phase functions (introduced in [16]),
see Definitions 2.8 and 2.9, and Sect. 3.1 below. For the convenience of the reader, we
first recall, in a form slightly more general than the one adopted in [16], the definition
of SG diffeomorphisms with SG0-parameter dependence.

Definition 2.8 Let � j ⊆ Rd j be open, � = �1 × · · · × �k and let φ ∈ C∞(Rd ×
�;Rd). Then φ is called an SG map (with SG0-parameter dependence) when the
following conditions hold:

(1) 〈φ(x, η)〉 � 〈x〉, uniformly with respect to η ∈ �;

(2) for all α ∈ Zd+, β = (β1, . . . , βk), β j ∈ Z
d j
+ , j = 1, . . . , k, and any (x, η) ∈

Rd × �,

|∂α
x ∂β1

η1
· · · ∂βk

ηk
φ(x, η)| � 〈x〉1−|α|〈η1〉−|β1| · · · 〈ηk〉−|βk |,
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where η = (η1, . . . , ηk) and η j ∈ � j for every j .

Definition 2.9 Let φ ∈ C∞(Rd × �;Rd) be an SG map. Then φ is called an SG
diffeomorphism (with SG0-parameter dependence) when there is a constant ε > 0
such that

| det φ′
x (x, η)| ≥ ε, (2.17)

uniformly with respect to η ∈ �.

Remark 2.10 The condition (1) in Definition 2.8 and (2.17), together with abstract
results (see, e.g., [3], page 221) and the inverse function theorem, imply that, for any
η ∈ �, an SG diffeomorphism φ( · , η) is a smooth, global bijection from Rd to itself
with smooth inverse ψ( · , η) = φ−1( · , η). It can be proved that also the inverse
mappingψ(y, η) = φ−1(y, η) fulfills Conditions (1) and (2) in Definition 2.8, as well
as (2.17), see [16].

Definition 2.11 Let r, ρ ≥ 0, r + ρ > 0, ω ∈ Pr,ρ(R2d), and let φ, φ1, φ2 ∈
C∞(Rd × Rd0;Rd) be SG mappings.

(1) ω is called (φ, 1)-invariant when

ω(φ(x, η1 + η2), ξ) � ω(φ(x, η1), ξ),

for any x, ξ ∈ Rd , η1, η2 ∈ Rd0 , uniformly with respect to η2 ∈ Rd0 . The set of
all (φ, 1)-invariant weights in Pr,ρ(R2d) is denoted by P

φ,1
r,ρ (R2d);

(2) ω is called (φ, 2)-invariant when

ω(x, φ(ξ, η1 + η2)) � ω(x, φ(ξ, η1)),

for any x, ξ ∈ Rd , η1, η2 ∈ Rd0 , uniformly with respect to η2 ∈ Rd0 . The set of
all (φ, 2)-invariant weights in Pr,ρ(R2d) is denoted by P

φ,2
r,ρ (R2d);

(3) ω is called (φ1, φ2)-invariant if ω is both (φ1, 1)-invariant and (φ2, 2)-invariant.
The set of all (φ1, φ2)-invariantweights inPr,ρ(R2d) is denotedbyP(φ1,φ2)

r,ρ (R2d)

The next Lemma 2.12, proved in [24], shows that, under mild additional conditions,
the families ofweights introduced inSect. 2.1 are indeed “invariant” under composition
with SG maps with SG0-parameter dependence. That is, the compositions introduced
in Definition 2.11 are still weight functions in the sense of Sect. 2.1, belonging to
suitable setsPr,ρ(R2d).

Lemma 2.12 Let r, ρ ∈ [0, 1], r+ρ > 0,ω ∈ Pr,ρ(R2d), and letφ : Rd×Rd → Rd

be an SG map as in Definition 2.8. The following statements hold true.

(1) Assume ω ∈ P
φ,1
1,ρ (R2d), and set ω1(x, ξ) := ω(φ(x, ξ), ξ). Then ω1 ∈

P1,ρ(R2d).

(2) Assume ω ∈ P
φ,2
r,1 (R2d), and set ω2(x, ξ) := ω(x, φ(ξ, x)). Then ω2 ∈

Pr,1(R2d).
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Remark 2.13 It is obvious that, when dealing with Fourier integral operators, the
requirements for φ and ω in Lemma 2.12 need to be satisfied only on the support of
the involved amplitude. By Lemma 2.12, it also follows that if a ∈ SG(ω)

1,1 (R
2d) and

φ = (φ1, φ2), where φ1 ∈ SG1,0
1,1(R

2d) and φ2 ∈ SG0,1
1,1(R

2d) are SG maps with SG0

parameter dependence, then a ◦ φ ∈ SG(ω0)
1,1 (R2d) when ω0 := ω ◦ φ, provided ω

is (φ1, φ2)-invariant. Similar results hold for SG amplitudes and weights defined on
R3d .

Remark 2.14 By the definitions it follows that any weight ω = ϑs,σ , s, σ ∈ R, is
(φ, 1)-, (φ, 2)-, and (φ1, φ2)-invariant with respect to any SG diffeomorphism with
SG0 parameter dependence φ, (φ1, φ2).

3 Symbolic Calculus for Generalised FIOs of SG Type

We here recall the class of Fourier integral operators we are interested in, generalizing
those studied in [16]. The corresponding symbolic calculus has been obtained in [24],
from which we recall the results listed below, and to which we refer the reader for the
details. A key tool in the proofs of the composition theorems below are the results on
asymptotic expansions in the Weyl–Hörmander calculus obtained in [22].

3.1 Phase Functions of SG Type

We recall the definition of the class of admissible phase functions in the SG context,
as it was given in [16]. We then observe that the subclass of regular phase functions
generates (parameter-dependent) mappings of Rd onto itself, which turn out to be SG
maps with SG0 parameter-dependence. Finally, we define some regularizing oper-
ators, which are used to prove the properties of the SG Fourier integral operators
introduced in the next subsection.

Definition 3.1 A real-valued function ϕ ∈ SG1,1
1,1(R

2d) is called a simple phase func-
tion (or simple phase), if

〈ϕ′
ξ (x, ξ)〉 � 〈x〉 and 〈ϕ′

x (x, ξ)〉 � 〈ξ 〉, (3.1)

are fulfilled, uniformlywith respect to ξ and x , respectively. The set of all simple phase
functions is denoted by F. Moreover, the simple phase function ϕ is called regular, if∣∣∣det(ϕ′′

xξ (x, ξ))

∣∣∣ ≥ c for some c > 0 and all x, ξ ∈ Rd . The set of all regular phases

is denoted by Fr .

Weobserve that a regular phase functionϕ defines twoglobally invertiblemappings,
namely ξ �→ ϕ′

x (x, ξ) and x �→ ϕ′
ξ (x, ξ), see the analysis in [16]. Then the following

result holds true for the mappings φ1 and φ2 generated by the first derivatives of the
admissible regular phase functions.

Proposition 3.2 Let ϕ ∈ F. Then φ1 : Rd → Rd : x �→ ϕ′
ξ (x, ξ0) and φ2 : Rd →

Rd : ξ �→ ϕ′
x (x0, ξ) are SG maps (with SG0 parameter dependence) fromRd to itself,
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for any x0, ξ0 ∈ Rd . If ϕ ∈ Fr , φ1 and φ2 give rise to SG diffeomorphism with SG0

parameter dependence.

For any ϕ ∈ F, the operators �1,ϕ and �2,ϕ are defined by

(�1,ϕ f )(x, ξ) ≡ f (ϕ′
ξ (x, ξ), ξ) and (�2,ϕ f )(x, ξ) ≡ f (x, ϕ′

x (x, ξ)),

when f ∈ C1(R2d), and remark that the modified weights

(�1,ϕω)(x, ξ) = ω(ϕ′
ξ (x, ξ), ξ) and (�2,ϕω)(x, ξ) = ω(x, ϕ′

x (x, ξ)), (3.2)

will appear frequently in the sequel. In the following lemmawe show that theseweights
belong to the same classes of weights as ω, provided they additionally fulfill

�1,ϕω � �2,ϕω (3.3)

when ϕ is the involved phase function. That is, (3.3) is a sufficient condition to obtain
(φ1, 1)- and/or (φ2, 2)-invariance of ω in the sense of Definition 2.11, depending on
the values of the parameters r, ρ ≥ 0.

Lemma 3.3 Let ϕ be a simple phase on R2d , r, ρ ∈ [0, 1] be such that r = 1 or
ρ = 1, and let � j,ϕω, j = 1, 2, be as in (3.2), where ω ∈ Pr,ρ(R2d) satisfies (3.3).
Then

� j,ϕω ∈ Pr,ρ(R2d), j = 1, 2.

In what follows we let

t a(x, ξ) = a(ξ, x) and (a∗)(x, ξ) = a(ξ, x),

when a(x, ξ) is a function.

3.2 Generalised Fourier Integral Operators of SG Type

In analogywith the definition of generalized SG pseudo-differential operators, recalled
in Sect. 2.1, we define the class of Fourier integral operators we are interested in terms
of their distributional kernels. These belong to a class of tempered oscillatory integrals,
studied in [21]. Thereafter we prove that they posses convenient mapping properties.

Definition 3.4 Let ω ∈ Pr,ρ(R2d) satisfy (3.3), r, ρ ≥ 0, r + ρ > 0, ϕ ∈ F,

a, b ∈ SG(ω)
r,ρ (R2d).

(1) The generalized Fourier integral operator A = Opϕ(a) of SG type I (SG FIOs
of type I) with phase ϕ and amplitude a is the linear continuous operator from
S (Rd) toS ′(Rd) with distribution kernel KA ∈ S ′(R2d) given by

KA(x, y) = (2π)−d/2(F2(e
iϕa))(x, y);
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(2) The generalized Fourier integral operator B = Op∗
ϕ(b) of SG type II (SG FIOs

of type II) with phase ϕ and amplitude b is the linear continuous operator from
S (Rd) toS ′(Rd) with distribution kernel KB ∈ S ′(R2d) given by

KB(x, y) = (2π)−d/2(F−1
2 (e−iϕb))(y, x).

Evidently, if f ∈ S (Rd), and A and B are the operators in Definition 3.4, then

A f (x) = Opϕ(a)u(x) = (2π)−d/2
∫

eiϕ(x,ξ) a(x, ξ) (F f )(ξ) dξ, (3.4)

and

B f (x) = Op∗
ϕ(b)u(x)

= (2π)−d
∫∫

ei(〈x,ξ)−ϕ(y,ξ)) b(y, ξ) f (y) dydξ. (3.5)

Remark 3.5 In the sequel the formal (L2-)adjoint of an operator Q is denoted by Q∗.
By straightforward computations it follows that the SG type I and SG type II operators
are formal adjoints to each others, provided the amplitudes and phase functions are the
same. That is, if b and ϕ are the same as in Definition 3.4, then Op∗

ϕ(b) = Opϕ(b)∗.
Obviously, for any ω ∈ Pr,ρ(R2d), tω = ω∗ is also an admissible weight which

belongs to Pρ,r (R2d). Similarly, for arbitrary ϕ ∈ F and a ∈ SG(ω)
r,ρ (R2d), we have

tϕ = ϕ∗ ∈ F and t a, a∗ ∈ SG(ω∗)
ρ,r (R2d). Furthermore, by Definition 3.4 we get

Op∗
ϕ(b) = F−1 ◦ Op−ϕ∗(b∗) ◦ F−1

⇐⇒
Opϕ(a) = F ◦ Op∗−ϕ∗(a∗) ◦ F .

(3.6)

The following result shows that type I and type II operators are linear and continuous
fromS (Rd) to itself, and extendable to linear and continuous operators fromS ′(Rd)

to itself.

Theorem 3.6 Let a, b and ϕ be the same as in Definition 3.4. Then Opϕ(a) and
Op∗

ϕ(b) are linear and continuous operators on S (Rd), and uniquely extendable to

linear and continuous operators on S ′(Rd).

