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Abstract In this work, we first give various explicit and local estimates of the eigen-
functions of a perturbed Jacobi differential operator. These eigenfunctions generalize
the famous classical prolate spheroidal wave functions (PSWFs), founded in 1960s
by Slepian and his co-authors and corresponding to the case α = β = 0. They also
generalize the new PSWFs introduced and studied recently in Wang and Zhang (Appl
Comput Harmon Anal 29:303–329, 2010), denoted by GPSWFs and corresponding
to the case α = β. The main content of this work is devoted to the previous interesting
special case α = β > −1. In particular, we give further computational improvements,
as well as some useful explicit and local estimates of the GPSWFs. More importantly,
by using the concept of a restricted Paley–Wiener space, we relate the GPSWFs to
the solutions of a generalized energy maximisation problem. As a consequence, many
desirable spectral properties of the self-adjoint compact integral operator associated
with the GPSWFs are deduced from the rich literature of the PSWFs. In particular, we
show that the GPSWFs are well adapted for the spectral approximation of the classi-
cal c-band-limited as well as almost c-band-limited functions. Finally, we provide the
reader with some numerical examples that illustrate the different results of this work.
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1 Introduction

We first recall that for a bandwidth c > 0, the infinite countable set of
the eigenfunctions of the finite Fourier transform Fc, defined on L2(−1, 1) by

Fc f (x) =
∫ 1

−1
eicxy f (y) dy, are known as the prolate spheroidal wave functions

(PSWFs). They have been extensively studied in the literature, since the pioneer work
on the subject of Slepian and co-workers, see [11,15,16]. The interest in the PSWFs is
essentially due to their wide range of applications in different scientific research area
such as signal processing, physics, applied mathematics, see for example [7–9,18].
Recently, in [19], the authors have given a generalization of the PSWFs by consid-
ering the eigenfunctions of the special case of the weighted Fourier transform F (α)

c ,

defined byF (α)
c f (x) =

∫ 1

−1
eicxy f (y) (1 − y2)α dy, α > −1.Note that although, the

extra weight function ωα(x) = (1 − x2)α, generates new computational complica-
tions, the resulting eigenfunctions have some advantages over the classical PSWFs.
In this paper, we first give some useful analytic and local estimates of a more general
Jacobi-type PSWFs. This is done by using special spectral techniques from the theory
of Sturm–Liouville operators applied to the following Jacobi perturbed differential
operator, defined on C2([−1, 1]) by

L(α,β)
c ϕ(x) = (1 − x2)ϕ′′(x) + ((β − α) − (α + β + 2)x)ϕ′(x) − c2x2ϕ(x)

= L0ϕ(x) − c2x2ϕ(x). (1)

Note that in the limiting case c = 0, the eigenfunctions of the previous differen-
tial operator are reduced to the Jacobi polynomials P(α,β)

k . Moreover, in the special
case c > 0, α = β = 0, these eigenfunctions correspond to the classical Slepian
PSWFs. Moreover, in the case where α = β > −1, it has been shown in [19] that the
finite weighted Fourier transform F (α)

c commutes with L(α,α)
c . Hence, both operators

have the same eigenfunctions, called generalized prolate spheroidal wave functions
(GPSWFs) and simply denoted by ψ

(α)
n,c , n ≥ 0. They are solutions of the following

integral equation

F (α)
c ψ(α)

n,c (x) =
∫ 1

−1
eicxyψ(α)

n,c (y)ωα(y) dy = μ(α)
n (c)ψ(α)

n,c (x), |x | ≤ 1. (2)

Here, μ
(α)
n (c) is the eigenvalue of the integral operator F (α)

c , associated with the
eigenfunction ψ

(α)
n,c .

The important part of this work is devoted to the study of the GPSWFs, that is
α = β. In particular, we give their analytic extensions to the whole real line. As a
consequence, we obtain an explicit and practical formula (in terms of a ratio of two fast
converging series) for computing the eigenvalues μ

(α)
n (c). Note that the behaviour as
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well as the decay rate of these eigenvalues, play a crucial role in most applications of
the GPSWFs. In [19], by using an heuristic asymptotic analysis, the authors have given
an asymptotic super-exponential decay rate of the |μ(α)

n (c)|. In the second part of this
work, we prove that for any α ≥ 0, the super-exponential decay rate of |μ(α)

n (c)| starts
holding from the plunge region around n = 2c

π
. The proof of this result is based on the

characterization of the GPSWFs as solutions of a generalized energy maximization
problem, over a restricted Paley–Wiener space B(α)

c , given by

B(α)
c = { f ∈ L2(R), Support f̂ ⊂ [−c, c], f̂ ∈ L2((−c, c), ω−α

( ·
c

)
).}

Here, f̂ denotes the Fourier transform of f ∈ L2(R), defined by

f̂ (ξ) = lim
A→+∞

∫ A

−A
e−i xξ f (x) dx, ξ ∈ R.

More precisely, for a real number α > −1, let Jα denote the Bessel func-
tion of the first type and order α and consider the self-adjoint compact operator

Qα
c = c

2π
Fα∗
c ◦ Fα

c , defined on L2(I, ωα), I = [−1, 1] by

Qα
c g(x) =

∫ 1

−1

c

2π
Kα(c(x − y))g(y)ωα(y) dy,

Kα(x) = √
π2α+1/2	(α + 1)

Jα+1/2(x)

xα+1/2 . (3)

By rewriting the energy maximization problem in term of the previous integral oper-

ator, one gets a characterization of the eigenvalues λ(α)
n (c) = c

2π
|μ(α)

n (c)|2 of Qα
c as

a countable sequence generated by the energy problem. From this, we conclude that
the λ

(α)
n (c) decay with respect to the parameter α, that is for c > 0, and any n ∈ N,

0 < λ(α)
n (c) ≤ λ(α′)

n (c) < 1, ∀α ≥ α′ ≥ 0.

Hence, by using the precise behaviour as well as the sharp decay rate of the λ
(0)
n (c),

given in [6], one gets a similar behaviour and decay rate for the (λ
(α)
n (c))n, for any

α ≥ 0.
This work is organized as follows. In Sect. 2, we give some mathematical prelim-

inaries on Jacobi polynomials and their finite weighted Fourier transform. Also, we
describe the Bouwkamp method for the Jacobi series expansion of the eigenfunc-
tions ψ

(α,β)
n,c of the differential operator L(α,β)

c . Then, we give some explicit and local
estimates of these eigenfunctions. These estimates will be particularly useful in the
subsequent study of the GPSWFs, given by Sects. 3 and 4. In Sect. 3, we first give an
improvement as well as a new kind of decay rate of the Gegenbauer’s series expan-
sion coefficients of the GPSWFs ψ

(α)
n,c . Then, we give the analytic extension of the
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GPSWFs to the whole real line, as well as an explicit and practical formula (as a ratio
of two fast converging series) for the accurate computation of the eigenvalues μ

(α)
n (c)

and consequently of λ
(α)
n (c). In Sect. 4, we characterize the GPSWFs as solutions of

a generalized energy maximization problem and we prove the monotonicity of the
λ

(α)
n (c) with respect to the parameter α. Moreover, we show that the GPSWFs are

well adapted for the approximation of the classical c-band-limited as well as almost
c-band-limited functions. Finally, in Sect. 5, we provide the reader with numerical
examples that illustrate the different results of this work.

Notations and normalizations: The following notations will be frequently used
in this work,

ωα,β(y) = (1 − y)α(1 + y)β, ωα(y) = (1 − y2)α, I = [−1, 1].

Moreover, the eigenfunctions ψ
(α,β)
n,c and the GPSWFs ψ

(α)
n,c are normalized so that

∫ 1

−1

(
ψ(α,β)
n,c (t)

)2
ωα,β(t) dt = 1,

∫ 1

−1

(
ψ(α)
n,c (t)

)2
ωα(t) dt = 1.

2 Eigenfunctions of a Perturbed Jacobi Differential Operator

In this section, we give a description of the series expansion of the eigenfunctions
ψ

(α,β)
n,c (x) of L(α,β)

c , given by (1) and with respect to the basis of normalized Jacobi

polynomials B = {P̃(α,β)
k , k ≥ 0}. Also, we give some properties as well as local

estimates of ψ
(α,β)
n,c (x), generalizing some of those given in [3,5] in the special case

α = β = 0. For this purpose, we need the following mathematical preliminaries.

2.1 Mathematical Preliminaries

We first recall that for two real numbers α, β > −1, the Jacobi polynomials P(α,β)
k

are given by the following three term recursion formula

P(α,β)
k+1 (x) = (Akx + Bk)P

(α,β)
k (x) − Ck P

(α,β)
k−1 (x), x ∈ [−1, 1]. (4)

with P(α,β)
0 (x) = 1, P(α,β)

1 (x) = 1
2 (α + β + 2)x + 1

2 (α + β). Here,

Ak = (2k + α + β + 1)(2k + α + β + 2)

2(k + 1)(k + α + β + 1)
,

Bk = (α2 − β2)(2k + α + β + 1)

2(k + 1)(k + α + β + 1)(2k + α + β)

Ck = (k + α)(k + β)(2k + α + β + 2)

(k + 1)(k + α + β + 1)(2k + α + β)
. (5)
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In the sequel, we let P̃(α,β)
k denote the normalized Jacobi polynomial of degree k so

that

‖P̃(α,β)
k ‖2

L2
ωα,β (I )

=
∫ 1

−1
(P̃(α,β)

k (y))2ωα,β(y) dy = 1.

