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1 Introduction

There exists an elegant result, motivated by applications in optical image processing,
stating that any matrix A ∈ C

n×n is the product of circulant and diagonal matrices
[15,18].1 In this paper it is shown that, generically, 2n−1 factors suffice. (For various
aspects of matrix factoring, see [13].) The demonstration is constructive, relying on
first factoringmatrix subspaces equivalent to polynomials in a permutationmatrix over
diagonal matrices into linear factors. This is achieved by solving structured systems
of polynomial equations. Located on the borderline between commutative and non-
commutative algebra, such subspaces are shown to constitute a fundamental sparse
matrix structure of polynomial type extending, e.g., band matrices. In particular, now
matrix analysis gets largely done entirely polynomially. Then for the linear factors, a
factorization for the sum of two PDmatrices into the product of a circulant matrix and
two diagonal matrices is derived.

A scaled permutation, also called a PDmatrix, is the product of a permutation and a
diagonal matrix. In the invertible case we are dealing with the monomial group, giving
rise to the sparsest possible nonsingular matrix structure. A way to generalize this is
to allow more nonzero entries per line by considering sums of PD matrices. The sum
of two PD matrices can be analyzed in terms of permutation equivalence which turns
out to be instrumental for extending the structure. Although the notion of permutation
equivalence is graph theoretically nonstandard, combinatorial linear algebraically it
is perfectly natural [2, p. 4]. There arises a natural concept of cycles which can be
used to show that the inverse of a nonsingular sum of two PD matrices carries a very
special structure and can be inexpensively computed.

To extend the set of sums of two PD matrices in a way which admits factoring,
a polynomial structure in permutations is suggested. That is, let P be a permutation
matrix and denote by p a polynomial over diagonal matrices. Define matrix subspaces
of Cn×n as

P1
{
p(P)

∣
∣ deg(p) ≤ j

}
P2 (1.1)

with fixed permutations P1 and P2. This provides a natural extension by the fact
that the case j = 0 corresponds to PD matrices while j = 1 yields the sums of
two PD matrices. The case j = 2 covers, e.g., finite difference matrices, including
periodic problems. In this manner, whenever j � n, the sparsity pattern of such a
matrix subspace carries an intrinsic polynomial structure which can be used to analyze
sparsity more generally in terms of the so-called polynomial permutation degree. For
an equally natural option, the notion of sparse polynomial can be analogously adapted
to (1.1), i.e., allow j to be large but require most of the coefficients to be zeros.
(For sparse polynomials, see [17] and references therein.) In any case, now matrix
analysis gets largely done polynomially, in terms of powers of a permutation. Namely,
completely analogously to univariate complex polynomials, these subspaces admit

1 In particular, any unitary matrix A ∈ C
n×n can be interpreted as being a diffractive optical system. See

[15] how products of discrete Fourier transforms and diagonal matrices model diffractive optical elements.
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factoring. To factor (1.1) into linear factors, it turns out that it suffices to consider the
problem of factoring polynomials in the cyclic shift2 over diagonal matrices.

Let P thus be the cyclic shift and set P1 = P2 = I . Then for any A ∈ C
n×n

there exists a unique polynomial p over diagonal matrices of degree n − 1 at most
such that p(P) = A. With this representation, the problem of factoring A into the
product of circulant and diagonal matrices converts into the problem of factoring
p into linear factors. For a generic matrix this is possible (see Theorem 4.3) through
consecutively solving systems of polynomial equations. Quite intriguingly, this allows
regarding matrices as polynomials which have been factored. In particular, a linear
factor is, generically, the product of two diagonal matrices and a circulant matrix.
Consequently, once this factoring process has been completed, we have

A = D1C2D3 · · · D2n−3C2n−2D2n−1 (1.2)

with diagonal and circulantmatrices D2 j−1 andC2 j for j = 1, . . . , n. Or, alternatively,
purely Fourier analytically one can view this as a factorization involving discrete
Fourier transforms and diagonal matrices.3