3.3 Composition with Pseudo-differential Operators of SG Type

The composition theorems presented in this and the subsequent subsections are vari-
ants of those originally appeared in [16]. The notation used in the statements of the
composition theorems are those introduced in Sects. 2.3, 3.1 and 3.2. The proofs and
more details can be found in [24].
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Theorem 3.7 Let r j , ρ j ∈ [0, 1], ϕ ∈ F and let ω j ∈ Pr j ,ρ j (R
2d), j = 0, 1, 2, be

such that

ρ2 = 1, r0 = min{r1, r2, 1}, ρ0 = min{ρ1, 1}, ω0 = ω1 · (�2,ϕω2),

and ω2 ∈ Pr,1(R2d) is (φ, 2)-invariant with respect to φ : ξ �→ ϕ′
x (x, ξ). Also let

a ∈ SG(ω1)
r1,ρ1(R

2d), p ∈ SG(ω2)
r2,1

(R2d), and let

ψ(x, y, ξ) = ϕ(y, ξ) − ϕ(x, ξ) − 〈y − x, ϕ′
x (x, ξ)〉. (3.7)

Then

Op(p) ◦ Opϕ(a) = Opϕ(c)ModOpϕ(SG
(ωϑ0,−∞)

0 ), r1 = 0,

Op(p) ◦ Opϕ(a) = Opϕ(c)ModOp(S ), r1 > 0,

where c ∈ SG(ω0)
r0,ρ0(R

2d) admits the asymptotic expansion

c(x, ξ) ∼
∑
α

i |α|

α! (Dα
ξ p)(x, ϕ

′
x (x, ξ)) Dα

y

[
eiψ(x,y,ξ)a(y, ξ)

]
y=x

. (3.8)

Theorem 3.8 Let r j , ρ j ∈ [0, 1], ϕ ∈ F and let ω j ∈ Pr j ,ρ j (R
2d), j = 0, 1, 2, be

such that

r2 = 1, r0 = min{r1, 1}, ρ0 = min{ρ1, ρ2, 1}, ω0 = ω1 · (�1,ϕω2),

and ω2 ∈ Pr,1(R2d) is (φ, 1)-invariant with respect to φ : x �→ ϕ′
ξ (x, ξ). Also let

a ∈ SG(ω1)
r1,ρ1(R

2d) and p ∈ SG(ω2)
1,ρ2

(R2d). Then

Opϕ(a) ◦ Op(p) = Opϕ(c)ModOpϕ(SG
(ωϑ−∞,0)

0 ), ρ1 = 0,

Opϕ(a) ◦ Op(p) = Opϕ(c)ModOp(S ), ρ1 > 0,

where the transpose t c of c ∈ SG(ω0)
r0,ρ0(R

2d) admits the asymptotic expansion (3.8),
after p and a have been replaced by t p and ta, respectively.

Theorem 3.9 Let r j , ρ j ∈ [0, 1], ϕ ∈ F and let ω j ∈ Pr j ,ρ j (R
2d), j = 0, 1, 2, be

such that

ρ2 = 1, r0 = min{r1, r2, 1}, ρ0 = min{ρ1, 1}, ω0 = ω1 · (�2,ϕω2),

and ω2 ∈ Pr,1(R2d) is (φ, 2)-invariant with respect to φ : ξ �→ ϕ′
x (x, ξ). Also let b ∈

SG(ω1)
r1,ρ1(R

2d), p ∈ SG(ω2)
r2,1

(R2d), ψ be the same as in (3.7), and let q ∈ SG(ω2)
r2,1

(R2d)

be such that



302 J Fourier Anal Appl (2016) 22:285–333

q(x, ξ) ∼
∑
α

i |α|

α! D
α
x D

α
ξ p(x, ξ). (3.9)

Then

Op∗
ϕ(b) ◦ Op(p) = Opϕ(c)ModOp∗

ϕ(SG
(ωϑ0,−∞)

0 ), r1 = 0,

Op∗
ϕ(b) ◦ Op(p) = Opϕ(c)ModOp(S ), r1 > 0,

where c ∈ SG(ω0)
r0,ρ0(R

2d) admits the asymptotic expansion

c(x, ξ) ∼
∑
α

i |α|

α! (Dα
ξ q)(x, ϕ′

x (x, ξ))Dα
y

[
eiψ(x,y,ξ)b(y, ξ)

]
y=x

. (3.10)

Theorem 3.10 Let r j , ρ j ∈ [0, 1], ϕ ∈ F and let ω j ∈ Pr j ,ρ j (R
2d), j = 0, 1, 2, be

such that

r2 = 1, r0 = min{r1, 1}, ρ0 = min{ρ1, ρ2, 1}, ω0 = ω1 · (�1,ϕω2),

and ω2 ∈ Pr,1(R2d) is (φ, 1)-invariant with respect to φ : x �→ ϕ′
ξ (x, ξ). Also let

a ∈ SG(ω1)
r1,ρ1(R

2d) and p ∈ SG(ω2)
1,ρ2

(R2d). Then

Op(p) ◦ Op∗
ϕ(b) = Opϕ(c)ModOp∗

ϕ(SG
(ωϑ−∞,0)

0 ), ρ1 = 0,

Op(p) ◦ Op∗
ϕ(b) = Opϕ(c)ModOp(S ), ρ1 > 0,

where the transpose t c of c ∈ SG(ω0)
r0,ρ0(R

2d) admits the asymptotic expansion (3.10),
after q and b have been replaced by tq and tb, respectively.

3.4 Composition Between SG FIOs of Type I and Type II

The subsequent Theorems 3.12 and 3.13 deal with the composition of a type I oper-
ator with a type II operator, and show that such compositions are pseudo-differential
operators with symbols in natural classes.

The main difference, with respect to the arguments in [16] for the analogous com-
position results, is that we again make use, in both cases, of the generalized asymptotic
expansions introduced in Definition 2.4. This allows to overcome the additional dif-
ficulty, not arising there, that the amplitudes appearing in the computations below
involve weights which are still polynomially bounded, but which do not satisfy, in
general, the moderateness condition (2.1). On the other hand, all the terms appearing
in the associated asymptotic expansions belong to SG classes with weights of the form
ω̃2,ϕ · ϑ−k,−k , where ω̃ = ω1 · ω2, which can be handled through the results in [22].
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Let Sϕ , ϕ ∈ F, be the operator defined by the formulae

(Sϕ f )(x, y, ξ) = f (x, y,�(x, y, ξ)) ·
∣∣∣det�′

ξ (x, y, ξ)

∣∣∣
where

∫ 1

0
ϕ′
x (y + t (x − y),�(x, y, ξ)) dt = ξ. (3.11)

That is, for every fixed x, y ∈ Rd , ξ �→ �(x, y, ξ) is the inverse of the map

ξ �→
∫ 1

0
ϕ′
x (y + t (x − y), ξ) dt. (3.12)

Notice that, as proved in [16], the map (3.12) is indeed invertible for (x, y) belonging
to a suitable neighborhood of the diagonal y = x ofRd ×Rd , and it turns out to be an
SG diffeomorphism with SG0 parameter dependence. We also recall, from [16], the
definition of the SG compatible cut-off functions localizing to such neighborhoods.

Definition 3.11 The sets ��(k), k > 0, of the SG compatible cut-off functions along
the diagonal of Rd × Rd , consist of all χ = χ(x, y) ∈ SG0,0

1,1(R
2d) such that

|y − x | ≤ k〈x〉/2 �⇒ χ(x, y) = 1,
|y − x | > k〈x〉 �⇒ χ(x, y) = 0.

(3.13)

If not otherwise stated, we always assume k ∈ (0, 1).

Theorem 3.12 Let r j ∈ [0, 1], ϕ ∈ F and let ω j ∈ Pr j ,1(R
2d), j = 0, 1, 2, be such

that ω1 and ω2 are (φ, 2)-invariant with respect to φ : ξ �→ (ϕ′
x )

−1(x, ξ),

r0 = min{r1, r2, 1} and ω0(x, ξ) = ω1(x, φ(x, ξ))ω2(x, φ(x, ξ)),

Also let a ∈ SG(ω1)
r1,1

(R2d) and b ∈ SG(ω2)
r2,1

(R2d). Then

Opϕ(a) ◦ Op∗
ϕ(b) = Op(c),

for some c ∈ SG(ω0)
r0,1

(R2d). Furthermore, if ε ∈ (0, 1), χ ∈ ��(ε), c0(x, y, ξ) =
a(x, ξ)b(y, ξ)χ(x, y) and Sϕ is given by (3.11), then h admits the asymptotic expan-
sion

c(x, ξ) ∼
∑
α

i |α|

α! (Dα
y D

α
ξ (Sϕc0))(x, y, ξ)

∣∣
y=x .

To formulate the next result we modify the operator Sϕ in (3.11) such that it fulfills
the formulae

(Sϕ f )(x, ξ, η) = f (�(x, ξ, η), ξ, η) · ∣∣det�′
x (x, ξ, η)

∣∣
where

∫ 1
0 ϕ′

ξ (�(x, ξ, η), η + t (ξ − η)) dt = x .
(3.14)
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Theorem 3.13 Let ρ j ∈ [0, 1], ϕ ∈ Fr and let ω j ∈ P1,ρ j (R
2d), j = 0, 1, 2, be

such that ω1 and ω2 are (φ, 1)-invariant with respect to φ : x �→ (ϕ′
ξ )

−1(x, ξ),

ρ0 = min{ρ1, ρ2, 1} and ω0(x, ξ) = ω1(φ(x, ξ), ξ)ω2(φ(x, ξ), ξ),

Also let a ∈ SG(ω1)
1,ρ1

(R2d) and b ∈ SG(ω2)
1,ρ2

(R2d). Then

Op∗
ϕ(b) ◦ Opϕ(a) = Op(c),

for some c ∈ SG(ω0)
1,ρ0

(R2d). Furthermore, if ε ∈ (0, 1), χ ∈ ��(ε), c0(x, ξ, η) =
a(x, ξ)b(x, η)χ(ξ, η) and Sϕ is given by (3.14), then h admits the asymptotic expan-
sion

c(x, ξ) ∼
∑
α

i |α|

α! (Dα
x D

α
η (Sϕc0))(x, ξ, η)

∣∣
η=ξ

.

3.5 Elliptic FIOs of Generalized SG Type and Parametrices: Egorov’s Theorem

The results about the parametrices of the subclass of generalized (SG) elliptic Fourier
integral operators are achieved in the usual way, bymeans of the composition theorems
in Sects. 3.3 and 3.4. The same holds for the versions of the Egorov’s theorem adapted
to the present situation. The additional conditions, compared with the statements in
[16], concern the invariance of the weights, so that the hypotheses of the composition
theorems above are fulfilled.

Definition 3.14 Let r, ρ > 0, ω ∈ Pr,ρ(R2d), ϕ ∈ Fr and let a, b ∈ SG(ω)
r,ρ (R2d).

The operators Opϕ(a) and Op∗
ϕ(b) are called elliptic, if a and b are SG-elliptic (cf.

Sect. 1 in [26].)

Lemma 3.15 Let φ = (φ1, φ2), where φ2 and φ1 are the SG diffeomorphisms in
Theorems 3.12 and 3.13, respectively, and let ω ∈ Pr,ρ(R2d) be φ-invariant. Also let

a ∈ SG(ω)
1,1 (R

2d) be such that Opϕ(a) is elliptic.
Then the pseudo-differential operators Opϕ(a) ◦Op∗

ϕ(a) and Op∗
ϕ(a) ◦Opϕ(a) are

SG elliptic.

Theorem 3.16 Let ω be φ-invariant, φ = (φ1, φ2), where φ2 and φ1 are the SG
diffeomorphisms in Theorems 3.12 and 3.13, respectively. Also let ϕ ∈ Fr , and let
a ∈ SG(ω)

1,1 (R
2d) be SG elliptic. Then Opϕ(a) and Op∗

ϕ(a) admit parametrices which
are elliptic SG FIOs of type II and type I, respectively.

In the next two results we need the canonical transformation φ : (x, ξ) �→ (y, η)

generated by the phase function ϕ, given by

{
ξ = ϕ′

x (x, η)

y = ϕ′
ξ (x, η) = ϕ′

η(x, η).
(3.15)
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Theorem 3.17 Letφ be the canonical transformation (3.15),φ0 : ξ �→ (ϕ′
x )

−1(x, ξ),
ω1, ω2 ∈ P1,1(R2d) be such that ω1 is (φ0, 2)-invariant and ω2 is φ-invariant, and
let

ω0(x, ξ) = ω1(x, (ϕ
′
x )

−1(x, ξ))2 · ω2(φ(x, ξ)).

Also let a ∈ SG(ω1)
1,1 (R2d) and p ∈ SG(ω2)

1,1 (R2d). Then

Opϕ(a) ◦ Op(p) ◦ Op∗
ϕ(a) = Op(p0),

where p0 ∈ SG(ω0)
1,1 (R2d) satisfies

p0(x, ξ) = p(ϕ′
ξ (x, η), η) |a(x, η)|2 | det ϕ′′

xξ (x, η)|−1 mod SG
(ω0·ϑ−1,−1)

1,1 (R2d),

with η = (ϕ′
x )

−1(x, ξ).