It is well known that in this case, we have

P̃(α,β)
k (x) = 1√

hk
P(α,β)
k (x), hk = 2α+β+1	(k + α + 1)	(k + β + 1)

k!(2k + α + β + 1)	(k + α + β + 1)
. (6)

Straightforward computations give us the following useful identities

P̃(α,β)
k+1 (x) = (akx + bk)P̃

(α,β)
k (x) − ck P̃

(α,β)
k−1 (x), (7)

ak =
√

hk
hk+1

Ak, bk =
√

hk
hk+1

Bk, ck =
√
hk−1

hk+1
Ck . (8)

x2 P̃(α,β)
k (x) = 1

akak+1
P̃(α,β)
k+2 (x) −

( bk+1

akak+1
+ bk

a2k

)
P̃(α,β)
k+1 (x)

+
( ck+1

akak+1
+ b2k

a2k
+ ck

akak−1

)
P̃(α,β)
k (x)

−
(ckbk

a2k
+ ckbk−1

akak−1

)
P̃(α,β)
k−1 (x) + ckck−1

akak−1
P̃(α,β)
k−2 (x) (9)

The explicit expressions and bounds of the different moments of the weight function
ωα,β as well as of the Jacobi polynomials P̃(α,β)

k will be frequently needed in this
work. For this purpose, we first recall the following useful inequalities for the Gamma
function, see [2],

√
2e

(
x + 1/2

e

)x+1/2

≤ 	(x + 1) ≤ √
2π

(
x + 1/2

e

)x+1/2

, x > 0. (10)

Next, for an integer k ≥ 0, let

I α,β
k =

∫ 1

−1
ykωα,β(y) dy (11)

be the kth moment of ωα,β . To get an upper bound for I α,β
k , we may assume that

α ≥ β. In this case, we have
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I α,β
k =

∫ 1

0
yk(1 − y)α(1 + y)β dy +

∫ 1

0
yk(1 − y)β(1 + y)α dy

≤
∫ 1

0
yk(1 − y2)α dy + 2α−β

∫ 1

0
yk(1 − y2)β dy ≤ 1

2
(B(k/2 + 1/2, α + 1)

+2α−βB(k/2 + 1/2, β + 1)
)
. (12)

Here, B(·, ·) is the Beta function given by B(x, y) = 	(x)	(y)

	(x + y)
, x, y > 0.Moreover,

by using (10), taking into account that for any real number a > −1, the function

ϕ(x) =
(
1 + a

x

)a+x
, x ≥ 1 (13)

is decreasing on [1,∞) to ea and by using some straightforward computations, one
gets

I α,β
k ≤ 1

2

√
π

e

21+β

k1+β

(
	(1 + α) + 2α−β	(1 + β)

)
, α ≥ β.

Consequently, for any real numbers α, β > −1, we have

I α,β
k ≤ Cα,β

k1+min(α,β)
, ∀α, β > −1, Cα,β = (

2α + 2β
)√π

e
	(1 + max(α, β)).

(14)
In the special case where α = β, and by using the parity of ωα(y) = (1 − y2)α as
well as the previous bound, one gets

I α,α
2k+1 = 0, I α,α

2k = B(k + 1/2, α + 1) ≤
√

π

e

	(α + 1)

k1+α
. (15)

Also, note that for given integers k ≥ n ≥ 0, and by using the Rodrigues formula for
the Jacobi polynomials, one gets the following formula for the kth moments of P̃(α,β)

n ,

with k ≥ n,

Mk,n =
∫ 1

−1
xk P̃(α,β)

n (x)ωα,β(x) dx= 1

2n
√
hn

(
k

n

)∫ 1

−1
xk−n(1−x)n+α(1+x)n+β dx .

(16)
In particular, if α = β, one gets

Mk,n =
∫ 1

−1
xk P̃(α,α)

n (x)ωα(x) dx

=
{
0 if k < n or k − n is odd

(kn)
2n

√
hn
B
( k−n+1

2 , n + α + 1
)
otherwise.

(17)



J Fourier Anal Appl (2016) 22:383–412 389

On the other hand, it is interesting to note that the weighted finite Fourier transform
of Jacobi polynomial is given by the following explicit expression, see [13, p. 456],

∫ 1

−1
eixy P(α,β)

k (y)ωα,β(y) dy = (i x)keix

k! 2k+α+β+1B(k + α + 1, k + β + 1)1

× F1(k + α + 1, 2k + α + β + 2,−2i x), (18)

where B(x, y) is the Beta function and 1F1(a, b, c) is the Kummer’s function. It is
well known, see [13, p. 326] that the Kummer’s function has the following integral
representation

1F1(a, b; z) = 1

B(a, b)

∫ 1

0
ezt ta−1(1 − t)b−a−1dt, z ∈ C, Re(b) > Re(a) > 0.

(19)

2.2 Computation and First Properties of the Eigenfunctions of L(α,β)
c

In this paragraph, we first describe the Bouwkamp method for the computation of
the bounded eigenfunctions and the corresponding eigenvalues of the operatorL(α,β)

c ,

given by (1). Then, we give some general properties of these eigenfunctions. Note that
Bouwkampmethod canbebrieflydescribed as the representationof a perturbedversion
of classical orthogonal polynomials differential operator. This representation is done
by the use of the original classical orthogonal polynomials. In our case, we consider
the Jacobi orthonormal basis of L2(I, ωα,β), given by Bα,β = {P̃(α,β)

k (x), k ≥ 0}.
Then, thanks to this method, the computation of the bounded eigenfunctions ψ

(α,β)
n,c

of L(α,β)
c and their associated eigenvalues χn(c) is reduced to the computation of the

eigenvectors and the associated eigenvalues of the infinite order matrix representation
ofL(α,β)

c with respect to the basisBα,β . It is interesting to note that only a finite number
of the main diagonals of this representation matrix are not identically zeros. To the
best of our knowledge, Niven, was the first to use this method in the early 1880s, see
[12].

Note that since ψ
(α,β)
n,c ∈ L2(I, ωα,β), then its series expansion with respect to the

basis Bα,β is given by

ψ(α,β)
n,c (x) =

∑
k≥0

βn
k P̃

(α,β)
k (x), x ∈ [−1, 1]. (20)

By combining (20) and the facts that

−L(α,β)
c ψ(α,β)

n,c (x) = χn(c)ψ
(α,β)
n,c (x), −L(α,β)

0 P̃(α,β)
k (x) = χk(0)P̃

(α,β)
k (x),

χk(0) = k(k + α + β + 1),

one can easily check that the expansion coefficients (βn
k )k≥0, n ≥ 0 and the eigenval-

ues (χn(c))n≥0 are given by the following infinite order eigensystem
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Dα,β · Bn = χn(c)Bn, Dα,β = [
di, j

]
i, j≥0 , Bn = [βn

k , k ≥ 0]T . (21)

Here, Dα,β is a 5-diagonals matrix representation of the operator −L(α,β)
c with coef-

ficients given by

di,i−2 = di,i−2 = c2
1

ai−1ai−2
, di,i−1 = −c2

(
bi

aiai−1
+ bi−1

a2i−1

)

di,i = i(i + α + β + 1) + c2
(

ci+1

aiai+1
− b2i

a2i
+ ci

aiai−1

)
,

di,i+1 = c2
(
ci+1bi+1

a2i+1

+ ci+1bi
ai+1ai

)
, di, j = 0, if | j − i | ≥ 3. (22)

We recall that the coefficients ai , bi , ci are given by (5) and (8). In the special case
where α = β, we have bi = 0, so that the previous eigensystem is reduced to a
symmetric tri-diagonal system. In this case, for a fixed integer n ≥ 0, the sequence
(βn

k )k≥0 satisfies the following eigensystem

c2
1

ak+2ak+1
βn
k+2 +

(
k(k + 2α + 1) + c2

(
ck+1

akak+1
+ ck

akak−1

))
βn
k

+c2
1

akak−1
βn
k−2 = χn(c)β

n
k . (23)

An expanded form of this system is given by

√
(k + 1)(k + 2)(k + 2α + 1)(k + 2α + 2)

(2k + 2α + 3)
√

(2k + 2α + 5)(2k + 2α + 1)
c2βn

k+2 + (
k(k + 2α + 1)

+c2
2k(k + 2α + 1) + 2α − 1

(2k + 2α + 3)(2k + 2α − 1)

)
βn
k

+
√
k(k − 1)(k + 2α)(k + 2α − 1)

(2k + 2α − 1)
√

(2k + 2α + 1)(2k + 2α − 3)
c2βn

k−2 = χn(c)β
n
k , k ≥ 0. (24)

The following proposition provides us with some properties of the eigenfunctions
ψ

(α,β)
n,c (x) and eigenvaluesχn(c), generalizing some known properties for Jacobi poly-

nomials.