The paper is organized as follows. Section 2 is concerned with the set of sums of
two PDmatrices. Their inversion is analyzed. A link with the so-calledDCD matrices
in Fourier optics is established. In Sect. 3, to extend the set of sums of two PDmatrices,
polynomials in a permutation matrix over diagonal matrices are considered. Sparsity
of matrices is thenmeasured in terms this polynomial structure. Section 4 is concerned
with factoring polynomials in a permutation over diagonal matrices into first degree
factors. Factorization algorithms are devised. A solution to the problem of factoring
into the product of circulant and diagonal matrices is provided. A conjecture on the
optimal number of factors ismade togetherwith relatedFourier compression problems.

2 The Sum of Two PD Matrices

This section is concerned with extending diagonal matrices to PD matrices, the set of
scaled permutations PD. Once done, we consider matrices consisting of the sum of
two PD matrices. Here P denotes the set of permutations and D the set of diagonal
matrices. In the invertible case we are dealing with the following classical matrix
group.

Definition 2.1 Bymonomialmatrices ismeant the group consistingofmatrix products
of permutation matrices with nonsingular diagonal matrices.

The group property is based on the fact that if P is a permutation and D a diagonal
matrix, then

DP = PDP , (2.1)

where DP = PT DP is a diagonal matrix as well. It turns out that this “structural”
commutativity allows doing practically everything the usual commutativity does.

2 The cyclic shift of size n-by-n has ones below the main diagonal and at the position (1, n).
3 This is a more operator theoretic formulation admitting an extension to infinite dimensions [12].
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Regarding applications, monomial matrices appear in representation theory [5,19]
and in numerical analysis of scaling and reordering linear systems of equations [9].
See also [6, Chapter 5.3] for a link with circulant matrices. It is noteworthy that the
monomial group is maximal in the general linear group of Cn×n [8].

The following underscores that PDmatrices provide a natural extension of diagonal
matrices.

Definition 2.2 [1] A generalized diagonal of A ∈ C
n×n is obtained by retaining

exactly one entry from each row and each column of A.

To put this into perspective in view of normality, observe that PD is closed under
taking the Hermitian transpose. Thereby, conforming with Definition 2.2, its unitary
orbit

{
UPDU∗ ∣

∣UU∗ = I
}

(2.2)

leads to the respective notion of extended normality. This is supported by the fact that,
like for normal matrices, the eigenvalue problem for PD matrices can be regarded
as being completely understood; see [6, Chapter 5.3]. To actually recover whether a
given matrix A ∈ C

n×n belongs to (2.2), compute the singular value decomposition
A = U�V ∗ of A and look at V ∗U .4

PDmatrices can be regarded as belonging to amore general sparsematrix hierarchy
defined as follows.

Definition 2.3 A matrix subspace V of Cn×n is said to be standard if it has a basis of
consisting standard basis matrices.5

There is a link with graph theory. That is, standard matrix subspaces of C
n×n are

naturally associated with the adjacency matrices of digraphs with n vertices. In partic-
ular, the following bears close resemblance to complete matching, underscoring the
importance of PD matrices in linear algebra more generally through the determinant.
A matrix subspace is said to be nonsingular if it contains invertible elements.

Proposition 2.4 A matrix subspace V of C
n×n is nonsingular only if its sparsity

pattern contains a monomial matrix.

Proof If A ∈ C
n×n is invertible, then by expanding the determinant using the Leib-

niz formula, one term in the sum is necessarily nonzero. The term corresponds to a
monomial matrix.

Let us now focus on the sum of two PD matrices. A monomial matrix is read-
ily inverted by separately inverting the factors of the product. For the sum of two
PD matrices, a rapid application of the inverse is also possible, albeit with different
standard techniques.

