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Abstract In the present paper, we study various Erdős type geometric problems in the
setting of the integers modulo q, where q = pl is an odd prime power. More precisely,
we prove certain results about the distribution of triangles and triangle areas among
the points of E ⊂ Z

2
q .
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1 Introduction

The classical Erdős distance problem asks for the number of distinct distances deter-
mined by n points in R

d . In [6], Erdős conjectured that the minimum number of
distinct distances determined by n points in the Euclidean plane is C n√

logn
. Several

results have been given in this direction and recently Guth and Katz [8] settled the
conjecture, up to a square root log factor showing that n points determine at least
C n

logn distances. We shall note here that in higher dimensions the distance problem is
still open with the best known results due to Solymosi and Vu [14].

A natural generalization of the distance problem is the distribution of k-simplices.
In this setting, for k = 2, two triangles are congruent if there is an orthogonal transfor-
mation followed by a translation which takes one to another. If the triangles are non
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degenerate, this happens if and only if they have the same side-lengths. We will denote
by T2(E) the set of congruence classes of triangles. In [7], for subsets E ofR

2, Green-
leaf, Iosevich, Liu and Palsson proved that if dimH (E) > 8

5 , then L3(T2(E)) > 0,
where L3(T2(E)) denotes the 3-dimensional Lebesgue measure of T2(E).

A variant of the distance problem is the volume set problem. Given n points in the
plane one can easily see that the number of distinct triangle areas determined by the
points can be as large as

(n
3

)
if the points are in general position. In 2008, [13], Pinchasi

settled a long standing conjecture of Erdős, Purdy and Straus proving that the number
of distinct areas of triangles determined by a non-collinear point set of size n is at least
� n−1

2 �.
One can ask similar discrete questions in the context of vector spaces over finite

fields F
d
q , or modules over finite cyclic rings Z

d
q . Several problems have been studied

by various authors in the context of finite fields, see for example [1–4,9,10,12] and the
references therein. Indeed, the techniques and results for the problems in the context
of finite fields are an analogous version of those in Euclidean space.

For G = Fq or Zq , and x, y ∈ Gd , we can consider the following distance map

λ : (x, y) �−→ ‖x − y‖ = (x1 − y1)
2 + · · · + (xd − yd)

2.

This map does not induce a metric on Gd , but is a non-degenerate quadratic form
on Gd . The Erdős-Falconer distance problem in Gd asks for a threshold on the size
E ⊂ Gd so that the distance set of E ,

�(E) := {‖x − y‖ : x, y ∈ E},

is about the size q.

In [11], Iosevich andRudnevprove that for E ⊂ F
d
q if |E | > Cq

d+1
2 for a sufficiently

large constant C , then �(E) = Fq . Note that this result is in parallel to the Falconer
result for the subsets of R

d .
We also define the d- dimensional non-zero volumes of (d + 1)-simplices whose

vertices are in E by

Vd(E) = {det (x1 − xd+1, . . . , xd − xd+1) : x j ∈ E} \ {0}.

The distribution of triangle areas among the points of a subset E of F
2
q was studied

by Iosevich, Rudnev, and Zhai in [12]. The method uses a point-line incidence theory
and the result is the following. If E ⊂ F

2
q with |E | > q, then |V2(E)| ≥ q−1

2 , and

the triangles giving at least q−1
2 distinct areas can be chosen such that they share the

same base.
In this paper, we turn our attention to the Erdős-Falconer type problems in modules

Z
d
q over the cyclic rings Zq , where q = pl , p is an odd prime, and prove the following

results. Compared to configurations in vector spaces over finite fields, to overcome the
difficulties arising from the zero divisors in these cyclic rings, an extra arithmetical
machinery is developed.
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1.1 Statement of Main Results

SO2(Zq) = {A ∈ M2(Zq) : AAT = I, det (A) = 1}

In this setting, two triangles (x1, x2, x3), (y1, y2, y3) in Z
2
q are said to be congruent

if ∃θ ∈ SO2(Zq) such that

xi − x j = θ(yi − y j ) for all i, j.

Let T2(E) denote the set of congruence classes of triangles determined by the points
of E ⊂ Z

2
q . We then prove the following.