Proposition 1 For given real numbers c > 0, α, β > −1, let ψ
(α,β)
n,c be the nth

eigenfunction associated with L(α,β)
c , and normalized so that ‖ψ(α,β)

n,c ‖L2(I,ωα,β ) = 1.
Then we have

(P1) The set B = {ψ(α,β)
n,c , n ≥ 0} is an orthonormal basis of L2(I, ωα,β).

(P2) Ifψ
(β,α)
n,c is the nth normalized eigenfunction ofL(β,α)

c , thenψ
(α,β)
n,c andψ

(β,α)
n,c

are associated to the same eigenvalue χn(c). Moreover, they are related to each
others by the following rule
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ψ(α,β)
n,c (−x) = (−1)nψ(β,α)

n,c (x), x ∈ R. (25)

Proof Property (P1) follows from the general spectral theory of Sturm–Liouville oper-
ators. To prove (P2),weuse the followingwell knownproperty for Jacobi polynomials,
see [17, p. 59]

P(α,β)
k (−x) = (−1)k P(β,α)

k (x). (26)

Let D(α,β) = [di, j ]i, j≥0 and D(β,α) = [d̃i, j ]i, j≥0 be the matrix representation of

−L(α,β)
c and−L(β,α)

c with respect to the basis of Jacobi polynomials P̃(α,β)
k and P̃(β,α)

k ,

respectively. Then from (4) and (22), one gets

d̃i,i+k = (−1)di,i+k, −2 ≤ k ≤ 2, i ≥ 0 and d̃i, j = 0, if |i − j | ≥ 3. (27)

Let Bn = [βn
k , k ≥ 0]T and B̃n = [β̃n

k , k ≥ 0]T = [(−1)kβn
k , k ≥ 0]T . Since

D(α,β)Bn = χn(c)Bn, then by using (27), it is easy to see that D(β,α)B̃n = χn(c)Bn .

This means that ψ(α,β)
n,c and ψ

(β,α)
n,c are associated to the same eigenvalue χn(c). More-

over, the series expansion of ψ
(β,α)
n,c in the basis {P̃(β,α)

k , k ≥ 0} is obtained from the

series expansion of ψ
(α,β)
n,c , as follows

ψ(β,α)
n,c (x) = cn

∞∑
k=0

(−1)kβn
k P̃

(β,α)
k (x), (28)

for some constant cn . By combining (26) and the previous equality, one con-
cludes that ψ

(α,β)
n,c (−x) = cnψ

(β,α)
n,c (x). Moreover, since ‖ψ(α,β)

n,c ‖L2(I,ωα,β ) =
‖ψ(β,α)

n,c ‖L2(I,ωβ,α) = 1 and since ψ
(α,α)
n,c has the same parity as n, see [19], then

cn = (−1)n . This concludes the proof of (25). ��

Also, we should mention that the (n+1)th eigenvalue χn(c) satisfies the following
classical inequalities,

n(n + α + β + 1) ≤ χn(c) ≤ n(n + α + β + 1) + c2, ∀n ≥ 0. (29)

To get the previous upper bound, we consider the following Sturm–Liouville form
of −L(α,β)

c ,

− L(α,β)
c ( f )(x) = − d

dx

[
ωα,β(x)(1 − x2) f ′(x)

]
+ c2x2ωα,β(x) (30)

= −L(α,β)
0 ( f )(x) + c2x2ωα,β(x).

Then, from the well known Poincaré Min–Max characterization of the eigenvalue of
a self-adjoint operator, applied to the operator −L(α,β)

c , one gets
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χn(c) = min
dim H=n

max
u∈H,‖u‖=1

∫ 1

−1

(
−L(α,β)

0 (u)(x)u(x) + c2x2(u(x))2
)

ωα,β(x) dx

≤ min
dim H=n

max
u∈H,‖u‖=1

∫ 1

−1
−L(α,β)

0 (u)(x)u(x)ωα,β(x) dx + c2‖u‖2

≤ χn(0) + c2 = n(n + α + β + 1) + c2.

Next, to get a lower bound, it suffices to see that the self-adjoint operator −L(α,β)
c −

(−L(α,β)
0 ) = c2x2 is a positive operator, which implies that χn(c) ≥ χn(0).

2.3 Local Estimates of the Eigenfunctions of L(α,β)
c

In this paragraph, we give various explicit and local estimates of the ψ
(α,β)
n,c . These

estimates will be needed to prove some of the results of Sect. 3 and 4 of this work. We
should mention that in the literature, only few references have studied the problem
of the explicit estimates of the classical PSWFs and their eigenvalues χn(c), see
[3,5,14]. The following proposition provides us with explicit local bounds of ψ

(α,β)
n,c ,

generalizing a similar result given in [3] for the special case α = β = 0.

Proposition 2 For real numbers c > 0, α, β > −1, with α + β + 1 ≥ 0. Let n ∈ N

be such q = c2/χn(c) < 1. Then we have

sup
t∈[0,1]

(1 − t2)ωα,β(t)

(∣∣∣ψ(α,β)
n,c (t)

∣∣∣2 + 1 − t2

(1 − qt2)χn(c)

∣∣∣(ψ(α,β)
n,c )′(t)

∣∣∣2
)

≤ 2(1 + max(α, β)). (31)

Moreover, if α = β, then we have

sup
t∈[−1,1]

(1 − t2)ωα(t)

(∣∣∣ψ(α)
n,c (t)

∣∣∣2 + 1 − t2

(1 − qt2)χn(c)

∣∣∣(ψ(α)
n,c )

′(t)
∣∣∣2
)

≤ 1 + α. (32)

Proof The proof uses a classical technique for the local estimates of the eigenfunctions
of a Sturm–Liouville operator. In our case, we first note that by using property (P2)
of Proposition 1, it suffices to consider the case α ≥ β, since the case β ≥ α, follows
from the equality (25). Next, consider the auxiliary function, defined on [0, 1] by

Zn(t) =
(
ψ(α,β)
n,c (t)

)2 + 1 − t2

χn(c)(1 − qt2)

((
ψ(α,β)
n,c

)′)2

(t).

Since ψ
(α,β)
n,c is the eigenfunction of the operator −L(α,β)

c associated with the eigen-
value χn(c), then straightforward computations give us

Z ′
n(t) = 2((ψ(α,β)

n,c )′)2(t)
χn(c)(1 − qt2)

(
(α − β) + (1 + α + β)t + qt

1 − t2

1 − qt2

)
. (33)
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Since 0 ≤ q ≤ 1, α − β ≥ 0 and α + β + 1 ≥ 0, then it is easy to see that

Z ′
n(t) ≥ 0, ∀ t ∈ [0, 1].

Next, we consider a second auxiliary function, given by

Kn(t) = (1 − t2)ωα,β(t)Zn(t), t ∈ [0, 1].

Then, by using (33), one can easily check that there exists a positive valued function
A(·) on [−1, 1] with

K ′
n(t) = ωα,β(t) (−2t + (β − α) − (α + β)t) Zn(t) + (1 − t2)ωα,β(t)Z ′

n(t)

= (−2t + (β − α) − (α + β)t) ωα,β(t)
(
ψ(α,β)
n,c

)2
(t) + A(t)

(
ψ(α,β)
n,c )′

)2
(t)

≥ ((β − α) − (2 + α + β)t) ωα,β(t)
(
ψ(α,β)
n,c

)2
(t).

Finally, since Kn(1) = 0 and since
∫ 1

−1

(
ψ(α,β)
n,c

)2
(t) ωα,β(t) dt = 1, then by using

the last inequality, one gets

Kn(t) − Kn(1) = Kn(t) ≤ max
t∈[0,1] ((α − β) + (2 + α + β)t)

×
∫ 1

0

(
ψ(α,β)
n,c

)2
(t) ωα,β(t) dt ≤ 2(1 + α).

Finally, if β = α, then from the parity of ψ
(α)
n,c (t), we have

∫ 1

0

(
ψ(α)
n,c

)2
(t) ωα(t) dt

= 1/2,whichmeans that the previous upper bound is replaced by 1+α.This concludes
the proof of the proposition. ��

The following proposition provides us with an estimate of the maximum of the
ψ

(α,β)
n,c inside the interval I.