Theorem 3.18 Let φ be the canonical transformation (3.15), ω1, ω2 ∈ P1,1(R2d)

be such that ω2 is φ-invariant, and let

ω0(x, ξ) = ω2(φ(x, ξ)).

Also let a ∈ SG(ω1)
1,1 (R2d) be elliptic, p ∈ SG(ω2)

1,1 (R2d), and let b be chosen such that
Op∗

ϕ(b) is a parametrix to Opϕ(a). Then

Opϕ(a) ◦ Op(p) ◦ Op∗
ϕ(b) = Op(p0),

where p0 ∈ SG(ω0)
1,1 (R2d) satisfies

p0(x, ξ) = p(φ(x, ξ)) mod SG
(ω0·ϑ−1,−1)

1,1 (R2d).

4 Continuity on Lebesgue and Modulation Spaces

In this sectionwe recall somebasic facts about continuity properties for Fourier integral
operators when acting on Lebesgue and modulation spaces. We also use the analysis
in previous sections in combination with certain lifting properties for modulation
spaces in order to establish weighted versions of continuity results for Fourier integral
operators on modulation spaces.

4.1 Continuity on Lebesgue Spaces

We start by considering the following result, which, for trivial Sobolev parameters, is
related to Theorem 2.6 in [23]. A direct proof of the L2(Rd) → L2(Rd) boundedness
of Opϕ(a) for a ∈ SG0,0

1,1(R
d) and a regular phase function ϕ ∈ Fr was given in [16].



306 J Fourier Anal Appl (2016) 22:285–333

A similar argument actually holds for a ∈ SG0,0
r,ρ (Rd), r, ρ ≥ 0, and is given in [24]

(see also [39]). Here Br (x0) is the open ball with center at x0 ∈ Rd and radius r .

Theorem 4.1 Let σ1, σ2 ∈ R, p ∈ (1,∞) and m, μ ∈ R be such that

m ≤ −(d − 1)

∣∣∣∣ 1p − 1

2

∣∣∣∣ , μ ≤ −(d − 1)

∣∣∣∣ 1p − 1

2

∣∣∣∣ + σ1 − σ2.

Also let ϕ ∈ SG1,1
1,1(R

2d) be such that for some constants c > 0 and R > 0 and every
multi-index α it holds

| det ϕ′′
x,ξ (x, ξ)| ≥ c, |∂α

x ϕ(x, ξ)| � 〈x〉1−|α|〈ξ 〉
〈ϕ′

x (x, ξ)〉 � 〈ξ 〉, 〈ϕ′
ξ (x, ξ)〉 � 〈x〉,

and

ϕ(x, tξ) = tϕ(x, ξ), x, ξ ∈ Rd , |ξ | ≥ R, t ≥ 1.

If a ∈ SGm,μ
1,1 (R2d) is supported outside Rd × Br (0) for some r > 0, then Opϕ(a)

extends to a continuous operator from H p
σ1(R

d) to H p
σ2(R

d).

Proof Let T = 〈D〉σ2 ◦ Opϕ(a) ◦ 〈D〉−σ1 . Since

〈D〉σ2 : H p
σ2

→ L p and 〈D〉−σ1 : L p → H p
σ1

are continuous bijections, the result follows if we prove that T is continuous on L p.
By Theorems 3.8 and 3.9 it follows that

T = Opϕ(a1) mod Op(S ),

where a1 ∈ SGm,μ0
1,1 (R2d) with

μ0 ≤ −(d − 1)

∣∣∣∣ 1p − 1

2

∣∣∣∣ .

Furthermore, by the symbolic calculus and the fact that a is supported outside Rd ×
Br (0) we get

Opϕ(a1) = Opϕ(a2) mod Op(S ),

where a2 ∈ SGm,μ0
1,1 (R2d) is supported outside Rd × Br (0). Hence

T = Opϕ(a2) + Op(c),

where c ∈ S , giving that Op(c) is continuous on L p.
Since Opϕ(a2) is continuous on L p, by [23, Theorem 2.6] and its proof, the result

follows. ��



J Fourier Anal Appl (2016) 22:285–333 307

Remark 4.2 Let ϕ be a phase function satisfying the hypotheses of Theorem 4.1,
s1, s2, σ1, σ2 ∈ R, p ∈ (1,∞), and assume that a ∈ SGm,μ

1,1 (R2d) is supported

outside Rd × Br (0) for some r > 0, with m, μ ∈ R satisfying

m ≤ −(d − 1)

∣∣∣∣ 1p − 1

2

∣∣∣∣ + s1 − s2, μ ≤ −(d − 1)

∣∣∣∣ 1p − 1

2

∣∣∣∣ + σ1 − σ2.

Then Opϕ(a) extends to a continuous operator from H p
s1,σ1(R

d) to H p
s2,σ2(R

d), which
follows by similar arguments as in the proof of Theorem 4.1 (see [23]).

4.2 Continuity on Modulation Spaces

Next we consider continuity properties on modulation spaces. The following result
extends Theorem 1.2 in [13]. Here we let M∞

0,(ω)(R
d) be the completion of S (Rd)

under the norm ‖ · ‖M∞
(ω)
. We also say that a (complex-valued) Gauss function � is

non-degenerate, if |�| tends to zero at infinity.

Theorem 4.3 Let m, μ ∈ R and 1 ≤ p < ∞ be such that

m ≤ −d

∣∣∣∣12 − 1

p

∣∣∣∣ , μ ≤ −d

∣∣∣∣12 − 1

p

∣∣∣∣ ,

and let ω j ∈ P1,1(R2d), j = 0, 1, 2, be such that

ω0(x, ξ) �
ω1(ϕ

′
ξ (x, ξ), ξ)

ω2(x, ϕ′
x (x, ξ))

〈x〉m〈ξ 〉μ.

Also let a ∈ SG(ω0)
1,1 (R2d) and ϕ ∈ Fr , and assume that ω j is (φ j , j)-invariant,

j = 1, 2, with φ1 : x �→ ϕ′
ξ (x, ξ) and φ2 : ξ �→ ϕ′

x (x, ξ). Then Opϕ(a) is uniquely

extendable to a continuous map from M p
(ω1)

(Rd) to M p
(ω2)

(Rd) and from M∞
0,(ω1)

(Rd)

to M∞
0,(ω2)

(Rd).

Proof Let � be a Gaussian, and let T1 and T2 be the (Toeplitz) operators, defined by
the formulas

(T1 f, g) = (ω−1
1 V� f, V�g) and (T2 f, g) = (ω2V� f, V�g).

Then it follows from Theorem 1.1 in [34] that T1 and T2 onS are uniquely extendable
to continuous bijections between Mp to Mp

(ω1)
, and from Mp

(ω2)
to Mp. Since S is

dense in Mp
(ω j )

and in M∞
(ω j )

, the result follows if we prove

‖(T2 ◦ Opϕ(a) ◦ T1) f ‖Mp � ‖ f ‖Mp , f ∈ S .
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For some non-degenerate Gauss function � which depends on � we have

Tj = Op(a j ), j = 1, 2, where a1 = ((ω1)
−1) ∗ � and a2 = ω2 ∗ �.

Furthermore, using the fact that ω j ∈ P1,1, it follows by straight-forward computa-

tions that a1 ∈ SG(1/ω1)
1,1 and a2 ∈ SG(ω2)

1,1 .
By using these facts in combination with Theorems 3.8 and 3.9, we get

T2 Opϕ(a) ◦ T1 = T2 ◦ (Opϕ(h1) + S1) = Opϕ(h2) + S2 + T2 ◦ S1,

for some operators S j ∈ Op(S ), j = 1, 2, where

h1 ∈ SG(ω0/ω̃1)
1,1 and h2 ∈ SG(ω0ω̃2/ω̃1)

1,1 ⊆ SGm,μ
1,1 ,

ω̃1(x, ξ) = ω1(ϕ
′
ξ (x, ξ), ξ), ω̃2(x, ξ) = ω2(x, ϕ′

x (x, ξ)). Since

T2 ◦ S1 ∈ Op(SG(ω2)
1,1 ) ◦ Op(S ) ⊆ Op(S ),

it follows that

T2 ◦ Opϕ(a) ◦ T1 = Opϕ(h2) + S0,

where S0 ∈ Op(S ), giving that S0 is continuous on Mp. Furthermore, the fact that
h2 ∈ SGm,μ

1,1 and Theorem 1.2 in [13] imply that

‖Opϕ(h2) f ‖Mp � ‖ f ‖Mp , f ∈ S .

This gives the result. ��
Remark 4.4 Let ρ ∈ [1, 2], p, q ∈ [1,∞] and t ∈ R. A Fourier integral operator
which frequently appears in the literature is the continuous map from S (Rd) to
L∞(Rd), given by Opϕ(t)(a), with symbol a(x, ξ) = 1 and a family of phase function
ϕ(t), parameterizedby t , givenbyϕ(t, x, ξ) = i t |ξ |ρ . That is,Opϕ(t)(a) is the operator

f �→ (2π)−d/2
∫
Rd

eit |ξ |ρ f̂ (ξ)ei〈x,ξ〉 dξ,

for admissible f .
We remark that in [2] it is proved that Opϕ(t)(a) is uniquely extendable to a contin-

uous map on Mp,q(Rd). In particular, Theorem 4.3 holds for ω0 = ω1 = ω2, without
the loss of regularity, imposed by the conditions on m and μ. We also remark that the
latter result was proved in the case ρ = 2 already in [42]. (See also [12,45] and the
references therein for other related results and approaches.)



J Fourier Anal Appl (2016) 22:285–333 309

The continuity properties ofSGpseudo-differential operators onmodulation spaces,
as well as the propagation of the global wave-front sets under their action, shortly
recalled in the next Sect. 5, motivate the next definition, originally given in [26].

Definition 4.5 Let r, ρ ∈ [0, 1], t ∈ R, and let B be a topological vector space of
distributions on Rd such that

S (Rd) ⊆ B ⊆ S ′(Rd)

with continuous embeddings. Then B is called SG-admissible (with respect to (r, ρ))
when Opt (a) maps B continuously into itself, for every a ∈ SG0,0

r,ρ (Rd). If B and C
are SG-admissible with respect to (r, ρ), and ω0 ∈ Pr,ρ(R2d), then the pair (B, C) is
called SG-ordered (with respect to (r, ρ, ω0)), when the mappings

Opt (a) : B → C and Opt (b) : C → B

are continuous for every a ∈ SG(ω0)
r,ρ (R2d) and b ∈ SG(1/ω0)

r,ρ (R2d).

The following definition, which extends Definition 4.5 to the case of generalized
Fourier integral operators, is justified by Theorems 4.1 and 4.3.

Definition 4.6 Let ϕ ∈ SG1,1
1,1(R

2d) be a regular phase function, and B, B1, B2, C, C1,
C2, be SG-admissible with respect to r , ρ and d. Also letω0, ω1, ω2 ∈ Pr,ρ(R2d), and
� ⊆ Rd be open. Then the pair (B, C) is called weakly-I SG-ordered (with respect to
(r, ρ, ω0, ϕ,�)), when the mapping

Opϕ(a) : B → C

is continuous for every a ∈ SG(ω0)
r,ρ (R2d)which is supported outsideRd×�. Similarly,

the pair (B, C) is called weakly-II SG-ordered (with respect to (r, ρ, ω0, ϕ,�)), when
the mapping

Op∗
ϕ(b) : C → B

is continuous for every b ∈ SG(ω0)
r,ρ (R2d) which is supported outside � × Rd . Fur-

thermore, (B1, C1,B2, C2) are called SG-ordered (with respect to r , ρ, ω1, ω2, ϕ, and
�), when (B1, C1) is a weakly-I SG-ordered pair with respect to (r, ρ, ω1, ϕ,�), and
(B2, C2) is a weakly-II SG-ordered pair with respect to (r, ρ, ω2, ϕ,�).

Remark 4.7 Let σ1, σ2, p, m and μ be the same as in Theorem 4.1. Then it follows
from [26, Remark 1.9], and Theorem 4.1, Remark 4.2, and Theorem 4.3, that the
following is true.

(1) (H p
σ1,σ2 , H

p
σ1−μ,σ2−m) are weakly-I SG-ordered with respect to (r, ρ, ω0, ϕ,�),

when

ω0(x, ξ) = 〈x〉m〈ξ 〉μ and � = Bε(0), ε > 0.
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(2) If p, m, μ and ω j , j = 0, 1, 2 are the same as in Theorem 4.3, then it fol-
lows that (Mp

(ω1)
, Mp

(ω2)
) are weakly-I SG-ordered with respect to (r, ρ, ω0, ϕ,∅).