Theorem 1.1 Suppose E ⊂ Z
2
q with q = pl and p ≡ 3 mod 4. If |E | ≥ 3

√
3p2l− 1

3 ,

then |T2(E)| � q3.

In [5], Covert, Iosevich and Pakianathan prove an asymptotically sharp bound for the
distance set �(E) of E ⊂ Z

d
q . More precisely, it is shown that if E ⊂ Z

d
q , where

q = pl , and |E |  l(l + 1)q
(2l−1)d

2l + 1
2l , then �(E) ⊃ Z

∗
q , where Z

∗
q denotes the set

of unit elements of Zq . In Theorem 1.1 above, we study distribution of triangles for
subsets E of Z

2
q .

In Theorem 1.2, we modify a method used in [12] over finite fields, to prove a
sufficient condition on the size of E ⊂ Z

2
q so that the number of distinct triangle areas

determined by E is about the size q.

For E ⊂ Z
2
q , let

V2(E) = {det (x1 − x3, x2 − x3) : x j ∈ E} \ {0}.

Theorem 1.2 Let E ⊂ Z
2
q where q = pl . Suppose that |E | > p2l− 1

2 . Then |V2(E)| ≥
q
4
1+p
p − 1.

1.2 Fourier Analysis in Z
d
q

Let f, g : Z
d
q → C. The Fourier transform of f is defined as

f̂ (m) = q−d
∑

x∈Zd
q

χ(−x · m) f (x),

where χ(z) = exp(2π i z/q).

We use the following properties:

q−d
∑

x∈Zd
q

χ(x · m) =
{
1, if m = 0
0, otherwise

(Orthogonality)
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f (x) =
∑

m∈Zd
q

χ(x · m) f̂ (m) (Inversion)

∑

m∈Zd
q

| f̂ (m)|2 = q−d
∑

x∈Zd
q

| f (x)|2. (Plancherel)

2 Proof of Theorem 1.1

For the proof of Theorem 1.1 we will need the following lemmas.
Let us first denote by

SO2(Zq) = {A ∈ M2(Zq) : AAT = I, det (A) = 1}
=

{[
a −b
b a

]
: a2 + b2 ≡ 1 mod q

}

the special orthogonal group.

Lemma 2.1 Let ξ = (ξ1, ξ2) ∈ Z
2
q , where q = pl and p is an odd prime. If ‖ξ‖ =

ξ21 + ξ22 �= 0, then |Stab(ξ)| ≤ pl−1, where Stab is the stabilizer under the action of
the special orthogonal group.

Proof Let ξ = (x, y) ∈ Z
2
q . Since ‖ξ‖ �= 0, we can write ‖ξ‖ = x2 + y2 = piu, 0 ≤

i ≤ l − 1, u ∈ Z
∗
q . Now if A =

[
a b

−b a

]
∈ SO2(Zq) fixes ξ , then from the identity

[
a b

−b a

] [
x
y

]
=

[
x
y

]

we get

(a − 1)x + by = 0

−bx + (a − 1)y = 0.

Multiplying the first equation by x , and the second equation by y, summing together
we have (a − 1)(x2 + y2) = 0. Similarly, multiplying the first equation by y, and the
second equation by −x , summing together we have b(x2 + y2) = 0. Hence

(a − 1)(x2 + y2) ≡ 0 mod pl ,

b(x2 + y2) ≡ 0 mod pl . (2.1)

Putting x2 + y2 = piu in (2.1), we have

a = pl−i k + 1, 0 ≤ k < pi , and b = pl−im, 0 ≤ m < pi , (2.2)
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where
a2 + b2 ≡ 1 mod pl . (2.3)

Now to conclude the argument, we claim that for a0 �= a if b0 and b are satisfying
a20 + b20 ≡ 1 mod pl and a2 + b2 ≡ 1 mod pl and condition (2.2), respectively, then
b0 �= b. This will prove the lemma, for then the number of pairs (a, b) satisfying the
conditions (2.2) and (2.3) is at most the number of possibilities of b which is pi . This
is at most pl−1 as the valuation of a nonzero element is at most l − 1.