Proposition 3 Let c > 0, and α ≥ β with α + β ≥ −1, then for any positive integer
n with q = c2/χn(c) ≤ 1, we have

sup
x∈[0,1]

|ψ(α,β)
n,c (x)| = |ψ(α,β)

n,c (1)| ≤ Cα(χn(c))
1+α
2 , Cα = 21+max(α,0)

√
3 + α

(1 + α

3 + α

)1+ α
2

(34)
Moreover, if α = β, then we have

sup
x∈[−1,1]

|ψ(α)
n,c (x)| = |ψ(α)

n,c (1)| ≤ Cα√
2
(χn(c))

1+α
2 . (35)
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Proof We first recall that the auxiliary function Zn given by :

Zn(x) =
(
ψ(α,β)
n,c (x)

)2 + 1 − x2

χn(c)(1 − qx2)

((
ψ(α,β)
n,c

)′)2

(x)

is increasing over [0,1] whenever q = c2/χn(c) ≤ 1, α ≥ β and α + β + 1 ≥ 0.
Hence, we have

sup
x∈[0,1]

Zn(x) = Zn(1) =
(
ψ(α,β)
n,c (x)

)2

which implies that

sup
x∈[0,1]

|ψ(α,β)
n,c (x)| = |ψ(α,β)

n,c (1)|, ∀n ∈ N, with q ≤ 1. (36)

Moreover, if α = β then from the parity of ψ
(α)
n,c , one gets

sup
x∈[−1,1]

|ψ(α)
n,c (x)| = |ψ(α)

n,c (1)|, ∀n ∈ N, with q ≤ 1. (37)

Next, we show how to get the upper bounds of |ψ(α,β)
n,c (1)| and |ψ(α)

n,c (1)|. To alleviate
notation, we simply denote ψ

(α,β)
n,c by ψn,c and χn(c) by χn . Also, without loss of

generality, we may assume that ψn,c(1) > 0. Since

(ψ ′
n,c(x)(1 − x2)ωα,β(x))′ = −χn(c)ωα,β(x)(1 − qx2)ψn,c(x), (38)

then

ψ ′
n,c(x) = χn

(1 − x2)ωα,β(x)

∫ 1

x
ωα,β(t)(1 − qt2)ψn,c(t)dt

≤ χn

(1 − x2)
(1 − qx2)(1 − x)ψn,c(1) = χn(1 − qx2)ψn,c(1).

Hence,

ψn,c(1) − ψn,c(x) ≤ χnQq(x)ψn,c(1), Qq(x) = (1 − qx2)(1 − x2). (39)

Next, let xn ∈ [0, 1] be such that Qq(xn) = a
χn

, where the constant a to be fixed later
on. By substituting x with xn in (39) and by using (31), one gets

ψn,c(1) ≤ 1

1 − a
ψn,c(xn) ≤ 1

(1 − a)

√
2(1 + α)

(
1

Qq(xn)ωα,β(xn)

)1/2

.
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That is

ψn,c(1) ≤
√
2(1 + α)

a1/2(1 − a)

χ
1/2
n√

ωα,β(xn)
(40)

Note that the admissible solution of Qq(xn) = a
χn

is given by xn =(
(q+1)−

√
(q−1)2+ 4aq

χn
2q

)1/2

. Consequently,

1 − a
χn

1 +
√

aq
χn

≤ xn =
⎛
⎝ 2(1 − a

χn
)

q + 1 + (1 − q)
√
1 + 4aq

χn(q−1)2

⎞
⎠

1
2

≤
(
1 − a

χn

) 1
2 ≤ 1 − a

2χn
.

It is easy to see that in this case, we have

a

2χn
≤ 1 − xn ≤ a

χn

(
1 +

√
χn

a

)
.

Consequently, by using the first inequality when α ≥ 0 and the second inequality
when −1/2 ≤ α < 0, one gets

1√
ωα,β(xn)

≤

⎧⎪⎨
⎪⎩

(χn
2a

)α/2 2−β/2 ≤ √
2
(χn
a

)α/2 if − 1/2 ≤ α < 0

(
2χn
a

)α/2
1

(1+xn)β/2 ≤ 2α+1/2
(χn
a

)α/2 if α ≥ 0.

(41)

Hence, by combining (40) and (41), one gets

ψ(α,β)
n,c (1) ≤ 21+max(α,0)√(1 + α)

a(1+α)/2(1 − a)
χ

1+α
2

n . (42)

Since the maximum of aγ (1 − a) is attained at a = γ
1+γ

then for γ = 1+α
2 , one gets

(34). Finally, (35) follows from the parity of ψ
(α)
n,c and (32). ��

Remark 1 The techniques used for the proof of inequality (40) are similar to those
used in [3] to prove a similar inequality, restricted to the special case α = β = 0.
Nonetheless, the general setting of the previous proposition requires handling the new
quantity

√
ωα,β(xn) that generates extra difficulties to obtain the local estimates (34)

and (35).

3 Generalized Prolate Spheroidal Wave Functions: Computations
and Analytic Extension

In the sequel, we restrict ourselves to the case α = β > −1. In the first part of
this section, we further improve the super-exponential decay rate of the GPSWFs
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expansion coefficients (βn
k )k, that has been given in given in [19]. Then, we show

that for sufficiently large values of n and up a certain order Kn, all the coefficients
βn
k , 0 ≤ k ≤ Kn are positive. As a consequence of this positivity result and the

previous fast decay of the βn
k , we show that in the case where α = β, the expansion

coefficients (βn
k )k are essentially concentrated around k = n. In the second part of

this section, we give the analytic extension of the GPSWFs, together with an explicit
expression for the eigenvalues μ

(α)
n (c) as a ratio of two fast convergent series.

3.1 Computation and Analytic Extension of the GPSWFs

Wefirst note that in the interesting special casewhereα = β, formula (18) is simplified
in a significant manner. This is given by the following lemma.

Proposition 4 Let α > −1, then we have

∫ 1

−1
eixy P(α,α)

k (y)ωα(y) dy = i k
√

π

(
2

x

)α+1/2
	(k + α + 1)

	(k + 1)
Jk+α+1/2(x), x ∈R.

(43)
Here, Ja denotes the Bessel function of the first kind and order α.

Proof It is well known, see for example [1, p. 200], that if a > −1 and z = −2i x, x ∈
R, then we have,

1F1(a + 1/2, 2a + 1;−2i x) = 	(a + 1)

(
2

x

)a

e−i x Ja(x). (44)

By combining (18) and the previous equality with a = k + α + 1/2, one gets

Fα
1 (P(α,α)

k )(x) =
∫ 1

−1
eixy P(α,α)

k (y)ωα(y) dy

= (i x)k22k+3α+3/2

xk+α+1/2

	(k + α + 3/2)

	(k + 1)
B(k + α + 1, k + α + 1)Jk+α+1/2(x). (45)

Moreover, by using the following identities of Beta and Gamma functions,

B(x, y) = 	(x)	(y)

	(x + y)
, 	(x + 1) = x	(x), 	(b)	(b + 1/2) = √

π
	(2b)

22b−1 ,

one gets

Fα
1 P(α,α)

k (x)

= ik
22k+3α+3/2

(x)α+1/2 (k + α + 1/2)
	(k + α + 1)

	(k + 1)

	(k + α + 1)	(k + α + 1/2)

	(2k + 2α + 2)
Jk+α+1/2(x)
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= ik
	(k + α + 1)

	(k + 1)

22k+3α+3/2

(cx)α+1/2
k + α + 1/2

2k + 2α + 1

	(k + α + 1)	(k + α + 1/2)

	(2k + 2α + 1)
Jk+α+1/2(x)

= ik
√

π

(
2

x

)α+1/2 	(k + α + 1)

	(k + 1)
Jk+α+1/2(x), x ∈ R.

��
Remark 2 In the special case α = 0, the equality (43) is reduced to the well known
classical finite Fourier transform of Legendre function, see for example [1, p. 343].

As a first consequence of the previous proposition, one gets a simple and straight-
forward proof of the following result that has been already given by Lemma 3.4 in
[19] and with different kind of proof.

Corollary 1 Under the above notations, for any real numbers c > 0 and α > −1,
we have

βn
k =

∫ 1

−1
P̃(α,α)
k (y)ψ(α)

n,c (y)ωα(y) dy

= 2
√

π i k

μ
(α)
n (c)

√
hk

(
1 + (−1)n+k

) ∫ 1

0

Jk+α+ 1
2
(ct)

(ct)α+ 1
2

ψ(α)
n,c (t)ωα(t) dt. (46)

Proof Just write

βn
k = 1

μ
(α)
n (c)

∫ 1

−1
P̃(α,α)
k (y)

(∫ 1

−1
eictyψ(α)

n,c (t)ωα(t) dt

)
ωα(y) dy

=
√

π i k

μ
(α)
n (c)

√
hk

∫ 1

−1

Jk+α+ 1
2
(ct)

(ct)α+ 1
2

ψ(α)
n,c (t)ωα(t) dt.

To conclude, it suffices to write the previous integral as
∫ 1
−1 = ∫ 1

0 + ∫ 0
−1 and use the

facts that the function ψ
(α)
n,c and t �→

Jk+α+ 1
2
(ct)

(ct)α+ 1
2

has the same parity as n and k,

respectively. ��
A decay rate of the expansion coefficients is given by the following proposition that

improves the result given by Theorem 3.4 in [19].

