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Abstract We consider the phase retrieval problem in which one tries to reconstruct
a function from the modulus of its wavelet transform. We study the uniqueness and
stability of the reconstruction. In the case where the wavelets are Cauchy wavelets,
we prove that the modulus of the wavelet transform uniquely determines the function
up to a global phase. We show that the reconstruction operator is continuous but not
uniformly continuous. We describe how to construct pairs of functions which are
far away in L2-norm but whose wavelet transforms are very close, in modulus. The
principle is to modulate the wavelet transform of a fixed initial function by a phase
which varies slowly in both time and frequency. This construction seems to cover all
the instabilities that we observe in practice; we give a partial formal justification to this
fact. Finally, we describe an exact reconstruction algorithm and use it to numerically
confirm our analysis of the stability question.
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1 Introduction

A phase retrieval problem consists in reconstructing an unknown object f from a set
of phaseless linear measurements.More precisely, let E be a complex vector space and
{Li }i∈I a set of linear forms from E to C. We are given the set of all |Li ( f )| , i ∈ I ,
for some unknown f ∈ E and we want to determine f .

This problem can be studied under three different viewpoints:

• Is f uniquely determined by {|Li ( f )|}i∈I (up to a global phase)?
• If the answer to the previous question is positive, is the inverse application

{|Li ( f )|}i∈I → f “stable”? For example, is it continuous? Uniformly Lipschitz?
• In practice, is there an efficient algorithm which recovers f from {|Li ( f )|}i∈I ?
The most well-known example of a phase retrieval problem is the case where the Li

represent the Fourier transform. The unknown object is some compactly-supported
function f ∈ L2(R, C) and the problem is:

reconstruct f from | f̂ |

Because of its important applications in physics, this problem has been extensively
studied from the 1950s. Unfortunately Refs. [1,19] have shown that it is not solvable.
Indeed, for any f , there generally exists an infinite number of compactly-supported g
such that | f̂ | = |ĝ|.

We are interested in the problem which consists in reconstructing f ∈ L2(R) from
the modulus of its wavelet transform.

Awavelet is a (sufficiently regular) functionψ : R → C such that
∫
R

ψ(x)dx = 0.
For any j ∈ Z, we define ψ j (x) = a− jψ(a− j x), which is equivalent to ψ̂ j (x) =
ψ̂(a j x). The number a may be any real in ]1;+∞[. The wavelet transform of a
function f ∈ L2(R) is:

{ f � ψ j } j∈Z ∈ (L2(R))Z

Our problem is then the following:

reconstruct f ∈ L2(R) from {| f � ψ j |} j∈Z (1)

It can be seen as a collection of phase retrieval subproblems, where the linear form of
each subproblem is the Fourier transform. Provided that ψ is not pathological and f
is uniquely determined by { f � ψ j }, the problem is indeed equivalent to:

reconstruct { f̂ .ψ̂ j } j∈Z from
{∣∣
∣F
(
f̂ .ψ̂ j

)∣∣
∣
}

j∈Z

where F is another notation for the Fourier transform.
Even if, for any given j , it is impossible to reconstruct f̂ .ψ̂ j from

∣
∣
∣F
(
f̂ .ψ̂ j

)∣∣
∣

only, the reconstruction (1) may be possible: the f̂ .ψ̂ j are not independent one from
the other and we can use this information for reconstruction.
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We consider here the case of Cauchy wavelets. In this case, the relations between
the f̂ .ψ̂ j may be expressed in terms of holomorphic functions. This allows us to study
the problem (1)with the same tools as in [1].We show that f is uniquely determined by
{| f �ψ j |} j∈Z andwe are able to study the stability of the reconstruction.We show that,
when the wavelet transform does not have too many small values, the reconstruction
is stable, up to modulation of the different frequency bands by low-frequency phases.

This problem of reconstructing a signal from the modulus of its wavelet transform
is interesting in practice because of its applications in audio processing.

Indeed, a common way to represent audio signals is to use the modulus of some
time-frequency representation, either the short-time Fourier transform (spectrogram)
or the wavelet transform (scalogram [3,17]). Numerical results strongly indicate that
the loss of phase does not induce a loss of perceptual information. Thus, some audio
processing tasks can be achieved bymodifying directly themodulus,without taking the
phase into account, and then reconstructing a new signal from the modified modulus
[4,15], which requires to solve a phase retrieval problem.

The interest of the phase retrieval problem in the case of the wavelet transform is
also theoretical.

A lot of work has been devoted to finding or characterizing systems of linear mea-
surements whose modulus suffices to uniquely determine an unknown vector. If the
underlying vector space is of finite dimension n, it is known that 4n − 4 generic lin-
ear forms are enough to guarantee the uniqueness [10]. Specific examples of such
linear forms have been given by [7,12]. References [8,9] have constructed random
measurements systems for which uniqueness holds with high probability and their
reconstruction algorithm PhaseLift is guaranteed to succeed. These examples either
rely on randomization techniques or have been carefully designed by means of alge-
braic tricks to guarantee the uniqueness of the reconstruction.By contrast, the (Cauchy)
wavelet transform is a natural and deterministic system of linear measurements, for
which uniqueness results can be proved.

Most of the research in phase retrieval has at first focused on the uniqueness of the
reconstruction or on the algorithmic part. The question of whether the reconstruction
is stable to measurement noise is more recent. References [5,6] gave a necessary and
sufficient condition for stability in the case where the unknown vector x is real but it
only partially extends to the complex case. For several random measurement systems,
it has been proved that, with high probability, all signals are determined by themodulus
of the linear measurements, in a way which is stable to noise (see for example [8,11]).
Again, our measurement system presents the interest of being, on the contrary, totally
deterministic. Moreover, to our knowledge, it is the first case where the question of
stability does not have a binary answer (the reconstruction is “partially stable”) and
where we are able to precisely describe the instabilities.

1.1 Outline and Results

In Sect. 2, we prove that a function is uniquely determined by the modulus of its
Cauchy wavelet transform. Precisely, if (ψ j ) j∈Z is a family of Cauchy wavelets, we
have the following theorem:
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Theorem If f, g ∈ L2(R) are two functions such that f̂ (ω) = ĝ(ω) = 0 for any
ω < 0 and if | f � ψ j | = |g � ψ j | for all j , then:

f = eiφg for some φ ∈ R

The proof uses harmonic analysis tools similar to the ones used by [1]. We also give
a version of this result for finite signals. The proof is similar but easier. We show that
it implies a uniqueness result for a system of 4n − 2 linear measurements.

The condition f̂ (ω) = ĝ(ω) = 0 can seem restrictive but a very similar result holds
if, instead of being analytic, f and g are real-valued, which is almost always the case
in practical applications (Corollary 2.3).

Then, in Sect. 3, we prove (Theorem 3.1) that the reconstruction operator is con-
tinuous.

In Sect. 4, we explain why this operator is not uniformly continuous: there exist
functions f, g such that || f − g||2 �� || f ||2 and | f � ψ j | ≈ |g � ψ j | for all j . In
the light of [6], we give simple examples of such ( f, g). We then describe a more
general construction of pairs ( f, g). The principle of this construction is to multiply
the wavelet transform of a fixed signal f by a “slow-varying” phase. Projecting this
modified wavelet transform on the set of admissible wavelet transforms yields a new
signal g. For each j , we have | f � ψ j | ≈ |g � ψ j |, but we may have f �≈ g.

In Sect. 5, we give explicit reconstruction formulas. We use them to prove a local
form of stability of the reconstruction problem (Theorems 5.1 and 5.2). Our result is
approximately the following:

Theorem Let f, g ∈ L2(R) be such that f̂ (ω) = ĝ(ω) = 0 for any ω < 0.
Let j ∈ Z, K ∈ N

∗ be fixed.
We assume that, for each l = j + 1, ..., j + K, we have, for all x in some interval:

| f � ψl(x)| ≈ |g � ψl(x)|
| f � ψl(x)|, |g � ψl(x)| �≈ 0

Then, for some low-frequency function h:

h.( f � ψ j ) ≈ g � ψ j

This implies that, if the modulus of the Fourier transform does not have too small
values, all the instabilities of the reconstruction operator are of the form described in
Sect. 4.

Finally, in Sect. 6, we present an algorithm which exactly recovers a function from
the modulus of its Cauchy wavelet transform (and a low-frequency component). This
algorithm uses the explicit formulas derived in Sect. 5. It may fail when the wavelet
transform is too close to zero at some points but otherwise it almost always succeeds.
It does not get stuck into local minima, like most classical algorithms (for example
[14]), and it is stable to noise.
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1.2 Notations

For any f ∈ L1(R), we denote by f̂ or F( f ) the Fourier transform of f :

f̂ (ω) =
∫

R

f (x)e−iωxdx ∀ω ∈ R

We extend this definition to L2 by continuity.
We denote byF−1 : L2(R) → L2(R) the inverse Fourier transform and recall that,

for any f ∈ L1 ∩ L2(R):

F−1( f )(x) = 1

2π

∫

R

f̂ (ω)eiωxdω

We denote by H the Poincaré half-plane: H = {z ∈ C s.t. Im z > 0}.

2 Uniqueness of the Reconstruction for Cauchy Wavelets

2.1 Definition of the Wavelet Transform and Comparison with Fourier

The most important phase retrieval problem, which naturally arises in several physical
settings, is the case of the Fourier transform:

reconstruct f ∈ L2(R) from | f̂ |

Without additional assumptions over f , the reconstruction is clearly impossible: any
choice of phase φ : R → R yield a signal g = F−1(| f̂ |eiφ) ∈ L2(R) such that
|ĝ| = | f̂ |.

To avoid this problem, one may for example require that f is compactly supported.
However [2,19] showed that, even with this constraint, the reconstruction was still not
possible.

More precisely, their result is the following one. If f ∈ L2(R) is a compactly
supported function, then its Fourier transform f̂ admits a holomorphic extension F
over all C: F(z) = ∫

R
f (x)e−i zxdx . If g ∈ L2(R) is another compactly supported

function and G is this holomorphic extension of its Fourier transform, the equality
| f̂ | = |ĝ| happens to be equivalent to:

∀z ∈ C, F(z)F(z) = G(z)G(z)

This in turn is essentially equivalent to:

{zn} ∪ {zn} = {z′n} ∪ {z′n} (2)

where the (zn) and (z′n) are the respective zeros of F and G over C, counted with
multiplicity. This means that F and G must have the same zeros, up to symmetry with
respect to the real axis.
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Conversely, for every choice of {z′n} satisfying (2), it is possible to find a compactly
supported g such that the zeroes of G are the z′n , which implies | f̂ | = |ĝ|.

A similar result can be established in the case where the function f ∈ L2(R)

is assumed to be identically zero on the negative real line [1] instead of compactly
supported.

Let us now define the wavelet transform and compare it with the Fourier transform.
Let ψ ∈ L1 ∩ L2(R) be a wavelet, that is a function such that

∫
R

ψ(x)dx = 0. Let
a > 1 be fixed; we call a the dilation factor. We define a family of wavelets by:

∀x ∈ R ψ j (x) = a− jψ(a− j x) ⇔ ∀ω ∈ R ψ̂ j (ω) = ψ̂(a jω)

The wavelet transform operator is:

f ∈ L2(R) → { f � ψ j } j∈Z ∈ (L2(R))Z

This operator is unitary if the so-called Littlewood-Paley condition is satisfied:

⎛

⎝
∑

j

|ψ̂ j (ω)|2 = 1,∀ω ∈ R

⎞

⎠ ⇒
⎛

⎝|| f ||22 =
∑

j

|| f � ψ j ||22 ∀ f ∈ L2(R)

⎞

⎠

(3)

The phase retrieval problem associated with this operator is:

reconstruct f ∈ L2(R) from {| f � ψ j |} j∈Z

This problem may or may not be well-posed, depending on which wavelet family we
use.

The simplest case is the one where the wavelets are Shannon wavelets:

ψ̂ = 1[1;a] ⇒ ∀ j ∈ Z, ψ̂ j (ω) = 1[a− j ;a− j+1]

Reconstructing f amounts to reconstruct f̂ 1[a− j ;a− j+1] = f̂ ψ̂ j for all j . For each j ,

we have only two informations about f̂ ψ̂ j : its support is included in [a− j ; a− j+1]
and the modulus of its inverse Fourier transform is | f � ψ j |. From the results of the
Fourier transform case, it is not enough to determine uniquely f̂ ψ̂ j . Thus, for Shannon
wavelets, the phase retrieval problem is as ill-posed as for the Fourier transform.

In this example, the problem comes from the fact that the ψ̂ j have non-overlapping
supports. Thus, reconstructing f is equivalent to reconstructing independently each
f � ψ j , which is not possible.
However, in general, the ψ̂ j have overlapping supports and the f � ψ j are not

independent for different values of j . They satisfy the following relation:

( f � ψ j ) � ψk = ( f � ψk) � ψ j ∀ j, k ∈ Z (4)
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Thus, there is “redundancy” in the wavelet decomposition of f . We can hope that this
redundancy compensates the loss of phase of | f �ψ j |. In the following, we show that,
at least for specific wavelets, it is the case.

2.2 Uniqueness Theorem for Cauchy Wavelets

In this paragraph, we consider wavelets of the following form:

ψ̂(ω) = ρ(ω)ωpe−ω1ω>0

ψ̂ j (ω) = ψ̂(a jω) ∀ω ∈ R (5)

where p > 0 and ρ ∈ L∞(R) is such that ρ(aω) = ρ(ω) for almost every ω ∈ R and
ρ(ω) �= 0,∀ω.

The presence of ρ allows some flexibility in the choice of the family. In particular,
if it is properly chosen, the Littlewood-Paley condition (3) may be satisfied. However,
the proofs are the same with or without ρ.

When ρ = 1, the wavelets of the form (5) are called Cauchy wavelets of order
p. Figure 1 displays an example of such wavelets. For these wavelets, the wavelet
transform has the property to be a set of sections of a holomorphic function along
horizontal lines.

If f ∈ L2(R), its analytic part f+ is defined by:

f̂+(ω) = 2 f̂ (ω)1ω>0 (6)

We define:

F(z) = 1

2π

∫

R

ωp f̂+(ω)eiωzdω ∀z s.t. Im z > 0 (7)

When f+ is sufficiently regular, F is the holomorphic extension of its p-th derivative.
For each y > 0, if we denote by F(. + iy) the function x ∈ R → F(x + iy):

F(. + iy) = F−1
(
2ωp f̂ (ω)1ω>0e

−yω
)

Consequently, for each j ∈ Z:

a pj

2
F(. + ia j ) = f � ψ j ∀ j ∈ Z (8)

So f �ψ j is the restriction of F to the horizontal line R+ ia j . In this case, the relation
(4) is equivalent to the fact that, for all j, k, f � ψ j and f � ψk are the restrictions of
the same holomorphic function to the lines R + ia j and R + iak .

Reconstructing f+ from {| f �ψ j |} j∈Z now amounts to reconstruct the holomorphic
function F : H = {z ∈ C, Im z > 0} → C from its modulus on an infinite set of
horizontal lines. Figure 2 shows these lines for a = 2. Our phase retrieval problem
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Fig. 1 Cauchy wavelets of order
p = 5 for j = 2, 1, 0, −1, a = 2
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thus reduces to a harmonic analysis problem. Actually, knowing |F | on only two lines
is already enough to recover F and one of the two lines may even be R, the boundary
of H.