If, in addition, ϕ(x, ξ) = 〈x, ξ 〉 and B is an invariant BF-space, then
(M(ω1,B), M(ω2,B)) are SG-ordered with respect to ω0.

5 Propagation Results for Global Wave-Front Sets and Generalised
FIOs of SG Type

We first recall the definition of the global wave-front sets, given in [26]. The content
of Sect. 5.1 again comes from [27]. In Sect. 5.2 we prove our main results about the
propagation of singularities in the SG context, under the action of the Fourier integral
operators described above.

5.1 Global Wave-Front Sets

Here we recall the definition given in [26] of global wave-front sets for temperate
distributions with respect to appropriate Banach or Fréchet spaces and state some of
their properties (see also [27]). Firstwe recall the definitions of the sets of characteristic
points. Notice that if a ∈ SG(ω0)

r,ρ (R2d), then

|a(x, ξ)| � ω0(x, ξ).

On the other hand, a is invertible, in the sense that 1/a is a symbol in SG(1/ω0)
r,ρ (R2d),

if and only if

ω0(x, ξ) � |a(x, ξ)|. (5.1)

We need to deal with the situations where (5.1) holds only in certain (conic-shaped)
subset of Rd × Rd . Here we let �m , m = 1, 2, 3, be the sets

�1 = Rd × (Rd \ 0), �2 = (Rd \ 0) × Rd ,

�3 = (Rd \ 0) × (Rd \ 0), (5.2)

Definition 5.1 Let r, ρ ≥ 0, ω0 ∈ Pr,ρ(R2d), �m , m = 1, 2, 3 be as in (5.2), and let

a ∈ SG(ω0)
r,ρ (R2d).

(1) a is called locally or type-1 invertiblewith respect toω0 at the point (x0, ξ0) ∈ �1,
if there exist a neighbourhood X of x0, an open conical neighbourhood � of ξ0
and a positive constant R such that (5.1) holds for x ∈ X , ξ ∈ � and |ξ | ≥ R.

(2) a is called Fourier-locally or type-2 invertible with respect to ω0 at the point
(x0, ξ0) ∈ �2, if there exist an open conical neighbourhood � of x0, a neighbour-
hood X of ξ0 and a positive constant R such that (5.1) holds for x ∈ �, |x | ≥ R
and ξ ∈ X .
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(3) a is called oscillating or type-3 invertiblewith respect to ω0 at the point (x0, ξ0) ∈
�3, if there exist open conical neighbourhoods�1 of x0 and�2 of ξ0, and a positive
constant R such that (5.1) holds for x ∈ �1, |x | ≥ R, ξ ∈ �2 and |ξ | ≥ R.

If m ∈ {1, 2, 3} and a is not type-m invertible with respect to ω0 at (x0, ξ0) ∈ �m ,
then (x0, ξ0) is called type-m characteristic for a with respect toω0. The set of type-m
characteristic points for a with respect to ω0 is denoted by Charm(ω0)

(a).
The (global) set of characteristic points (the characteristic set), for a symbol a ∈

SG(ω0)
r,ρ (R2d) with respect to ω0 is defined as

Char(a) = Char(ω0)(a) = Char1(ω0)
(a)

⋃
Char2(ω0)

(a)
⋃

Char3(ω0)
(a).

Remark 5.2 In the case ω0 = 1 we exclude the phrase “with respect to ω0” in Defini-
tion 5.1. For example, a ∈ SG0,0

r,ρ (R2d) is type-1 invertible at (x0, ξ0) ∈ Rd × (Rd\0)
if (x0, ξ0) /∈ Char1(ω0)

(a) with ω0 = 1. This means that there exist a neighbourhood
X of x0, an open conical neighbourhood � of ξ0 and R > 0 such that (5.1) holds for
ω0 = 1, x ∈ X and ξ ∈ � satisfies |ξ | ≥ R.

In the next definition we introduce different classes of cutoff functions (see also
Definition 1.9 in [25]).

Definition 5.3 Let X ⊆ Rd be open, � ⊆ Rd \ 0 be an open cone, x0 ∈ X and let
ξ0 ∈ �.

(1) A smooth function ϕ on Rd is called a cutoff (function) with respect to x0 and X ,
if 0 ≤ ϕ ≤ 1, ϕ ∈ C∞

0 (X) and ϕ = 1 in an open neighbourhood of x0. The set of
cutoffs with respect to x0 and X is denoted by Cx0(X) or Cx0 .

(2) A smooth function ψ on Rd is called a directional cutoff (function) with respect
to ξ0 and �, if there is a constant R > 0 and open conical neighbourhood �1 ⊆ �

of ξ0 such that the following is true:
• 0 ≤ ψ ≤ 1 and suppψ ⊆ �;
• ψ(tξ) = ψ(ξ) when t ≥ 1 and |ξ | ≥ R;
• ψ(ξ) = 1 when ξ ∈ �1 and |ξ | ≥ R.
The set of directional cutoffs with respect to ξ0 and � is denoted by C dir

ξ0
(�) or

C dir
ξ0

.

Remark 5.4 Let X ⊆ Rd be open and �,�1, �2 ⊆ Rd\0 be open cones. Then the
following is true.

(1) if x0 ∈ X , ξ0 ∈ �, ϕ ∈ Cx0(X) and ψ ∈ C dir
ξ0

(�), then c1 = ϕ ⊗ ψ belongs to

SG0,0
1,1(R

2d), and is type-1 invertible at (x0, ξ0);
(2) if x0 ∈ �, ξ0 ∈ X , ψ ∈ C dir

x0 (�) and ϕ ∈ Cξ0(X), then c2 = ϕ ⊗ ψ belongs to

SG0,0
1,1(R

2d), and is type-2 invertible at (x0, ξ0);

(3) if x0 ∈ �1, ξ0 ∈ �2, ψ1 ∈ C dir
x0 (�1) and ψ2 ∈ C dir

ξ0
(�2), then c3 = ψ1 ⊗ ψ2

belongs to SG0,0
1,1(R

2d), and is type-3 invertible at (x0, ξ0).
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The next proposition shows that Opt (a) for t ∈ R satisfies convenient invertibility
properties of the form

Opt (a) ◦ Opt (b) = Opt (c) + Opt (h), (5.3)

outside the set of characteristic points for a symbol a. Here Opt (b), Opt (c) and Opt (h)

have the roles of “local inverse”, “local identity” and smoothing operators respectively.
From these statements it also follows that our set of characteristic points in Definition
5.1 are related to those in [19,35]. We let Im , m = 1, 2, 3, be the sets

I1 ≡ [0, 1] × (0, 1], I2 ≡ (0, 1] × [0, 1], I3 ≡ (0, 1] × (0, 1] = I1 ∩ I2. (5.4)

which will be useful in the sequel.

Proposition 5.5 Let m ∈ {1, 2, 3}, (r, ρ) ∈ Im, ω0 ∈ Pr,ρ(R2d) and let a ∈
SG(ω0)

r,ρ (R2d). Also let �m be as in (5.2), (x0, ξ0) ∈ �m, and let (r0, ρ0) be equal
to (r, 0), (0, ρ) and (r, ρ) when m is equal to 1, 2 and 3, respectively. Then the fol-
lowing conditions are equivalent:

(1) (x0, ξ0) /∈ Charm(ω0)
(a);

(2) there is an element c ∈ SG0,0
r,ρ which is type-m invertible at (x0, ξ0), and an element

b ∈ SG(1/ω0)
r,ρ such that ab = c;

(3) (5.3) holds for some c ∈ SG0,0
r,ρ which is type-m invertible at (x0, ξ0), and some

elements h ∈ SG−r0,−ρ0
r,ρ and b ∈ SG(1/ω0)

r,ρ ;

(4) (5.3) holds for some cm ∈ SG0,0
r,ρ in Remark 5.4 which is type-m invertible at

(x0, ξ0), and some elements h and b ∈ SG(1/ω0)
r,ρ , where h ∈ S when m ∈ {1, 3}

and h ∈ SG−∞,0 when m = 2.
Furthermore, if t = 0, then the supports of b and h can be chosen to be contained
in X × Rd when m = 1, in � × Rd when m = 2, and in �1 × Rd when m = 3.

We now introduce the complements of the wave-front sets. More precisely, let �m ,
m ∈ {1, 2, 3}, be given by (5.2), B be an SG-admissible (Banach or Fréchet) space,
and let f ∈ S ′(Rd). We recall that S (Rd) ⊆ B ⊆ S ′(Rd) by the definitions, and
that S (Rd), Sobolev–Kato spaces and, more generally, modulation spaces, are SG-
admissible, see [26,27]. Then the point (x0, ξ0) ∈ �m is called type-m regular for f
with respect to B, if

Op(cm) f ∈ B, (5.5)

for some cm in Remark 5.4. The set of all type-m regular points for f with respect to
B, is denoted by �m

B( f ).

Definition 5.6 Let m ∈ {1, 2, 3}, �m be as in (5.2), and let B be an SG-admissible
(Banach or Fréchet) space.

(1) The type-m wave-front set of f ∈ S ′(Rd) with respect to B is the complement
of �m

B( f ) in �m , and is denoted by WFmB( f );
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(2) The global wave-front set WFB( f ) ⊆ (Rd × Rd)\0 is the set

WFB( f ) ≡ WF1B( f )
⋃

WF2B( f )
⋃

WF3B( f ).

The sets WF1B( f ), WF2B( f ) and WF3B( f ) in Definition 5.6, are also called the
local, Fourier-local and oscillating wave-front set of f with respect to B.
Remark 5.7 Let �m , m = 1, 2, 3 be the same as in (5.2).

(1) If � ⊆ �1, and (x0, ξ0) ∈ � ⇐⇒ (x0, σ ξ0) ∈ � for σ ≥ 1, then � is called
1-conical;

(2) If� ⊆ �2, and (x0, ξ0) ∈ � ⇐⇒ (sx0, ξ0) ∈ �2
B( f ) for s ≥ 1, then� is called

2-conical;
(3) If � ⊆ �3, and (x0, ξ0) ∈ � ⇐⇒ (sx0, σ ξ0) ∈ � for s, σ ≥ 1, then � is called

3-conical.

By (5.5) and the paragraph before Definition 5.6, it follows that if m = 1, 2, 3, then
�m

B( f ) is m-conical. The same holds for WFmB( f ), m = 1, 2, 3, by Definition 5.6,
noticing that, for any x0 ∈ Rr \ {0}, any open cone � � x0, and any s > 0, C dir

x0 (�) =
C dir
sx0(�). For any R > 0 and m ∈ {1, 2, 3}, we set

�1,R ≡ { (x, ξ) ∈ �1 ; |ξ | ≥ R }, �2,R ≡ { (x, ξ) ∈ �2 ; |x | ≥ R },
�3,R ≡ { (x, ξ) ∈ �3 ; |x |, |ξ | ≥ R }

Evidently, �m,R is m-conical for every m ∈ {1, 2, 3}.
The next result describes the relation between “regularity with respect to B ” of

temperate distributions and global wave-front sets.

Proposition 5.8 Let B be SG-admissible, and let f ∈ S ′(Rd). Then

f ∈ B ⇐⇒ WFB( f ) = ∅.

For the sake of completeness, we recall that microlocality and microellipticity hold
for these global wave-front sets and pseudo-differential operators in Op(SG(ω0)

r,ρ ), see
[26]. This implies that operators which are elliptic with respect to ω0 ∈ Pρ,δ(R2d)

when 0 < r, ρ ≤ 1 preserve the global wave-front set of temperate distributions. The
next result is an immediate corollary ofmicrolocality andmicroellipticity for operators
in Op(SG(ω0)

r,ρ ):

Proposition 5.9 Let m ∈ {1, 2, 3}, (r, ρ) ∈ Im, t ∈ R, ω0 ∈ Pr,ρ(R2d), a ∈
SG(ω0)

r,ρ (R2d) be SG-elliptic with respect to ω0 and let f ∈ S ′(Rd). Moreover, let
(B, C) be an SG-ordered pair with respect to ω0. Then

WFmC (Opt (a) f ) = WFmB( f ).
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5.2 Action of Generalised FIOs of SG Type on Global Wave-Front Sets

We let φ be the canonical transformation of T ∗Rd into itself generated by the phase
function ϕ ∈ Fr . This means that φ = (φ1, φ2) is the smooth function on T ∗Rd into
itself, defined by the relations

(x, ξ) = φ(y, η) ⇐⇒
{
y = ϕ′

ξ (x, η) = ϕ′
η(x, η),

ξ = ϕ′
x (x, η),

(5.6)

As we have seen in Sect. 3.5, such transformations appear in the Egorov’s theorem,
through which we prove Theorems 5.14 and Corollaries 5.15 and 5.16 below. This
justifies the following definition of admissibility of phase functions. Namely, the latter
are required to generate transformations of the type (5.6) which “preserve the shape”
of the different kinds of neighborhoods appearing in the Definition 5.1 of the set of
characteristic points.