Proposition 5 For given real numbers c > 0, α > −1 and integers k, n ∈ N, let

βn
k =

∫ 1

−1
P̃(α,α)
k (x) ψ(α)

n,c (x) ωα(x)dx .

Then, we have

|βn
k | ≤ Cα

|μ(α)
n (c)|

1

k1+α/2

1

2k

(
ec

2k + 1

)k

, (47)

where Cα = π7/4√	(1+α)(3/2)3/4(3/2+2α)3/4+α

2α+1eα+5/4 .
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Proof By using the expression of βn
k and by combining (2) and (18), one gets

βn
k = 1

μ
(α)
n (c)

∫ 1

−1

∫ 1

−1
P̃(α,β)
k (x)

(∫ 1

−1
eicxyψn,c(y)ωα(y) dy

)
ωα(x) dx

= 1

μn(c)

∫ 1

−1

(∫ 1

−1
eicxy P̃(α,β)

k (x)ωα(x) dx

)
ψ(α)
n,c (y)ωα(y) dy

= 1

μ
(α)
n (c)

∫ 1

−1

(icy)keicy

k!√hk
2k+2α+1B(k + α + 1, k + α + 1) ·

1F1(k + α + 1, 2k + 2α + 2;−2icy)ψn(y) ωα(y) dy.

On the other hand, from the integral representation of Kummer’s function given by
(19), one gets

|1F1(k + α + 1, 2k + 2α + 2;−2icy)|

= 	(2k + 2α + 2)

	(k + α + 1)2

∣∣∣∣
∫ 1

0
e−2icyt tk+α(1 − t)k+αdt

∣∣∣∣
≤ 1

B(k + α + 1, k + α + 1)

∣∣∣∣
∫ 1

0
e−2icyt tk+α(1 − t)k+αdt

∣∣∣∣
≤ B(k + α + 1, k + α + 1)

B(k + α + 1, k + α + 1)
= 1.

Consequently, we have

|βn
k | ≤ B(k + α + 1, k + α + 1)

|μ(α)
n (c)|

ck2k+2α+1

k!√hk

(∫ 1

−1
(ψ(α)

n,c )
2(y)ωα(y) dy

)1/2

×
(∫ 1

−1
y2kωα(y) dy

)1/2

≤ B(k + α + 1, k + α + 1)

|μ(α)
n (c)|

ck2k+3/2(α+α+1)

k!√hk

√
I α,α
2k . (48)

Note that from (10), we have

ck

k! = ck

	(k + 1)
≤ 1√

2

1√
2k + 1

(
ec

2k + 1

)k

. (49)

In a similar manner, we get the following upper bound and lower bound of the quantity
B(k + α + 1, k + α + 1) and the normalization constant hk, given as follows.

B(k + α + 1, k + α + 1) = 	(k + α + 1)2

	(2k + 2α + 2)
≤

√
2π

22k+2α+1

(2k+2α+1)2k+2α+1

(2k+2α+3/2)2k+2α+3/2

≤
√
2π

22k+2α+1

1√
2k + 2α + 3/2

(50)
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Also, by using (10), the decay of the function ϕ, given by (13) as well some straight-
forward computations, one gets

e

π

(2e)2α+1

(3/2)3/2(3/2 + 2α)3/2+2α

1

2k + 2α + 1
≤ hk

≤ π

e

(
2

e

)2α+1
(3/2)3/2(3/2 + 2α)3/2+2α

2k + 2α + 1
. (51)

Finally, by combining (15), (48), (49)–(51), one gets the desired result (47). ��
Remark 3 By using our notation, the decay rate of the (βn

k )k, given by Theorem 3.4

of [19] can be written as
C

′′
α

|μ(α)
n (c)|

1

k1+α/2

(
ec

2k + 1

)k

, for some constant C
′′
α. The

previous proposition ensures that this decay is further improved by a factor of 1/2k .

The following theorem provides us with a second decay rate of the (βn
k )k≥0, valid

for sufficiently large values of n and the values of 0 ≤ k < n not too close to n. We
should mention that the techniques of the proof of this theorem, given in “Appendix:
Proof of Theorem 1”, are inspired from those developed for the special case α = 0
and given in a joint work of one of us [4].

Theorem 1 Let c > 0, be a fixed positive real number. Then, for all positive integers
n, k such that q = c2/χn ≤ 1 and k(k + 2α + 1) + Cα c2 ≤ χn(c), we have

|βn
0 | ≤

√
	(α + 3/2)√
π	(α + 1)

√
1 + α|μ(α)

n (c)| and |βn
k | ≤ C ′

α

( 2
q

)k |μ(α)
n (c)|. (52)

Here, C ′
α = 2α(3/2)3/4(3/2 + 2α)3/4+α

e2α+3/2

√
1 + α and Cα = 2Mα + Nα with

Mα = max
(
1/4,

√
2(2α + 2)

(2α + 5)(2α + 3)2

)
,

Nα = max
( 3

2α + 5
,
1

2
+ |4α2 − 1|

(2α + 3)(2α + 7)

)
. (53)

3.2 Analytic Extension of the GPSWFs

In this paragraph, we give explicit formulae for the analytic extension of the GPSWFs
to the whole real line, as well for computing the eigenvalues μ

(α)
n (c) associated with

theweighted finite Fourier transformFα
c .Wefirst note that due to Eq. (2), theGPSWFs

have analytic extension toR. In fact, it is well known, see [17, p. 168], that if α > −1,
then

sup
y∈[−1,1]

|P̃(α,β)
k (y)| =≤ 1√

hk B(k + 1, α + 1)
≤ Mαk

α+1/2,
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for some constant Mα. Moreover, by using the super-exponential decay rate of the
expansion coefficients (βn

k )k combined with (2), (20) and (43), one gets

ψ(α)
n,c (x) =

√
π2α+1/2

μ
(α)
n (c)

∑
k≥0

i kβn
k

	(k + α + 1)√
hkk!

Jk+α+1/2(cx)

(cx)α+1/2 , ∀ x �= 0.

Moreover, from the parity of theψ
(α)
n,c , it is easy to see thatμ

(α)
n (c) = in|μ(α)

n (c)|, n ≥
0. Hence, by using the fact that the previous expansion coincides with the expansion
(20) at x = 1, one obtains the following analytic extension of the GPSWFs as well as
an explicit formula for their associated eigenvalues μ

(α)
n (c),

ψ(α)
n,c (x) =

√
π2α+1/2

|μ(α)
n (c)|

∑
k≥0

i k−nβn
k

	(k + α + 1)√
hkk!

Jk+α+1/2(cx)

(cx)α+1/2 , ∀ x �= 0 (54)

with

μ(α)
n (c) = in

√
π

(
2

c

)α+1/2
∑

k≥0 i
k−nβn

k
	(k+α+1)√

hkk! Jk+α+1/2(c)
∑

k≥0
βn
k√

hk B(k+α,k)

, n ≥ 0. (55)

We should mention that due to the facts that the coefficients (βn
k )k are concentrated

around k = n and decay super-exponentially, the previous formula is accurate and
practical for computing the μ

(α)
n (c). Also, note that in [19], the authors have given

some properties of the eigenvalues μ
(α)
n (c) (denoted by λ

(α)
n (c) in [19]). In particular,

by considering the operator Fα
c as a Hilbert–Schmidt operator acting on L2(I, ωα), it

has been shown that

∑
n≥0

|μ(α)
n (c)|2 = ‖Fα

c ‖2HS =
(∫ 1

−1
ωα(x) dx

)2

= π	2(1 + α)

	2(α + 3/2)
.

Here, ‖·‖HS denotes theHilbert–Schmidt norm.More importantly, in [19], the authors
have noted that the μ

(α)
n (c) has an asymptotic super-exponential decay rate given by

|μ(α)
n (c)| ≈ eα

4α

√
πe

2n + 2α + 3

(
ec

4n + 4α + 2

)n

, n � 1. (56)

4 GPSWFs as Solutions of an Energy Maximization Problem and
Quality of Approximation

In the first part of this section, we show that in the case where α ≥ 0, the GPSWFs
are solutions of an energy maximization problem over a generalized Paley–Wiener
space and with respect to certain weighted norms. As important consequences of this

characterization, we get a monotonicity result the sequence λ(α)
n (c) = c

2π
|μ(α)

n (c)|2
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with respect to the parameter α. Moreover, by using the results of [6], one gets a
better understanding of the behaviour and the super-exponential decay rate of the
(λ

(α)
n (c))n≥0. In the second part, we show that the GPSWFs are well adapted for the

approximation of functions from the classical Paley–Wiener space Bc as well as of
almost c-band-limited functions.