4 This approach certainly works in the generic case of D having differing diagonal entries in the absolute
value. In this paper we do not consider the numerical recovering of whether A belongs to (2.2) in general.
5 A standard basis matrix of Cn×n has exactly one entry equaling one while its other entries are zeros.
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Proposition 2.5 Suppose a nonsingular A ∈ C
n×n is the sum of two PD matri-

ces. Computing a partially pivoted LU factorization of A costs O(n) operations and
requires O(n) storage.

Proof Any row operation in the Gaussian elimination removes one and brings one
element to the row which is being operated. Performing a permutation of rows does
not change this fact. Thus, in U there are two elements in each row at most. By the
symmetry, there are at most two elements in each column of L .

Monomial matrices have a block analogue. By a block monomial matrix we mean
a nonsingular matrix consisting of a permutation matrix which has in place of ones
nonsingular matrices of the same size. Zeros are replaced with block zero matrices of
the same size. By similar arguments, Proposition 2.5 has an analogue for the sum of
two block PD matrices.6

The set of sums of two PD matrices, denoted by PD + PD, is no longer a group.
We argue that is has many fundamental properties, though.

Proposition 2.6 PD + PD is closed in C
n×n. Moreover, any A ∈ C

n×n is similar
to an element of PD + PD.

Proof With fixed permutations P1 and P2, the matrix subspace

V = DP1 + DP2. (2.3)

is closed. Being a finite union of closed sets (when P1 and P2 vary among permuta-
tions), the set PD + PD is closed as well.

For the claim concerning similarity, it suffices to observe that PD + PD contains
Jordan matrices.

Suppose A ∈ C
n×n is large and sparse. The problem of approximating A with an

element of PD + PD is connected with preprocessing. In preprocessing the aim is
to find two monomial matrices to make D1P1AD2P2 more banded than A; see, e.g.,
[4,7] and [3, p. 441].7 Now the permutations P1 and P2 in should be picked in such
a way that a good approximation to A in (2.3) exists. The reason for this becomes
apparent in connection with Theorem 2.7 below.

We have a good understanding of the singular elements of the matrix subspace
(2.3). To see this, recall that two matrix subspaces V andW are said to be equivalent
if there exist nonsingular matrices X,Y ∈ C

n×n such that W = XVY−1. This is a
fundamental notion. In particular, if X and Y can be chosen among permutations, then
V andW are said to be permutation equivalent. In what follows, by the cyclic shift is
meant the permutation

6 Block diagonal matrices are used, e.g., in preconditioning. Thereby the sum of two block PD matrices is
certainly of interest by providing a more flexible preconditioning structure.
7 The aim of preprocessing depends, to some degree, on whether one uses iterative methods or sparse direct
methods; see [3, p. 438].
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S =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 · · · 1
1 0 0 · · · 0
0 1 0 · · · 0
...

...
. . . · · · ...

0 0 · · · 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(2.4)

of unspecified size. When n = 1 we agree that S = I . The following result, which
turns out to be of central relevance in extending PD+PD, should be contrasted with
(0, 1)-matrices whose line sum equals 2; see [2, Chapter 1]. Observe that, due to (2.1),
PD + PD is invariant under permutation equivalence.

Theorem 2.7 Let V be the matrix subspace defined in (2.3). Then

V = P̂1(D + DP)P̂2 (2.5)

for permutations P̂1, P̂2 and P = S1 ⊕ · · · ⊕ Sk, where S j denotes a cyclic shift of
unspecified size for j = 1, . . . , k.

Proof Start by performing the permutation equivalence

VPT
2 = {DP1P

T
2 + D}.

Then there are cycles associated with the matrix subspace VPT
2 once we represent

P1PT
2 by its cycles as P1PT

2 = QPQT with a permutation Q. Thereby V = Q{DP+
D}QT P2.

Regarding preprocessing, observe that D + DP in (2.5) can be regarded as essen-
tially possessing a banded structure.

