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Abstract A classical result of Duffin and Schaeffer gives conditions under which
a discrete collection of characters on R, restricted to E = (−γ, γ ) � (−1/2, 1/2),
forms a Hilbert-space frame for L2(E). For the case of characters with period one, this
is just the Poisson Summation Formula. Duffin and Schaeffer show that perturbations
preserve the frame condition in this case. This paper gives analogous results for the
real Heisenberg group Hn , where frames are replaced by operator-valued frames.
The Selberg Trace Formula is used to show that perturbations of the orthogonal case
continue to behave as operator-valued frames. This technique enables the construction
of decompositions of elements of L2(E) for suitable subsets E of Hn in terms of
representations of Hn .
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1 Introduction

A frame for a Hilbert space H is a sequence {ξ j | j ∈ N} ⊂ H such that

A‖ξ‖2H ≤
∑

j∈Z

∣∣〈ξ j , ξ
〉
H

∣∣2 ≤ B‖ξ‖2H

for positive real numbers A and B and all ξ ∈ H. In the case that {ξ j } is an orthonormal
basis forH, this sequence is a tight frame forH; that is, A = B.WhenH = L2(−γ, γ )

for some γ < 1/2, an example of a tight frame that is not an orthonormal basis
can be obtained by simply restricting the standard Fourier basis {e2π i j · | j ∈ Z} ⊂
L2(−1/2, 1/2) to the interval (−γ, γ ). In their seminal 1952 paper [8], Duffin and
Schaeffer proved that it is possible to perturb the numbers j ∈ Z and still preserve the
frame condition in this last example:

Theorem 1 Denote by E the interval (−γ, γ ) � (−1/2, 1/2) ⊂ R. Let M > 0 and
δ > 0, and suppose {χ j = e2π iω j · | j ∈ Z} is a sequence of characters of R with

1. |ω j − j | < M, for all j ∈ Z, and
2. |ω j − ωk | ≥ δ for all j �= k ∈ Z.

Then there exist positive real numbers B ≥ A > 0 such that, for any f ∈ L2(E),

A ‖ f ‖2L2(E)
≤

∑

j∈Z

∣∣∣
〈
χ j , f

〉
L2(E)

∣∣∣
2 ≤ B ‖ f ‖2L2(E)

.

Modern literature in frame theory widely acknowledges that the subject was initiated
by this paper of Duffin and Schaeffer, although it received relatively little attention
until the late 1980swhenDaubechies,Grossmann, andMeyer connected this important
idea with the rapidly expanding area of wavelet analysis [6]. Theorem 1 has inspired
numerous generalizations and extensions, including the highly significant work of
Kadets (Kadec) [12] and Avdonin [2] on Riesz bases of exponentials. These and other
results are described in [14].

The objective of this paper is to extend these perturbation results to the real Heisen-
berg group Hn in a natural way. In this context, the appropriate notion of a frame is a
“g-frame” or “operator-valued frame.” This concept is found in [17] and also appears
in [4,5,11,13]. In what follows, the term operator-valued frame (OVF) will be used to
mean a countable sequence of (arbitrary-rank) linear operators Tj : H → K j mapping
a separable, complex Hilbert spaceH into separable, complex Hilbert spacesK j with
the property that there are positive real numbers B ≥ A > 0 such that
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A ‖ξ‖2 ≤
∑

j

∥∥Tjξ
∥∥2K j

≤ B ‖ξ‖2

for all ξ ∈ H. In some papers, the definition includes the additional assumption that
the maps Tj all have the same rank, but that condition will not be required. A frame
in the usual sense is a special case of this definition with the additional requirement
that dimK j = 1 for all j . Much of the study of OVFs thus far has been motivated by
multiwavelets [13] and by certain applications in distributed processing [5].

One straightforward way to construct OVFs [11,13] is to fix a locally compact
group G, a unitary representation π of G on a Hilbert space H, and a sequence of
points {x j } ⊂ G, and set Tj = Tπ(x j ) where T is some fixed operator fromH into a
separable, complexHilbert spaceK. This recipe is also used to generatemany rank-one
frames of interest [6]. However, as Theorem 1 suggests, there are other constructions
for frames. Among them are the so-called frames of exponentials, as described in
Theorem 1. Others have extended Theorem 1 to more general locally compact abelian
groups (see [9]).