It remains to prove the claim and we will prove its contrapositive here. Suppose
that b0 = b and a20 + b20 ≡ 1 mod pl , a2 + b2 ≡ 1 mod pl , so that a20 ≡ a2 mod pl .
Writing a0 = pl−i k0 + 1 and a = pl−i k + 1, It follows that

(pl−i k0 + 1)2 ≡ (pl−i k + 1)2 mod pl ,

p2l−2i k20 + 2pl−i k0 ≡ p2l−2i k2 + 2pl−i k mod pl ,

therefore,

p2l−2i (k20 − k2) + 2pl−i (k0 − k) ≡ 0 mod pl ,

pl−i (k0 − k)(pl−i (k0 + k) + 2) ≡ 0 mod pl .

Thus pl | pl−i (k0 − k)(pl−i (k0 + k)+ 2), and since p � pl−i (k0 + k)+ 2 as p is odd,
we must have pi | k0 − k < pi . Hence we have k0 − k = 0, i.e., k0 = k and therefore
a0 = a. ��
Lemma 2.2 Let ξ ∈ Z

2
q \ (0, 0), where q = pl and p ≡ 3 mod 4. If ‖ξ‖ = 0, then

|Stab(ξ)| ≤ pl−1.

For the proof of Lemma 2.2 we will use Hensel’s Lemma.

Lemma 2.3 (Hensel’s Lemma) Let f (x) ∈ Z[x], f (r) ≡ 0 mod p and f ′(r) �≡
0 mod p so that r is a simple root of f modulo p. Then for any k ≥ 2, there exists a
unique r̂ in Zpk such that f (r̂) ≡ 0 mod pk with r̂ ≡ r mod p.

Proof of Lemma 2.2 We first note that as p ≡ 3 mod 4, for ξ = (ξ1, ξ2) ∈ Z
2
q \ (0, 0),

‖ξ‖ = ξ21 + ξ22 = 0 forces the p-adic norms ‖ξ1‖p = ‖ξ2‖p. Therefore, ξ =
(ξ1, ξ2) = (pmu, pmv) for some m ≥ l

2 and u, v ∈ Z
∗
q . Now if A ∈ SO2(Zq) fixes

ξ = (pmu, pmv), it can be readily shown that it also fixes η = (−pmv, pmu). Hence
A also fixes Span{ξ, η} = pm(Zpl × Zpl )

∼= Zpl−m × Zpl−m .

Since ξ �= (0, 0), we have m ≤ l − 1. We shall note that Zpl−m × Zpl−m is
smallest, and hence the number of matrices A that fixes Zpl−m × Zpl−m is largest,
when m = l − 1. Therefore it is sufficient to consider the case m = l − 1. In this case
A fixes pl−1(Zpl × Zpl )

∼= Zp × Zp.

We now write

A = I2 + B,
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where I2 denotes the 2× 2 identity matrix and B ∈ M2(Zq). Then for any y ∈ Z
2
q we

have

Apl−1y = pl−1y + Bpl−1y,

so that Bpl−1y = 0 as A fixes pl−1y. This implies that B = pB ′ for some B ′ ∈
M2(Zq), and

A = I2 + pB ′ ∈ 	1 ∩ SO2(Zq).

where 	1 denotes the matrices in M2(Zq) congruent to I2 mod p.
It follows that

Stab(ξ) =
{[

a −b
b a

]
: a, b ∈ Zq , a2 + b2 ≡ 1 mod q, a ≡ 1 mod p, b ≡ 0 mod p

}
.

(2.4)
Now we count the number of matrices in (2.4). We first fix b. Since b ≡ 0 mod p, we
have pl−1 choices for b. Then we consider the polynomial f (x) = x2 − (1 − b2) ∈
Z[x]. Note that f (x) = x2 − 1 in Zp as b ≡ 0 mod p. Hence 1 is a root of f (x) and
f ′(1) = 2 �= 0 in Zp as p is odd. Hence by Hensel’s Lemma there exists a unique
a in Zq such that f (a) = a2 − (1 − b2) = 0 in Zq with a ≡ 1modp. Therefore the
number matrices of the form in (2.4) is pl−1. This completes the proof. ��

We make use of the following lemma from [1].

Lemma 2.4 For any finite space F, any function f : F → R≥0, and any n ≥ 2 we
have

∑

z∈F
f n(z) ≤ |F |

(‖ f ‖1
|F |

)n

+ n(n − 1)

2
‖ f ‖n−2∞

∑

z∈F

(
f (z) − ‖ f ‖1

|F |
)2

,

where ‖ f ‖1 = ∑
z∈F | f (z)|, and ‖ f ‖∞ = maxz∈F f (z).