Definition 5.10 Let ϕ ∈ Fr and let φ be the canonical transformation (5.6), generated
by ϕ. Let m ∈ {1, 2, 3} and �m be as in (5.2).

(1) ϕ is called 1-admissible at (y0, η0) ∈ �1 if, for every 1-cone X × � containing
φ(y0, η0) and r > 0, there is a 1-cone Y ×�0 containing (y0, η0) and R > 0 such
that

φ(y, η) ∈ (X × �)
⋂

�1,r when (y, η) ∈ (Y × �0)
⋂

�1,R ;

(2) ϕ is called 2-admissible at (y0, η0) ∈ �2 if, for every 2-cone � × X containing
φ(y0, η0) and r > 0, there is a 2-cone �0 ×Y containing (y0, η0) and R > 0 such
that

φ(y, η) ∈ (� × X)
⋂

�2,r when (y, η) ∈ (�0 × Y )
⋂

�2,R ;

(3) ϕ is called 3-admissible at (y0, η0) ∈ �3 if, for every 3-cone �1 × �2 containing
φ(y0, η0) and r > 0, there is a 3-cone �0,1 × �0,2 containing (y0, η0) and R > 0
such that

φ(y, η) ∈ (�1 × �2)
⋂

�3,r when (y, η) ∈ (�0,1 × �0,2)
⋂

�3,R .

Furthermore, ϕ is called m-admissible if it is m-admissible at all points (y, η) ∈ �m ,
and ϕ is called admissible if it is m-admissible for all m = 1, 2, 3.

Remark 5.11 Notice that the inverse transformation φ−1 is defined as in (5.6), by
exchanging the role of (x, ξ) and (y, η). If ϕ is m-admissible, m = 1, 2, 3, then both
φ and φ−1 satisfy the corresponding property in Definition 5.10.

Remark 5.12 Letϕ bem-admissible,m = 1, 2, 3, and letω0 ∈ P1,1(R2d)be invariant
with respect to the canonical transformation (5.6). For any a ∈ SG(ω0)

r,ρ (R2d), setting
ω̃0 = ω0 ◦ φ, we have
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(y0, η0) ∈ Charm(ω̃0)
(a ◦ φ) ⇐⇒ (x0, ξ0) = φ(y0, η0) ∈ Charm(ω0)

(a).

By Remark 5.11, similar properties hold with φ−1 in place of φ.

Remark 5.13 Let ϕm , m = 1, 2, 3, be phase functions such that

• ξ �→ ϕ1(x, ξ) is homogeneous of order 1 for large |ξ |;
• x �→ ϕ2(x, ξ) is homogeneous of order 1 for large |x |;
• x �→ ϕ3(x, ξ) and ξ �→ ϕ3(x, ξ) are homogeneous of order 1 for large |x | and |ξ |.

Such phase functions are common in the literature. An example of admissible phase
functions,which is not necessarily homogeneous, is given by the so calledSG-classical
phase functions. Families of such objects, smoothly depending on a parameter t ∈
[−T, T ], T > 0, are obtained by solving Cauchy problems associated with classical
SG-hyperbolic systems with diagonal principal part.

In fact, omitting the dependence on the time variable t , an SG-classical phase
functions ϕ admits expansions in terms which are homogeneous with respect to x ,
respectively ξ , satisfying suitable compatibility relations, see, e.g., [18,19]. In par-
ticular, ϕ admits a principal symbol, given by a triple (ϕ1, ϕ2, ϕ3), that is, it can be
written as

ϕ(x, ξ) = χ(ξ) ϕ1(x, ξ) + χ(x)(ϕ2(x, ξ) − χ(ξ) ϕ3(x, ξ))

mod SG0,0
1,1(R

2d).
(5.7)

In (5.7), χ is a 0-excision function, while χ(ξ) ϕ1(x, ξ), χ(x) ϕ2(x, ξ), χ(ξ) χ(x)
ϕ3(x, ξ) ∈ SG1,1

1,1(R
2d), where ϕ1 is 1-homogeneous with respect to the variable ξ ,

ϕ2 is 1-homogeneous with respect to the variable x , and ϕ3 is 1-homogeneous with
respect to each one of the variables x, ξ . Observe that then

ϕ(x, ξ) = χ(ξ) ϕ1(x, ξ) mod SG1,0
1,1(R

2d),

ϕ(x, ξ) = χ(x) ϕ2(x, ξ) mod SG0,1
1,1(R

2d),

ϕ(x, ξ) = χ(x) χ(ξ) ϕ3(x, ξ) mod SG0,1
1,1(R

2d) + SG1,0
1,1(R

2d). (5.8)

The homogeneity of the leading terms in (5.8) implies, in particular,

ϕ′
x (x, ξ) = |ξ |

[
ϕ′
1,x

(
x,

ξ

|ξ |
)

+ |ξ |−1r1(x, ξ)

]
for |ξ | > R,

ϕ′
ξ (x, ξ) = |x |

[
ϕ′
2,ξ

(
x

|x | , ξ
)

+ |x |−1r2(x, ξ)

]
for |x | > R,

ϕ′
x (x, ξ) = |ξ |

[
ϕ′
3,x

(
x

|x | ,
ξ

|ξ |
)

+ |ξ |−1(r31(x, ξ) + s31(x, ξ))

]

for |x |, |ξ | > R,

ϕ′
ξ (x, ξ) = |x |

[
ϕ′
3,ξ

(
x

|x | ,
ξ

|ξ |
)

+ |x |−1(r32(x, ξ) + s32(x, ξ))

]

for |x |, |ξ | > R, (5.9)
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with r1, r2, r31, r32 ∈ SG0,0
1,1(R

2d), s31 ∈ SG−1,1
1,1 (R2d), s32 ∈ SG1,−1

1,1 (R2d). By the
properties of generalised SG symbols and (5.9) it is possible to prove that all the
conditions in Definition 5.10 are fulfilled.

We can now state the first of our main results concerning the propagation of (global)
singularities under the action of the generalised SG FIOs.

Theorem 5.14 Let ϕ ∈ Fr be m-admissible, m ∈ {1, 2, 3}, ω0 ∈ Pr,ρ(R2d), a ∈
SG(ω0)

r,ρ (R2d), supported outsideRd×�,� ⊆ Rd open. Assume thatω0 isφ-invariant,
whereφ is as inTheorem3.16. Assumealso that a isSG-elliptic and (B, C) is aweakly-I
SG-ordered pair with respect to (r, ρ, ω0, ϕ,�). Then

WFmC (Opϕ(a) f ) = φ(WFmB( f )), f ∈ S ′(Rd), (5.10)

where φ is the canonical transformation (5.6), generated by ϕ.

Proof Weonly prove the result form = 3. The other cases follow by similar arguments
and are left for the reader. Let (y0, η0) = φ−1(x0, ξ0) ∈ �m

B( f ), m ∈ {1, 2, 3}, and
let cm ∈ SG0,0

1,1 be a symbol as in (5.5) and Remark 5.4 such that Op(cm)u ∈ B.
Recalling Remark 2.14, the weightω(x, ξ) = ϑ0,0(x, ξ) = 1 ∈ P1,1 is invariant with
respect to any SG diffeomorphism with SG0 parameter dependence. Let A = Opϕ(a),
Cm = Op(cm), and let B be a parametrix for A. Then for some qm we have

Qm = A ◦ Cm ◦ B, Qm = Op(qm),

or equivalently,

Qm ◦ A = A ◦ Cm mod Op(SG−∞,−∞)).

ByTheorem 3.18 and (5.6), we have qm = cm ◦φ−1 mod SG−1,−1
1,1 , which implies

qm ∈ SG0,0
1,1. Then (x0, ξ0) ∈ �m

C (A f ), since Qm(A f ) ≡ A(Cm f ) ∈ C by the
hypotheses on (B, C). This means that

φ(�m
B( f )) ⊆ �m

C (A f ). (5.11)

Complementing (5.11) with respect to �m , repeating a similar argument starting
from A f , recalling Remark 5.12 and that φ is a diffeomorphism, we finally obtain
(5.10). ��

The next result is proved in a similar fashion. In fact, with notation analogous to
the one used in the proof of Theorem 5.14, denoting B = Op∗

ϕ(b), we have that
Qm = B ◦ Cm ◦ B−1 satisfies Sym (Qm) = cm ◦ φ modulo lower order terms. It is
then enough to recall Remark 5.11. Evidently, when one deals with SG-ordered spaces
(B1, C1,B2, C2), both (5.10) and (5.12) hold, as stated in Corollary 5.16.
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Corollary 5.15 Let ϕ ∈ Fr be m-admissible, m ∈ {1, 2, 3}, ω0 ∈ P1,1(R2d), b ∈
SG(ω0)

1,1 (R2d), supported outside � × Rd , � ⊆ Rd open. Assume that ω0 is φ−1-
invariant, where φ is as in Theorem 3.16. Assume also that b is SG-elliptic and that
(B, C) is a weakly-II SG-ordered pair with respect to (r, ρ, ω0, ϕ,�). Then

WFmB(Op∗
ϕ(b) f ) = φ−1(WFmC ( f )), f ∈ S ′(Rd), (5.12)

with the inverse φ−1 of the canonical transformation (5.6).

Corollary 5.16 Let ϕ ∈ Fr be m-admissible, m ∈ {1, 2, 3}, ω1, ω2 ∈ P1,1(R2d).

Moreover, let a ∈ SG(ω1)
r,ρ (R2d), b ∈ SG(ω2)

r,ρ (R2d), with a supported outside Rd × �,
b supported outside � ×Rd , respectively, where � ⊆ Rd is open. Assume that a and
b are SG-elliptic and that (B1, C1,B2, C2) are SG-ordered with respect to

r, ρ, ω1, ω2, ϕ and �.

If f ∈ S ′(Rd), then

WFmC1(Opϕ(a) f ) = φ(WFmB1
( f )),

and

WFmB2
(Op∗

ϕ(b) f ) = φ−1(WFmC2( f )),

with the canonical transformation φ in (5.6) and its inverse φ−1, provided that ω1
and ω2 satisfy the invariance properties required in Theorem 5.14 and Corollary 5.15,
respectively.

The next result generalizes Theorem 5.14 and Corollaries 5.15 and 5.16 to the
case where the involved amplitudes are not SG-elliptic. In such a situation, the set
of admissible phase functions needs to be slightly restricted, similarly to the calculus
of Fourier integral operators developed in [36]. Such restriction is not very harmful,
since the phase functions we are mostly interested in are those appearing in the next
Sect. 5.3, and it can be proved that they fulfill (5.14) below if a sufficiently small
“time interval” J ′ = [−T ′, T ′] is chosen. This can be easily verified by checking the
technique of solution of the involved eikonal equations, see, e.g., [15,17,18,36]. Here
the symbols satisfy

supp a ⊆ Rd × ��, supp b ⊆ �� × Rd (5.13)

for suitable open set �, where �� equals Rd \ �, and the phase function satisfies

|〈x〉−1+|α|〈ξ 〉−1+|β|Dα
x D

β
ξ κ(x, ξ)| ≤ τ, x, ξ ∈ Rd , |α + β| ≤ 2,

where κ(x, ξ) = ϕ(x, ξ) − 〈x, ξ 〉 ∈ SG1,1
1,1(R

2d). (5.14)
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Theorem 5.17 Let ϕ ∈ Fr be m-admissible, m ∈ {1, 2, 3}, and fulfill (5.14) for a
fixed τ ∈ (0, 1). Also let ω1 ∈ Pr,ρ(R2d), r, ρ ≥ 1/2, and let a ∈ SG(ω1)

r,ρ (R2d)

satisfy (5.13). Finally assume that (B1, C1) is a weakly-I SG-ordered pair with respect
to (r, ρ, ω1, ϕ,�). Then

WFmC1(Opϕ(a) f ) ⊆ �m
B1

( f ),
�m
B1

( f ) = {(x, ξ) = φ(y, η); (y, η) ∈ WFmB1
( f )}conm , f ∈ S ′(Rd),

(5.15)

where φ is the canonical transformation generated by ϕ in (5.6).