The general goal of this paper is to extend the circle of results of Duffin and
Schaeffer to the setting of a non-trivial subspace H of L2(G), where G is a Lie
group that is possibly non-abelian. This extension will, in particular, have the effect
of giving a condition under which a function in H is uniquely determined by its
images under a sequence of ∗-representations of L1(G), just as the conditions of
Duffin and Schaeffer ensure that a function in L2(−γ, γ ) is uniquely determined
by samples of its Fourier transform. The main result presented here (Theorem 3) is
for the case of G equal to the Heisenberg group, but much of the discussion prior
to that result will take place in a more general setting to leave open the possibility
of application to other Lie groups, which we intend to pursue in later publications.
Briefly, this Theorem 3 gives a non-empty open set E ⊂ Hn and a sufficient condition
on a sequence {π j } ⊂ Ĥn of representations of Hn for there to be B ≥ A > 0 such
that

A ‖ f ‖2L2(E)
≤

∑

j

∥∥π j ( f )
∥∥2
HS ≤ B ‖ f ‖2L2(E)

,

for all f ∈ L2(E), where ‖·‖HS denotes Hilbert–Schmidt norm.
Some conditions are presented in Sect. 2 for a sequence of representations of G

corresponding, in a fairly general context, to the orthogonality of frames of exponen-
tials in the classical case studied by Duffin and Schaeffer. Section 3 sets forth results
analogous to Theorem 1 for the special case when G is Hn .

2 Harmonic OVFs of Representations

This section begins with a synopsis of a few aspects of representation theory needed
in subsequent discussion. It proceeds to describe some Parseval OVFs. The setting is a
unimodular locally compact Lie group G with a discrete co-compact closed subgroup
�. Let μ be a finite invariant measure on right cosets �\G [10, Theorem 2.49] that is
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normalized so that μ(�\G) = 1. Then the quasi-regular representation R of (G, �)

is defined on L2(�\G) := L2(�\G, dμ) by

(R(y)φ) (x) = φ(xy)

with y ∈ G, x ∈ �\G, and φ ∈ L2(�\G). The symbol Cc(G) (C∞
c (G)) will denote

continuous (smooth) compactly supported functions from G into C and, when E is
open inG, the symbolC∞

E (G)will denote the subset ofC∞
c (G)with support contained

in E .
The archetypal example of this setting is when G = R and � = Z, in which case

�\G can be identified with [−1/2, 1/2). For these particular groups, R decomposes
as

R =
⊕

j∈Z
π j

where π j is the character on G = R defined by π j (x) = e2π i j x . By the Poisson
summation formula, for f ∈ C∞

c (G),

∥∥∥∥∥
∑

k∈Z
f (· + k)

∥∥∥∥∥

2

L2(−1/2,1/2)

=
∑

j∈Z

∣∣〈π j , f
〉∣∣2 .

Restricting to f supported on E = (−1/2, 1/2) gives

‖ f ‖2L2(E)
=

∑

j∈Z

∣∣〈π j , f
〉∣∣2

for all f ∈ C∞
E (G). This equality can be extended to all of L2(E) by density, showing

that the harmonic exponentials {π j } form a Parseval frame for L2(E). While this is
just the Plancherel Theorem for Fourier series, the derivation here serves to illustrate
the general case.

Let G be a locally compact group, let dx = dm(x) be Haar measure on G, let
E ⊂ G be open with compact closure and m(E) > 0, and let {π j | j ∈ N} be a set of
representations of G on separable Hilbert spaces {H j | j ∈ N}. Further, assume that
{π j | j ∈ N} has the property that, for each j and all f ∈ L2(E), the operator defined
by π j ( f ) = ∫

G f (x)π j (x) dx is a Hilbert–Schmidt class operator on H j . Then {π j }
will be called an OVF of representations for L2(E) provided there exist B ≥ A > 0
such that

A ‖ f ‖2L2(E)
≤

∑∥∥π j ( f )
∥∥2
HS ≤ B ‖ f ‖2L2(E)

(1)

for all f ∈ L2(E). In this expression and subsequently, ‖·‖HS denotes the Hilbert–
Schmidt norm. In the case that each H j = C, each π j (x) for x ∈ G and j ∈ N

can be viewed either as a scalar or as an operator on C, and
∥∥π j ( f )