Lastly, we state the following lemma from [5] and use Remark 2.6 for the proof of
Theorem 1.1.

Lemma 2.5 Let d ≥ 2 and j ∈ Z
∗
q , where q is odd. Set ||x || = x21 +· · ·+ x2d . Denote

by S j = {x ∈ Z
d
q : ||x || = j} the sphere of radius j . Then,

|S j | = qd−1(1 + o(1)).

Remark 2.6 Note that

SO2(Zq) =
{[

a −b
b a

]
: a2 + b2 ≡ 1 mod q

}
(2.5)

and hence if we denote by S1 the sphere of radius 1 inZ
2
q , then |SO2(Zq)| = |S1| ∼ q,

by Lemma 2.5.
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Proof of Theorem 1.1 We first recall that SO2(Zq) = {A ∈ M2(Zq) : AAT =
I, det (A) = 1} and define an equivalence relation on (Z2

q)
3 as

(a, b, c) ∼ (a′, b′, c′)

if ∃θ ∈ SO2(Zq) with a′ = θa, b′ = θb, c′ = θc.
For E ⊂ Z

2
q and a, b, c ∈ Z

2
q , let

μ(a, b, c) = |{(x, y, z) ∈ E3 : ∃θ ∈ SO2(Zq) such that x − y = θa, y − z

= θb, x − z = θc.}|.

Note that μ(θa, θb, θc) = μ(a, b, c) for all θ ∈ SO2(Zq), so μ can be viewed as
a function μ : (Z2

q)
3/ ∼→ Z≥0.

Then by the Cauchy–Schwarz inequality,

|E |6 =
⎛

⎜
⎝

∑

(a,b,c)∈(Z2
q )3/∼

μ(a, b, c)

⎞

⎟
⎠

2

≤ |T2(E)|
⎛

⎜
⎝

∑

(a,b,c)∈(Z2
q )3/∼

μ2(a, b, c)

⎞

⎟
⎠ ,

where

|T2(E)| = |{(a, b, c) ∈ (Z2
q)

3/ ∼: μ(a, b, c) �= 0}|,

which is equal to

|{(a, b, c) ∈ (Z2
q)

3/ ∼: ∃(x, y, z) ∈ E3 and θ ∈ SO2(Zq) such that x − y

= θa, y − z = θb, x − z = θc}|.

We have,

μ2(a, b, c) = |{(x, y, z, x ′, y′, z′) ∈ E6 : ∃θ1, θ2 ∈ SO2(Zq) such that

x − y = θ1a, x ′ − y′ = θ2a

y − z = θ1b, y′ − z′ = θ2b

x − z = θ1c, x ′ − z′ = θ2c}|
= |{(x, y, z, x ′, y′, z′) ∈ E6 : ∃θ1, θ2 ∈ SO2(Zq) such that

θ−1
1 (x − y) = θ−1

2 (x ′ − y′) = a

θ−1
1 (y − z) = θ−1

2 (y′ − z′) = b

θ−1
1 (x − z) = θ−1

2 (x ′ − z′) = c}|
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so that

∑

(a,b,c)∈(Z2
q )3/∼

μ2(a, b, c) = |{(x, y, z, x ′, y′, z′) ∈ E6 : ∃θ1, θ2 ∈ SO2(Zq ) such that

θ−1
1 (x − y) = θ−1

2 (x ′ − y′)
θ−1
1 (y − z) = θ−1

2 (y′ − z′)
θ−1
1 (x − z) = θ−1

2 (x ′ − z′)}|
= |{(x, y, z, x ′, y′, z′) ∈ E6 : ∃θ ∈ SO2(Zq ) such that

θ(x − y) = x ′ − y′, θ(y − z) = y′ − z′, θ(x − z) = x ′ − z′}|
= |{(x, y, z, x ′, y′, z′) ∈ E6 : ∃θ ∈ SO2(Zq ) such that

x ′ − θx = y′ − θy = z′ − θ z}|.