The dimension of (2.5) is 2n if and only if all the cyclic shifts are of size larger than
one. These matrix subspaces are sparse which is instrumental for large scale computa-
tions. In particular, consider the problem of establishing the number of permutations a
matrix subspace with a given sparsity pattern contains. It reflects the minimum num-
ber of terms in the Leibnitz formula for determinants; see Proposition 2.4. As two
extremes, in PD with a fixed permutation P , there is just one. And, of course, in
C
n×n there are n! permutations.

Corollary 2.8 There are 2l permutations in (2.3), where l is the number of cyclic
shifts in (2.5) of size larger than one.

Proof The problem is invariant under a permutation equivalence, i.e., we may equally
well consider D + DP . Let P̂ ∈ W be a permutation. When there is a cyclic shift of
size one, P̂ must have the corresponding diagonal entry. Consider the case when the
cyclic shift S j is of size larger than one. Each row and column ofW contains exactly
two nonzero elements, i.e., we must considerD+DS j . There, by exclusion principle,
P̂ coincides either with S j or the unit diagonal. Since P̂ can be chosen either way, the
claim follows.
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In general, determining the singular elements of a matrix subspace is a tremendous
challenge already when the dimension exceeds two [20].8 By using the equivalence
(2.5) and the Leibnitz formula, the singular elements of V can be readily determined
as follows. If D1 = diag(z1, z2, . . . , zk j ) and D2 = diag(zk j+1, zk j+2, . . . , z2k j ), the
task consists of finding the zeros of the multivariate polynomial

p j (z1, z2, . . . , z2k j ) = det(D1 + D2S j ) =
k j∏

l=1

zl + (−1)k j−1
2k j∏

l=k j+1

zl , (2.6)

i.e., having
∏k j

l=1 zl = (−1)k j
∏2k j

l=k j+1 zl corresponds to a singular block.
Consider a nonsingular block D1+D2S j under the assumption that the first (equiv-

alently, the second) term in (2.6) is nonzero. Then its inverse can be given in a closed
form with the help of the following result.

Theorem 2.9 Assume S ∈ C
n×n is the cyclic shift and D = diag(d1, . . . , dn). If

I + DS is nonsingular, then (I + DS)−1 = ∑n−1
j=0 Dj S j with the diagonal matrices

D0 = 1
(−1)n−1

∏n
j=1 d j+1

I and

D j+1 = (−1) j+1D0

j∏

k=0

DSkT for j = 0, . . . , n − 2. (2.7)

Proof It is clear that the claimed expansion exists since any matrix A ∈ C
n×n can be

expressed uniquely as the sum

A =
n−1∑

j=0

Dj S
j , (2.8)

i.e., the diagonal matrices Dj are uniquely determined. To recover the diagonal matri-
ces of the claim for the inverse, consider the identity

(I + DS)

n−1∑

j=0

Dj S
j =

n−1∑

j=0

Dj S
j +

n−1∑

j=0

DDST
j S j+1 = I,

where we denote SD j ST by DST
j as in (2.1). The problem separates permutationwise,

yielding D0 + DDST
n−1 = I for the main diagonal and the recursion

Dj+1 + DDST
j = 0 for j = 0, . . . , n − 2 (2.9)

8 When the dimension is two, one essentially deals with a generalized eigenvalue problem. For solving
generalized eigenvalue problems there are reliable numerical methods.
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otherwise. This can be explicitly solved for D0 = ((−1)n−1(DS)n + I )−1. Thereby
D0 is the claimed translation of the identity matrix. Thereafter we may insert this into
the recursion (2.9) to have the claim.

If actually both terms on the right-hand side in (2.6) are nonzero, thenwe are dealing
with the sum of two monomial matrices. It can then be shown that we have a so-called
DCD matrix, where C denotes the set of circulant matrices. (For applications, see
[10,15] how such matrices appear in diffractive and Fourier optics.) The proof of this
is constructive as follows.