∥∥
HS = ∣∣〈π j , f

〉∣∣
for all f ∈ L2(E). In particular, when each π j is as in the preceding paragraph, the
inequality (1) holds with A = B = 1.
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In the more general setting, the appropriate replacement for E = (−1/2, 1/2) as
it occurs in the (R, Z) case, will be called a (G, �) reproducing set; i.e., a non-empty
open set E with compact closure having the property that EE−1 is disjoint from every
conjugate of�−{1lG}. Existence of such an E is equivalent to existence of a non-empty
open set U ⊂ G such that ∪g∈G g−1Ug intersects � only in the point 1lG . Further, if
R is as above, then R decomposes discretely as

R =
⊕

π j , (listed with multiplicities) (2)

where each π j is represented on a Hilbert space H j and has finite multiplicity
[7, Lemma 9.2.7]. Now and henceforth it is assumed that dx is chosen so that for
f ∈ Cc(G)

∫

G
f (x) dx =

∫

�\G

∑

γ

f (γ x) dμ(x)

for μ as described above. This is possible by [10, Theorem 2.49], and in this case,
the above equality also holds for all f ∈ L1(G) [3]. Further, R( f ) will denote the
operator on H̃ = L2(�\G) obtained by integrating the representation R against a
function f ∈ L1(G); i.e.,

R( f ) =
∫

G
f (y)R(y) dy. (3)

In what follows, the algebra of trace-class operators on a separable Hilbert space
K will be denoted by L1(K) and the Hilbert space of Hilbert–Schmidt class operators
on K will denoted by L2(K). Further, the trace of an operator T ∈ L1(K) will be
denoted Tr(T ), theHilbert–Schmidt inner product of S and T ∈ L2(K)will be denoted
〈S, T 〉L2(K) = Tr(T ∗S).

With the necessary background and terminology established, the objective in the
remainder of this section is to prove the following:

Theorem 2 Let E be a (G, �) reproducing set. Then the decomposition of R into
irreducible representations {π j }, listed with multiplicities, implies that {π j } forms a
Parseval OVF for L2(E).

This begins with a preliminary result:

Lemma 1 Let E ⊂ G be non-empty and open with compact closure, and let H =
L2(E). Then Ř : f �→ R( f ) is a bounded linear map fromH into L2(H̃).

Proof It is shown in [1] that, for f ∈ Cc(G), the Hilbert–Schmidt norm of R( f ) is
given by

‖R( f )‖2HS =
∫

�\G

∫

�\G

∣∣∣∣∣∣

∑

γ∈�

f (x−1γ y)

∣∣∣∣∣∣

2

dμ(x) dμ(y). (4)
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Because E has compact closure, this formula carries overmutatis mutandis to the case
f ∈ L2(E). If q : G → �\G is the canonical quotient map and F is a measurable
subset of G, then by [15, Chapter 8]

∫

G
χF (x) dx =

∫

�\G

∑

γ∈�

χF (γ x) dμ(x) ≥
∫

�\G
χq(F) dμ.

By [10, Lemma 2.46], there is a compact set K ⊂ G such that q(K ) = �\G. Thus,
given S ⊂ �\G and taking F = q−1(S) ∩ K in the above yields

∫
K χS ◦ q(x) dx ≥∫

�\G χS dμ. That is,
∫
K g ◦ q(x) dx ≥ ∫

�\G g dμ for all characteristic functions g on
�\G, and thus all non-negative measurable functions on �\G. The right-hand side of
(4) then becomes bounded by

∫

�\G

∫

K

∣∣∣∣∣∣

∑

γ∈�

f (x−1γ y)

∣∣∣∣∣∣

2

dx dμ(y) ≤
∫

K

∫

K

∣∣∣∣∣∣

∑

γ∈�

f (x−1γ y)

∣∣∣∣∣∣

2

dx dy.

The sum in the integrand vanishes off the set �0 = � ∩ K EK−1, which is compact
and discrete, hence finite. An application of the Cauchy–Schwarz inequality yields
the following upper bound for ‖R( f )‖2

L2(H̃)
,

‖R( f )‖2HS ≤ |�0|
∫

K

∫

K

∑

γ∈�0

∣∣∣ f (x−1γ y)
∣∣∣
2
dx dy

≤ |�0|
∑

γ∈�0

∫

K

∫

G

∣∣∣ f (x−1γ y)
∣∣∣
2
dx dy

≤ |�0|2m(K )|| f ||2L2(E)

as desired. ��
Now (2) and (3) yield a unitary V : ⊕H j → H̃ for which, as an operator on⊕H j ,

V ∗R( f )V =
⊕

π j ( f ).