For a fixed θ ∈ SO2(Zq), let

νθ (t) = |{(u, v) ∈ E × E : u − θ(v) = t}|. (2.6)

Then we have

ν3θ (t) = |{(x, y, z, x ′, y′, z′) ∈ E6 : x ′ − θx = y′ − θy = z′ − θ z = t}|,

and therefore ∑

(a,b,c)∈(Z2
q )3/∼

μ2(a, b, c) ≤
∑

θ∈SO2(Zq )

t∈Z2
q

ν3θ (t). (2.7)

By Lemma 2.4,

∑

t∈Z2
q

ν3θ (t) ≤ q2
(‖νθ‖1

q2

)3

+ 3‖νθ‖∞
∑

t∈Z2
q

(
νθ (t) − ‖νθ‖1

q2

)2

where ‖νθ‖1 = ∑
t∈Z2

q
νθ (t) = |E |2 and ‖νθ‖∞ = supt |νθ (t)| ≤ |E | as when we

first fix v in (2.6), u is uniquely determined.
It follows that

∑

t∈Z2
q

ν3θ (t) ≤ q−4|E |6 + 3|E |
∑

t∈Z2
q

(
νθ (t) − ‖νθ‖1

q2

)2

≤ q−4|E |6 + 3q2|E |
∑

ξ∈Z2
q\(0,0)

|̂νθ (ξ)|2 (by Plancherel Theorem)
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and thus

∑

θ∈SO2(Zq )

t∈Z2
q

ν3θ (t) ≤ |SO2(Zq)|q−4|E |6 + 3q2|E |
∑

θ∈SO2(Zq )

ξ∈Z2
q\(0,0)

|̂νθ (ξ)|2

By Remark 2.6, |SO2(Zq)| ∼ q and hence

∑

θ∈SO2(Zq )

t∈Z2
q

ν3θ (t) � q−3|E |6 + 3q2|E |
∑

θ∈SO2(Zq )

ξ∈Z2
q\(0,0)

|̂νθ (ξ)|2 (2.8)

Noting that

νθ (t) =
∑

v∈Z2
q

E(v)E(t + θv)

=
∑

v,α∈Z2
q

E(v)χ(α · (t + θv))Ê(α)

=
∑

v,α∈Z2
q

Ê(α)χ(t · α)E(v)χ(α · θv)

=
∑

α∈Z2
q

Ê(α)χ(t · α)
∑

v∈Z2
q

χ(α · θv)E(v)

=
∑

α∈Z2
q

Ê(α)χ(t · α)
∑

v∈Z2
q

χ(θT (α) · v)E(v)

= q2
∑

α∈Z2
q

Ê(α)χ(t · α)Ê(−θT (α)),

and

ν̂θ (ξ) = q−2
∑

t∈Z2
q

χ(−t · ξ)νθ (t)

= q−2
∑

t∈Z2
q

χ(−t · ξ)q2
∑

α∈Z2
q

Ê(α)χ(t · α)Ê(−θT (α))

=
∑

α∈Z2
q

Ê(α)Ê(−θT (α))
∑

t∈Z2
q

χ(t · (α − ξ))

= q2 Ê(ξ)Ê(−θT (ξ)),
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we have

∑

θ∈SO2(Zq )

ξ∈Z2
q\(0,0)

|̂νθ (ξ)|2 = q4
∑

θ∈SO2(Zq )

ξ∈Z2
q\(0,0)

|Ê(ξ)|2|Ê(−θT (ξ))|2

= q4
∑

θ∈SO2(Zq )

ξ∈Z2
q\(0,0)

|Ê(ξ)|2|Ê(θT (ξ))|2

≤ q4
(

max
ξ∈Z2

q\(0,0)
|Stab(ξ)|

)
∑

ξ �=(0,0)

|Ê(ξ)|2
∑

η �=(0,0)
‖η‖=‖ξ‖

|Ê(η)|2

Plugging this value in (2.8) and using (2.7) we get

∑

(a,b,c)∈(Z2
q )3/∼

μ2(a, b, c) ≤
∑

θ∈SO2(Zq )

t∈Z2
q

ν3θ (t)

� q−3|E |6 + 3q6|E |
(

max
ξ∈Z2

q\(0,0)
|Stab(ξ)|

)

×
∑

ξ �=(0,0)

|Ê(ξ)|2
∑

η �=(0,0)
‖η‖=‖ξ‖

|Ê(η)|2

= q−3|E |6 + 3q6|E |I (2.9)

where

I =
(

max
ξ∈Z2

q\(0,0)
|Stab(ξ)|

)
∑

ξ �=(0,0)

|Ê(ξ)|2
∑

η �=(0,0)
‖η‖=‖ξ‖

|Ê(η)|2

We first note that |Stab(ξ)| ≤ pl−1 for ξ �= (0, 0) by Lemma 2.1 and 2.2. Extending
the summation in η over all η and using Plancherel twice in I, we get

I ≤ pl−1q−4|E |2.