Theorem 5.18 Let ϕ ∈ Fr be m-admissible, m ∈ {1, 2, 3}, and fulfill (5.14) for a fixed
τ ∈ (0, 1). Also let ω2 ∈ Pr,ρ(R2d), r, ρ ≥ 1/2, and let b ∈ SG(ω2)

r,ρ (R2d) satisfy
(5.13). Finally assume that (B2, C2) is a weakly-II SG-ordered pair with respect to
(r, ρ, ω2, ϕ,�) Then

WFmB2
(Op∗

ϕ(b) f ) ⊆ �m
C2( f )

∗,
�m
C2( f )

∗ = {(y, η) = φ−1(x, ξ); (x, ξ) ∈ WFmC2( f )}conm , f ∈ S ′(Rd),
(5.16)

where φ−1 is the inverse of the canonical transformation φ in (5.6).

Corollary 5.19 Let ϕ ∈ Fr be m-admissible, m ∈ {1, 2, 3}, and fulfill (5.14) for a
fixed τ ∈ (0, 1). Also let ω1, ω2 ∈ Pr,ρ(R2d), r, ρ ≥ 1/2, and a ∈ SG(ω1)

r,ρ (R2d) and

b ∈ SG(ω2)
r,ρ (R2d) satisfy (5.13). Assume also that (B1, C1,B2, C2) are SG-ordered

with respect to

r, ρ, ω1, ω2, ϕ and �.

Then both (5.15) and (5.16) hold.

In the results above, V conm for V ⊆ �m , is the smallest m-conical subset of �m

which includes V , m ∈ {1, 2, 3}.
We prove only Theorem 5.17. Theorem 5.18 follows by similar arguments and is

left for the reader.

Proof of Theorem 5.17 Since here we are dropping the ellipticity hypothesis on the
amplitude a, we use only the composition results between generalised SG pseudo-
differential operators and Fourier integral operators given in Sect. 3.3. That is, the
proofs of the theorem again rely on the generalised SG asymptotic expansions dis-
cussed in [22], and on the properties of the admissible phase functions. We now prove
(5.15) in detail for the case m = 3, by showing the opposite inclusion between the
complements of the involved sets with respect to �3. In the sequel, we write B and C
in place of B1 and C1, respectively.

Let (x0, ξ0) /∈ �3
B( f ) for f ∈ B, and set 2N = min{|x0|, |ξ0|}>0. By its definition

in (5.15), �3
B( f ) is a closed 3-conical set. Then, choosing ε > 0 sufficiently small, it
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is possible to find a 3-conical set of the form

�
4ε,4ε,N/4
3,x0,ξ0

=
{
(x, ξ) ∈ R2d;

∣∣∣∣ x|x | − x0
|x0|

∣∣∣∣ < 4ε,
∣∣∣∣ ξ

|ξ | − ξ0

|ξ0|
∣∣∣∣ < 4ε, |x |, |ξ | ≥ N

4

}

such that �4ε,4ε,N/4
3,x0,ξ0

∩�3
B( f ) = ∅. Then, as it is also possible (see Sect. 5.1 above and

[14]), pick q ∈ SG0,0
1,1, such that

supp q ⊆ �
2ε,2ε,N/2
3,x0,ξ0

and (x, ξ) ∈ �
ε,ε,N
3,x0,ξ0

⇒ q(x, ξ) = 1.

We now observe that (y0, η0) = φ−1(x0, ξ0) /∈ WF3B( f ), in view of the definition
of �3

B( f ). Setting 2Ñ = min{|y0|, |η0|}, we can consider the subset of �3 given by

W = WF3B( f ) ∩ �Ñ
3 .

W is closed, and, by Remark 5.7 it is 3-conical. Then there exist two 3-conical neigh-
borhoods U, V of W such that W ⊂ V ⊂ U ⊂ �3. For instance, for an arbitrarily
small δ̃ > 0, one can consider the coverings of W given by

Ũ =
⋃

(z0,ζ0)∈W
�
4δ̃,4δ̃,Ñ/4
3,z0,ζ0

, Ṽ =
⋃

(z0,ζ0)∈W
�
2δ̃,2δ̃,Ñ/2
3,z0,ζ0

.

By a standard compactness argument on the unit sphere of Rd , define V and U as

suitable finite subcoverings extracted from Ṽ and Ũ , respectively. Since �
2δ̃,2δ̃,Ñ/4
3,z0,ζ0

⊂
�
4δ̃,4δ̃,Ñ/4
3,z0,ζ0

, we get W ⊂ V ⊂ U , as desired. Then take a symbol χ ∈ SG0,0
1,1 such that

suppχ ⊂ U, (y, η) ∈ V ⇒ χ(y, η) = 1,

supp q ∩ {(x, ξ) = φ(y, η) : (y, η) ∈ suppχ} = ∅,

which is possible by choosing δ̃ small enough, in view of the hypotheses and of
(3) in Definition 5.10. Indeed, we can start from a 3-conical neighbourhood Z ⊃
�3
B( f )∩�N

3 , obtained as afinite unionof sets of the form�
2ε,2ε,N/2
3,t0,τ0

, (t0, τ0) ∈ �3
B( f ),

disjoint from �
4ε,4ε,N/4
3,x0,ξ0

, by choosing ε > 0 suitably small. Observing that all the

involved sets are 3-conical, it is then possible to choose δ̃ small enough such that
φ(U ) ⊂ Z , and χ with the desired properties.

Let us now consider

[Op(q) ◦ Opϕ(a)]( f ) = [Op(q) ◦ Opϕ(a) ◦ Op(1 − χ)] f
+[Op(q) ◦ Opϕ(a) ◦ Op(χ)] f. (5.17)
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By Remark 2.14, the weight ϑ0,0(x, ξ) = 1 is invariant with respect to any SG
diffeomorphism with SG0 parameter dependence.

For C = Op(q) ◦ Opϕ(a) ◦ Op(χ), we apply Theorems 3.7 and 3.8, and find that
C = Opϕ(c)ModOp(S ) with

c(x, η) ∼
∑

pαβkl(x, η) · (∂kξ q)(x, ϕ′
x (x, η)) · (∂α

ξ ∂β
x a)(x, η)

· (∂ lxχ)(ϕ′
ξ (x, η), η) ∼ 0,

which implies that C : S ′ → S . In fact, setting ξ = ϕ′
x (x, η), y = ϕ′

ξ (x, η), by (5.6)

we have (x, ξ) = φ(y, η), and, by construction, supp ∂kξ q ∩φ(supp ∂ lxχ) = ∅. Now,
setting

� = {(y, η) ∈ supp(1 − χ) : |y|, |η| ≥ Ñ/2},

again by construction we have � ∩ WF3B( f ) = ∅. Then there exist p ∈ SG0,0
1,1 such

that Op(p) f ∈ B and p(x, ξ) ≥ C > 0 on �, and r, s ∈ SG0,0
1,1 such that

Op(r) − Op(s) ◦ Op(p) : S ′ → S , (5.18)

with r(x, ξ) ≡ 1 for |x |, |ξ | ≥ N
2 belonging to a 3-conical neighborhood of �. This

can be proved by relying on the concept of SG-ellipticity with respect to a symbol (or
local md-ellipticity, cf. [14], Ch. 2, §3). We can write

Op(1 − χ) f = [Op(1 − χ) ◦ Op(1 − r)] f
+ [Op(1 − χ) ◦ [Op(r) − Op(s) ◦ Op(p))] f
+ [Op(1 − χ) ◦ Op(s)][Op(p) f ].

The first term is inS , since the symbols of the two operators in the composition have,
by construction, disjoint supports. The second term is in S as well, by (5.18). The
third term is in B, since this is true for Op(p) f , Op(1 − χ) ◦ Op(s) = Op(λ), with
λ ∈ SG0,0

1,1, and B is SG-admissible.
By all the considerations above, the mapping properties of Opϕ(a), the fact that

also C is SG-admissible and that q ∈ SG0,0
1,1, we get

[Op(q) ◦ Opϕ(a)] f = [Op(q) ◦ Opϕ(a) ◦ Op(1 − χ)] f mod S

= [Op(q) ◦ Opϕ(a)] [Op(1 − χ) f ]︸ ︷︷ ︸
∈B

mod S

giving that

[Op(q) ◦ Opϕ(a)] f ∈ C,
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which proves (x0, ξ0) /∈ WF3C(Opϕ(a) f ), and the claim. We observe that (5.15) for
the case m = 1 can be proved by the same argument used, e.g., in [36], Chap. 10,
Sect. 3. The casem = 2 of (5.15) can then be obtained in a completely similar fashion,
by exchanging the role of variable and covariable. The details are left for the reader. ��
Remark 5.20 As it was observed in [26], there is a simple and useful relation between
the global wave-front set of f and of f̂ . Namely, with m, n ∈ {1, 2, 3} such that n
equals 2, 1 and 3, when m equals 1, 2 and 3, respectively, we have

T
(
WFmB( f )

) = WFnBT
( f̂ ),

where B = M(ω,B), the torsion T is given by T (x, ξ) = (−ξ, x), and BT =
{ F ◦ T = T ∗F ; F ∈ B }, ωT = ω ◦ T , BT = M(ωT ,BT ). Notice that F is
bijective and continuous, together with its inverse, from BT onto B.

It is also immediate to obtain a similar relation among the wave-front sets of f and
f̌ , where f̌ = f ◦R is the pull-back of f under the action of the reflection R(y) = −y.
Indeed, since obviously, for any a ∈ SGm,μ

r,ρ and f ∈ S ′,

Op(a) f̌ = [Op(ǎ) f ] ,̌

it follows, for m ∈ {1, 2, 3},

R(WFmB( f )) = WFmB̌( f̌ ),

where B̌ = { R∗F ; F ∈ B }, B̌ = M(ωR, B̌), where ωR = ω ◦ R. Notice that, in
many cases, B̌=B. For instance, this is true for all the functional spaces considered in
Sect. 4, and, in general, for all M(ω,B) such that B̌ = B and ω is even. Similarly to
the above, R∗ is bijective and continuous, together with its inverse, from B onto B̌.

By (3.6), rewritten as

Op∗−ϕ∗(a∗) f = (F ◦ Opϕ(a) ◦ F−1 f ) ,̌ f ∈ S ′,

and the above definitions of BT and B̌, it also follow that, if (B, C) is weakly-I SG-
ordered with respect to (r, ρ, ω0, ϕ,�), we find that, for any a ∈ SG(ω0)

r,ρ , supported
outside Rd × �, Op∗−ϕ∗(a∗) : BT → ČT continuously, that is, (ČT ,BT ) is weakly-II
SG-ordered with respect to (r, ρ, ω0, ϕ,�).

5.3 Applications to SG-Hyperbolic Problems

In this subsection we apply the results obtained above to the SG-hyperbolic problems
considered in [18,19], to which we refer for the details omitted here. We show how,
under natural conditions, the singularities described by the generalised wave-front sets
WFmB(g),m = 1, 2, 3, for a scalar- or vector-valued initial data g ∈ B, propagate to the
solution f (t) = f (t, · ) ∈ B, t ∈ [−T, T ]. More precisely, the points of WFmC ( f (t))
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lie on bicharacteristics curves determined by WFmB(g), m = 1, 2, 3, and by the phase
functions of the Fourier operators Opϕk (t)(ak(t)), k = 1, . . . , μ, such that, modulo
smooth remainders (see below),

f (t) = (Opϕ1(t)(a1(t))(t) + · · · + Opϕμ(t)(aμ(t))(t))g.

Notice that the hyperbolic operators involved in such Cauchy problems arise natu-
rally as local representations of (modified) wave operators of the form L = �g − V ,
with a suitable potential V and the D’Alembert operator �g, on manifolds of the form
Rt × Mx , equipped with a hyperbolic metric g = diag(−1, h), where h is a suitable
Riemannian metric on the manifold with ends M . In this way,

L = �g − V = −∂2t + �h − V = −∂2t + P,

where �h is the Laplace-Beltrami operator on M associated with the metric h and
we have set P = �h − V . In the following Example 5.21, we show that this indeed
occurs, considering a rather simple situation with dim M = 2.