It follows that each π j ( f ) is a Hilbert–Schmidt class operator onH j and that

‖R( f )‖2HS =
∑ ∥∥π j ( f )

∥∥2
HS . (5)

The condition for the operators {π j }, which respectivelymap into theHilbert spaces
L2(H j ), to form a Parseval OVF for L2(E) is

‖ f ‖2L2(E)
=

∑ ∥∥π j ( f )
∥∥2
HS . (6)
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In view of (5), this inequality follows from ‖ f ‖2L2(E)
= ‖R( f )‖2HS, a sufficient con-

dition for which is that E is a (G, �) reproducing set. Verification of this sufficiency
is achieved in the following lemmas.

Lemma 2 Let M ∈ L1(H̃) and E be an open subset of G with compact closure
and positive Haar measure. Then the function f M : E → C defined by f M (x) =
Tr(R(x−1)M) is bounded, and Ř∗M = f M .

Proof First it will be shown that f M is well-defined. IfM has eigenvalues {λ j | j ∈ N}
and corresponding eigenbasis {e j } ⊂ H̃, and U is any unitary operator on H̃, then

|Tr(UM)| ≤
∑

j

∣∣〈UMe j , e j
〉
H̃

∣∣

≤
∑

j

∥∥UMe j
∥∥H̃

=
∑

j

∥∥Mej
∥∥H̃ =

∑

j

|λ j |.

Thus, f M (x) = ∑
j

〈
R

(
x−1

)
Mej , e j

〉
converges absolutely to a bounded function

on E .
It will now be shown that

〈R( f ), M〉L2(H̃)
=

〈
f, f M

〉

L2(E)
.

The right-hand side is equal to

∫

E
f (x)Tr(M∗R(x)) dx .

As implied by the above estimates, the seriesTr(M∗R(x)) = Tr(R(x−1)M), expanded
using {e j }, converges absolutely to a bounded function. This means the integrand is
dominated by a multiple of | f (x)| and, since f ∈ L2(E) ⊂ L1(E), it follows from
the dominated convergence Theorem that

〈
f, f M

〉

L2(E)
= Tr

(∫

E
f (x)M∗R(x) dx

)

which is just

Tr

(
M∗

∫

E
f (x)R(x) dx

)
.

The latter is equal to 〈R( f ), M〉L2(H̃)
, as desired. ��

Lemma 3 Let E be a (G, �) reproducing set and f ∈ L2(E). Then (6) holds.
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Proof Suppose f ∈ C∞
E (G). By [1], R( f ) is trace-class. Thus, with the notation

fx (y) = f (yx), Lemma 2 implies that the function Ř∗R( f ) has the following very
specific form:

(Ř∗R( f ))(x) = Tr
(
R

(
x−1

)
R( f )

)

= Tr

(
R

(
x−1

) ∫

G
f (y)R(y) dy

)

= Tr

(∫

G
f (y)R(y) dyR

(
x−1

))

= Tr

(∫

G
fx (y)R(y) dy

)

= Tr (R( fx ))

=
∫

�\G

∑

γ∈�

fx (y
−1γ y) dμ(y) (7)

= fx (1lG)μ(�\G) +
∫

�\G

∑

1lG �=γ∈�

fx (y
−1γ y) dμ(y)

where (7) follows from the Selberg Trace Formula applied to the function fx (see
[1]). If x is such that supp fx is disjoint from all conjugates of � − {1lG}, then the
integral term vanishes and the right-hand side becomes fx (1lG), which is just f (x).
But this will happen if x ∈ E , since supp fx ⊂ Ex−1 ⊂ EE−1, which has the desired
disjointness property.

Hence, for x ∈ E and f ∈ C∞
E (G), (Ř∗R( f ))(x) = f (x). Consequently,

‖R( f )‖2HS =
〈
Ř∗R( f ), f

〉

H = ‖ f ‖2H for all f in a dense subspace of H = L2(E),

and hence for all of H. As noted above, the desired Parseval frame condition (6)
follows from this equality. ��

This section has established that, ifG is a locally compact, unimodular Lie group,�
is a discrete, co-compact, closed subgroup, {π j | j ∈ N} is a list (with multiplicities) of
the subrepresentations of the quasi-regular representation of (G, �), and E is a (G, �)

reproducing set, then {π j } is an OVF of representations for L2(E) with A = B = 1.
Such entities will be called harmonic OVFs.