Theorem 2.1 Let α > 0 be fixed. Let F,G : H → C be holomorphic functions such
that, for some M > 0:

∫

R

|F(x + iy)|2dx < M and
∫

R

|G(x + iy)|2dx < M ∀y > 0 (9)

We suppose that:

|F(x + iα)| = |G(x + iα)| for a.e. x ∈ R

lim
y→0+|F(x + iy)| = lim

y→0+|G(x + iy)| for a.e. x ∈ R
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Then, for some φ ∈ R:

F = eiφG (10)

The proof is given in Sect. 2.4.

Corollary 2.2 We consider wavelets (ψ j ) j∈Z of the form (5). Let f, g ∈ L2(R) be
such that, for some j, k ∈ Z with j �= k:

| f � ψ j | = |g � ψ j | and | f � ψk | = |g � ψk | (11)

We denote by f+ and g+ the analytic parts of f and g (as defined in (6))
There exists φ ∈ R such that:

f+ = eiφg+ (12)

Proof We may assume that j < k. We define F and G as in (7), with the additional
ρ:

F(z) = 1

2π

∫

R

ωpρ(ω) f̂+(ω)eiωzdω

G(z) = 1

2π

∫

R

ωpρ(ω)ĝ+(ω)eiωzdω ∀z ∈ H

For each y > 0, F(.+ iy) = F−1(2ωpρ(ω)e−yω1ω>0 f̂ (ω)). For y = a j and y = ak ,
it implies F(. + ia j ) = 2

a jp f � ψ j and F(. + iak) = 2
akp

f � ψk . From (11):

|F(. + ia j )| = 2

a pj
| f � ψ j | = 2

a pj
|g � ψ j | = |G(. + ia j )|

|F(. + iak)| = 2

a pk
| f � ψk | = 2

a pk
|g � ψk | = |G(. + iak)|

So the functions F(. + ia j ) and G(. + ia j ) coincide in modulus on two horizontal
lines: R and R + i(ak − a j ). From Theorem 2.1, they are equal up to a global phase.
As ρ does not vanish, it implies that f+ and g+ are equal up to this global phase.

So that we can apply Theorem 2.1, we must verify that the condition (9) holds for
F(. + ia j ) and G(. + ia j ). For any y > a j :

F(. + iy) = F−1
(
2ωpρ(ω) f̂ (ω)e−yω

)

⇒ ||F(. + iy)||22 = 1

2π
||2ωpρ(ω) f̂ (ω)e−yω1ω≥0||22

≤ 1

2π
||2ωpρ(ω) f̂ (ω)e−a jω1ω≥0||22

=
(

2

a jp

)2
|| f � ψ j ||22
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The same inequality holds for G: the condition (9) is true for M =
(

2
a jp

)2 || f �ψ j ||22.��
Wehave just proved that themodulus of thewavelet transform uniquely determines,

up to a global phase, the analytic part of a function, that is its positive frequencies. On
the contrary, as wavelets are analytic (ψ̂ j (ω) = 0 if ω < 0), the wavelet transform
contains no information about the negative frequencies. In practice, signals are often
real so negative frequencies are determined by positive ones and this latter limitation
is not really important.

Corollary 2.3 Let f, g ∈ L2(R) be real-valued functions; f+ and g+ are their ana-
lytic parts. We assume that, for some j, k ∈ Z such that j �= k:

| f � ψ j | = |g � ψ j | and | f � ψk | = |g � ψk |

Then, for some φ ∈ R:

f+ = eiφg+ ⇔ f = Re (eiφg+)

Remark 2.4 Although the Corollary 2.2 holds for only two wavelets and does not
require | f � ψs | = |g � ψs | for each s ∈ Z, the reconstruction of f from only two
components, | f � ψ j | and | f � ψk |, is very unstable in practice. Indeed, ψ̂ j and ψ̂k

are concentrated around characteristic frequencies of order 2− j and 2−k . Thus, from
f � ψ j and f � ψk (and even more so from | f � ψ j | and | f � ψk |), reconstructing the
frequencies of f which are not close to 2− j or 2−k is numerically impossible. It is an
ill-conditioned deconvolution problem.

Before ending this section, let us note that, with a proof similar to the one of the
Corollary 2.2, the Theorem 2.1 also implies the following result.

Corollary 2.5 Let α > 0 be fixed. Let f, g ∈ L2(R) be such that f̂ (ω) = ĝ(ω) = 0
for every ω < 0.

If | f̂ | = |ĝ| and | ̂f (t)e−αt | = | ̂g(t)e−αt |, then, for some φ ∈ R:

f = eiφg

This says that there is uniqueness in the phase retrieval problem associated to the
masked Fourier transform, in the casewhere there are twomasks, t → 1 and t → e−αt .

2.3 Discrete Case

Naturally, the functions we have to deal with in practice are generally not in L2(R).
They are instead discrete finite signals. In this section, we explain how to switch from
the continuous to the discrete finite setting. As we will see, all results derived in the
continuous case have a discrete equivalent but proofs become simpler because they
use polynomials instead of holomorphic functions.
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Let f ∈ C
n be a discrete function. We assume n is even. The discrete Fourier

transform of f is:

f̂ [k] =
n−1∑

s=0

f [s]e− 2π isk
n for k = −n

2
+ 1, ...,

n

2

The analytic part of f is f+ ∈ C
n such that:

f̂+[k] = 0 if − n

2
+ 1 ≤ k < 0

f̂+[k] = f̂ [k] if k = 0 or k = n

2

f̂+[k] = 2 f̂ [k] if 0 < k <
n

2

When f is real, f = Re ( f+).
We consider wavelets of the following form, for p > 0 and a > 1:

ψ̂ j [k] = ρ(a j k)(a j k)pe−a j k1k≥0 for all j ∈ Z, k = −n

2
+ 1, ...,

n

2
(13)

where ρ : R
+ → C is such that ρ(ax) = ρ(x) for every x and ρ does not vanish.

As in the continuous case, the set {| f � ψ j |} j∈Z almost uniquely determines f+.
Naturally, the global phase still cannot be determined. The mean value of f+ can also
not be determined, because ψ̂ j [0] = 0 for all j . To determine the mean value and the
global phase, we would need some additional information, for example the value of
f � φ for some low frequency signal φ.

Theorem 2.6 (Discrete version of 2.2) Let f, g ∈ C
n be discrete signals and (ψ j ) j∈Z

a family of wavelets of the form (13). Let j, l ∈ Z be two distinct integers. Then:

| f � ψ j | = |g � ψ j | and | f � ψl | = |g � ψl | (14)

if and only if, for some φ ∈ R, c ∈ C:

f+ = eiφg+ + c

Proof We first assume f+ = eiφg+ + c. Taking the Fourier transform of this equality
yields:

f̂ [k] = eiφ ĝ[k] for all k = 1, ...,
n

2

As ψ̂ j [k] = 0 for k = − n
2 + 1, ..., 0:

f̂ [k]ψ̂ j [k] = eiφ ĝ[k]ψ̂ j [k] for all k = −n

2
+ 1, ...,

n

2
⇒ ( f � ψ j = eiφ(g � ψ j ))
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So | f � ψ j | = |g � ψ j | and, similarly, | f � ψl | = |g � ψl |.
We now suppose conversely that | f � ψ j | = |g � ψ j | and | f � ψl | = |g � ψl |. We

define:

F(z) = 1

n

n/2∑

k=1

f̂ [k]ρ(k)k pzk G(z) = 1

n

n/2∑

k=1

ĝ[k]ρ(k)k pzk ∀z ∈ C

These polynomials are the discrete equivalents of functions F and G used in the proof
of 2.2. For all s = − n

2 + 1, ..., n
2 :

F
(
e−a j

e
2π is
n

)
= 1

n

n/2∑

k=1

f̂ [k]ρ(k)k pe−a j ke
2π iks
n

= a− j p 1

n

n/2∑

k=−n/2+1

f̂ [k]ψ̂ j [k]e 2π iks
n

= a− j p ( f � ψ j [s]
)

Similarly, G(e−a j
e
2π is
n ) = a− j p(g � ψ j [s]) for all s = − n

2 + 1, ..., n
2 .

Thus, f � ψ j and g � ψ j can be seen as the restrictions of F and G to the circle of

radius e−a j
. This is similar to the continuous case, where f � ψ j and g � ψ j were the

restrictions of functions F,G to horizontal lines.
The equality (14) implies:

∣
∣
∣F
(
e−a j

e
2π is
n

)∣∣
∣
2 =

∣
∣
∣G
(
e−a j

e
2π is
n

)∣∣
∣
2

for all s = −n

2
+ 1, ...,

n

2

⇔ F
(
e−a j

e
2π is
n

)
F
(
e−a j

e− 2π is
n

)
= G

(
e−a j

e
2π is
n

)
G
(
e−a j

e− 2π is
n

)

for all s = −n

2
+ 1, ...,

n

2

The functions z → F(e−a j
z)F(e−a j 1

z ) and z → G(e−a j
z)G(e−a j 1

z ) are polynomials
of degree n−2 (up to multiplication by zn/2−1). They share n common values so they
are equal. The same is true for l instead of j so:

F(e−a j
z)F

(

e−a j 1

z

)

= G(e−a j
z)G

(

e−a j 1

z

)

∀z ∈ C (15)

F(e−al z)F

(

e−al 1

z

)

= G(e−al z)G

(

e−al 1

z

)

∀z ∈ C (16)

If we show that these equalities imply F = eiφG for some φ ∈ R, the proof will be
finished. Indeed, from the definition of F and G, we will then have f̂ [k] = eiφ ĝ[k]
for all k = 1, ..., n

2 so f̂+[k] = eiφ ĝ+[k] for all k �= 0. It implies f+ = eiφg+ + c for

c = 1
n

(
f̂+[0] − eiφ ĝ+[0]

)
.
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It suffices to show that F and G have the same roots (with multiplicity) because
then, they will be proportional and, from (15), (16), the proportionality constant must
be of modulus 1.

For each z ∈ C, letμF (z) (resp.μG(z)) be the multiplicity of z as a root of F (resp.
G). The polynomials of (15) are of respective degree n − 2μF (0) and n − 2μG(0) so
μF (0) = μG(0).

For all z �= 0, the multiplicity of ea
j
z as a zero of (15) is:

μF (z) + μF

(
e−2a j

z

)

= μG(z) + μG

(
e−2a j

z

)

and the multiplicity of e2a
j−al z as a zero of (16) is:

μF

(
e2(a

j−al )z
)

+ μF

(
e−2a j

z

)

= μG

(
e2(a

j−al )z
)

+ μG

(
e−2a j

z

)

Substracting this last equality to the previous one implies that, for all z:

μF (z) − μG(z) = μF

(
e2(a

j−al )z
)

− μG

(
e2(a

j−al )z
)

By applying this equality several times, we get, for all n ∈ N:

μF (z) − μG(z) = μF

(
e2(a

j−al )z
)

− μG

(
e2(a

j−al )z
)

= μF

(
e4(a

j−al )z
)

− μG

(
e4(a

j−al )z
)

= ...

= μF

(
e2n(a j−al )z

)
− μG

(
e2n(a j−al )z

)

As F and G have a finite number of roots, μF (e2n(a j−al )z) − μG(e2n(a j−al )z) = 0 if
n is large enough. So μF (z) = μG(z) for all z ∈ C. ��

As in Sect. 2.2, a very similar proof gives a uniqueness result for the case of the
Fourier transform with masks, if the masks are well-chosen.

Theorem 2.7 (Discrete version of 2.5) Let α > 0 be fixed. Let f, g ∈ C
2n−1 be two

discrete signals with support in {0, ..., n − 1}:

f [s] = g[s] = 0 for s = n, ..., 2n − 2

If | f̂ | = |ĝ| and | ̂f [s]e−sα| = | ̂g[s]e−sα|, then, for some φ ∈ R:

f = eiφg
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Remark that this theorem describes systems of 4n − 2 linear measurements whose
moduli are enough to recover each complex signal of dimension n. As discussed in
the introduction, it is known that 4n − 4 generic measurements always achieve this
property [10]. However, it is in general difficult to find deterministic systems for which
it can be proven.

2.4 Proof of Theorem 2.1

Theorem (2.1) Let α > 0 be fixed. Let F,G : H → C be holomorphic functions
such that, for some M > 0:

∫

R

|F(x + iy)|2dx < M and
∫

R

|G(x + iy)|2dx < M ∀y > 0 (9)

We suppose that:

|F(x + iα)| = |G(x + iα)| for a.e. x ∈ R

lim
y→0+|F(x + iy)| = lim

y→0+|G(x + iy)| for a.e. x ∈ R

Then, for some φ ∈ R:

F = eiφG (17)

Proof of Theorem 2.1 This demonstration relies on the ideas used by [1].
If F = 0, the theorem is true: G is null over a whole line and, as G is holomorphic,

G = 0. The same reasoning holds if G = 0. We now assume F �= 0,G �= 0.
The central point of the proof is to factorize the functions F, F(.+iα),G,G(.+iα)

as in the following lemma. ��
Lemma 2.8 [16]1 The function F admits the following factorization:

F(z) = eic+iβz B(z)D(z)S(z)

Here, c and β are real numbers. The function B is a Blaschke product. It is formed
with the zeros of F in the upper half-plane H. We call (zk) these zeros, counted with
multiplicity, with the exception of i . We call m the multiplicity of i as zero.

B(z) =
(
z − i

z + i

)m∏

k

|zk − i |
zk − i

|zk + i |
zk + i

z − zk
z − zk

(18)

1 Non russian speaking readers may also deduce this theorem from [18, Theorem 17.17]: functions over
H may be turned into functions over D(0, 1) by composing them with the conformal application z ∈
D(0, 1) → 1−z

1+z i ∈ H. The main difficulty is to show that if H : H → C satisfies (9), then H̃ : z ∈
D(0, 1) → H

(
1−z
1+z i

)
∈ C is of class H2 and Rudin’s theorem can be applied.
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This product converges over H, which is equivalent to:

∑

k

Im zk
1 + |zk |2 < +∞ (19)

The functions D and S are defined by:

D(z) = exp

(
1

π i

∫

R

1 + t z

t − z

log |F(t)|
1 + t2

dt

)

(20)

S(z) = exp

(
i

π

∫

R

1 + t z

t − z
dE(t)

)

(21)

In the first equation, |F(t)| is the limit of |F | on R. In the second one, dE is a positive
bounded measure, singular with respect to Lebesgue measure.

Both integrals converge absolutely for any z ∈ H.

The same factorization can be applied to F(. + iα),G and G(. + iα):

F(z) = eicF+iβF z BF (z)DF (z)SF (z) G(z) = eicG+iβGz BG(z)DG(z)SG(z)

F(z + iα) = eic̃F+i β̃F z B̃F (z)D̃F (z)S̃F (z) G(z + iα) = eic̃G+i β̃Gz B̃G(z)D̃G(z)S̃G(z)

As F(.+ iα) and G(.+ iα) are analytic on the real line, they actually have no singular
part S. The proof may be found in [13, Theorem 6.3]; it is done for functions on the
unit disk but also holds for functions on H.

S̃F = S̃G = 1 (22)

Because lim
y→0+|F(. + iy)| = lim

y→0+|G(. + iy)| and |F(. + iα)| = |G(. + iα)|, we have
DF = DG and D̃F = D̃G . We show that it implies a relation between the B’s, that is,
a relation between the zeros of F and G. From this relation, we will be able to prove
that F and G have the same zeros and that, up to a global phase, they are equal.

For all z ∈ H:

eicF+iβF (z+iα)BF (z + iα)DF (z + iα)SF (z + iα)

eic̃F+i β̃F z B̃F (z)D̃F (z)
= F(z + iα)

F(z + iα)
= 1

= G(z + iα)

G(z + iα)

= eicG+iβG (z+iα)BG(z + iα)DG(z + iα)SG(z + iα)

eic̃G+i β̃Gz B̃G(z)D̃G(z)

⇒ BF (z + iα)B̃G(z)

BG(z + iα)B̃F (z)
= eiC+i Bz SG(z + iα)

SF (z + iα)
(23)

for some C, B ∈ R
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Equality (23) holds only for z ∈ H. It is a priori not even defined for z ∈ C−H. Before
going on, we must show that (23) is meaningful and still valid over all C. This is the
purpose of the two following lemmas, whose proofs may be found in Appendix 1.