Example 5.21 Assume dim M = 2 and consider, as local model of one of the “ends”
of M , the cylinder in R3 given by u2 + v2 = 1, z > 1, that is, the manifold M∞ =
S1 × (1,+∞). First, we have to equip M∞ with a S -structure, namely, an SG-
compatible atlas (see [14,40]). This can be easily accomplished here, by choosing
a standard product atlas on S1 × (1,+∞), identifying S1 with the unit circle in R2

centred at the origin, as we now explain. With coordinates (u, v) on R2, set

�′
1 := S1\{(0, 1)}, �′

2 := S1\{(0,−1)},
ν′
1 : �′

1 → R : (u, v) �→ u

1 − v
,

ν′
2 : �′

2 → R : (u, v) �→ u

1 + v

It is immediate to show that (ν′
1)

−1 : ν′
1(�

′
1) → �′

1 ⊂ S1 is

t �→
(

2t

1 + t2
,−1 − t2

1 + t2

)
,

and (ν′
2)

−1 : ν′
2(�

′
2) → �′

2 ⊂ S1 is

t �→
(

2t

1 + t2
,
1 − t2

1 + t2

)
,

so that, for t ∈ ν′
2(�

′
1

⋂
�′

2) = (−∞, 0) ∪ (0,+∞), we find

ν′
12(t) = ν′

1((ν
′
2)

−1(t)) = ν′
1

(
2t

1 + t2
,
1 − t2

1 + t2

)
= 1

t
.
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Now set

�1 := �′
1 × (1,+∞), �2 := �′

2 × (1,+∞),

define ν1 : �1 → U1 ⊂ R2 by

(u, v, z) �→ (ν′
1(u, v), 1)

z√
1 + (ν′

1(u, v))2
=
(

u

1 − v
, 1

)
z√

1 + u2

(1 − v)2

,

and ν2 : �2 → U2 ⊂ R2 by

(u, v, z) �→ (ν′
2(u, v), 1)

z√
1 + (ν′

2(u, v))2
=
(

u

1 + v
, 1

)
z√

1 + u2

(1 + v)2

.

Again, it is easy to obtain the expressions of ν−1
1 : U1 → �1 and ν−1

2 : U2 → �2,
and to prove that, with coordinates x = (x1, x2) on R2,

ν12(x1, x2) = ν1((ν2)
−1(x1, x2)) =

(
x2
x1

, 1
)
x1 = (x2, x1),

which shows that the atlas {(� j , ν j ), j = 1, 2} defines a S -structure on M∞, since
〈ν12(x)〉 = 〈x〉 (see again, e.g., [14,40]). Next, for any μ > 0, define a metric h′ on
{(u, v, z) ∈ R3 : z > 1} by

(h′
i j ) :=

⎛
⎜⎜⎜⎜⎜⎜⎝

z2

4〈z〉μ 0 0

0
z2

4〈z〉μ 0

0 0
1

〈z〉μ

⎞
⎟⎟⎟⎟⎟⎟⎠

.

With x ∈ U1, and denoting by J1 the Jacobian matrix of ν−1
1 , it turns out that the

pull-back metric h := (ν−1
1 )∗h′ on M∞ is given by

(hi j ) = J1 ((ν−1
1 )∗h′

i j )|U1 J
t
1 =

⎛
⎜⎝

1

〈x〉μ 0

0
1

〈x〉μ

⎞
⎟⎠ .

In the same way, one can show that the metric h has the same local expression for
x ∈ U2. Finally, let us compute the Laplace-Beltrami operator on M∞ associated with
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h in the chosen local coordinates. We have, of course, (hi j ) = diag(〈x〉μ, 〈x〉μ) and√| det h| = 〈x〉−μ, thus, for any f ∈ C∞(M∞),

�h f = 1
〈x〉−μ

∑2
i, j=1

∂
∂x j

(
〈x〉−μhi j ∂ f

∂xi

)

= 〈x〉μ ∑2
i, j=1

∂
∂x j

(
δi j

∂ f
∂xi

)

= 〈x〉μ ∑2
i=1

∂2 f
∂x2i

= 〈x〉μ
(

∂2

∂x21
+ ∂2

∂x22

)
f,

that is

�h = 〈x〉μ�,

where � is the standard Laplacian on R2. Choosing V (x) = 〈x〉μ, the local symbol
of P = �h − V is

p(x, ξ) = −〈x〉μ〈ξ 〉2 = −(1 + x21 + x22 )
μ
2 (1 + ξ21 + ξ22 ), (5.19)

which obviously belongs to SG2,μ
1,1 (R2 × R2) and is SG-elliptic. In [20], the spectral

theory for elliptic self-adjoint operators, generated by local symbols with (different)
orders m, μ > 0, has been considered. On the other hand, the case μ = 2 is of special
interest in the context of the SG-hyperbolic operators (see below), since then we have
that L , in local coordinates, is given by

L = �g − V = −∂2t + �h − V
= D2

t − P = D2
t − 〈 · 〉2〈D〉2. (5.20)

In the sequel of this subsection, the subscript “cl” denotes the subclasses of SG sym-
bols which are classical, see [18]. Notice that the symbol (5.19) actually belongs to
SG2,μ

1,1,cl(R
2 × R2). We first need to recall some definitions and results, mainly taken

from [15,16,18].

Definition 5.22 Let J = [−T, T ] ⊂ R, T > 0, and consider the linear operator

L = Dν
t + Op(p1(t)) D

ν−1
t + · · · + Op(pν(t)), (5.21)

with p j = p j (t, x, ξ) ∈ C∞(J,SG1,1
1,1,cl(R

2d)). Let

l(x, ξ, t, τ ) = τ ν + q1(t, x, ξ)τ ν−1 + · · · + qν(t, x, ξ)

be the principal symbol of L , with q j ∈ C∞(J,SG j, j
1,1,cl(R

2d)) such that q j (t) =
q j (t, · ) is the principal symbol of p j (t) = p j (t, · ), in the sense of (5.7). L is called
SG-classical hyperbolic with constant multiplicities if the characteristic equation

τ ν + q1(t, x, ξ)τ ν−1 + · · · + qν(t, x, ξ) = 0 (5.22)
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hasμ ≤ ν distinct real roots τ j = τ j (t, x, ξ) ∈ C∞(J,SG1,1
1,1,cl(R

2d))with multiplic-
ities l j , 1 ≤ l j ≤ ν, j = 1, . . . , μ, which satisfy, for a suitable C > 0 and all t ∈ J ,
x, ξ ∈ Rd , |x | + |ξ | ≥ R > 0,

τ j+1(t, x, ξ) − τ j (t, x, ξ) ≥ C〈ξ 〉〈x〉, j = 1, . . . , μ − 1. (5.23)

L is called strictly hyperbolic if it is hyperbolic with constant multiplicities and the
multiplicity of all the τ j , j = 1, . . . , ν = μ, is equal to 1.

A standard strategy to solve the Cauchy problem

{
L f (t) = 0, t ∈ J,
Dk
t f (0) = gk, k = 0, . . . , ν − 1,

(5.24)

for L hyperbolic with constant multiplicities and initial data gk , k = 0, . . . , ν − 1,
chosen in appropriate functional spaces, is to show that this is equivalent to solving,
modulo smooth elements, a Cauchy problem for a first order system

{
∂F

∂t
(t) − i K (t) F(t) = 0, t ∈ J,

F(0) = G,

with a coefficient matrix K of special form. In our case, one obtains that K =
Op((ki j (t, x, D))i, j ), is a μν × μν matrix of SG pseudo-differential operators with
symbols ki j ∈ C∞(J,SG1,1

1,1,cl). Under suitable assumptions, see [18,19], the princi-

pal part k1 of k = k1 + k0, k j ∈ C∞(J,SG j, j
1,1,cl), j = 0, 1, turns out to be diagonal,

so that the system will be symmetric, cfr. [14–16]. This implies that the corresponding
Cauchy problem is well-posed. One of the main advantages for using this algorithm is
the following Proposition 5.23, which is an adapted version of the Mizohata Lemma
of Perfect Factorization, proved in [17] for the general SG symbols (see also the
references quoted therein).

Proposition 5.23 Let L be an SG-classical hyperbolic linear operator with constant
multiplicities l j , j = 1, . . . , μ ≤ ν, as in Definition 5.22. Then it is possible to factor
L as

L = Lμ · · · L1 +
ν∑

s=1

Op(rs(t)) D
ν−s
t

with L j = (Dt − Op(τ j (t)))l j + ∑l j
k=1 Op(s jk(t)) (Dt − Op(τ j (t)))l j−k and

s jk ∈ C∞(J,SGk−1,k−1
1,1,cl (R2d)), rs ∈ C∞(J,S (R2d)),

j = 1, . . . , μ, k = 1, . . . , l j , s = 1, . . . , ν.

The following corollary, also obtained in [17], follows by means of a reordering of
the roots τ j of the principle symbol of L .



326 J Fourier Anal Appl (2016) 22:285–333

Corollary 5.24 Let c j , j = 1, . . . , μ, denote the reorderings of the μ-tuple (1, . . . ,
μ) given by

c j (i) =
{
j + i for j + i ≤ μ

j + i − μ for j + i > μ,

i, j = 1, . . . , μ,

that is, c1 = (2, . . . , μ, 1), …, cμ = (1, . . . , μ). Then, under the same hypotheses of
Proposition 5.23, we have

L = L(m)
cm (μ) · · · L(m)

cm(1) +
ν∑

s=1

Op(r (m)
s (t))Dν−s

t

with L(m)
j = (Dt − Op(τ j (t)))l j + ∑l j

k=1 Op(s
(m)
jk (t)) (Dt − Op(τ j (t)))l j−k and

s(m)
jk ∈ C∞(J,SGk−1,k−1

1,1,cl (R2d)), r (m)
s ∈ C∞(J,S (R2d)),

m, j = 1, . . . , μ, k = 1, . . . , l j , s = 1, . . . , ν.

Definition 5.25 We say that an SG-classical hyperbolic operator L is of Levi type if
it satisfies the SG-Levi condition1

s(m)
jk ∈ C∞(J,SG0,0

1,1,cl(R
2d)), m, j = 1, . . . , μ, k = 1, . . . , l j . (5.25)

Theorem 5.26 below gives the well-posedness for the Cauchy problem (5.24) and
the propagation results of the global wave-front sets WFmC ( f (t)), m = 1, 2, 3, for
the corresponding solution f (t), under natural assumptions on the SG-admissible
initial data spaces Bk , k = 0, . . . , ν − 1, and the SG-admissible solution space C, see
below for the precise statement. It immediately follows by the analysis of SG-classical
hyperbolic Cauchy problems in [18], by Sect. 4 and by Theorem 5.14.

We here consider an SG-classical hyperbolic operator L with constantmultiplicities
and of Levi type, and denote by l = max{l1, . . . , lμ} the maximum multiplicity of
the distinct real roots τ j , j = 1, . . . , μ, of the characteristic equation (5.22). Then, as
proved in [15,18], for any choice of initial data gk ∈ S ′(Rd), k = 0, . . . , ν − 1, the
Cauchy problem (5.24) admits a unique solution f ∈ C(J ′,S ′(Rd)), J ′ = [−T ′, T ′],
0 < T ′ ≤ T . Collecting the initial conditions in the vector

g =

⎛
⎜⎜⎜⎝

g0
g1
...

gν−1

⎞
⎟⎟⎟⎠ ,

1 Let us observe that (5.25) needs to be fulfilled only for a single value of m.
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the solution f is given by

f (t) = (Opϕ1(t)(a1(t)) + · · · + Opϕμ(t)(aμ(t)))g,

where each Opϕ j (t)(a j (t)) is a type I FIO with regular phase function ϕ j ∈
C∞(J ′,Fr ) ∩ C∞(J ′,SG1,1

1,1,cl(R
2d)), solution of the eikonal equation associated

with τ j , and vector-valued amplitude functions a j = (a j0, . . . , a jν−1) with a jk ∈
C∞(J ′,SGl−k−1,l−k−1

1,1,cl (R2d)), j = 1, . . . , μ, k = 0, . . . , ν − 1.

Theorem 5.26 Let L be as above, and let gk ∈ Bk , k = 0, . . . , ν −1, with the ν-tuple
of SG-admissible spaces (B0, . . . ,Bν−1). Also assume that the SG-admissible space
C is such that (Bk, C), k = 0, . . . , ν − 1, are weakly-I SG-ordered pairs with respect
to

1, 1, 〈x〉l−k−1〈ξ 〉l−k−1, ϕk(t) and �.

Then the Cauchy problem (5.24) is well-posed with respect to (B0, . . . ,Bν−1) and C,
u ∈ C(J ′, C), and

WFmC ( f (t)) ⊆
μ⋃
j=1

ν−1⋃
k=0

(φ j (t)(WFmBk
(gk)))

conm , m = 1, 2, 3, (5.26)

where φ j (t) is the canonical transformation (5.6) associated with the phase function
ϕ j (t).