3 OVFs of Representations for the Real Heisenberg Group

With the context established in Sect. 2, this section returns to the matter of finding
a generalization of the Duffin–Schaeffer Theorem on non-harmonic Fourier series in
which the pair (R, Z) is replaced by a more general (G, �). In this setting, when
one is given a reproducing neighborhood E and a harmonic OVF of representations
{π j | j ∈ N} for L2(E), one may ask whether there is a “neighborhood” of {π j }
consistingonlyofOVFsof representations for L2(E); i.e., consistingonlyof sequences
of representations {π̃ j | j ∈ N} for which there are B ≥ A > 0 such that
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A ‖ f ‖2L2(E)
≤

∑∥∥π̃ j ( f )
∥∥2
HS ≤ B ‖ f ‖2L2(E)

for all f ∈ L2(E). This section takes up this question for Hn , the real Heisenberg
group, defined as ordered triples (x, ξ, t) ∈ R

n × R
n × R with the operation

(x, ξ, t)(x ′, ξ ′, t ′) =
(
x + x ′, ξ + ξ ′, t + t ′ + 1

2
(x · ξ ′ − x ′ · ξ)

)
.

Thediscrete subgroup� consists of ordered triples inZ
n×Z

n× 1
2Z and the reproducing

neighborhood E will be D× (−1/4, 1/4), where D = (−1/2, 1/2)n × (−1/2, 1/2)n .
It is necessary to verify that E really is a (Hn, �) reproducing set. To see this, first

observe that �−{0}2n+1 = �1∪�2 with �1 = (
Z
2n − {0}2n)× 1

2Z and �2 = {0}2n ×( 1
2Z − {0}). Since the first 2n scalar components of EE−1 lie in (−1, 1) and since the

orbit of �1 under conjugation in G consists only of members of (Z2n − {0}2n) × R,
EE−1 is disjoint from this orbit. On the other hand, �2 is in the center of Hn , so it is
equal to its orbit under conjugation. If (x, ξ, t) ∈ Hn , then (x, ξ, t)−1 = (−x,−ξ,−t),
so if (x, ξ, t), (x ′, ξ ′, t ′) ∈ E and if (x, ξ, t)(x ′, ξ ′, t ′)−1 ∈ �2, then x = x ′, ξ = ξ ′,
and t − t ′ ∈ 1

2Z − {0}, which is impossible since t, t ′ ∈ (−1/4, 1/4). Thus, EE−1

does not intersect �2.
It remains to explicitly describe the subrepresentations of R and their corresponding

multiplicities. This has been done in complete generality for any connected nilpotent
Lie group G [16]. It will be convenient, however, to use the formulation in [18]. Up
to equivalence, the representations of Hn are of two types. The infinite-dimensional
representations of Hn have the form ρω : Hn × L2(Rn) → L2(Rn)

(ρω(x, ξ, t)φ) (y) = e−2π iω(t+x ·y+ 1
2 x ·ξ)φ(y + x)

withω ∈ R
∗ = R−{0} and φ ∈ L2(Rn). The others are (one-dimensional) characters,

given by χb,β(x, ξ, t) = e−2π i(b·x+β·ξ) for b, β ∈ R
n . To decompose L2(�\Hn) into

R-invariant subspaces, observefirst that g ∈ L2(�\Hn)maybeviewed as a function on
Hn that is invariant under left translations in �. Such a function satisfies, in particular,
g(x, ξ, t) = g(x, ξ, t + 1/2). Thus, L2(�\Hn) = ⊕

k∈ZK2k , where K2k is the R-
invariant space {h ∈ L2(�\Hn) : h(x, ξ, t) = e4π ikt h(x, ξ, 0)}. The action of R on
K0 factors through the action of the right regular representation of R

2n on L2(T2n),
and therefore decomposes into the sum

⊕

a,α∈Zn

χa,α.