For z ∈ H, we denote by μF (z) (resp. μG(z)) the multiplicity of z as a zero of F
(resp. G).

Lemma 2.9 There exists a meromorphic function Bw : C → C such that:

Bw(z) = BF (z + iα)B̃G(z)

BG(z + iα)B̃F (z)
∀z ∈ H

Moreover, for all z ∈ H, the multiplicity of z − iα as a pole of Bw is:

(μF (z) − μG(z)) − (μF (z + 2iα) − μG(z + 2iα)) (24)

Lemma 2.10 For all z ∈ H, SG (z+iα)
SF (z+iα)

= 1.

Equation (23) and the Lemmas 2.9 and 2.10 give, for all z ∈ H and thus all z ∈ C

(because functions are meromorphic):

Bw(z) = eiC+i Bz ∀z ∈ C

The function eiC+i Bz has no zero nor pole so, from (24), for all z ∈ H:

(μF (z) − μG(z)) − (μF (z + 2iα) − μG(z + 2iα)) = 0

So ifμF (z) �= μG(z) for some z, wemay by symmetry assume thatμF (z) > μG(z)
and, in this case, for all n ∈ N

∗:

μF (z + 2niα) − μG(z + 2niα) = ...

= μF (z + 2iα) − μG(z + 2iα)

= μF (z) − μG(z) > 0

In particular, z + 2niα is a zero of F for all n ∈ N
∗. But this is impossible because,

if it is the case, Im(z+2niα)

1+|z+2niα|2 ∼ 1
2nα

and:

∑

k

Im zk
1 + |zk |2 = +∞

where the (zk) are the zeros of F over H. It is in contradiction with (19).
So for all z ∈ H, μF (z) = μG(z). This implies that BF = BG and B̃F = B̃G . So,

for all z ∈ H:

F(z + iα) = eic̃F+i β̃F z B̃F (z)D̃F (z) = eic̃F+i β̃F z B̃G(z)D̃G(z) = eiγ+iδzG(z + iα)

with γ = c̃F − c̃G and δ = β̃F − β̃G
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The functions F and G are meromorphic over H so the last equality actually holds
over all {z ∈ C s.t. Im z > −α}.

∣
∣
∣
∣ limy→0+F(x + iy)

∣
∣
∣
∣ =

∣
∣
∣
∣ limy→0+e

iγ+iδ(x+iy−iα)G(x + iy)

∣
∣
∣
∣

= eδα

∣
∣
∣
∣ limy→0+G(x + iy)

∣
∣
∣
∣

Consequently, because δ is real and α �= 0, δ = 0. So:

F(z) = eiγ G(z) ∀z ∈ H

��

3 Weak Stability of the Reconstruction

In the previous section, we proved that the operatorU : f → {| f �ψ j |}was injective,
up to a global phase, for Cauchy wavelets. So we can theoretically reconstruct any
function f from U ( f ). However, if we want the reconstruction to be possible in
practice, we also need it to be stable to a small amount of noise:

(U ( f1) ≈ U ( f2)) ⇒ ( f1 ≈ f2)

In this section, we show that it is, in some sense, the case: U−1 is continuous.
Contrarily to the ones of the previous section, this result is not specific to Cauchy

wavelets: it holds for all reasonable wavelets, as soon as U is injective.

3.1 Definitions

As in the previous section, we consider only functions without negative frequencies:

L2+(R) = { f ∈ L2(R) s.t. f̂ (ω) = 0 for a.e. ω < 0}

As the reconstruction is always up to a global phase, we need to define the quotient
L2+(R)/S1:

f = g in L2+(R)/S1 ⇔ f = eiφg for some φ ∈ R

The set L2+(R)/S1 is equipped with a natural metric:

D2( f, g) = inf
φ∈R

|| f − eiφg||2

Remark that D2( f, 0) = || f ||2.
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We also define:

L2
Z
(R) =

⎧
⎨

⎩
(h j ) j∈Z ∈ L2(R)Z s.t.

∑

j

||h j ||22 < +∞
⎫
⎬

⎭

∣
∣
∣
∣
∣
∣(h j ) − (h′

j )

∣
∣
∣
∣
∣
∣
2

=
√∑

j∈Z
||h j − h′

j ||22 for any (h j ), (h
′
j ) ∈ L2

Z
(R)

We are interested in the operator U :

U : L2+(R)/S1 → L2
Z
(R)

f → (| f � ψ j |) j∈Z (25)

We require two conditions over the wavelets. They must be analytic:

ψ̂ j (ω) = 0 for a.e. ω < 0, j ∈ Z (26)

and satisfy an approximate Littlewood-Paley inequality:

A ≤
∑

j∈Z
|ψ̂ j (ω)|2 ≤ B for a.e. ω > 0, for some A, B > 0 (27)

This last inequality and the fact that D2( f, 0) = || f ||2 imply:

∀ f ∈ L2+(R)/S1,
√
AD2( f, 0) ≤ ||U ( f )||2 ≤ √

BD2( f, 0) (28)

In particular, it ensures the continuity of U .

3.2 Weak Stability Theorem

Theorem 3.1 We suppose that, for all j ∈ Z, ψ j ∈ L1(R)∩ L2(R) and that (26) and
(27) hold. We also suppose that U is injective. Then:

(i) The image of U, IU = {U ( f ) s.t. f ∈ L2+(R)/S1} is closed in L2
Z
(R).

(ii) The application U−1 : IU → L2+(R)/S1 is continuous.

Proof What we have to prove is the following: if (U ( fn))n∈N converges towards a
limit v ∈ L2

Z
(R), then v = U (g) for some g ∈ L2+(R)/S1 and fn → g in L2+(R)/S1.

So let (U ( fn))n∈N be a sequence of elements in IU , which converges in L2
Z
(R).

Let v = (h j ) j∈Z ∈ L2
Z
(R) be the limit. We show that v ∈ IU . ��

Lemma 3.2 For all j ∈ Z, { fn � ψ j }n∈N is relatively compact in L2(R) (that is, the
closure of this set in L2(R) is compact).
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The proof of this lemma is given in Appendix 2. It uses the Riesz–Fréchet–
Kolmogorov theorem, which gives an explicit characterization of the relatively
compact subsets of L2(R).

For every j ∈ Z, { fn � ψ j }n∈N is thus included in a compact subset of L2(R). In a
compact set, every sequence admits a convergent subsequence: there existsφ : N → N

injective such that ( fφ(n) � ψ j )n∈N converges in L2(R). Actually, we can choose φ

such that ( fφ(n) �ψ j )n converges for any j (and not only for a single one). We donote
by l j the limits.

Lemma 3.3 (Proof in Appendix 2) There exists g ∈ L2+(R) such that l j = g � ψ j for
every j . Moreover, fφ(n) → g in L2(R).

As U is continuous, U (g) = lim
n

U ( fφ(n)) = v. So v belongs to IU .

The g such that U (g) = v is uniquely defined in L2+(R)/S1 because U is injective
(it does not depend on the choice of φ). We must now show that fn → g.

From the Lemma 3.3, ( fn)n admits a subsequence ( fφ(n)) which converges to g.
By the same reasoning, every subsequence ( fψ(n))n of ( fn)n admits a subsequence
which converges to g. This implies that ( fn)n globally converges to g. ��
Remark 3.4 The same demonstration gives a similar result for wavelets on R

d , of the
form (ψ j,γ ) j∈Z,γ∈� , for � a finite set of parameters.

4 The Reconstruction is Not Uniformly Continuous

Theorem 3.1 states that the operatorU : f → {| f � ψ j |} j∈Z has a continuous inverse
U−1, when it is invertible. However,U−1 is not uniformly continuous. Indeed, for any
ε > 0, there exist g1, g2 ∈ L2+(R)/S1 such that:

||U (g1) −U (g2)|| < ε but ||g1 − g2|| ≥ 1 (29)

In this section, we describe a way to construct such “unstable” pairs (g1, g2): we
start from any g1 and modulate each g1 � ψ j by a low-frequency phase. We then
(approximately) invert this modified wavelet transform and obtain g2.

This construction seems to be “generic” in the sense that it includes all the insta-
bilities that we have been able to observe in practice.

4.1 A Simple Example

To begin with, we give a simple example of instabilities and relate it to known results
about the stability in general phase retrieval problems.

In phase retrieval problemswith (a finite number of) realmeasurements, the stability
of the reconstruction operator is characterized by the following theorem [5,6].

Theorem 4.1 Let A ∈ R
m×n be a measurement matrix. For any S ⊂ {1, ...,m}, we

denote by AS the matrix obtained by discarding the rows of A whose indexes are not
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in S. We call λ2S the lower frame bound of AS, that is, the largest real number such
that:

||ASx ||22 ≥ λ2S||x ||22 ∀x ∈ R
n

Then, for any x, y ∈ R
n:

|| |Ax | − |Ay| ||2 ≥
(

min
S

√
λ2S + λ2Sc

)

.min(||x − y||2, ||x + y||2)

Moreover, min
S

√
λ2S + λ2Sc is the optimal constant.

This theorem implies that, in the real case, the reconstruction operator has a Lip-

schitz constant exactly equal to 1/

(

min
S

√
λ2S + λ2Sc

)

. In the complex case, it is only

possible to prove that the Lipschitz constant is at least 1/

(

min
S

√
λ2S + λ2Sc

)

.

Theorem 4.2 Let A ∈ C
m×n be a measurement matrix. There exist x, y ∈ C

n such
that:

|| |Ax | − |Ay| ||2 ≤
(

min
S

√
λ2S + λ2Sc

)

.min|η|=1
(||x − ηy||2)

Consequently, if the set of measurements can be divided in two parts S and Sc such
that λ2S and λ2Sc are very small, then the reconstruction is not stable.

Such a phenomenon occurs in the case of the wavelet transform. We define:

S = {ψ j s.t. j ≥ 0} and Sc = {ψ j s.t. j < 0}

Let us fix a small ε > 0. We choose f1, f2 ∈ L2(R) such that:

f̂1(x) = 0 if |x | < 1/ε and f̂2(x) = 0 if x /∈ [−ε; ε]

For every ψ j ∈ S, f1 � ψ j ≈ 0 because the characteristic frequency of ψ j is smaller
than 1 and f1 is a very high frequency function. So:

|( f1 + f2) � ψ j | ≈ | f2 � ψ j | = | − f2 � ψ j | ≈ |( f1 − f2) � ψ j |

And similarly, for ψ j ∈ Sc, f2 � ψ j ≈ 0 and:

|( f1 + f2) � ψ j | ≈ | f1 � ψ j | ≈ |( f1 − f2) � ψ j |

As a consequence:

{|( f1 + f2) � ψ j |} j∈Z ≈ {|( f1 − f2) � ψ j |} j∈Z
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Nevertheless, f1 + f2 and f1 − f2 may not be close in L2(R)/S1: g1 = f1 + f2 and
g2 = f1 − f2 satisfy (29).

Figure 3 displays an example of this kind.

4.2 A Wider Class of Instabilities

We now describe the construction of more general “unstable” pairs (g1, g2).
Let g1 ∈ L2(R) be any function. We aim at finding g2 ∈ L2(R) such that, for all

j ∈ Z:

(g1 � ψ j )e
iφ j ≈ g2 � ψ j (30)

for some real functions φ j .
In other words, we must find phases φ j such that (g1 � ψ j )eiφ j is approximately

equal to the wavelet transform of some g2 ∈ L2(R). Any phases φ j (t) which vary
slowly both in t and in j satisfy this property.

Indeed, if the φ j (t) vary “slowly enough”, we set:

g2 =
∑

j∈Z

(
(g1 � ψ j )e

iφ j
)

� ψ̃ j

where {ψ̃ j } j∈Z are the dual wavelets associated to {ψ j }.
Then, for all k ∈ Z, t ∈ R:

g2 � ψk(t) =
∑

j∈Z

(
(g1 � ψ j )e

iφ j
)

� ψ̃ j � ψk(t)

=
∑

j∈Z

∫

R

eiφ j (t−u)(g1 � ψ j )(t − u)(ψ̃ j � ψk)(u) du

(g1 � ψk(t))e
iφk (t) = eiφk (t)

∑

j∈Z
(g1 � ψ j ) � (ψ̃ j � ψk)(t)

=
∑

j∈Z

∫

R

eiφk (t)(g1 � ψ j )(t − u)(ψ̃ j � ψk)(u) du

So:

g2 � ψk(t) − (g1 � ψk(t))e
iφk (t) =

∑

j∈Z

∫

R

(
eiφ j (t−u) − eiφk (t)

)
(g1 � ψ j )

(t − u)(ψ̃ j � ψk)(u) du (31)

The function ψ̃ j � ψk(u) is negligible if j is not of the same order as k or if u is too
far away from 0. It means that, for some C ∈ N,U ∈ R (which may depend on k):
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g2 � ψk(t) − (g1 � ψk(t))e
iφk (t) ≈

∑

| j−k|≤C

∫

[−U ;U ]

(
eiφ j (t−u) − eiφk (t)

)

(g1 � ψ j )(t − u)(ψ̃ j � ψk)(u) du

If φ j (t − u) does not vary much over [k −C; k +C] × [−U ;U ], it gives the desired
relation:

g2 � ψk(t) − (g1 � ψk(t))e
iφk (t) ≈ 0

which is (30).
To summarize, we have described a way to construct g1, g2 ∈ L2(R) such that

|g1 � ψ j | ≈ |g2 � ψ j | for all j . The principle is to multiply the wavelet transform of
g1 by any set of phases {eiφ j (t)} j∈Z whose variations are slow enough in j and t .

How slow the variations must be depends on g1. Indeed, at the points ( j, t) where
g1 � ψ j (t) is small, the phase may vary more rapidly because, then, the presence of
g1 � ψ j (t − u) in (31) compensates for a bigger (eiφ j (t−u) − eiφk (t)).

All instabilities g1, g2 that we were able to observe in practice were of the form we
described: each time, the wavelet transforms of g1 and g2 were equal up to a phase
whose variation was slow in j and t , except at the points where g1 � ψ j was small.

5 Strong Stability Result

The goal of this section is to give a partial formal justification to the fact that has been
non-rigorously discussed in Sect. 4.2: when two functions g1, g2 satisfy |g1 � ψ j | ≈
|g2 � ψ j | for all j , then the wavelet transforms {g1 � ψ j (t)} j and {g2 � ψ j (t)} j are
equal up to a phase whose variation is slow in t and j , except eventually at the points
where |g1 � ψ j (t)| is small.