4.1 GPSWFs as Solutions of an Energy Maximization Problem
and Consequences

We recall that the starting point of the theory of the classical PSWFs (corresponding
to the GPSWFs with α = 0) is the solution of the following energy maximization
problem, see [16]

f = arg max
f ∈Bc

‖ f ‖2
L2(I )

‖ f ‖2
L2(R)

= arg max
f ∈Bc

2π
‖ f ‖2

L2(I )

‖ f̂ ‖2
L2(R)

, (57)

where Bc is the Paley–Wiener of c-band-limited functions given by

Bc = { f ∈ L2(R), Support f̂ ⊆ [−c, c]}. (58)

More precisely, it has been shown in [16] that from Bc, ψ
(0)
0,c is the most concentrated

function in I = [−1, 1] with the largest energy concentration ratio 0 < λ
(0)
0 (c) < 1.

Moreover, for any integer n ≥ 1, ψ
(0)
n,c is the most concentrated function from Bc

which is orthogonal to the previous ψ
(0)
i,c , 0 ≤ i ≤ n − 1. The orthogonality is with

respect to the two usual inner products of L2(I ) and L2(R). As it will be seen, the
extension of the previous characterization of the PSWFs to the more general case of
the GPSWFs provides us with a better understanding of the behaviour and the super-
exponential decay rate of the eigenvalues (λ

(α)
n (c))n≥0. For α > 0, we define the

restricted Paley–Wiener space of weighted c-band-limited functions by

B(α)
c = { f ∈ L2(R), Support f̂ ⊆ [−c, c], f̂ ∈ L2((−c, c), ω−α(

·
c
)
)}. (59)

Here, L2
(
(−c, c), ω−α( ·

c )
)
is the weighted L2(−c, c)-space with norm given by

‖ f ‖2
L2
(
(−c,c),ω−α( ·

c )
) =

∫ c

−c
| f (t)|2ω−α

(
t

c

)
dt.

Note that when α = 0, the restricted Paley–Wiener space B(0)
c is reduced to the

usual space Bc. Also, since for any α ≥ α′, f̂ ∈ L2
(
(−c, c), ω−α′( ·

c )
)
implies that

f̂ ∈ L2
(
(−c, c), ω−α( ·

c )
)
then one gets

B(α)
c ⊆ B(α′)

c , ∀α ≥ α′ ≥ 0. (60)
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Remark 4 We give an example of a function from a restricted Paley–Wiener space. If
c > 1, then it has been shown in [10] that the function

η(x) = sin(cx − x/2)

x4

(
2 sin

( x
2

)
− x cos

( x
2

))
, x ∈ R

is a c-band-limited function. Moreover, its Fourier transform is an even function given
by

η̂(−ξ) = η̂(ξ) =
⎧⎨
⎩
1 if ξ ∈ [0, c − 1]
f (ξ + 2 − c) if ξ ∈ [c − 1, c]
0 if ξ ≥ c.

where

f (−x) = f (x) =
⎧⎨
⎩
1 if x ∈ [0, 1]
−4 + 12x − 9x2 + 2x3 if x ∈ [1, 2]
0 if x ≥ 2.

Since for ξ ∈ [c − 1, c], η̂(ξ) = (2ξ − 2c + 3)(ξ − c)2, then it is easy to see that η

belongs to the restricted Paley–Wiener space Bα
c for any 0 ≤ α < 5.

The generalized maximization problem is formulated as follows.We note that from
(43) with k = 0, one gets the finite Fourier transform of the weight function ωα, given
by

∫ 1

−1
eixyωα(y) dy = √

π2α+1/2	(α + 1)
Jα+1/2(x)

xα+1/2 = Kα(x), x ∈ R. (61)

Next, if f ∈ B(α)
c , then f̂ (x) = g(x)ωα

( x
c

)
with some g ∈ L2((−c, c), ωα(

·
c
)
)
. By

using the inverse Fourier transform, one gets

‖ f ‖2
L2(I,ωα)

‖ f̂ ‖2
L2(ω−α( ·

c ))

= 1

‖ f̂ ‖2
L2(ω−α( ·

c ))

∫ 1

−1
f (t) · f (t)ωα(t) dt

= 1

‖ f̂ ‖2
L2(ω−α( ·

c ))

1

4π2

∫ 1

−1

∫ c

−c
eity f̂ (y) dy ·

∫ c

−c
e−i t x f̂ (x) dxωα(t) dt

= 1

‖ f̂ ‖2
L2(ω−α( ·

c ))

1

4π2

∫ c

−c

∫ c

−c

(∫ 1

−1
eit (y−x)ωα(t) dt

)
f̂ (y) dy

·
∫ c

−c
e−i t x f̂ (x) dxωα(t) dt
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= 1

‖ f̂ ‖2
L2(ω−α( ·

c ))

1

4π2

∫ c

−c

∫ c

−c
Kα(y − x)g(y)ωα

( y

c

)
dy · g(x)ωα

( x
c

)
dx

= 1

4π2

∫ c

−c

[∫ c

−c
Kα(y − x)g(y)ωα

( y

c

)
dy

]
· g(x)ωα

( x
c

)
dx

∫ c

−c
g(x)g(x)ωα

( x
c

)
dx

. (62)

Here,Kα is as given by (61). Note that since the compact integral operatorQα defined

on L2(ωα(
·
c
)) by

Qαg(x) = 1

4π2

∫ c

−c
Kα(y − x)g(y)ωα

( y
c

)
dy

has a symmetric kernel, then it iswell known that in this case, max
f ∈Bα

c

2π
‖ f ‖2

L2
ωα

(I )

‖ f̂ ‖2
L2(ω−α( ·

c ))

is

attained at the eigenfunction of 2πQα, associated with the largest eigenvalue. Hence,
by using a trivial change of variable and functions, the generalized energy maximiza-
tion problem is reduced to the solution of the following eigenproblem

Q(α)
c G(x) =

∫ 1

−1

c

2π
Kα(c(x − y))G(y)ωα(y) dy = λG(x), x ∈ [−1, 1]. (63)

On the other hand, it has been shown in [19] that the kernel Kα(c(x − y)) is nothing
but the kernel of the composition operators Fα∗

c ◦ Fα
c . Hence, the operators Qα

c and

Fα
c have the same eigenfunctions, given by the GPSWFs, ψ(α)

n,c , and associated to the

respective eigenvalues λ
(α)
n , μ

(α)
n (c). These eigenvalues are related to each others by

the following rule

λ(α)
n (c) = c

2π
|μ(α)

n (c)|2, n ≥ 0. (64)

Since from (60), if 0 ≤ α′ ≤ α, then we have B(α)
c ⊆ B(α′)

c and since for f ∈ B(α)
c ,

then we have

‖ f ‖2L2(I,ωα)
≤ ‖ f ‖2L2(I,ωα′ ), ‖ f̂ ‖2L2(ω−α( ·

c ))
≥ ‖ f̂ ‖2L2(ω−α′ ( ·

c ))
.

Hence, we have

λ
(α)
0 (c) = sup

f ∈B(α)
c

‖ f ‖2
L2(I,ωα)

‖ f̂ ‖2
L2(ω−α( ·

c ))

≤ sup
f ∈B(α)

c

‖ f ‖2
L2(I,ωα′ )

‖ f̂ ‖2
L2(ω−α′ ( ·

c ))

≤ sup
f ∈B(α′)

c

‖ f ‖2
L2(I,ωα′ )

‖ f̂ ‖2
L2(ω−α′ ( ·

c ))

= λ
(α′)
0 (c).

More generally, for an integer n ≥ 1, let ψ
(α′)
0,c , . . . , ψ

(α′)
n−1,c be the first most con-

centrated GPSWFs, associated with the respective eigenvalues λ
(α′)
0 (c) > λ

(α′)
1 (c) >
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· · · > λ
(α′)
n−1(c). Note that the previous strict inequalities are due to the fact that these

eigenvalues are simple, see [19]. By combining the previous formulation of the energy
maximization problem and the well known Min–Max principle for eigenvalues of
compact operator, one concludes that if Sn, Hn stand for an arbitrary subspace of

dimension n of B(α)
c , and B(α′)

c , respectively, then we have

λ(α)
n (c) = max

Sn⊂B(α)
c

min
ψ∈Sn

‖ψ‖2
L2(I,ωα)

‖ψ̂‖2
L2(ω−α( ·

c ))

≤ max
Sn⊂B(α′)

c

min
ψ∈Sn

‖ψ‖2
L2(I,ωα′ ))

‖ψ̂‖2
L2(ω−α′ ( ·

c ))

≤ max
Hn⊂B(α′)

c

min
ψ∈Hn

‖ψ‖2
L2(I,ωα′ )

‖ψ̂‖2
L2(ω−α′ ( ·

c ))

= λ(α′)
n (c).

We have just proved the following theorem giving the monotony of the eigenvalues
λ

(α)
n (c) with respect to the parameter α.

Theorem 2 For a given real number c > 0, and an integer n ≥ 0, we have

λ(α)
n (c) ≤ λ(α′)

n (c), ∀α ≥ α′ ≥ 0. (65)

It is important to mention that a super-exponential decay rate of the sequence
(λ

(α)
n (c))n as well as an estimate of the location of the plunge region, where the fast

decay starts are important consequences of the previous proposition. These two results
followdirectly from the results given in [6],where an explicit formula for estimating the
λ

(0)
n (c) has been developed. This explicit formula enjoys with a surprising accuracy

as soon as n reaches or goes beyond the plunge region around the value nc = 2c
π

.