Further, as described in [18], that the action of R on K2k , k �= 0, splits into |2k|n
irreducible actions, each of which is equivalent by a Weil–Brezin–Zak transform to
the action of ρ2k on L2(Rn). Thus,

R ∼=
⊕

a,α∈Zn

χa,α ⊕
⊕

k∈Z∗
|2k|nρ2k
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where Z
∗ = Z − {0}. From this it follows that the frame condition (6) becomes

‖ f ‖2L2(E)
=

∑

a,α∈Zn

∣∣χa,α( f )
∣∣2 +

∑

k �=0

|2k|n ‖ρ2k( f )‖2HS

for all f ∈ L2(E). The goal of this paper can now be rephrased as the following
result about perturbing the values of the equispaced parameters a, α, and 2k to vectors
{ba | a ∈ Z

n} ⊂ R
n and {βα | α ∈ Z

n} ⊂ R
n and real numbers {ωk | k ∈ Z

∗}.
Theorem 3 Suppose {ba | a ∈ Z

n} and {βα | α ∈ Z
n} are sequences of real n-vectors

and {ωk | k ∈ Z
∗} is a sequence of real numbers. Define

M = max

{
sup
a∈Zn

‖ba − a‖∞ , sup
α∈Zn

‖βα − α‖∞ , sup
k �=0

|ωk − 2k|
}

.

If M > 0 is sufficiently small, then there exist A = A(M) > 0 and B = B(M) such
that

A ‖ f ‖2L2(E)
≤

∑

a,α

∣∣χba ,βα ( f )
∣∣2 +

∑

k �=0

|2k|n ∥∥ρωk ( f )
∥∥2
HS ≤ B ‖ f ‖2L2(E)

holds for all f ∈ L2(E).

Proof Let f ∈ L2(E). For b, β, ω ∈ R
n , the (Euclidean) Fourier transform of f at

(b, β, ω) is defined to be

f̂ (b, β, ω) =
∫ ∫ ∫

f (x, ξ, t)e−2π i(b·x+β·ξ+ωt) dx dξ dt.

Let F1, F2, and F3 denote the corresponding Fourier transforms with respect to the
first, second, and third variables, respectively. Further, the symbols p, q, and r will
denote the quadratic forms

q( f ) =
∑

a,α

∣∣χba ,βα ( f )
∣∣2

and

r( f ) =
∑

k �=0

|2k|n ∥∥ρωk ( f )
∥∥2
HS

and

p( f ) = q( f ) + r( f ).

The result to be proven, in effect, is that for M > 0 sufficiently small, the seminorm
p1/2 is equivalent to ‖·‖L2(E).



1394 J Fourier Anal Appl (2015) 21:1384–1397

The key step in this proof will be a simple extension of Duffin and Schaeffer’s
Lemma [8, Lemma III] for the domain E . Specifically, given J = Z

2n × 2Z and
given ˜ : J → R

2n+1 and given that the number

M ′ = sup
z∈J

‖z̃ − z‖∞

is sufficiently small, there is T = T (M ′) such that

∑

z∈J

∣∣∣ f̂ (z̃) − f̂ (z)
∣∣∣
2 ≤ T (M ′)

∑

z∈J

∣∣∣ f̂ (z)
∣∣∣
2

for every f ∈ L2(E). By the triangle inequality, this means that the quantity

∑

z∈J

∣∣∣ f̂ (z̃)
∣∣∣
2

(8)

is bounded above and below by the expressions

(
1 ± T (M ′)1/2

)2 ∑

z∈J

∣∣∣ f̂ (z)
∣∣∣
2 =

(
1 ± T (M ′)1/2

)2 ‖ f ‖2L2(E)
.

Thus, it suffices to show that p( f ) is bounded above and below by positive multiples
of (8) for some z̃’s for which M ′ = M .

For ω �= 0 and f ∈ L2(E), it will be useful to obtain a formula for ‖ρω( f )‖2HS.
By an argument in Chapter 7 of [10], the operator ρω( f ) : L2(Rn) → L2(Rn) has
Hilbert–Schmidt norm

‖ρω( f )‖2HS = 1

|ω|n
∫ ∫

|F3 f (u, v, ω)|2 du dv

for Haar measure on Hn normalized to coincide with Lebesgue measure on R
2n+1.

Further, defining g by g : (x, ξ) �→ F3 f (x, ξ, ω), the facts that g is supported
on D and is square-integrable imply that ‖ρω( f )‖2HS may be written using the 2n-
dimensional Fourier series expansion of g as

‖ρω( f )‖2HS = 1

|ω|n
∑

a,α∈Zn

|F1F2F3 f (a, α, ω)|2 = 1

|ω|n
∑

a,α

∣∣∣ f̂ (a, α, ω)

∣∣∣
2

for any ω �= 0.
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Consider |r( f ) − φ( f )|, where

φ( f ) =
∑

k �=0

∑

a,α

∣∣∣ f̂ (a, α, ωk)

∣∣∣
2

(9)

=
∑

k �=0

|ωk |n‖ρωk ( f )‖2HS.