Corollary 5.27 Assume that the hypotheses of Theorem 5.26 hold. ThenWFmC ( f (t)),
t ∈ J ′, m = 1, 2, 3, consists of arcs of bicharacteristics, generated by the phase
functions ϕ j (t) and emanating from points belonging toWFmBk

(gk), k = 0, . . . , ν −1.

5.4 Examples

We conclude with some examples where our propagation of singularities results can
be applied. We initially look at the first order Cauchy problem

{
(Dt + Op(p1(t))) f (t) = 0, t ∈ [−T, T ],
u|t=0 = g.

(5.27)

In (5.27) we assume that p1(t) is a family of classical SG symbols of order (1,1)
depending smoothly on t . The hyperbolicity condition means that its principal sym-
bol q1(t) such that p1(t) − q1(t) ∈ SG0,0

1,1,cl(R
2d), is real-valued. We then have the

representation of the solution to (5.27) in the form f (t) = Opϕ(t)(a(t))g. Theorem
4.1, Remark 4.2 and Theorem 4.3 describe the loss of regularity and weight for the
solutions in the corresponding functional settings.
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Example 5.28 Let 1 < p < ∞ and g ∈ H p
σp,σp (R

d), where we have set σp = (d −
1)

∣∣∣∣ 1p − 1

2

∣∣∣∣. Assume also that p1(t, x, ξ) = 〈c1(t, x), ξ 〉+ c0(t), so that q1(t, x, ξ) =
〈q01(t, x), ξ 〉. We restrict here to large frequencies, as in [23], choosing a 0-excision
function χ ∈ C∞(Rd) such that χ(ξ) = 1 for |ξ | ≥ 2ε, for some sufficiently large
ε > 0. Then Theorem 4.1 and Remark 4.2 imply that for each t ∈ [−T ′, T ′], 0 <

T ′ ≤ T , the solution f of the Cauchy problem (5.27) satisfies χ(D) f (t) ∈ L p(Rd).
Moreover, for every s, σ ∈ R, there are CT > 0 and 0 < T ′ ≤ T such that

‖χ(D) f (t)‖H p
s,σ (Rd ) ≤ CT ‖g‖H p

s+σp ,σ+σp (Rd ),

for all t ∈ [−T ′, T ′] and all g ∈ H p
s+σp,σ+σp

(Rd). Finally, since the hypotheses of

Theorem 5.26 are satisfied, with C = H p
s,σ (Rd), B0 = H p

s+σp,σ+σp
(Rd), r = ρ = 1,

k = l = 1, ϕ(t), and � = Bε(0), we have

WFmC (χ(D) f (t)) ⊆ (φ(t)(WFmB0
(g)))conm , m = 1, 2, 3,

where φ(t) is the canonical transformation (5.6) associated with the phase function
ϕ(t), which turns out to be (positively) homogeneous with respect to the covariable
(since this is true for q1(t), see, e.g., [36]).

Example 5.29 Let s, σ ∈ R and 1 ≤ p < ∞ be such that

s ≤ −d

∣∣∣∣12 − 1

p

∣∣∣∣ , σ ≤ −d

∣∣∣∣12 − 1

p

∣∣∣∣ ,

and let ω j ∈ P1,1(R2d), j = 1, 2, be such that

ω2(x, ϕ
′
x (x, ξ)) � ω1(ϕ

′
ξ (x, ξ), ξ) · 〈x〉s〈ξ 〉σ .

Also assume that ω j is (φ j , j)-invariant, j = 1, 2, with φ1 : x �→ ϕ′
ξ (x, ξ) and

φ2 : ξ �→ ϕ′
x (x, ξ). This clearly holds true, in particular, for the trivial weights

ω j (x, ξ) = 1 and for product type weights ω j (x, ξ) = 〈x〉s j 〈ξ 〉σ j , with appropri-
ate choices of s j , σ j ∈ R, j = 1, 2.

Theorem 4.3 implies that, if g ∈ Mp
(ω1)

(Rd). Then the solution f (t) of the Cauchy

problem (5.27) satisfies f (t) ∈ Mp
(ω2)

(Rd), for each t ∈ [−T ′, T ′], 0 < T ′ ≤ T .
Moreover, there are CT > 0, 0 < T ′ ≤ T such that

‖ f (t)‖Mp
(ω2)

(Rd ) ≤ CT ‖g‖Mp
(ω1)

(Rd ),

for all t ∈ [−T ′, T ′] and all g ∈ Mp
(ω1)

(Rd). Finally, since the hypotheses of Theorem

5.26 are satisfied, with C = Mp
(ω2)

(Rd), B0 = Mp
(ω1)

(Rd), r = ρ = 1, k = l = 1,
ϕ(t), and � = ∅, we have

WFmC ( f (t)) ⊆ (φ(t)(WFmB0
(g)))conm , m = 1, 2, 3,
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with the canonical transformation φ(t) associated with ϕ(t) in (5.6). Completely sim-
ilar results hold true when Mp

(ω j )
(Rd) is replaced by M∞

0,(ω j )
(Rd), j = 1, 2.

As a first example involving second order SG-hyperbolic operators, we consider a
variant of (5.20), choosing V ≡ 0 and focusing again on large frequencies, by adding
a correction term of the form 〈 · 〉2(1− χ̃ (D)2)|D|2, with a 0-excision function χ̃ , that
is

⎧⎨
⎩
L χ̃ f (t) = (D2

t − 〈 · 〉2 (χ̃(D)|D|)2) f (t) = 0, t ∈ [−T, T ],
f |t=0 = g0,
Dt f |t=0 = g1.

(5.28)

In this case, the results on SG-hyperbolic operators stated in Sect. 5.3 cannot be applied
directly, since (5.23) does not hold for the two roots τ1,2(x, ξ) = ∓〈x〉χ̃ (ξ)|ξ |.
Nevertheless, we can anyway switch from the Cauchy problem (5.28) to an equiv-
alent first order 2 × 2 system, setting F1(t) = f (t), F2 = 〈D〉−1〈 · 〉−1Dt f (t) =
〈D〉−1〈 · 〉−1Dt F1(t), namely,

⎧⎨
⎩

∂F

∂t
(t) = i

[
Op(k1) + Op(k0)

]
F(t),

F(0) = G,
(5.29)

with

G =
(

g0
〈D〉−1〈 · 〉−1g1

)
, k1(x, ξ) =

(
0 〈x〉〈ξ 〉

〈x〉(χ̃(ξ)|ξ |)2)〈ξ 〉−1 0

)
,

and k0 a matrix of SG symbols of order 0, 0. The principal part k1 of the coefficient
matrix has, of course, real distinct eigenvalues τ1,2 in the region |ξ | ≥ c > 0. The
theory developed in [14], Ch. 6, shows that the system (5.29) can be symmetrized
and its principal part diagonalized, modulo order 0, 0 operators. By a variant of the
computations in [15], in the region |ξ | ≥ c > 0 it can also be perfectly diagonalized,
that is, the two equations can be decoupled, up to smoothing operators. Summing up,
in the case of high frequencies, the Fourier integral operator method can be applied to
(5.29), with the consequences described in the next Example 5.30.

Example 5.30 Let 1 < p < ∞, s, σ ∈ R, g0 ∈ H p
s+1+σp,σ+1+σp

(Rd), and g1 ∈
H p
s+σp,σ+σp

(Rd). Choose a 0-excision function χ as in Example 5.28 with ε > 0 suf-

ficiently large. Then the solution f (t) of (5.28) satisfies χ(D) f (t) ∈ H p
s+1,σ+1(R

d),
t ∈ [−T ′, T ′], 0 < T ′ ≤ T . Moreover, (5.26) holds with μ = 2, ν = 1,
C = H p

s+1,σ+1(R
d),B0 = H p

s+1+σp,σ+1+σp
(Rd) andB1 = H p

s+σp,σ+σp
(Rd), namely

WFmC (χ(D) f (t))⊆
2⋃
j=1

[
(φ j (t)(WFmB0

(g0)))
conm ∪ (φ j (t)(WFmB1

(g1)))
conm

]
,
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m = 1, 2, 3, where φ j (t) is the canonical transformation (5.6) generated by the phase
function ϕ j (t), solution to the eikonal equation associated with τ1,2, which turn out to
be positively homogeneous with respect to the coverable (since this holds for τ1,2).

Consider now the Cauchy problem

⎧⎨
⎩
L f (t) = (D2

t − 〈 · 〉2〈D〉2) f (t) = 0, t ∈ [−T, T ],
f |t=0 = g0,

Dt f |t=0 = g1,
(5.30)

involving the operator (5.20). First of all, we prove that L is SG-classical strictly
hyperbolic. Indeed, p2(x, ξ) = 〈x〉2〈ξ 〉2 ∈ SG2,2

1,1,cl(R
2d), with, for instance,

q2(x, ξ) = χ(ξ)|ξ |2〈x〉2 + χ(x)(〈ξ 〉2|x |2 − χ(ξ)|x |2 · |ξ |2) ≥ 0,

for a fixed 0-excision function χ . The characteristic equation τ 2 − q2(x, ξ) = 0 has
then two real distinct solutions, namely

τ1,2(x, ξ) = ∓√
q2(x, ξ) = ∓τ0(x, ξ) ∈ SG1,1

1,1,cl(R
2d), (5.31)

such that

τ2(x, ξ) − τ1(x, ξ) = 2τ0(x, ξ) � 〈x〉〈ξ 〉 for |x | + |ξ | ≥ R,

with a suitable R > 0. Writing, as above, L j = Dt −Op(τ j ) +Op(s j ), j = 1, 2, we
find

L2L1 = D2
t − Op(τ0)

2 + (Op(s1) + Op(s2))Dt + Op(s2)Op(s1)

= D2
t − Op(q2) + Op(a) + (Op(s1) + Op(s2))Dt + Op(s2)Op(s1),

where

a(x, ξ) ∼
∑
α

i |α|

α! D
α
ξ τ0(x, ξ)Dα

x τ0(x, ξ) ∈ SG0,0
1,1,cl(R

2d).

Proposition 5.23 implies that there exist s1, s2 ∈ SG0,0
1,1,cl(R

2d), s1 = s0 = −s2 + r1,

r1 ∈ S (R2d) such that

Op(a) − Op(s0)
2 = Op(q2 − p2) + Op(r2), r2 ∈ S (R2d),

so that L also satisfies the Levi condition.

Example 5.31 Let s, σ ∈ R and 1 ≤ p < ∞ be such that

s ≤ −d

∣∣∣∣12 − 1

p

∣∣∣∣ , σ ≤ −d

∣∣∣∣12 − 1

p

∣∣∣∣ ,
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and let ω j ∈ P1,1(R2d), j = 0, 1, 2, be such that, for k = 1, 2,

ω0(x, ϕ′
kx (x, ξ)) � ω1(ϕ

′
kξ (x, ξ), ξ) · 〈x〉s〈ξ 〉σ ,

ω0(x, ϕ′
kx (x, ξ)) � ω2(ϕ

′
kξ (x, ξ), ξ) · 〈x〉s+1〈ξ 〉σ+1,

(5.32)

Also assume that each ω j , j = 0, 1, 2, is invariant with respect to the SG-
diffeomorphims appearing in (5.32), generated by the phase functions ϕ j (t), solutions
of the eikonal equations associated with τ j , j = 1, 2, given by (5.31).

Theorem 4.3 implies that, if g0 ∈ Mp
(ω1)

(Rd), g1 ∈ Mp
(ω2)

(Rd), then the solution

f (t) of the Cauchy problem (5.27) satisfies f (t) ∈ Mp
(ω0)

(Rd), for each t ∈ [−T ′, T ′],
0 < T ′ ≤ T . Moreover, setting C = Mp

(ω0)
(Rd), B0 = Mp

(ω1)
(Rd), B1 = Mp

(ω2)
(Rd),

the inclusion (5.26) holds true with μ = 2, ν = 1, namely

WFmC ( f (t)) ⊆
2⋃
j=1

[
(φ j (t)(WFmB0

(g0)))
conm ∪ (φ j (t)(WFmB1

(g1)))
conm

]
,

m = 1, 2, 3,with the canonical transformationsφ j (t) generated by the phase functions
ϕ j (t), j = 1, 2. A completely similar result holds true when Mp

(ω j )
(Rd) is replaced

by M∞
0,(ω j )

(Rd), j = 0, 1, 2.
Finally, we recall that for certain types of choices of the symbol and the amplitude,

we may avoid to have losses of regularity of the solution f (t) compared to the initial
data (cf. [2,12,42,45] and Remark 4.4).
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