In the whole section, we consider f (1), f (2) two non-zero functions. We denote by
F (1), F (2) the holomorphic extensions defined in (7). We recall that, for all j ∈ Z:

f � ψ j (x) = a pj

2
F(x + ia j ) ∀x ∈ R (32)

We define:

N j = sup
x∈R,s=1,2

| f (s) � ψ j (x)|

5.1 Main Principle

From | f � ψ j |, one can calculate | f � ψ j |2 and thus, from (32), |F(x + ia j )|2, for
all x ∈ R. But this last function coincides with G j (z) = F(z + ia j )F(z + ia j ) on
the horizontal line Im z = 0. As G j is holomorphic, it is uniquely determined by its
values on one line. Consequently, G j is uniquely determined from | f � ψ j |.
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Combining the functions G j for different values of j allows to write explicit recon-
struction formulas. The stability of these formulas can be studied, to obtain relations
of the following form, for K > 0:

(
| f (1) � ψk | ≈ | f (2) � ψk | ∀k ∈ Z

)

⇒
(
( f (1) � ψ j )( f (1) � ψ j+K ) ≈ ( f (2) � ψ j )( f (2) � ψ j+K ) ∀ j ∈ Z

)

These relations imply that, for each j , the phases of f (1) � ψ j and f (2) � ψ j are

approximately equal up to multiplication by the phase of
f (1)�ψ j+K

f (2)�ψ j+K
. If K is not too

small, this last phase is low-frequency, compared to the phase of f (1)�ψ j and f (2)�ψ j .
The results we obtain are local, in the sense that if the approximate equality | f (1) �

ψk | ≈ | f (2) � ψk | only holds on a (large enough) interval of R, the equality ( f (1) �

ψ j )( f (1) � ψ j+K ) ≈ ( f (2) � ψ j )( f (2) � ψ j+K ) still holds (also on an interval of R).
Our main technical difficulty was to handle properly the fact that the G j ’s may

have zeros (which is a problem because we need to divide by G j in order to
get reconstruction formulas). We know that, when the wavelet transform has a
lot of zeros, the reconstruction becomes unstable. On the other hand, if they are
only a few isolated zeros, the reconstruction is stable and this must appear in our
theorems.

They are several ways to write reconstruction formulas, which give different stabil-
ity results. In the dyadic case (a = 2), there is a relatively simple method. We present
it first. Then we handle the case where a < 2. We do not consider the case where
a > 2. Indeed, it has less practical interest for us. Moreover, when the value of a
increases, the reconstruction becomes much less stable.

5.2 Case a = 2

In the dyadic case, we only assume that two consecutive moduli are approximately
known, on an interval of R: | f � ψ j | and | f � ψ j+1|. We also assume that, on this
interval, the moduli are never too close to 0. Then we show these moduli stabily
determine:

f � ψ j+2

f � ψ j+1

Theorem 5.1 Let ε, c, λ ∈]0; 1[, M > 0 be fixed, with c ≥ ε.
We assume that, for all x ∈ [−M2 j ; M2 j ]:

∣
∣
∣| f (1) � ψ j (x)|2 − | f (2) � ψ j (x)|2

∣
∣
∣ ≤ εN 2

j
∣
∣
∣| f (1) � ψ j+1(x)|2 − | f (2) � ψ j+1(x)|2

∣
∣
∣ ≤ εN 2

j+1
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and:

| f (1) � ψ j (x)|2, | f (2) � ψ j (x)|2 ≥ cN 2
j

| f (1) � ψ j+1(x)|2, | f (2) � ψ j+1(x)|2 ≥ cN 2
j+1

Then, for all x ∈ [−λ2M2 j ; λ2M2 j ]:
∣
∣
∣
∣
∣
f (1) � ψ j+2

f (1) � ψ j+1
(x) − f (2) � ψ j+2

f (2) � ψ j+1
(x)

∣
∣
∣
∣
∣
≤ A

c

(
N j−1

N j+1

)4/3
ε(1/3−αM )(4/5−α′

M )

if 1/3 − αM > 0 and 4/5 − α′
M > 0, where:

• A is a constant which depends only on p.
• αM , α′

M → 0 exponentially when M → +∞.

Principle of the proof Here, we only give a broad outline of the proof. A rigorous one
is given in the Appendix 3, with all the necessary technical details.

As explained in the paragraph 5.1, | f (1) � ψ j+1| uniquely determines the values

of z → F (1)(z + i2 j+1)F (1)(z + i2 j+1) on the line Im z = 0. Thus, it uniquely
determines all the values (because the function is holomorphic) and in particular (for
z = x + i2 j ):

F (1)(x + i3.2 j )F (1)(x + i2 j ) ∀x ∈ R

Moreover, this determination is a stable operation:
(
| f (1) � ψ j+1(x)|2 ≈ | f (2) � ψ j+1(x)|2 ∀x ∈ R

)

⇒
(
F (1)(x + i3.2 j )F (1)(x + i2 j ) ≈ F (2)(x + i3.2 j )F (2)(x + i2 j ) ∀x ∈ R

)

If we divide this last expression by |F (1)(x + i2 j )|2 ≈ |F (2)(x + i2 j )|2 (whose values
we know from | f � ψ j |2):

F (1)(x + i3.2 j )

F (1)(x + i2 j )
≈ F (2)(x + i3.2 j )

F (2)(x + i2 j )
for x ∈ R

As previously, using the holomorphy of F allows to replace, in the last expression,
the real number x by x + i2 j :

F (1)(x + i2 j+2)

F (1)(x + i2 j+1)
≈ F (2)(x + i2 j+2)

F (2)(x + i2 j+1)
for x ∈ R

By (32), this is the same as:

f (1) � ψ j+2

f (1) � ψ j+1
≈ f (2) � ψ j+2

f (2) � ψ j+1

��
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From this theorem, if f (s) �ψ j+2 has no small values either on [−λ2M2 j ; λ2M2 j ],
then:

phase( f (1) � ψ j+1)−phase( f (2) � ψ j+1)≈phase( f (1) � ψ j+2)−phase( f (2) � ψ j+2)

If more than two consecutive components of the wavelet transform have almost the
same modulus (and all these components do not come close to 0), one can iterate this
approximate equality. It gives:

phase( f (1) � ψ j+1)−phase( f (2) � ψ j+1)≈phase( f (1) � ψ j+K )−phase( f (2) � ψ j+K )

This holds for any K ∈ N
∗ but with an approximation error that becomes larger and

larger as K increases.
When K is large enough, this means that f (1) � ψ j+1 and f (2) � ψ j+1 are equal up

to a low-frequency phase.

5.3 Case a < 2

For this section, we fix:

• j ∈ Z: the frequency of the component whose phase we want to estimate
• K ∈ N

∗ such that K ≡ 0[2]: the number of components of the wavelet transform
whose modulus are approximately equal

• ε, κ ∈]0; 1[: they will control the difference between | f (1) � ψ j | and | f (2) � ψ j |,
as well as the minimal value of those functions.

• M > 0: we will assume that the approximate equality between the modulus holds
on [−Ma j+K ; Ma j+K ].

• k ∈ N
∗ such that a−k < 2 − a: this number will control the stability with which

one can derive informations about f � ψl−1 from | f � ψl |. Typically, for a ≤ 1.5,
we may take k = 3.

We define:

• J ∈ [ j + K − 1; j + K ] such that aJ = 2
a+1a

j+K + a−1
a+1a

j : we will prove that

f (1) � ψ j and f (2) � ψ j are equal up to a phase which is concentrated around aJ

in frequencies (that is, a much lower-frequency phase than the phase of f � ψ j ).

• c = 1− a−1
1−a−k ∈]0; 1[ anddM = c−4 e−πM/(K+2)

1−e−πM/(K+2) ,which converges exponentially

to c when M
K goes to ∞.

Theorem 5.2 We assume that κ ≥ ε2(1−c).
We assume that, for x ∈ [−Ma j+K ; Ma j+K ] and l = j + 1, ..., j + K:

∣
∣
∣| f (1) � ψl(x)|2 − | f (2) � ψl(x)|2

∣
∣
∣ ≤ εN 2

l (33)

| f (1) � ψl(x)|2, | f (2) � ψl(x)|2 ≥ κN 2
l (34)
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Then, for any x ∈
[
−Ma j+K

2 ; Ma j+K

2

]
, as soon as dM < 1:

1

NJ N j

∣
∣
∣
(
f (1) � ψJ (x)

) (
f (1) � ψ j (x)

)
−
(
f (2) � ψJ (x)

) (
f (2) � ψ j (x)

)∣∣
∣

≤ CK

κK/4 εdM (35)

where CK = 6
1−√

κ

K/2−1∏

s=0

(
a p(k−1) Nns−1−k

Nns−2

)

As in the dyadic case a = 2, this theorem shows that, if two functions f (1) and f (2)

have their wavelet transforms almost equal in moduli, then, for each j , f (1) � ψ j ≈
f (2) � ψ j up to multiplication by a low-frequency function.
In contrast to the dyadic case, we are not able to show directly that:

f (1) � ψ j

f (2) � ψ j
≈ f (1) � ψ j+1

f (2) � ψ j+1

Because of that, the inequality we get is less good than in the dyadic case: the bound
in (35) is exponential in K instead of being proportional to K .

With a slightly different method, we could have obtained a better bound, propor-
tional to K . This better bound would have been valid for any a > 1, but under the
condition that f � ψl does not come close to 0 for some explicit non-integer values
of l, which would have been rather unsatisfying because, in practice, these values of
l do not seem to play a particular role.

Principle of the Proof The full proof may be found in Appendix 4. Its principle is to
show, by induction over s = 0, ..., K/2, that:

( f (1) � ψJs )
(
f (1) � ψ j+K−2s

)
≈ ( f (2) � ψJs )

(
f (2) � ψ j+K−2s

)
(36)

where Js is an explicit number in the interval [ j + K − 1; j + K ].
For s = 0, we set Js = j + K and (36) just says:

∣
∣
∣ f (1) � ψ j+K

∣
∣
∣
2 ≈

∣
∣
∣ f (2) � ψ j+K

∣
∣
∣
2

which is true by hypothesis.
Then, to go from s to s + 1, we use the fact that:

( f (1) � ψ j+K−2s)
(
f (1) � ψl

)
≈ ( f (2) � ψ j+K−2s)

(
f (2) � ψl

)
(37)

if we choose l such that al = 2a j+K−2s−1 − a j+K−2s : we can check that, up to
multiplication by a constant, ( f (r) � ψ j+K−2s)( f (r) � ψl) is the evaluation on the
line a j+K−2s − a j+K−2s−1 of the holomorphic extension of | f (r) � ψ j+K−2s−1|2.
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The holomorphic extension is a stable transformation (in a sense that has to be made
precise). As | f (1) � ψ j+K−2s−1|2 ≈ | f (2) � ψ j+K−2s−1|2, this implies (37).

Multiplying (36) and (37) and dividing by | f (1) � ψ j+K−2s |2 ≈ | f (2) � ψ j+K−2s |2
yields:

( f (1) � ψJs )
(
f (1) � ψl

)
≈ ( f (2) � ψJs )

(
f (2) � ψl

)
(38)

If Js+1 is suitably chosen, ( f (r) � ψJs+1)( f
(r) � ψ j+K−2(s+1)) may be seen as the

restriction to a line of the holomorphic extension of ( f (r) � ψJs )( f
(r) � ψl). Because,

again, taking the holomorphic extension is relatively stable, the relation (38) implies
the recurrence hypothesis (36) at order s + 1.

For s = K/2, the recurrence hypothesis is equivalent to the stated result. ��

6 Numerical Experiments

In the previous section, we proved a form of stability for the phase retrieval problem
associated to the Cauchy wavelet transform. The proof implicitly relied on the exis-
tence of an explicit reconstruction algorithm. In this section, we describe a practical
implementation of this algorithm and its performances.

The main goal of our numerical experiments is to investigate the issue of stability.
Theorems 5.1 and 5.2 prove that the reconstruction is, in some sense, stable, at least
when the wavelet transform does not have small values. Are these results confirmed
by the implementation? To what extent does the presence of small values make the
reconstruction unstable?

As we will see, our algorithm can fail when large parts of the wavelet transform
are close to zero. In all other cases, it seems to succeed and to be stable to noise, even
when the amount of noise over the wavelet transform is relatively high (∼ 10%). The
presence of a small number of zeroes in the wavelet transform is not a problem.

In practical applications, the wavelet transforms of the signals of interest (mostly
audio signals) always have a lot of small values. The algorithm that we present is thus
mostly a theoretical tool.Withoutmodifications, it is not intended for real applications.
Nevertheless, the results it gives for audio signals are better than expected so, with
some more work, it could be suited to practical applications in audio processing. This
will be the subject of future work.

The code is available at http://www.di.ens.fr/~waldspurger/cauchy_phase_retrieval.
html, along with examples of reconstruction for audio signals. It only handles the
dyadic case a = 2 but could easily be extended to other values of a.

6.1 Description of the Algorithm

In practice, we must restrict our wavelet transform to a finite number of components.
So we only consider the | f � ψ j | for j ∈ {Jmin, ..., Jmax}. To compensate for the loss
of the | f � ψ j | with j > Jmax, we give to our algorithm an additional information
about the low-frequency, under the form of f �φJmax , where φ̂Jmax is negligible outside
an neighborhood of 0 of size ∼ a−Jmax .

http://www.di.ens.fr/~waldspurger/cauchy_phase_retrieval.html
http://www.di.ens.fr/~waldspurger/cauchy_phase_retrieval.html
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The algorithm takes as input the functions | f � ψJmin |, | f � ψJmin+1|, ..., | f �

ψJmax |, f � φJmax , for some unknown f , and tries to reconstruct f . The input func-
tions may be contaminated by some noise. To simplify the implementation, we have
assumed that the probability distribution of the noise was known.

For any real numbers j, k1, k2 such that j ∈ Z and 2.a j = ak1 + ak2 , it comes
from the reasoning of the previous section that | f � ψ j | uniquely determines ( f �

ψk1).( f � ψk2). More precisely, we have, for all ω ∈ R:

̂( f � ψk1).( f � ψk2)(ω) = ̂| f � ψ j |2(ω)e(ak2−a j )ω a
k1+k2

a2 j
(39)

The algorithm begins by fixing real numbers kJmin−1, kJmin , ..., kJmax such that:

kJmin−1 < Jmin < kJmin < Jmin + 1 < ... < Jmax < kJmax

∀ j, 2.a j = ak j−1 + ak j (40)

Then, for all j , it applies (39) to determine g j
def= ( f � ψk j−1).( f � ψk j ). Because of

the exponential function present in (39), the g j may take arbitrarily high values in the
frequency band {(ak2 − a j )ω � 1}. To avoid this, we truncate the high frequencies
of g j .

The function f � ψkJmax
may be approximately determined from f � φJmax . From

this function and the g j , the algorithm estimates all the f � ψk j . As this estimation
involves divisions by functions which may be close to zero at some points, it is usually
not very accurate. In particular, the estimated set { f � ψk j } j do not generally satisfy
the constraint that it must belong to the range of the function f ∈ L2(R) → { f �

ψk j }Jmin−1≤ j≤Jmax .
Thus, in a second step, the algorithm refines the estimation. To do this, it

attempts to minimize an error function which takes into account both the fact that
( f � ψk j−1).( f � ψk j ) is known for every j and the fact that { f � ψk j−1}Jmin−1≤ j≤Jmax

must belong to the range of f ∈ L2(R) → { f �ψk j }Jmin−1≤ j≤Jmax . The minimization
is performed by gradient descent, using the previously found estimations as initializa-
tion.

Finally, we deduce f from the f � ψk j−1 and refine this estimation one more time
by a few steps of the classical Gerchberg–Saxton algorithm [14]. This final refinement
step is useful, because theGerchberg–Saxton algorithm convergesmuch faster than the
gradient descent. According to our tests, the performances of the algorithm would be
approximately the same with more gradient descent iterations and no final refinement.
However, the execution time would be much longer.

The principle of the algorithm is summarized by the Pseudocode 1.