The quantity has the following upper bound:

|r( f ) − φ( f )| ≤
∑

k �=0

∣∣∣∣

∣∣∣∣
2k

ωk

∣∣∣∣
n

− 1

∣∣∣∣ |ωk |n‖ρωk ( f )‖2HS

≤ sup
k �=0

∣∣∣∣

∣∣∣∣
2k

ωk

∣∣∣∣
n

− 1

∣∣∣∣
∑

k �=0

|ωk |n‖ρωk ( f )‖2HS

= sup
k �=0

∣∣∣∣

∣∣∣∣
2k

ωk

∣∣∣∣
n

− 1

∣∣∣∣ φ( f ).

For M � 1, a bound may be obtained by replacing |ωk |n by |2k|n − nM |2k|n−1. A
corresponding bound on the supremum terms is nM/(|2k|−nM), which is decreasing
in |k|. Thus, the supremum term is less than C(M) = nM/(2 − nM), which goes to
zero as M goes to zero. In other words,

(1 − C(M))φ( f ) ≤ r( f ) ≤ (1 + C(M))φ( f ). (10)

The inequality

(1 − C(M))(φ( f ) + q( f )) ≤ p( f ) ≤ (1 + C(M))(φ( f ) + q( f )) (11)

results from adding (1 − C(M))q( f ) ≤ q( f ) ≤ (1 + C(M))q( f ) to (10). For each
b, β ∈ R

n , the quantity χb,β( f ) is equal to f̂ (b, β, 0), so

q( f ) =
∑

a,α∈Zn

∣∣∣ f̂ (ba, βα, 0)
∣∣∣
2

for Haar measure as above. Thus, combining the above with (11) and (9) gives

(1 − C(M))
∑

z∈J

∣∣∣ f̂ (z̃)
∣∣∣
2 ≤ p( f ) ≤ (1 + C(M))

∑

z∈J

∣∣∣ f̂ (z̃)
∣∣∣
2



1396 J Fourier Anal Appl (2015) 21:1384–1397

where, when k = 0, (a, α, 2k)˜ = (ba, βα, 0) and, when k �= 0, (a, α, 2k)˜ =
(a, α, ωk). For these values of z̃, the number M ′ is equal to M , and

(1 − C(M))(1 − T (M)1/2)2 ‖ f ‖2L2(E)

≤ p( f )

≤ (1 + C(M))(1 + T (M)1/2)2 ‖ f ‖2L2(E)

as desired. ��
Observe that by making the perturbations small, A and B can be made as close to

one as desired, resulting in a “nearly Parseval” OVF of representations. Thus, viewing
the list of representations {χba ,βα } ∪ {ρωk } with the appropriate number of repetitions,
the desired result about OVFs of representations on Hn is obtained: all that is needed
to specify one is a sequence of numbers satisfying a Duffin–Schaeffer type stability
condition. In particular, since an element f in a Hilbert spaceH is uniquely specified
by {Tj f } when {Tj } is a OVF forH, the preceding shows that f ∈ L2(E) is uniquely
specified by {π j ( f )}.

4 Conclusion

The preceding sections have described what it means for a OVF of representations
on a locally compact Lie group G to be harmonic. For G = Hn , � = Z

2n × 1
2Z,

and E = D × (−1/4, 1/4), a family of OVFs that are are “almost harmonic” was
constructed by perturbing a harmonic OVF of representations in a particular way. This
construction is analogous to the development of frames of non-harmonic exponen-
tials in L2(E) starting with an orthonormal basis of harmonic exponentials given by
Duffin and Schaeffer. The OVFs constructed here appear to stand in contrast those
found in current literature, which are typically generated as the unitary orbit of a
single fixed operator [11,13]. The nature of the OVFs introduced here is more sim-
ilar to the non-harmonic Fourier frames of [8] than to wavelet or Gabor systems,
and they are more closely related to the problem in representation theory described
above.

The development in this paper is restricted to OVFs for L2(E), where E is a proper
subset ofG. A possible extension of interest is the case where E = G, seeking a theory
that provides an analysis of L2(G) that provides features akin to Gabor analysis for
L2(R).

As noted, the condition set forth by Duffin and Schaeffer to get a Fourier frame
is quite general, whereas the condition given in this paper is less so. It would be
interesting to quantify the deviation from harmonic OVFs that is possible while still
remaining within the set of OVFs.
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