Plugging this value in (2.9) gives

∑

(a,b,c)∈(Z2
q )3/∼

μ2(a, b, c) � q−3|E |6 + 3q2|E |3 pl−1, (2.10)
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so that

|T2(E)| ≥ |E |6
q−3|E |6 + 3q2|E |3 pl−1

≥ |E |6
2q−3|E |6 = q3

2

whenever |E | ≥ 3
√
3p2l− 1

3 , which completes the proof. ��

3 Proof of Theorem 1.2

Now before giving the proof, let us introduce the necessary background.
Let q = pl and (a, b) ∈ Z

2
q . Let 〈(a, b)〉 = {t (a, b) : t ∈ Zq} be the submodule of

Z
2
q generated by (a, b), which gives the line through origin and the point (a, b) in Z

2
q .

Now, consider the set

�n = {(a, b) ∈ Z
2
q : pn|a, b but (a, b) �= (0, 0) mod pn+1},

and denote |�n| = λn for n = 0, 1, . . . , l − 1.

Lemma 3.1 λn = p2(l−n) − p2(l−n−1).

Proof Since pn|a, b in Zq we have pl−n choices for a and b each and hence p2(l−n)

choices for (a, b). Now we need to subtract p2(l−n−1) cases where pn+1 divides both
a and b to get the desired result. ��
Lemma 3.2 Let Ln = {〈(a, b)〉 : (a, b) ∈ �n} denote the set of lines generated by
the points of �n. Then |Ln| = pl−n + pl−n−1.

Proof For (a, b) ∈ �n , note that 〈(a, b)〉 is cyclic and | 〈(a, b)〉 | = pl−n . Hence there
exist φ(pl−n) = pl−n − pl−n−1 generators of the group which lies in �n . So that for
each n, we have

p2(l−n) − p2(l−n−1)

pl−n − pl−n−1 = pl−n + pl−n−1

many lines in Ln each containing pl−n points. ��
We now conclude that the average number of points in a line in Z

2
q is

=
∑l−1

n=0(p
l−n + pl−n−1)pl−n

∑l−1
n=0 p

l−n + pl−n−1

= p2l + p2l−1 + p2l−2 + · · · + p2 + p

pl + 2pl−1 + 2pl−2 + · · · + 2p + 1

∼ pl
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In what follows we will only consider L0, i.e. the set of all lines of full length q in
Z
2
q .

Lemma 3.3 For any (a, b) ∈ Z
2
q if (a, b) ∈ �n, then (a, b) appears in pn distinct

lines in L0.

Proof Say (a, b) ∈ �n and pn+1
� a. Then (a, b) belongs to the lines generated by(

a
pn , i pl−n + b

pn

)
for i = 0, . . . , pn−1.Note that i0 pl−n+ b

pn = i1 pl−n+ b
pn mod pl

would imply

i0 p
l−n = i1 p

l−n mod pl

i0 = i1 mod pn

which is not the case. Hence the given points are all distinct. Since a
pn is a unit in Zq

it follows that the lines determined by the given generators are all distinct. ��
Lemma 3.4 Let Ri = {(x, y) ∈ Z

2
q × Z

2
q : x − y ∈ �i } and ri = |Ri |, for i =

1, . . . , l − 1. Then r := r1 p + r2 p2 + · · · + rl−1 pl−1 ≤ 2p4l−1.

Proof Let x = (x1, x2), y = (y1, y2) in Z2
q . Now if x − y = (x1 − y1, x2 − y2) ∈ �i

then pi |x1− y1 and x2− y2 but pi+1
� x1− y1 or x2− y2. pi |x1− y1 gives pl−i choices

for x1 − y1 in Zq , we have q choices for y1 and y1 determines x1 uniquely. Hence we
have qpl−i choices for x1 and y1. Same argument applies for x2 and y2. Altogether
the condition pi |x1 − y1 and x2 − y2 gives qpl−i qpl−i choices for x = (x1, x2),
y = (y1, y2).