6.2 Input Signals

We study the performances of this algorithm on three classes of input signals with
finite size n. Figure 4 shows an example for each of these three classes.
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Algorithm 1 Reconstruction algorithm
Input: {| f � ψ j |}Jmin≤ j≤Jmax and f � φJmax
1: Choose kJmin−1, ..., kJmax as in (40).
2: for all j do
3: Determine g j = ( f � ψk j−1 ).( f � ψk j ) from | f � ψ j |2.
4: end for
5: Determine f � ψkJmax

from f � φJmax .
6: for all j do
7: Estimate h j ≈ f � ψk j .
8: end for
9: Refine the estimation with a gradient descent.
10: Deduce f from { f � ψk j }Jmin−1≤ j≤Jmax .
11: Refine the estimation of f with the Gerchberg–Saxton algorithm.
Output: f
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0.5
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(c)
Fig. 4 examples of signals: a realization of a gaussian process, b sum of sinusoids, c piecewise regular

The first class contains realizations of gaussian processes with renormalized fre-
quencies. More precisely, the signals f of this class satisfy:

f̂ [n] = Xn√
n + 2

where the Xn are independent realizations of a gaussian randomvariable X ∼ N (0, 1).
The normalization 1√

n+2
ensures that all dyadic frequency bands contain approxi-

mately the same amount of energy.
The second class consists in sums of a few sinusoids. The amplitudes, phases and

frequencies of the sinusoids are randomly chosen. In each dyadic frequency band,
there is approximately the same mean number of sinusoids (slightly smaller than 1).

The signals of the third class are random lines extracted from real images. They
usually are structured signals, with smooth regular parts and large discontinuities at a
small number of points.

To study the influence of the size of the signals on the reconstruction, we perform
tests for signals of size N = 128, N = 1024 and N = 8192. For each N , we used
log2(N )−1Cauchywavelets of order p = 3. Our low-pass filter is a gaussian function
of the form φ̂[k] = exp(−αk2/2), with α independent of N .
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6.3 Noise

The inputs that are provided to the algorithm are not exactly {| f � ψ j |}, f � φJmax but
{| f � ψ j | + nψ, j }, f � φJmax + nφ . The nψ, j and the nφ represent an additive noise. In
all our experiments, this noise is white and gaussian.

We measure the amplitude of the noise in relative l2-norm:

relative noise =

√
||nφ ||22 +∑

j
||nψ, j ||22

√
|| f � φJmax ||22 +∑

j
|| f � ψ j ||22

6.4 Results

The results are displayed on the Fig. 5.
The x-axis displays the relative error induced by the noise over the input and the

y-axis represents the reconstruction error, both over the reconstructed function and
over the modulus of the wavelet transform of the reconstructed function.

For an input signal f and output frec, we define the relative error between f and
frec by:

function error = || f − frec||2
|| f ||2

and the relative error over the modulus of the wavelet transform by:

modulus error =

√
|| f � φJmax − frec � φJmax ||22 +∑

j
|| | f � ψ j | − | frec � ψ j | ||22

√
|| f � φJmax ||22 +∑

j
|| f � ψ j ||22

Themodulus error describes the capacity of the algorithm to reconstruct a signalwhose
wavelet transform is close, in modulus, to the one which has been provided as input.
The function error, on the other hand, quantifies the intrinsic stability of the phase
retrieval problem. If the modulus error is small but the function error is large, it means
that there are several functions whose wavelet transforms are almost equal in moduli
and the reconstruction problem is ill-posed.

An ideal reconstruction algorithm would yield a small modulus error (that is, pro-
portional to the noise over the input). Nevertheless, the function error could be large
or small, depending on the well-posedness of the phase retrieval problem.

We expect that our algorithm may fail when the input modulus contain very small
values (because the algorithm performs divisions, which become very unstable in
presence of zeroes).

For almost each of the signals thatwe consider, there exist x’s such that f �ψk j (x) ≈
0 but the number of such points vary greatly, depending on which class the signal
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Fig. 6 Wavelet transforms, in modulus, of the signals of the Fig. 4: a realization of a gaussian process, b
sum of sinusoids, c piecewise regular each column represents the wavelet transform of one signal. Each
graph corresponds to one frequency component of the wavelet transform. For sake of visibility, only 4
components are shown, although nine were used in the calculation

belongs. As an example, the wavelet transforms of the three signals of the Fig. 4 are
displayed in Fig. 6.

For gaussian signals, there are generally not many points at which the wavelet
transform vanishes. The positions of these points do not seem to be correlated in
either space or frequency.

For piecewise regular signals, there are more of this points but they are usually
distributed in such a way that if f � ψ j (x) ≈ 0, then f � ψk(x) ≈ 0 for all wavelets
ψk of higher frequencies than ψ j . This repartition makes the reconstruction easier.

When the signals are sums of sinusoids, it often happens that some components of
the wavelet transform are totally negligible: for some j , f �ψ j (x) ≈ 0 for any x . The
negligible frequencies may be either high, low or intermediate.

From the results shown in Fig. 5, it is clear that the number of zeros influences
the reconstruction, but also that isolated zeroes do not prevent reconstruction. The
algorithm performs well on gaussian or piecewise regular signals. The distance in
modulus between the wavelet transform of the reconstructed signal and of the original
one is proportional to the amount of noise (and generally significantly smaller). This
holds up to large levels of noise (10%).By comparison, the classicalGerchberg–Saxton
algorithm is much less efficient.

However, the algorithm often fails when the input signal is a sum of sinusoids. Not
surprisingly, the most difficult signals in this class are the ones for which the sinusoids
are not equally distributed among frequency bands and the wavelet transform has a lot
of zeroes. The relative error over the modulus of the wavelet transform is then often
of several percent, even when the relative error induced by the noise is of the order of
0.1 %.

In Sect. 4, we explained why, for any function f , it is generally possible to construct
g such that f and g are not close but their wavelet transform have almost the same



1284 J Fourier Anal Appl (2015) 21:1251–1309

modulus. This construction holds provided that the time and frequency support of f
is large enough.

Increasing the time and frequency support of f amounts here to increase the size
N of the signals. Thus, we expect the function error to increase with N . It is indeed
the case but this effect is very weakly perceptible on gaussian signals. It is stronger on
piecewise regular functions, probably because the wavelet transforms of these signals
have more zeroes; their reconstruction is thus less stable.

In the case of the sums of sinusoids, because of the failure of the algorithm, we can
not drawfirmconclusions regarding the stability of the reconstruction.Wenevertheless
suspect that this class of signals is the least stable of all and that these instabilities are
the cause of the incorrect behavior of our algorithm.

7 Conclusion

In this text, we have studied the phase retrieval problem in which one tries to recon-
struct a function from the modulus of its Cauchy wavelet transform. We have shown
that the reconstruction was unique, up to a global phase, and that the reconstruction
operator was continuous but not uniformly continuous. Indeed, if we modulate the
wavelet transform of a function by slow-varying phases, we can construct very dif-
ferent functions with almost the same wavelet transform, in modulus. Moreover, in
the case where the wavelet transform does not take values too close to zero, all the
instabilities of the reconstruction are of this form.

Our proofs are specific to Cauchy wavelets and cannot be extended to generic
wavelets because they strongly use the link betweenCauchywavelets and holomorphic
functions. Only the description of instabilities of the reconstruction operator (Sect. 4)
is independent of the choice of thewavelet family (actually, it could also be extended to
other time-frequency representations that thewavelet transform).However, in practice,
the Cauchy wavelets do not seem to behave differently from other wavelets.We expect
that the uniqueness and stability results are true formuch genericwavelets thanCauchy
ones but we do not know how to prove it.

Acknowledgment We thank A. Bandeira and D. Mixon for their helpful correspondence.

Appendix 1: Lemmas of the Proof of Theorem 2.1

Proof of Lemma 2.9 We recall Eq. (23):

BF (z + iα)B̃G(z)

BG(z + iα)B̃F (z)
= eiC+i Bz SG(z + iα)

SF (z + iα)
(23)

We want to show that the left part of this equality admits a meromorphic extension to
C.We alsowant this meromorphic extension to have the same poles (withmultiplicity)
than it would if all four functions BF , BG , B̃F and B̃G were meromorphically defined
over all C.
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We first remark that B̃F and B̃G admit meromorphic extensions to C. Indeed, if
the (zk)k are the zeros of F(. + iα) in H, this set has no accumulation point in H : if
z∞ was an accumulation point, z∞ + iα ∈ H would be an accumulation point of the
zeros of F and, as F is holomorphic, it would be the null function. From the classical
properties of Blaschke products, B̃F converge over C and so does B̃G .

On the contrary, BF and BG may not admit meromorphic extensions over C. But
their quotient BF/BG does.

We define:

B ′
F (z) =

(
z − i

z + i

)mF ∏

k

|zFk − i |
zFk − i

|zFk + i |
zFk + i

z − zFk
z − zFk

where the (zFk )’s are the zeros of F , each zFk being counted, not with multiplicity
μF (zFk ), but with multiplicity max(0, μF (zFk ) − μG(zFk )) (and mF is still the multi-
plicity of i as a zero of F).

Similarly:

B ′
G(z) =

(
z − i

z + i

)mG ∏

k

|zGk − i |
zGk − i

|zGk + i |
zGk + i

z − zGk
z − zGk

where the (zGk )’s are the zeros of G counted with multiplicity max(0, μG(zGk ) −
μF (zGk )).

We define:

BF,G(z) =
∏

k

|zF,G
k − i |
zF,G
k − i

|zF,G
k + i |
zF,G
k + i

z − zF,G
k

z − zF,G
k

where the zF,G
k are the zeros of F or G, counted with multiplicity min(μF (zF,G

k ),

μG(zF,G
k )). The function BF,G corresponds to the “common part” of BF and BG ,

which we may factorize in the quotient BF/BG .
The products B ′

F , B ′
G , BF,G converge over H and, for all z ∈ H:

BF (z) = B ′
F (z)BF,G(z) BG(z) = B ′

G(z)BF,G(z)

So for all z ∈ H:

BF (z + iα)B̃G(z)

BG(z + iα)B̃F (z)
= B ′

F (z + iα)B̃G(z)

B ′
G(z + iα)B̃F (z)

If we show that B ′
F and B ′

G converge over C, we can take Bw(z) = B′
F (z+iα)B̃G (z)

B′
G (z+iα)B̃F (z)

. It

will be meromorphic over C.
To prove this, we first establish a relation between the zeros of F and G.



1286 J Fourier Anal Appl (2015) 21:1251–1309

Let z be such that 0 < Im z ≤ α. The zeros of BF are the zeros of F in H, counted
with multiplicity. Thus, z − iα is a zero of BF (. + iα) with multiplicity μF (z). It is a
zero of BG(. + iα) with multiplicity μG(z).

Because Im (z − iα) ≤ 0, it is not a zero of B̃F (resp. B̃G) but may be a pole. As
a pole, its multiplicity is the multiplicity of z − iα = z + iα as a zero of F(. + iα)

(resp. G(. + iα)): it is μF (z + 2iα) (resp. μG(z + 2iα)).
The right part of (23), eiC+i Bz SG (z+iα)

SF (z+iα)
has no zero neither pole over {z ∈

C s.t. Im z > −α} (from the definition of SG and SF given in (21)). So neither does
the left part. In particular, z − iα is not a zero and is not a pole:

μF (z) − μG(z) − μG(z + 2iα) + μF (z + 2iα) = 0 (41)

We now explain why B ′
F converges over C. The same result will hold for B ′

G . From
the properties of Blaschke products, B ′

F converges overC if (zFk ) has no accumulation
point in R.

By contradiction, we assume that some subsequence of (zFk ), denoted by (zFφ(k)),

converges toλ ∈ R. Because the zFk ’s appear in B
′
F withmultiplicitymax(0, μF (zFk )−

μG(zFk )), we must have:

μF

(
zFφ(k)

)
− μG

(
zFφ(k)

)
> 0 ∀k ∈ N

We can assume that, for all k, 0 < Im zFφ(k) ≤ α. From (41):

μG

(
zFφ(k) + 2iα

)
− μF

(
zFφ(k) + 2iα

)
= μF

(
zFφ(k)

)
− μG

(
zFφ(k)

)
> 0

Consequently, zFφ(k) + 2iα is a zero of G for all k. As zFφ(k) → λ ∈ R, λ + 2iα ∈ H is
an accumulation point of the zeros of G. This is impossible because G is holomorphic
over H and we have assumed that it was not the null function.

To conclude, we have to prove Eq. (24).
For any z ∈ H, the multiplicity of z − iα as a pole of B ′

F (. + iα) is the multiplicity
of z as a zero of B ′

F , that is max(0, μF (z) − μG(z)). Its multiplicity as a pole of
B ′
G(. + iα) is max(0, μG(z) − μF (z)). As a pole of B̃F (resp. B̃G ), it is μF (z + 2iα)

(resp. μG(z + 2iα)).
The multiplicity of z − iα as a pole of Bw is then, as required:

max(0, μF (z) − μG(z)) − max(0, μG(z) − μF (z)) − μF (z + 2iα) + μG(z + 2iα)

= (μF (z) − μG(z)) − (μF (z + 2iα) − μG(z + 2iα))

��
Proof of Lemma 2.10 We call dEF and dEG the singular measures appearing in the
definitions of SF and SG (see (21)).

From Eq. (23) and Lemma 2.9, for any z ∈ H:

exp

(
i

π

∫

R

1 + t z

t − z
(dEG − dEF )(t)

)

= SG(z)

SF (z)
= Bw(z − iα)e−iC−i B(z−iα)
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The function z → Bw(z − iα)e−iC−i B(z−iα) is meromorphic over C. From the fol-
lowing lemma, dEG − dEF must then be the null measure, so SG = SF over H.

��

Lemma 8.1 Let dE be a real bounded measure, singular with respect to Lebesgue
measure. We define:

S(z) = exp

(
i

π

∫

R

1 + t z

t − z
dE(t)

)

∀z ∈ H

If S admits a meromorphic extension in the neighborhood of each point of R, then
dE = 0.

Proof Let s(z) = − log |S(z)| for all z ∈ H. This is well-defined and:

s(x + iy) = 1

π

∫

R

y

(t − x)2 + y2
(1 + t2)dE(t) ∀x, y ∈ R s.t. y > 0

The Lemma 1 states that (1 + t2)dE(t) is the limit, in the sense of distributions,
of s(t + iy)dt when y → 0+. The principle of the proof will then be to show that
s(. + iy) also converges to − log |S|R|, where S|R is the extension of S to R, so

dE = − log |S(t)|dt
1+t2

. The singularity of dE will imply log |S|R| = 0 and dE = 0. ��

Lemma 8.2 Let dE be a real measure such that dE(t)
1+t2

is bounded. Let:

s(x + iy) = 1

π

∫

R

y

(t − x)2 + y2
dE(t) ∀x, y ∈ R s.t. y > 0

For all continuous compactly-supported f ∈ C0c (R):

∫

R

f (t)dE(t) = lim
y→0+

∫

R

s(t + iy) f (t)dt

Proof

∫

R

s(t + iy) f (t)dt = 1

π

∫∫

R

y f (t)

(t ′ − t)2 + y2
dE(t ′)dt

= 1

π

∫∫

R

y f (t ′)
(t ′ − t)2 + y2

dE(t ′)dt + 1

π

∫∫

R

y( f (t ′) − f (t))

(t ′ − t)2 + y2
dE(t ′)dt

=
∫

R

f (t)dE(t) + 1

π

∫∫

R

y( f (t ′) − f (t))

(t ′ − t)2 + y2
dE(t ′)dt (42)
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For all y, ε > 0, t ′ ∈ R:

∣
∣
∣
∣

∫

R

y( f (t ′) − f (t))

(t ′ − t)2 + y2
dt

∣
∣
∣
∣ ≤
(

sup
|x1−x2|≤ε

| f (x1) − f (x2)|
)∫

R

y

(t ′ − t)2 + y2
dt

+ 2(sup | f |)
∫

|t−t ′|>ε

y

(t ′ − t)2 + y2
dt

= π

(

sup
|x1−x2|≤ε

| f (x1) − f (x2)|
)

+ 2(sup | f |)
∫

|u|>ε/y

1

1 + u2
du

The second term of the last sum tends to 0 when y → 0+, uniformly in t ′ so:

lim sup
y→0+

∣
∣
∣
∣

∫

R

y( f (t ′) − f (t))

(t ′ − t)2 + y2
dt

∣
∣
∣
∣ ≤ π

(

sup
|x1−x2|≤ε

| f (x1) − f (x2)|
)

which tends to 0 when ε → 0 because f is uniformly continuous. Convergence is
uniform in t ′.