Also, it proves that the exact asymptotic super-exponential decay rate is given by the

quantity e
−2n log

(
4n
ec

)
. From the previous theorem with α′ = 0, one concludes that

for any α > 0, the sequence (λ
(α)
n (c))n has a super-exponential decay rate, bounded

above by the decay rate of (λ
(0)
n (c))n . Moreover, the fast decay of these (λ

(α)
n (c))n

starts around nc = 2c
π

. In the numerical results section, we give different tests that

illustrate these precise behaviours of (λ
(α)
n (c))n .

4.2 Approximation of Band-Limited Functions by the GPSWFs

In this paragraph, we first show that when restricted to the interval I, theGPSWFsψ
(α)
n,c

arewell adapted for the approximation of functions from the usual Paley–Wiener space
Bc.As a result, we check that the GPSWFs are also well adapted for the approximation
of almost band-limited functions. This type of functions have been defined in [11] as
follows.

Definition 1 Let � = [−c, c], then a function f is said to be ε�-band-limited in � if

1

2π

∫
|ξ |>c

| f̂ (ξ)|2 dξ ≤ ε2�.
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Proposition 6 Let c > 0, α ≥ 0 be two real numbers and let f ∈ Bc. For any
positive integer N > 2c

π
, let

SN ( f )(x) =
N∑

k=0

< f, ψ(α)
k,c >L2(I,ωα) ψ

(α)
k,c (x).

Then, we have

(∫ 1

−1
| f (t) − SN f (t)|2ωα(t)dt

)1/2

≤ C1

√
λ

(α)
N (c) (χN (c))(1+α)/2 ‖ f ‖L2(R),

(66)
and

sup
x∈[−1,1]

| f (x) − SN f (x)| ≤ C1

√
λ

(α)
N (c) (χN (c))1+α/2 ‖ f ‖L2(R). (67)

for some uniform constant C1 depending only on α.

Proof We first note that since B = {ψ(α)
n,c , n ≥ 0} is an orthonormal basis of

L2(I, ωα), and since χI f ∈ L2(I ), where χI denotes the characteristic function,
then we have

f (x) =
∑
k≥0

< f, ψ(α)
k,c >L2(I,ωα) ψ

(α)
k,c (x), a.e. x ∈ I. (68)

On the other hand, since f ∈ Bc, then f ∈ C∞(R) ∩ L2(R). In particular, from the
inverse Fourier transform, and by using the fact that f ∈ Bc, we have

f (x) = 1

2π

∫
R

eixy f̂ (y)dy = 1

2π

∫ c

−c
eixy f̂ (y)dy = c

2π

∫ 1

−1
eictx f̂ (ct) dt,

∀ x ∈ [−1, 1]. (69)

Consequently, for any integer k ≥ 0, we have

|〈 f, ψ(α)
k,c 〉L2(I,ωα)| =

∣∣∣∣
∫ 1

−1
f (x)ψ(α)

k,c (x)ωα(x) dx

∣∣∣∣
= c

2π

∣∣∣∣
∫ 1

−1

(∫ 1

−1
eictx f̂ (ct) dt

)
ψ(α)
n,c (x)ωα(x) dx

∣∣∣∣
= c

2π

∣∣∣∣
∫ 1

−1
f̂ (ct)

(∫ 1

−1
eictxψ(α)

k,c (x)ωα(x) dx

)
dt

∣∣∣∣
= c

2π
|μ(α)

k (c)|
∣∣∣∣
∫ 1

−1
f̂ (ct)ψ(α)

n,c (t) dt

∣∣∣∣

≤ |μ(α)
k (c)| c

2π
sup

t∈[−1,1]
|ψ(α)

n,c (t)|
(∫ 1

−1
| f̂ (ct)|2 dt

)1/2
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≤ Cα√
2

√
c

2π
|μ(α)

k (c)|(χk(c))
(1+α)/2‖ f ‖L2(R)

= Cα√
2

√
λ

(α)
N (c) (χN (c))(1+α)/2 ‖ f ‖L2(R). (70)

Here, Cα is as given by (34). The last inequality follows from Plancherel formula and
the bound over I of |ψ(α)

n,c (t)|, we have given in (35). On the other hand, by using the
previous inequality, together with the super-exponential decay rate of the |μ(α)

n (c)|,
given by (56), as well as the Parseval’s equality

‖ f − SN f ‖2L2(I,ωα)
=

∑
k≥N+1

|〈 f, ψ(α)
k,c 〉L2(I,ωα)|2,

one can easily get (66). Finally, to get (67), it suffices to combine the previous inequal-
ity, (56) as well as the upper bound of |ψ(α)

n,c (t)|. ��

As a consequence of the previous result, we have the following corollary concerning
the quality of approximation of almost band-limited functions by the GPSWFs.

Corollary 2 Let f ∈ L2(R) be an ε�-band-limited in � = [−c,+c] and let α ≥ 0,
then for any positive integer N ≥ 2c

π
, we have

(∫ 1

−1
| f (t) − SN f (t)|2ωα(t)dt

)1/2

≤ ε� + C1

√
λ

(α)
N (c) (χN (c))(1+α)/2 ‖ f ‖L2(R)

(71)
where the constant C1 depends only on α.

Proof It suffices to consider the band-limiting operator π� defined by:

π�( f )(x) = 1

2π

∫
�

eixω f̂ (ω) dω.

Since π� f ∈ Bc, ‖( f − π� f ) − SN ( f − π� f )‖L2(I ) ≤ ‖ f − π�‖L2(R) ≤ ε� and
‖π� f ‖L2(R) ≤ ‖ f ‖L2(R), then by applying the result of the previous proposition to
π� f, one gets

‖ f − SN ( f )‖L2(I,ωα) ≤ ‖( f − π� f ) − SN ( f − π� f )‖L2(I,ωα)

+‖π� f − SN (π� f )‖L2
ωα(I )

≤ ε� + C1

√
λ

(α)
N (c) (χN (c))(1+α)/2 ‖π� f ‖L2(R)

≤ ε� + C1

√
λ

(α)
N (c) (χN (c))(1+α)/2 ‖ f ‖L2(R).
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Fig. 1 a Graphs of ψα
n,c with c = 5π and α = 0.5, b, c graphs of some analytic extensions of the ψα

n,c

5 Numerical Results

In this section, we give three examples that illustrate the different results of this
work. The first example deals with the computation and the analytic extension of
the GPSWFs.

Example 1 In this example, we give different numerical tests that illustrate the con-
struction scheme of the GPSWFs ψ

(α)
n,c . For this purpose, we have considered the

values α = 0.5 and c = 5π. Then, we have computed the different Jacobi expansion
coefficients via the scheme of Sect. 2, by solving the eigensystem (21), truncated to
the order N = 90. Figure1a show the graphs of the ψ

(α)
n,c for the different values

of n = 0, 5, 15. Note that these graphs illustrate some of the provided properties of
the ψ

(α)
n,c . Also, we have used formula (68) and computed the analytic extensions of

the previous GPSWFs. The graphs of these extensions are given by Fig. 1b, c. Note
that as predicted by the characterisation of the GPSWFs as solutions of the energy
maximization problem, for the values of n ≤ 2cπ, the ψ

(α)
n,c are concentrated on I,

whereas for n > 2c/π, they are concentrated on R \ I.

Example 2 In this example, we illustrate the important result given by Theorem
2, concerning the monotonicity with respect to the parameter α of the sequence

λ(α)
n (c) = c

2π
|μ(α)

n (c)|2. For this purpose, we have used formula (55) and computed

highly accurate values of μ
(α)
n (c) and consequently of λ

(α)
n (c) with c = 10π and

with different values of α = 0, 0.5, 1.5. Note that as predicted by Theorem 2, the
sequence λ

(α)
n (c) is decreasing with respect to α. The graphs of the λ

(α)
n (c) as well as

log(λ(α)
n (c)) are given by Fig. 2a, b, respectively.

Example 3 In this last example, we illustrate the quality of approximation over I
of band-limited and almost band-limited functions, by the GPSWFs. For this pur-
pose, we have first considered the value of α = 0.5 and the c-band-limited function

f (x) = sin(cx)

cx
with c = 50. By computing the projections SN ( f ), with N = 32

and N = 40, we found that
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Fig. 2 a Graphs of the λ
(α)
n (c) for c = 10π, α = 1.5 (circles), α = 0.5 (boxes) and α = 0 (crosses), b

graphs of log(λ(α)
n (c))

sup
x∈[−1,1]

| f (x) − S32( f )(x)| ≈ 2.22 × 10−2,

sup
x∈[−1,1]

| f (x) − S40( f )(x)| ≈ 4.80 × 10−6.