To exclude the cases where pi+1 divides both x1 − y1 and x2 − y2 we need to
subtract qpl−(i+1)qpl−(i+1) cases of x and y. Hence,

ri = qpl−i qpl−i − qpl−i−1qpl−i−1.

Now summing ri pi ’s over all i = 1, . . . , l − 1 we get

r = (qpl−1qpl−1 − qpl−2qpl−2)p + (qpl−2qpl−2 − qpl−3qpl−3)

×p2 + · · · + (qpqp − q2)pl−1

= q2(p2l−1 + p2l−2 − pl − pl−1)

≤ 2q2 p2l−1 = 2p4l−1.

��
Proof of Theorem 1.2 Let L be a line in L0 and consider the sum set

E + L = {e + l : e ∈ E, l ∈ L}

Since |L||E | > q2

e1 + l1 = e2 + l2 for some l1 �= l2
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so that

l2 − l1 = e1 − e2. (3.1)

Here we aim to average the solutions of the Eq. (3.1) over pl + pl−1 lines in L0. To
start with, we count the number of solutions of (3.1) over all lines in L0 in two cases:

In the case e1 = e2, there are |E | and q2 choices for e1 = e2 and l1 = l2 ,
respectively.

In the case e1 �= e2, we can choose e1 and e2 in |E |(|E | − 1) different ways, and
once we fix them, we look at the difference e1 − e2. At that point let Si = {(e1, e2) ∈
E × E : e1 − e2 ∈ �i } and si = |Si | for i = 0, . . . , l − 1. We know from Lemma
3.3 that if (e1, e2) ∈ Si , then e1 − e2 lies on pi lines in L0 and when we fix the line,
l2 − l1 can be written q different ways on that line. In other words, for all si pairs
(e1, e2) ∈ Si , l1, l2 is chosen piq different ways over the lines in L0.

So altogether we have

|{(e1, e2, l1, l2) ∈ E × E × L × L : (3.1) holds for some L ∈ L0}|
= |E |q2 + s0q + s1 pq + s2 p

2q + · · · + sl−1 p
l−1q

≤ |E |2q + (s0 + s1 p + s2 p
2 + · · · + sl−1 p

l−1)q

≤ |E |2q + (|E |2 + s)q

where s = s1 p + s2 p2 + · · · + sl−1 pl−1. Note that s ≤ r ≤ 2p4l−1 ≤ 2|E |2 by
Lemma 3.4 and the assumption on the size of E .

Hence we get,

|{(e1, e2, l1, l2) ∈ E × E × L × L : (3.1) holds for some L ∈ L0}| ≤ 4|E |2q

It follows that there exists a L ∈ L0 such that

|{(e1, e2, l1, l2) ∈ E × E × L × L : (3.1) holds}| ≤ 4|E |2 pl

pl + pl−1

= 4|E |2 p

1 + p
.

If we let νE+L(n) denote the number of representations of n as e + l for some
e ∈ E , l ∈ L , then by the Cauchy–Schwarz inequality, for this particular L ,

|E |2|L|2 =
(

∑

n∈E+L

ν(n)

)2

≤ |E + L|
∑

n∈E+L

ν2(n)

= |E + L||{(e1, e2, l1, l2) ∈ E × E × L × L : (3.1) holds}|.
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Hence,

|E + L| ≥ |E |2|L|2
|{(e1, e2, l1, l2) ∈ E × E × L × L : (3.1) holds}|

≥ |E |2 p2l
4|E |2 p

1+p

= q2

4

1 + p

p
.

We conclude that there exist points of E in at least q
4
1+p
p parallel lines. Here we shall

note that there are totally q parallel lines to L , including itself, and one of them must
contain two points of E with a unit distance in between. For otherwise, on each of these
parallel lines there would be at most pl−1 points of E yielding |E | ≤ qpl−1 = p2l−1

which is not the case. Now if we take those two points of E with a unit distance in
between on one of the parallel lines to L as a base, then each point of E on the remaining
q
4
1+p
p − 1 parallel lines to L gives a different height, yielding at least q

4
1+p
p − 1 many

distinct triangle areas. ��
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