Moreover, if K is the compact support of f and |K | is its Lebesgue measure, then,
for all t ′ /∈ K :

∣
∣
∣
∣

∫

R

y( f (t ′) − f (t))

(t ′ − t)2 + y2
dt

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

R

y f (t)

(t ′ − t)2 + y2
dt

∣
∣
∣
∣

≤ (sup | f |)
∫

K

y

(t ′ − t)2 + y2
dt

≤ (sup | f |)
∫

K

y

d(t ′, K )2 + y2
dt

= (sup | f |) y

d(t ′, K )2 + y2
|K |

It implies that the second term of (42) tends to 0. Let K ′ = {t ′ ∈ R s.t. d(t ′, K ) ≤ 1}.
∫∫

R

y( f (t ′) − f (t))

(t ′ − t)2 + y2
dE(t ′)dt ≤ sup

t ′∈K ′

∣
∣
∣
∣

∫

R

y( f (t ′) − f (t))

(t ′ − t)2 + y2
dt

∣
∣
∣
∣ dE(K ′)

+ |K |(sup | f |)
∫

t ′ /∈K ′
y

d(t ′, K )2 + y2
dE(t ′)

Because dE(t ′)
1+t ′2 is bounded,

∫
t ′ /∈K ′

dE(t ′)
d(t ′,K )2+y2

is bounded when y → 0+. So the last
expression tends to 0.

Equation (42) then implies the result. ��
We still denote by S(t) the meromorphic extension of S to a neighborhood of H .

Let {rk} be the zeros or poles of S.
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When y → 0+, s(. + iy) tends to − log |S| almost everywhere. On every compact
of R − {rk}, the convergence is uniform, and thus in L1.

Let rk be any zero or pole and ε > 0 be such that S admits a meromorphic extension
over a neighborhood of [rk − ε; rk + ε] × [−ε; ε] and r j /∈ [rk − ε; rk + ε] for all
j �= k. There exist h : [rk − ε; rk + ε] × [−ε; ε] → C holomorphic and m ∈ Z such
that:

S(z) = (z − rk)
mh(z) ∀z ∈ [rk − ε; rk + ε] × [−ε; ε] and h(rk) �= 0

For all y ∈]0; ε[:
∫ rk+ε

rk−ε

|s(t + iy) + log |S(t)||dt =
∫ rk+ε

rk−ε

∣
∣m log |t − rk + iy| + log |h(t + iy)|

−m log |t − rk | − log |h(t)|∣∣dt
≤ m

∫ rk+ε

rk−ε

∣
∣ log |t − rk + iy| − log |t − rk |

∣
∣dt

+
∫ rk+ε

rk−ε

∣
∣ log |h(t + iy)| − log |h(t)|∣∣dt

(43)

As log |h| is continuous, log |h(. + iy)| converges uniformly to log |h|R| over [rk −
ε; rk + ε]:

∫ rk+ε

rk−ε

∣
∣ log |h(t + iy)| − log |h(t)|∣∣dt → 0 when y → 0+

As log |. − rk + iy| converges to log |. − rk | in L1([rk − ε; rk + ε]):
∫ rk+ε

rk−ε

∣
∣ log |t − rk + iy| − log |t − rk |

∣
∣dt → 0

So, by (43), s(. + iy) converges in L1 to t ∈ R → − log |S(t)|, over [rk − ε; rk + ε].
As the sequence (rk) has no accumulation point in R, s(. + iy) → − log |SR| (in L1)
over each compact set of R.

By the Lemma 1, for all f ∈ C0c (R):

∫

R

f (t)(1 + t2)dE(t) = lim
y→0+

∫

R

s(t + iy) f (t)dt = −
∫

R

log |S(t)| f (t)dt

We deduce that dE(t) = − log |S(t)|dt
1+t2

. As dE is singular with respect to Lebesgue
measure, we must have log |S(t)| = 0 for all t ∈ R and dE = 0. ��
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Appendix 2: Lemmas of the Proof of Theorem 3.1

Proof of Lemma 3.2 We first recall the Riesz–Fréchet–Kolmogorov theorem.

Theorem (Riesz–Fréchet–Kolomogorov). Let p ∈ [1;+∞[. Let F be a subset of
L p(R). The set F is relatively compact if and only if:

(i) F is bounded.
(ii) For every ε > 0, there exists some compact K ⊂ R such that:

sup
f ∈F

|| f ||L p(R−K ) ≤ ε

(iii) For every ε > 0, there exists δ > 0 such that:

sup
f ∈F

|| f (. + h) − f ||p ≤ ε ∀h ∈ [−δ; δ]

We want to apply this theorem to p = 2 and F = { fn � ψ j }n∈N.
First of all, F is bounded: actually, from (28), ( fn)n∈N itself is bounded (because

(U ( fn))n converges and thus is bounded). It implies that { fn�ψ j }n is bounded because
|| fn � ψ j ||2 ≤ || fn||2||ψ j ||1 (by Young’s inequality).

Let us now prove (ii). Let any ε > 0 be fixed.
The sequence

(| fn � ψ j |
)
n converges in L2(R) (to h j , because U ( fn) → (h j ) j∈Z

in L2
Z
(R)). So {| fn � ψ j |}n is relatively compact in L2(R). By the Riesz–Fréchet–

Kolmogorov theorem, there exists K ⊂ R a compact set such that:

sup
n∈N

|| | fn � ψ j | ||L2(R−K ) ≤ ε

But, for all n, || | fn � ψ j | ||L2(R−K ) = || fn � ψ j ||L2(R−K ) so (ii) holds:

sup
n∈N

|| fn � ψ j ||L2(R−K ) ≤ ε

We finally check (iii). Let ε > 0 be fixed. For any h ∈ R:

||( fn � ψ j )(. + h) − ( fn � ψ j )||2 = || fn � (ψ j (. − h) − ψ j )||2
≤ || fn||2||ψ j (. − h) − ψ j ||1

As sup
n

|| fn||2 < +∞ and lim
h→0

||ψ j (. − h) − ψ j ||1 = 0 (this property holds for any

L1 function), we have, for δ > 0 small enough:

sup
n

||( fn � ψ j )(. + h) − ( fn � ψ j )||2 ≤ ε ∀h ∈ [−δ; δ]

��
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Proof of Lemma 3.3 We want to find g ∈ L2+(R) such that l̂ j = ĝψ̂ j for every j ∈ Z.
If ω ≤ 0, we set ĝ(ω) = 0. Then, for each j , we set ĝ = l̂ j/ψ̂ j on the support of

ψ̂ j , which we denote by Supp ψ̂ j . This definition is correct in the sense that:

if j1 �= j2,
l̂ j1
ψ̂ j1

= l̂ j2
ψ̂ j2

a.e. on Supp ψ̂ j1 ∩ Supp ψ̂ j2

Indeed, for all n, ( fφ(n) � ψ j1) � ψ j2 = ( fφ(n) � ψ j2) � ψ j1 so, by taking the limit in n,
l j1 � ψ j2 = l j2 � ψ j1 and l̂ j1ψ̂ j2 = l̂ j2ψ̂ j1 .

We can note that, for all j , ĝψ̂ j = l̂ j . It is true on Supp ψ̂ j , by definition. And, on
R − Supp ψ̂ j , l̂ j = 0 = ĝψ̂ j because l̂ j is the L2-limit of f̂φ(n)ψ̂ j and f̂φ(n)ψ̂ j = 0
on R − Supp ψ̂ j .

The ĝ we just defined belongs to L2(R). Indeed, by (27):

||ĝ||22 ≤ 1

B

∫

R+
|ĝ|2
∑

j

|ψ̂ j |2 = 1

B

∫

R+

∑

j

|l̂ j |2 = 1

B

∑

j

||l j ||22

As fφ(n) � ψ j goes to l j when n goes to ∞ and U ( fφ(n)) = {| fφ(n) � ψ j |} j goes to
(h j ) j∈Z ∈ L2

Z
(R), we must have |l j | = h j for each j . So 1

B

∑

j
||l j ||22 = 1

B

∑

j
||h j ||22 =

1
B ||(h j ) j∈Z||22 < +∞ and ĝ belongs to L2(R).
As ĝ ∈ L2(R), it is the Fourier transform of some g ∈ L2(R). For all j ∈ Z, as

ĝψ̂ j = l̂ j , we have g � ψ j = l j .
We now show that fφ(n) → g when n → ∞.
For every J, n ∈ N:

√∑

| j |>J

|| fφ(n) � ψ j ||22 =
√∑

| j |>J

||U ( fφ(n)) j ||22

≤
√∑

| j |>J

||U ( fφ(n)) j − h j ||22 +
√∑

| j |>J

||h j ||22

≤ ||U ( fφ(n)) − (h j )||2 +
√∑

| j |>J

||h j ||22

So lim sup
n

(
∑

| j |>J
|| fφ(n) � ψ j ||22

)

≤ ∑

| j |>J
||h j ||22 and:

lim sup
n

⎛

⎝
∑

j∈Z
|| fφ(n) � ψ j − g � ψ j ||22

⎞

⎠ ≤ lim sup
n

⎛

⎝
∑

| j |≤J

|| fφ(n) � ψ j − g � ψ j ||22
⎞

⎠
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+ lim sup
n

⎛

⎝
∑

| j |>J

|| fφ(n) � ψ j − g � ψ j ||22
⎞

⎠

= lim sup
n

⎛

⎝
∑

| j |>J

|| fφ(n) � ψ j − g � ψ j ||22
⎞

⎠

≤
∑

| j |>J

||h j ||22

This last quantity may be as small as desired, for J large enough, so
∑

j∈Z
|| fφ(n) �ψ j −

g � ψ j ||22 → 0.
By (27):

∑

j∈Z
|| fφ(n) � ψ j − g � ψ j ||22 =

∫

R

∣
∣
∣ f̂φ(n) − ĝ

∣
∣
∣
2

⎛

⎝
∑

j

|ψ̂ j |2
⎞

⎠

≥ A
∫

R

∣
∣
∣ f̂φ(n) − ĝ

∣
∣
∣
2

= A

2π
|| fφ(n) − g||22

so || fφ(n) − g||2 → 0. ��

Appendix 3: Proof of Theorem 5.1

In this section, we prove the Theorem 5.1, which gives a stability result for the case
of dyadic wavelets.

For all y > 0, we define:

N (y) = sup
x∈R,s=1,2

|F (s)(x + iy)|

The following lemma is not necessary to our proof but we will use it to progressively
simplify our inequalities.

Lemma 10.1 For all y1, y2 ∈ R
∗+, if y1 < y2:

N (y1) ≥ N (y2) (44)

and for all y3 ∈ [y1; y2]:

N (y3) ≤ N (y1)
y2−y3
y2−y1 N (y2)

y3−y1
y2−y1 (45)

Proof The second inequality comes directly from Theorem 1, applied to functions
F (1) and F (2) on the band {z ∈ C s.t. y1 < Im z < y2}.
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The first inequality may be derived from (45). The functionN (y) is bounded when
y → +∞. Keeping y1 and y3 fixed in (45) and letting y2 go to +∞ then gives:

N (y3) ≤ N (y1)

��
Remark 10.2 When y → +∞, then N (y) → 0 because, from (7) and the Hölder
inequality:

|F (s)(x + iy)| =
∣
∣
∣
∣
1

2π

∫

R

ωp f̂+(ω)eiω(x+iy)dω

∣
∣
∣
∣

≤ 1

2π
|| f̂+||2||ω → ωpeiω(x+iy)||2

≤ 1

2π
|| f̂+||2||ω → ωpe−ωy ||2

which decreases geometrically to zero when y → +∞.

We can now prove the theorem.

Proof of Theorem 5.1 From the relation (32) between F (s) and the f (s) �ψ j and from
the hypotheses, the following inequalities hold for all x ∈ [−M2 j ; M2 j ]:

∣
∣
∣|F (1)(x + i2 j )|2 − |F (2)(x + i2 j )|2

∣
∣
∣ ≤ εN (2 j )2

∣
∣
∣|F (1)(x + i2 j+1)|2 − |F (2)(x + i2 j+1)|2

∣
∣
∣ ≤ εN (2 j+1)2

|F (1)(x + i2 j )|2, |F (2)(x + i2 j )|2 ≥ cN (2 j )2

|F (1)(x + i2 j+1)|2, |F (2)(x + i2 j+1)|2 ≥ cN (2 j+1)2

Let us set, for all z such that −2 j+1 < Im z < 2 j+1:

G(z) = F (1)(z + i2 j+1)F (1)(z + i2 j+1) − F (2)(z + i2 j+1)F (2)(z + i2 j+1)

For all z such that Im z = 0:

|G(z)| =
∣
∣
∣|F (1)(z + i2 j+1)|2 − |F (2)(z + i2 j+1)|2

∣
∣
∣ ≤ εN (2 j+1)2 if |Re z| ≤ M2 j

≤ N (2 j+1)2 if |Re z|>M2 j

and for all z such that Im z = 3.2 j−1:

|G(z)| =
∣
∣
∣F (1)(Re z + 7.2 j−1i)F (1)(Re z + 2 j−1i)

− F (2)(Re z + 7.2 j−1i)F (2)(Re z + 2 j−1i)
∣
∣
∣

≤ 2N (7.2 j−1)N (2 j−1)
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We apply the Lemma 1 for a = 0, b = 3.2 j−1, t = 2/3, A = N (2 j+1)2, B =
2N (7.2 j−1)N (2 j−1). It implies that, for all x ∈ [−λM2 j ; λM2 j ]:

|G(x + i2 j )| ≤ 22/3ε1/3−αMN (2 j+1)2/3N (2 j−1)2/3N (7.2 j−1)2/3

where αM = 4
3

exp
(
− 2π

3 (1−λ)M
)

1−exp
(
− 2π

3 (1−λ)M
) .