As predicted by Proposition 6, the drastic improvement in the previous approximation
errors is due to the fact that the second value of N = 40 lies after the plunge region
of the eigenvalues λ

(α)
n (c), which is not the case for the first value of N = 32.

Next, to illustrate the approximation of almost band-limited functions by the
GPSWFs, we have considered the Weierstrass function

Ws(x) =
∑
k≥0

cos(2k x)

2ks
, −1 ≤ x ≤ 1. (72)

It is well known that Ws ∈ Hs−ε(I ), ∀ε < s, s > 0. One may consider Ws as a
restriction over I of a function W ∈ Hs−ε(R). Note that if f ∈ Hs(R) with s > 0,
then

∫
|ξ |>c

| f̂ (ξ)|2 dξ ≤
∫

|ξ |>c

(1 + |ξ |)2s
(1 + |ξ |)2s | f̂ (ξ)|2 dξ ≤ 1

(1 + c)2s
‖ f ‖2Hs (R).

That is f is 1
(1+c)s ‖ f ‖Hs -almost band-limited to [−c, c]. Note that in [4], we have used

the previous function to illustrate the quality of approximation by the classical PSWFs.
In this example, we push forward this quality of approximation to the GPSWFs.
For this purpose, we have considered the value of α = 0.5 and the two couples
of (c, N ) = (50, 60), (100, 90). Then we have computed the associated projection
SN (Ws), for the value of s = 1. Note that thanks to (43), the different expansion

coefficientsCn(Ws) =
∫ 1

−1
Ws(y)ψ

(α)
n,c (y)ωα(y) dy are computed exactly. In fact since

Ws is an even function, and from the Jacobi series expansion ofψ(α)
n,c , the computation

of the Cn(Ws) is restricted to the even indexed coefficients and consequently to the
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Fig. 3 aGraph of theWeierstarss functionW1(x), b graph of the approximation errorW1(x)−SN (W1)(x)
with α = 0.5, (c, N ) = (50, 60), c same as b with (c, N ) = (100, 90)

computation of the different inner products with Jacobi polynomials of even degrees.
More precisely, we have

C2m(Ws) =
∑
l≥0

β2m
2l

∑
k≥0

1

2ks

∫ 1

−1
cos(2k x)P̃(α,α)

2l (y) ωα(y) dy

= √
π2α+1/2

∑
l≥0

(−1)lβ2m
2l

	(2l + α + 1)√
h2l(2l)!

∑
k≥0

2−k(s+α+1/2) J2l+α+1/2(2
k).

The graph ofW1 is given by Fig. 3a, whereas the graphs of the approximation errors
W1(x) − SN (W1)(x) corresponding to the two couples (c, N ) = (50, 60), (100, 90)
are given by Fig. 3b, c, respectively. Note that as predicted by the theoretical results
of Sect. 4, the approximation error decreases as c−s, whenever the truncation order N
lies beyond the plunge of the (λ

(α)
n (c))n . In this case, the extra error factor given by√

λ
(α)
N (c)χ1/2+α

N can be neglected comparing the factor c−s .
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Appendix: Proof of Theorem 1

The proof is divided into three steps. To alleviate notations of this proof, wewill simply
denote ψ

(α)
n,c and χn(c) by ψn,c and χn, respectively.

First step: We prove that for for any positive integer j with j ( j + 2α + 1) ≤ χn ,
all moments

∫ 1
−1 y

jψn,c(y) dy are non negative and

0 ≤
∫ 1

−1
y jψn,c(y) ωα(y) dy ≤ √

1 + α

(
1

q

) j

|μ(α)
n (c)|. (73)

To this end, we first check that for any integer k ≥ 0 satisfying k(k + 2α + 1) ≤ χn,

we have
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∣∣∣ψ(k)
n,c(0)

∣∣∣ ≤ (
√

χn)
k
√
1 + α. (74)

It suffices to prove that mk = |ψ(k)
n,c(0)|√
χn

k ≤ √
1 + α. From the parity of ψn,c, we need

only to consider derivatives of even or odd order. We assume that n = 2l is even.
The case where n is odd is done in a similar manner. Note that for a fixed n, ψ

(2l)
n,c (0)

has alternating signs, that is ψ
(k)
n,c(0)ψ

(k−2)
n,c (0) < 0 In fact, for k = 0, we have

ψn,c(0)ψ
(2)
n,c(0) = −χnψn,c(0)2 < 0. By induction, we assume that ψ(k)

n,c(0)ψ
(k−2)
n,c <

0. As it is done in [6], we have

ψ(k+2)
n,c (0)ψ(k)

n,c(0) =
(
k(k + 1+ 2α) − χn

)
ψ(k)
n,c(0)

2 + k(k − 1)c2ψ(k−2)
n,c (0)ψ(k)

n,c(0).

(75)
By using the induction hypothesis as well as the fact that k(k + 1+ α + β) ≤ χn, one
concludes that the induction assumption holds for the order k. Consequently, we have

|ψ(k+2)
n,c (0)| =

(
χn − k(k + 1 + 2α)

)
|ψ(k)

n,c(0)| + k(k − 1)c2|ψ(k−2)
n,c (0)|. (76)

The previous equality implies that

mk+2 =
(
1 − k(k + 1 + 2α)

χn

)
mk + k(k − 1)

q

χn
mk−2. (77)

Hence, for any positive and even integer k with k(k + 2α + 1) ≤ χn, we have
mk ≤ m0 ≤ √

1 + α. This last inequality follows from (32) with t = 0. This proves
the inequality (74). Moreover, by taking the j th derivative at zero on both sides of∫ 1
−1 e

icxyψn,c(y)ωα(y)dy = μ
(α)
n (c)ψn,c(x), one gets

∫ 1

−1
y jψn,c(y) ωα(y)dy = (−i) j c− jμ(α)

n (c)ψ( j)
n (0). (78)

Since ψ
( j)
n (0) and ψ

( j+2)
n (0) have opposite signs, then the previous equation implies

that all moments with even order j with j ( j + 2α + 1) ≤ χn have the same sign. The
inequality (73) follows from (74).

Second step:We show that for all positive integers k, n with k(k+2α+1)+Cα c2 ≤
χn(c), we have βn

k ≥ 0. Here Cα is as given by (53). The positivity of βn
0 (when n is

even) and βn
1 (when n is odd) follow from the fact that

βn
0 =

√
	(α + 3/2)√
π	(α + 1)

|μ(α)
n (c)||ψn,c(0)|,

βn
1 =

√
	(α + 3/2)√
π	(α + 1)

√
2α + 3|μ(α)

n (c)|
∣∣∣∣ψ

′
n(0)

c

∣∣∣∣ . (79)
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Since the βn
k are given by (24), then by using the hypothesis of the theorem, we have

βn
2 = 2α + 3

c

√
2(2α + 5)

2α + 2

(
χn − c2

2α + 3

)
βn
0 ≥ βn

0 ,

βn
3 = 2α + 5

2c2

√
3(α + 1)

2α + 7

(
(2α + 2) + 3c2

2α + 5

)
βn
1 ≥ 0.

For j ≥ 2 and by rearranging the system (24) and using the induction hypothesis
βn
j ≥ βn

j−2 ≥ 0, one gets

Mαc
2(βn

j+2 + βn
j−2) ≥ (χn(c) − j ( j + 2α + 1) − Nαc

2)βn
j , (80)

where Mα and Nα are as given by (53). If we suppose that β j+2 ≤ βn
j , then from (80),

one gets
2Mαc

2βn
j ≥ (χn(c) − j ( j + 2α + 1) − Nαc

2)βn
j (81)

which contradicts the choice of Cα and the fact that k(k + 2α + 1) + Cα c2 ≤ χn(c).
Hence, the induction hypothesis holds for βn

j+2.

Third step: We prove (52). The first inequality follows from (79) and (74). To
prove the second inequality, we recall that the moments Mj,k of the normalized Jacobi

polynomials P̃(α,α)
k are given by (17) and they are non-negative. Moreover, since

x j =
∑ j

k=0
Mjk P̃

(α,α)
k (x), then the moments of the ψn,c are related to the GPSWFs

series expansion coefficients by the following relation

∫ 1

−1
x jψn,c(x) ωα(x) dx =

j∑
k=0

Mj,kβ
n
k .

Since from the previous step, we have βn
k ≥ 0, for any 0 ≤ k ≤ j and since the a jk

are non negative, then the previous equality implies that

βn
j ≤ 1

Mj, j

∫ 1

−1
x jψn,c(x) ωα(x) dx ≤ 1

Mj, j

√
1 + α

(
1

q

) j

|μ(α)
n (c)|. (82)

The last inequality follows from the result of the first step. Moreover, by using the
explicit expression of Mj, j , given by (17), together with (10), (51), the decay of the
function ϕ, given by (13), as well as some straightforward computations, one obtains

1

Mj, j
≤ 2 j 2α

e2α+3/2

(3/2)3/4(3/2 + 2α)3/4+α

√
3/2 + α

. (83)

Finally, by combining (82) and (83), one gets the second inequality of (52). ��
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