Replacing G by its definition gives, for all x ∈ [−λM2 j ; λM2 j ]:

|F (1)(x + i3.2 j )F (1)(x + i2 j ) − F (2)(x + i3.2 j )F (2)(x + i2 j )|
≤ 22/3ε1/3−αMN (2 j+1)2/3N (2 j−1)2/3N (7.2 j−1)2/3

≤ 2ε1/3−αMN (2 j+1)4/3N (2 j−1)2/3

We used Eq. (44) to obtain the last inequality.
So, for all x ∈ [−λM2 j ; λM2 j ]:

∣
∣
∣F (1) (x + i3.2 j )F (1)(x + i2 j )F (2)(x + i2 j )F (2)(x + i2 j )

−F (2)(x + i3.2 j )F (2)(x + i2 j )F (1)(x + i2 j )F (1)(x + i2 j )

∣
∣
∣

≤
∣
∣
∣F (1)(x + i3.2 j )F (1)(x + i2 j )

− F (2)(x + i3.2 j )F (2)(x + i2 j )

∣
∣
∣.
∣
∣
∣F (2)(x + i2 j )F (2)(x + i2 j )

∣
∣
∣

+
∣
∣
∣F (2)(x + i3.2 j )F (2)(x + i2 j )

∣
∣
∣
∣
∣
∣F (2)(x + i2 j )F (2)(x + i2 j )

− F (1)(x + i2 j )F (1)(x + i2 j )

∣
∣
∣

≤ 2ε1/3−αMN (2 j+1)4/3N (2 j−1)2/3|F (2)(x + i2 j )|2

+ εN (2 j )2
∣
∣
∣F (2)(x + i3.2 j )F (2)(x + i2 j )

∣
∣
∣

Dividing by |F (1)(x + i2 j )F (2)(x + i2 j )| gives:

|F (1)(x + i3.2 j )F (2)(x + i2 j ) − F (2)(x + i3.2 j )F (1)(x + i2 j )|

≤ 2ε1/3−αMN (2 j+1)4/3N (2 j−1)2/3
|F (2)(x + i2 j )|
|F (1)(x + i2 j )|

+ εN (2 j )2
|F (2)(x + i3.2 j )|
|F (1)(x + i2 j )|

For each x ∈ [−λM2 j ; λM2 j ], this relation also holds if we switch the roles of F (1)

and F (2). Thus, we can assume that |F (2)(x + i2 j )| ≤ |F (1)(x + i2 j )|. Using also the
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fact that |F (1)(x + i2 j )| ≥ √
cN (2 j ) yields (always for x ∈ [−λM2 j ; λM2 j ]):

|F (1)(x + i3.2 j )F (2)(x + i2 j ) − F (2)(x + i3.2 j )F (1)(x + i2 j )|
≤ 2ε1/3−αMN (2 j+1)4/3N (2 j−1)2/3 + ε√

c
N (2 j )N (3.2 j )

= 2N (2 j )N (3.2 j )

(N (2 j+1)4/3N (2 j−1)2/3

N (2 j )N (3.2 j )
ε1/3−αM + ε

2
√
c

)

≤ 2N (2 j )N (3.2 j )

((N (2 j−1)

N (2 j+1)

)2/3
ε1/3−αM + ε

2
√
c

)

≤ 3N (2 j )N (3.2 j )

(N (2 j−1)

N (2 j+1)

)2/3
ε1/3−αM (46)

In the middle, we used Eq. (45): N (2 j+1) ≤ N (2 j )1/2N (3.2 j )1/2. For the

last inequality, we used the fact that c ≥ ε so ε
2
√
c

≤
√

ε

2 ≤ ε1/3−αM

2 ≤
(N (2 j−1)

N (2 j+1)

)2/3
ε1/3−αM

2 .

For all z such that Im z > −2 j , we set:

H(z) = F (1)(z + i3.2 j )F (2)(z + i2 j ) − F (2)(z + i3.2 j )F (1)(z + i2 j )

From (46):

|H(z)| ≤ 2N (2 j )N (3.2 j )

if Im z = 0 and |Re z| > λM2 j

≤ 2N (2 j )N (3.2 j )min

(

1,
3

2

(N (2 j−1)

N (2 j+1)

)2/3
ε1/3−αM

)

if Im z = 0 and |Re z| ≤ λM2 j

≤ 2N (2 j+3)N (6.2 j ) if Im z = 5.2 j

We may apply the Lemma 1 again. For all x ∈ [−λ2M2 j ; λ2M2 j ]:

|H(x + i2 j )| ≤ 2min

(

1,
3

2

(N (2 j−1)

N (2 j+1)

)2/3
ε1/3−αM

)4/5−α′
M

N (2 j )4/5N (3.2 j )4/5N (2 j+3)1/5N (6.2 j )1/5

≤ 2min

(

1,
3

2

(N (2 j−1)

N (2 j+1)

)2/3
ε1/3−αM

)4/5−α′
M

N (2 j )4/5N (2 j+1)6/5

where α′
M = 2

5
exp(− π

5 λ(1−λ)M))
1−exp(− π

5 λ(1−λ)M))
.
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Replacing H by its definition and dividing by |F (1)(x + i2 j+1)F (2)(x + i2 j+1)|
(which is greater that cN (2 j+1)2) gives:

∣
∣
∣
∣
∣
F (1)(x + i2 j+2)

F (1)(x + i2 j+1)
− F (2)(x + i2 j+2)

F (2)(x + i2 j+1)

∣
∣
∣
∣
∣

≤ 2

c
min

(

1,

(
3

2

N (2 j−1)

N (2 j+1)

)2/3
ε1/3−αM

)4/5−α′
M ( N (2 j )

N (2 j+1)

)4/5

As soon as 4/5 − α′
M > 0 and 1/3 − αM > 0:

∣
∣
∣
∣
∣
F (1)(x + i2 j+2)

F (1)(x + i2 j+1)
− F (2)(x + i2 j+2)

F (2)(x + i2 j+1)

∣
∣
∣
∣
∣

≤ 3

c

(N (2 j−1)

N (2 j+1)

)8/15 ( N (2 j )

N (2 j+1)

)4/5
ε(1/3−αM )(4/5−α′

M )

≤ 3

c

(N (2 j−1)

N (2 j+1)

)4/3
ε(1/3−αM )(4/5−α′

M )

= 3

c

(
N j−1

N j+1
22p
)4/3

ε(1/3−αM )(4/5−α′
M )

So:
∣
∣
∣
∣
∣
f (1) � ψ j+2(x)

f (1) � ψ j+1(x)
− f (2) � ψ j+2(x)

f (2) � ψ j+1(x)

∣
∣
∣
∣
∣
≤ 3

c
2

11p
3

(
N j−1

N j+1

)4/3
ε(1/3−αM )(4/5−α′

M )

which is the desired result for A = 3.2
11p
3 . ��

Appendix 4: Proof of the Theorem 5.2

In this whole section, as in the paragraph 5.3, k is assumed to be a fixed integer such
that:

a−k < 2 − a

and we define:

c = 1 − a − 1

1 − a−k

Lemma 11.1 Let the following numbers be fixed:

ε ∈]0; 1[ M > 0 μ ∈ [0; M[ j ∈ Z
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We assume that, for all x ∈ [−Ma j ; Ma j ]:
∣
∣
∣|F (1)(x + ia j )|2 − |F (2)(x + ia j )|2

∣
∣
∣ ≤ εN (a j )2

Then, for all x ∈ [−(M − μ)a j ; (M − μ)a j ]:
∣
∣
∣F (1)(x + i(2a j − a j+1))F (1)(x+ ia j+1)

−F (2)(x + i(2a j − a j+1))F (2)(x + ia j+1)

∣
∣
∣

≤ N (a j )2c
(
2N (a j+1)N (a j−k)

)1−c
εc−α

where:

α = 2
e−πμ

1 − e−πμ

Proof We set:

H(z) = F (1)(z + ia j )F (1)(z + ia j ) − F (2)(z + ia j )F (2)(z + ia j )

When y = 0, |H(x + iy)| = ∣∣|F (1)(x + ia j )|2 − |F (2)(x + ia j )|2∣∣. So:

|H(x + iy)| ≤ εN (a j )2 if x ∈ [−Ma j ; Ma j ]
≤ N (a j )2 if x /∈ [−Ma j ; Ma j ]

When y = a j − a j−k :

|H(x + iy)| = |F (1)(x + ia j−k)F (1)(x + i(2a j − a j−k))

− F (2)(x + ia j−k)F (2)(x + i(2a j − a j−k))|
≤ 2N (2a j − a j−k)N (a j−k) (∀x ∈ R)

We apply the Lemma 1 to H , restricted to the band {z ∈ C s.t. Im z ∈ [0; a j −a j−k]}.
From this lemma, when y = a j+1 − a j and x ∈ [−μMa j ;μMa j ]:

|H(x + iy)| ≤ ε f (x+iy)N (a j )2c
(
2N (2a j − a j−k)N (a j−k)

)1−c

where c = 1 − a−1
1−a−k and:

f (x + iy) ≥ c − 2
a − 1

1 − a−k

e
−π

Ma j−|x |
a j−a j−k

1 − e
−π

Ma j−|x |
a j−a j−k



1298 J Fourier Anal Appl (2015) 21:1251–1309

Because of the definition of k, a−1
1−a−k ≤ 1. Moreover, Ma j−|x |

a j−a j−k ≥ μ

1−a−k ≥ μ, so:

f (x + iy) ≥ c − 2
e−πμ

1 − e−πμ
= c − α

Replacing H by its definition yields:

∣
∣
∣F (1)(x + i(2a j − a j+1))F (1)(x + ia j+1)

−F (2)(x + i(2a j − a j+1))F (2)(x + ia j+1)

∣
∣
∣

= |H(x + i(a j+1 − a j ))|
≤ εc−αN (a j )2c

(
2N (2a j − a j−k)N (a j−k)

)1−c

To conclude, it suffices to note that, because of thewaywe chose k, 2a j −a j−k ≥ a j+1

so, from 1, N (2a j − a j−k) ≤ N (a j+1). ��

Theorem 11.2 Let the following numbers be fixed:

ε, κ ∈]0; 1[ with κ ≥ ε2(1−c) M > 0 μ ∈ [0; M[ j ∈ Z K ∈ N

We assume that, for any n ∈ { j + 1, ..., j + K } and x ∈ [−Ma j+K ; Ma j+K ]:
∣
∣
∣|F (1)(x + ian)|2 − |F (2)(x + ian)|2

∣
∣
∣ ≤ εN (an)2 (47)

|F (1)(x + ian)|2, |F (2)(x + ian)|2 ≥ κN (an)2 (48)

We define recursively:

n0 = j + K w0 = a j+K

∀l ∈ N nl+1 = nl − 2 wl+1 = wl − (a − 1)2anl+1

We define:

Dl =
l−1∏

s=0

(N (ans−1−k)

N (ans−2)

)

and cl = c − 2

(

1 + 2

a

a2 − 1

a + 2

(
l−1∑

s=0

a−2s

))

×
(

e−πμ

1 − e−πμ

)
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For any l ≥ 0 such that nl ≥ j and M − (l + 1)μ > 0, we have, provided that cl < 1:

1

N (wl)N (anl )

∣
∣
∣F (1)(x + iwl)F

(1)(x + ianl )− F (2)(x + iwl)F
(2)(x + ianl )

∣
∣
∣

≤ 3Dl

(
2κ−l/2−κ−(l−1)/2−1

1−√
κ

)

εcl

(
∀x ∈

[
− (M − (l + 1)μ)a j+K ;

(M − (l + 1)μ)a j+K
])

(49)

Proof We procede by induction over l.
For l = 0, (49) is a direct consequence of (47). Indeed, w0 = an0 , D0 = 1, c0 < 1

so, for x ∈ [−Ma j+K ; Ma j+K ]:

1

N (an0)2

∣
∣
∣|F (1)(x + ian0)|2 − |F (2)(x + ian0)|2

∣
∣
∣ ≤ ε ≤ 3D0ε

c0

We now suppose that (49) holds for l and prove it for l + 1.
Weprocede in twoparts. First,we use the induction hypothesis to bound the function∣

∣
∣F (1)(x + iwl)F (1)(x + i(2anl−1−anl )) − F (2)(x+iwl)F (2)(x+i(2anl−1−anl ))

∣
∣
∣.

In a second part, we use this bound to obtain the desired result.

First part: by triangular inequality,

∣
∣
∣F (1)(x+iwl) F (1)(x+i(2anl−1 − anl ))−F (2)(x + iwl)F

(2)(x + i(2anl−1 − anl ))
∣
∣
∣

≤
∣
∣
∣F (1)(x + iwl)F

(1)(x + ianl ) − F (2)(x + iwl)F
(2)(x + ianl )

∣
∣
∣

×
∣
∣
∣
∣
∣
F (1)(x + i(2anl−1 − anl ))

F (1)(x + ianl )

∣
∣
∣
∣
∣

(50)

+
∣
∣
∣
∣
∣
F (2)(x + ianl )

F (1)(x + ianl )
− F (1)(x + ianl )

F (2)(x + ianl )

∣
∣
∣
∣
∣

×
∣
∣
∣F (2)(x + iwl)F

(1)(x + i(2anl−1 − anl ))
∣
∣
∣ (51)

+
∣
∣
∣F (1)(x + ianl )F (1)(x + i(2anl−1 − anl ))

−F (2)(x + ianl )F (2)(x + i(2anl−1 − anl ))
∣
∣
∣

×
∣
∣
∣
∣
∣
F (2)(x + iwl)

F (2)(x + ianl )

∣
∣
∣
∣
∣

(52)
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By the induction hypothesis, for x ∈ [−(M − 2lμ)a j+K ; (M − 2lμ)a j+K ], (50) is
bounded by:

∣
∣
∣F (1)(x + iwl) F (1)(x + ianl ) − F (2)(x + iwl)F

(2)(x + ianl )
∣
∣
∣

≤ 3Dl

(
2κ−l/2 − κ−(l−1)/2 − 1

1 − √
κ

)

N (wl)N (anl )εcl

Because of (47) and (48) (for n = nl ), (51) is bounded by:

∣
∣
∣
∣
∣
F (2)(x + ianl )

F (1)(x + ianl )
− F (1)(x + ianl )

F (2)(x + ianl )

∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣
|F (2)(x + ianl )|2 − |F (1)(x + ianl )|2

F (1)(x + ianl )F (2)(x + ianl )

∣
∣
∣
∣
∣
≤ ε

κ

Finally, from the Lemma 1 applied to j = nl − 1, (52) is bounded by:

∣
∣
∣F (1)(x + ianl )F (1)(x + i(2anl−1 − anl ))

− F (2)(x + ianl )F (2)(x + i(2anl−1 − anl ))
∣
∣
∣

≤ N (anl−1)2c(2N (anl )N (anl−1−k))1−cεc−α

for all x ∈ [−Ma j+K + μa j ; Ma j+K − μa j ] ⊃ [−(M − (l + 1)μ)a j+K ; (M −
(2l + 1)μ)a j+K ].

We insert these bounds into the triangular inequality. We also use the fact that
|F (1)(x + ianl )|, |F (2)(x + ianl )| ≥ √

κN (anl ). We get, for any x ∈ [−(M − (l +
1)μ)a j+K ; (M − (l + 1)μ)a j+K ]:

∣
∣
∣F (1)(x+iwl) F (1)(x+i(2anl−1−anl ))−F (2)(x + iwl)F

(2)(x+i(2anl−1 − anl ))
∣
∣
∣

≤ 1√
κ
3Dl

(
2κ−l/2 − κ−(l−1)/2 − 1

1 − √
κ

)

N (wl)N (2anl−1 − anl )εcl

+ ε

κ
N (wl)N (2anl−1 − anl )

+ 21−c

√
κ

N (wl)

N (anl )c
N (anl−1)2cN (anl−1−k)1−cεc−α

We must now simplify this inequality.
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First, 2anl−1 −anl = canl−1 + (1− c)anl−1−k so, from the Lemma 1,N (2anl−1 −
anl ) ≤ N (anl−1)cN (anl−1−k)1−c. So:

∣
∣
∣F (1)(x + iwl) F (1)(x+i(2anl−1−anl ))−F (2)(x+iwl)F

(2)(x + i(2anl−1 − anl ))
∣
∣
∣

≤ N (wl)N (anl−1)cN (anl−1−k)1−c

×
(

1√
κ
3Dl

(
2κ−l/2 − κ−(l−1)/2 − 1

1 − √
κ

)

εcl + ε

κ
+ 21−c

√
κ

N (anl−1)c

N (anl )c
εc−α

)

Now we note that 1 ≤ N (anl−1)c

N (anl )c (from the Lemma 1 again, because anl−1 ≤ anl ).

Because κ ≥ ε2(1−c), we also have ε
κ

≤ εc√
κ

≤ εc−α√
κ
. And as c − α ≥ cl , εc−α ≤ εcl .

This gives:

∣
∣
∣F (1)(x+iwl) F (1)(x+i(2anl−1−anl )) − F (2)(x+iwl)F

(2)(x + i(2anl−1 − anl ))
∣
∣
∣

≤ εcl√
κ
N (wl)

N (anl−1)2cN (anl−1−k)1−c

N (anl )c

×
(

3Dl

(
2κ−l/2 − κ−(l−1)/2 − 1

1 − √
κ

)

+ 1 + 21−c

)

If we bound 21−c by 2 and notice that Dl ≥ 1 (because, from 1, it is a product of terms
bigger that 1), we have:

∣
∣
∣F (1)(x+iwl) F (1)(x+i(2anl−1−anl ))−F (2)(x+iwl)F

(2)(x + i(2anl−1 − anl ))
∣
∣
∣

≤ εcl√
κ
3DlN (wl)

N (anl−1)2cN (anl−1−k)1−c

N (anl )c

×
((

2κ−l/2 − κ−(l−1)/2 − 1

1 − √
κ

)

+ 1

)

≤ 3εcl DlN (wl)
N (anl−1)2cN (anl−1−k)1−c

N (anl )c

(
2κ−(l+1)/2−κ−l/2 − 1

1−√
κ

)

Finally, from 1, we have N (anl−1) ≤ N (anl )1/2N (2anl−1 − anl )1/2 so:

∣
∣
∣F (1)(x+iwl) F (1)(x+i(2anl−1−anl ))−F (2)(x + iwl)F

(2)(x + i(2anl−1 − anl ))
∣
∣
∣

≤ 3εcl DlN (wl)N (2anl−1 − anl )

( N (anl−1−k)

N (2anl−1 − anl )

)1−c

×
(
2κ−(l+1)/2 − κ−l/2 − 1

1 − √
κ

)
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Second part: we define, for any z ∈ C such that −2anl−1 + anl < Im z < wl :

H(z) = F (1)(z + iwl)F
(1)(z + i(2anl−1 − anl ))

−F (2)(z + iwl)F
(2)(z + i(2anl−1 − anl ))

We write:

B = 3

2
Dl

( N (anl−1−k)

N (2anl−1 − anl )

)1−c
(
2κ−(l+1)/2 − κ−l/2 − 1

1 − √
κ

)

From the first part:

|H(x + iy)| ≤ 2N (wl)N (2anl−1 − anl )Bεcl

if y = 0, x ∈
[
−(M − (l + 1)μ)a j+K ; (M − (l + 1)μ)a j+K

]

≤ 2N (wl)N (2anl−1 − anl )

if y = 0, x /∈
[
−(M − (l + 1)μ)a j+K ; (M − (l + 1)μ)a j+K

]

Moreover, if we set yl = wl − 2anl−1 + anl :

H(x + iyl) = F (1)(x + i(2anl−1 − anl ))F (1)(x + iwl)

− F (2)(x + i(2anl−1 − anl ))F (2)(x + iwl)

= H(x)

Thus, we also have:

|H(x + iy)| ≤ 2N (wl)N (2anl−1 − anl )Bεcl

if y = yl , x ∈
[
−(M − (l + 1)μ)a j+K ; (M − (l + 1)μ)a j+K

]

≤ 2N (wl)N (2anl−1 − anl )

if y = yl , x /∈
[
−(M − (l + 1)μ)a j+K ; (M − (l + 1)μ)a j+K

]

We apply the Lemma 1 with a = 0, b = yl . For Im z = (a − 1)2anl−2 and |Re z| ≤
(M − (l + 1)μ)a j+K :

|H(z)| ≤ 2N (wl)N (2anl−1 − anl )(Bεcl ) f (z) (53)

with f (z) ≥ 1 − 4 (a−1)2anl−2

yl

(
e
−π

(M−(l+1)μ)a j+K −|Rez|
yl

1−e
−π

(M−(l+1)μ)a j+K −|Re z|
yl

)

.
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From the definition of wl , one may check that (wl) is a decreasing sequence which

converges to 2a j+K

a+1 when l goes to ∞. So, for any l ≥ 0:

yl ≤ wl ≤ w0 = a j+K

yl ≥ 2a j+K

a+1
−2anl−1+anl ≥ 2a j+K

a+1
−2a j+K−1+a j+K = (a−1)(a+2)

(a+1)
a j+K−1

From this we deduce:

f (z) ≥ 1 − 4
a2 − 1

a + 2
a−2l−1

⎛

⎜
⎝

e
−π

(M−(l+1)μ)a j+K −|Rez|
a j+K

1 − e
−π

(M−(l+1)μ)a j+K −|Re z|
a j+K

⎞

⎟
⎠

So, when |Re z| ≤ (M − (l + 2)μ)a j+K , f (z) ≥ 1 − 4 a2−1
a+2 a

−2l−1
(

e−πμ

1−e−πμ

)
.

As B ≥ 1 and f (z) ≤ 1, B f (z) ≤ B. Moreover, cl ≤ 1 so cl f (z) ≥ cl − (1− f (z))
if 1 − f (z) ≥ 0. Equation (53) thus gives:

|H(z)| ≤ 2N (wl)N (2anl−1 − anl )Bε
cl−4 a2−1

a+2 a−2l−1
(

e−πμ

1−e−πμ

)

= 2N (wl)N (2anl−1 − anl )Bεcl+1

= 3DlN (wl)N (2anl−1−anl )cN (anl−1−k)1−c

(
2κ−(l+1)/2−κ−l/2 − 1

1−√
κ

)

εcl+1

Because wl ≥ wl+1 and 2anl−1 − anl ≥ anl−1−k , we have N (wl) ≤ N (wl+1) and
N (2anl−1 − anl ) ≤ N (anl−1−k). Thus:

|H(z)| ≤ 3DlN (wl+1)N (anl−2)
N (anl−1−k)

N (anl−2)

(
2κ−(l+1)/2 − κ−l/2 − 1

1 − √
κ

)

εcl+1

= 3Dl+1N (wl+1)N (anl−2)

(
2κ−(l+1)/2 − κ−l/2 − 1

1 − √
κ

)

εcl+1

So, for any x ∈ [−(M − (l + 2)μ)a j+K ; (M − (l + 2)μ)a j+K ]:

1

N (wl+1)N (anl+1)

∣
∣
∣F (1)(x + iwl+1)F

(1)(x + ianl+1)

−F (2)(x + iwl+1)F
(2)(x + ianl+1)

∣
∣
∣
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= |H(x + i(a − 1)2anl−2)|

≤ 3Dl+1

(
2κ−(l+1)/2 − κ−l/2 − 1

1 − √
κ

)

εcl+1

This is exactly the induction hypothesis at the order l + 1. ��
Proof of the Theorem 5.2 We will obtain the desired theorem as a corollary of the
previous one (1).

The conditions (47) and (48) in the statement of the Theorem 1 are equivalent to
(33) and (34), required in the Theorem 5.2.

Thus, if we fix μ ∈ [0; M[, we have that, for any l ≥ 0 such that nl ≥ j and
M − (l + 1)μ > 0, under the condition that cl < 1:

1

N (wl)N (anl )

∣
∣
∣F (1)(x + iwl) F (1)(x + ianl ) − F (2)(x + iwl)F

(2)(x + ianl )
∣
∣
∣

≤ 3Dl

(
2κ−l/2−κ−(l−1)/2 − 1

1−√
κ

)

εcl

(
∀x ∈ [−(M−(l + 1)μ)a j+K ; (M−(l+1)μ)a j+K ]

)

where the constants are defined as in 1.
We can check that, for any l, wl = a j+K

a+1

(
2 + (a − 1)a−2l

)
.

We take l = K/2. We then have wl = 2
a+1a

j+K + a−1
a+1a

j = aJ and nl = j . For
this l, the previous inequality is equivalent to:

1

NJ N j

∣
∣
∣ f (1) � ψJ (x) f

(1) � ψ j (x) − f (2) � ψJ (x) f (2) � ψ j (x)
∣
∣
∣

≤ 3Dl

(
2κ−K/4 − κ−(K−2)/4 − 1

1 − √
κ

)

εcl

We observe that cl ≥ lim
l→∞cl = c − 2

(
1 + 2 a

a+2

) (
e−πμ

1−e−πμ

)
≥ c − 4

(
e−πμ

1−e−πμ

)
and

2κ−K/4−κ−(K−2)/4−1
1−√

κ
≤ 2κ−K/4

1−√
κ
.

So, for any x ∈ [−(M − μ(1 + K/2))a j+K ; (M − μ(1 + K/2))a j+K ]:
1

NJ N j

∣
∣
∣ f (1) � ψJ (x) f

(1) � ψ j (x) − f (2) � ψJ (x) f
(2) � ψ j (x)

∣
∣
∣

≤ 6Dl
κ−K/4

1 − √
κ

ε
c−4

(
e−πμ

1−e−πμ

)

From Eq. (32):

Dl =
K/2−1∏

s=0

(N (ans−1−k)

N (ans−2)

)

=
K/2−1∏

s=0

(

a p(k−1) Nns−1−k

Nns−2

)
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For μ = M
K+2 , our last inequality is exactly the desired result. ��

Appendix 5: Bounds for Holomorphic Functions

In the proofs of Sect. 5, we often have to consider holomorphic functions defined on a
band of the complex plane. We want to obtain informations about their values inside
the band from their values on the boundary of the band. This is the purpose of the
three theorems contained in this section.

In the whole section, a, b are fixed real numbers such that a < b. We write Ba,b =
{z ∈ C s.t. a < Im z < b}. We consider a holomorphic functionW : Ba,b → Cwhich
satisfies the following properties:

(i) W is bounded on Ba,b.
(ii) W admits a continuous extension over Ba,b, which we still denote by W .

The first theorem we need is a well-known fact. We recall its demonstration because
it is very short and relies on the same idea that will also be used in the other proofs.

Theorem 12.1 We suppose that, for some A, B > 0:

|W (z)| ≤ A if Im z = a

|W (z)| ≤ B if Im z = b

Then, for all t ∈]0; 1[ and all z ∈ C such that Im z = (1 − t)a + tb:

|W (z)| ≤ A1−t Bt

Proof For every ε > 0 and z ∈ Ba,b:

L(z) = log(|W (z)|) − (b − Im z) log(A) + (Im z − a) log(B)

b − a
− ε log |z + i(1 − a)|

is subharmonic on Ba,b and continuous on Ba,b. It is upper-bounded and takes negative
values on ∂Ba,b. Moreover, L(z) → −∞ when Re (z) → ±∞. From the maximum
principle, this function must be negative on Ba,b.

Letting ε go to 0 implies:

log(|W (z)|) ≤ (b − Im z) log(A) + (Im z − a) log(B)

b − a
∀z ∈ Ba,b

⇒ |W (z)| ≤ A
b− Im z

b−a B
Im z−a
b−a

��
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e−πM/(b−a)0 eπM/(b−a)

eπ(z−ia)/(b−a)

Fig. 7 Positions of the points used in the definition of f

Lemma 12.2 Let A, B, ε > 0 be fixed real numbers, with ε ≤ 1. We assume that:

|W (z)| ≤ B if Im z = b

|W (z)| ≤ A if Im z = a and Re z /∈ [−M; M]
|W (z)| ≤ εA if Im z = a and Re z ∈ [−M; M]

Then, for all z such that a < Im z < b, if t ∈ [0; 1] is such that Im z = (1− t)a+ tb:

|W (z)| ≤ ε f (z)A1−t Bt

where:

f (z) = 1

π
arg

(
eπM/(b−a) − eπ(z−ia)/(b−a)

e−πM/(b−a) − eπ(z−ia)/(b−a)

)

and this function satisfies, when |Re z| ≤ M: f (z) ≥ (1 − t) − 2t e
−π

M−
∣
∣
∣Rez

∣
∣
∣

b−a

1−e
−π

M−
∣
∣
∣Rez

∣
∣
∣

b−a

.

Proof The function f may be continuously extended to Ba,b − {−M + ia; M + ia}.
By looking at Fig. 7, one sees that:

f (x + ia) = 0 for all x ∈ R − [−M; M]
= 1 for all x ∈] − M; M[

f (x + ib) = 0 for all x ∈ R

We set:

f (−M + ia) = f (M + ia) = 1

This definition makes the extension of f upper semi-continuous on Ba,b (because
f ≤ 1 on all Ba,b).
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For any η > 0, the following function is subharmonic on Ba,b:

L(z) = log(|W (z)|) − log(ε) f (z) − (b − Im z) log(A) + (Im z − a) log(B)

b − a
−η log |z + i(1 − a)|

It is upper semi-continuous on Ba,b and tends to −∞ when Re z → ±∞. Thus, this
function admits a local maximum over Ba,b. This maximum is attained on ∂Ba,b,
because L is subharmonic.

From the hypotheses, one can check that L(z) ≤ 0 for all z ∈ ∂Ba,b. The function
L is thus negative on the whole band Ba,b. Letting η go to zero gives, for all z ∈ Ba,b

such that Im z = (1 − t)a + tb:

|W (z)| ≤ ε f (z)A1−t Bt

We are only left to show that f (z)≥(1−t)−2t e
−π

M−
∣
∣
∣Rez

∣
∣
∣

b−a

1−e
−π

M−
∣
∣
∣Rez

∣
∣
∣

b−a

when Im z=(1−t)a+tb.

If we write x = Re (z), we have:

f (z) = 1

π
arg

(

−e−iπ t 1 − eπ(x−M)/(b−a)eπ i t )

1 − e−π(M+x)/(b−a)e−π i t

)

= (1 − t) + 1

π
arg

(
1 − eπ(x−M)/(b−a)eπ i t )

1 − e−π(M+x)/(b−a)e−π i t

)

We note that:
∣
∣
∣arg

(
1 − eπ x−M

b−a eiπ t
)∣∣
∣ ≤
∣
∣
∣tan

(
1 − eπ x−M

b−a eiπ t
)∣∣
∣

= |sin(π t)| eπ x−M
b−a

1 − eπ x−M
b−a cos(π t)

≤ |sin(π t)| eπ x−M
b−a

1 − eπ x−M
b−a

≤ π t
eπ x−M

b−a

1 − eπ x−M
b−a

≤ π t
e−π

M−
∣
∣
∣Re z

∣
∣
∣

b−a

1 − e−π
M−

∣
∣
∣Re z

∣
∣
∣

b−a

And the same inequality holds for
∣
∣
∣arg

(
1 − e−π M+x

b−a e−iπ t
)∣∣
∣. This implies the result.

��
The proof of the third result is similar to the proof of the second one. We do not

reproduce it.
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Lemma 12.3 Let M, A, ε > 0 be fixed real numbers, with ε ≤ 1. We assume that:

|W (x + ia)| ≤ A |W (x + ib)| ≤ A ∀x ∈ R − [−M; M]
|W (x + ia)| ≤ εA |W (x + ib)| ≤ εA ∀x ∈ [−M; M]

Then, for all z such that a < Im z < b:

|W (z)| ≤ ε f (z)A

where:

f (z) = 1

π
arg

(
eπM/(b−a) − eπ(z−ia)/(b−a)

e−πM/(b−a) − eπ(z−ia)/(b−a)
.
−e−πM/(b−a) − eπ(z−ia)/(b−a)

−eπM/(b−a) − eπ(z−ia)/(b−a)

)

and this function satisfies, when |Re z| ≤ M: f (z) ≥ 1 − 4t

⎛

⎝ e
−π

M−
∣
∣
∣Rez

∣
∣
∣

b−a

1−e
−π

M−
∣
∣
∣Rez

∣
∣
∣

b−a

⎞

⎠, for

t = Imz−a
b−a .
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