Theorem 2.10 Assume D1 + D2S, where S ∈ C
n×n is the cyclic shift and D0 and

D1 are invertible diagonal matrices. Then there exist diagonal matrices D̂1 and D̂2
such that

D0 + D1S = D̂1(I + αS)D̂2 (2.10)

for a nonzero α ∈ C.

Proof Clearly, by using (2.1), we may conclude that the left-hand side is of more gen-
eral type, including all the matrices of the type given on the right-hand side. Suppose
therefore that D0 = diag(a1, a2, . . . , an) and D1 = diag(b1, b2, . . . , bn) are given.
Denote the variables by D̂1 = diag(x1, x2, . . . , xn) and D̂2 = diag(y1, y2, . . . , yn).
Imposing the identity (2.10) yields us the equations

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1y1 = a1
x2y2 = a2

...

xn−1yn−1 = an−1
xn yn = an

and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

αx2y1 = b1
αx3y2 = b2

...

αxn yn−1 = bn−1
αx1yn = bn

.

Solving y j in terms of x j from the first set of equations and inserting them into

the second one yields the condition αn =
∏n

j=1 b j∏n
j=1 a j

for the parameter α to satisfy.

This is necessary and sufficient for the existence of a solution, obtained now by a
straightforward substitution process once, e.g., the value of x1 has been assigned.

We may alternatively factor

D̂1(I + αS)D̂2 = D̂1F
∗DF D̂2, (2.11)

where F denotes the Fourier matrix and D is a diagonal matrix.
The existence of factoring (2.10) can hence be generically guaranteed in the fol-

lowing sense.

Corollary 2.11 D(I + CS)D contains an open dense subset of D + DS.

Consider the equivalence (2.5) In a generic case, using (2.10) with the blocks yields
the simplest way to compute the inverse of the sum of two PD matrices.
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3 Extending the Sum of Two PD Matrices: Polynomials in Permutation
Matrices over Diagonal Matrices

By the fact thatmatrices representable as the sumof twoPDmatrices can be regarded as
well-understood, consider extending this structure. The equivalence (2.5) provides an
appropriate starting point to this end. There the canonical form consists of first degree
polynomials in a permutation matrix P over diagonal matrices. More generally, define
polynomials over the ringD with the indeterminate being an element of P as follows.

Definition 3.1 Let P be a permutation and Dk ∈ D for k = 0, 1, . . . , j . Then

p(P) =
j∑

k=0

Dk P
k (3.1)

is said to be a polynomial in P over D.

In terms of this representation, due to (2.1), these matrices behave in essence like
standard polynomials. To avoid redundancies, we are interested in polynomials p
whose degree does not exceed deg(P). Then the degree of thematrix p(P) is defined to
be the degree of p. For algebraic operations, the sum of polynomials p1(P) and p2(P)

is obvious. Whenever deg p1 + deg p2 < deg(P), the product behaves essentially
classically, i.e., the degree of the product is the sum of the degrees of the factors.

Again, bearing in mind the equivalence (2.5), there is a need to relax Definition 3.1.
For this purpose, take two permutations P1 and P2 and consider matrix subspaces of
the form

P1
{
p(P)

∣
∣ deg(p) ≤ j

}
P2. (3.2)

Since P1 and P2 can be chosen freely, by using (2.1) and (2.5) we may assume that
P = S1⊕· · ·⊕ Sk with cyclic shifts S1, . . . , Sk . Consequently, the degrees of freedom
lie in the choices of P1 and P2 and in the lengths of the cycles and j . Observe that
(2.3) is covered by the case j = 1. For j even it many be worthwhile to make the

sparsity structure symmetric by choosing P1 = P
j
2 T and P2 = I . (Then the sparsity

structure obviously contains band matrices of bandwidth j + 1.) This gives rise to the
respective notion of “bandwidth”; see Fig. 1.

Let us make some related graph theoretical remarks. It is natural to identify the
sparsity structure of (3.2) with the (0, 1)-matrix having the same sparsity structure.9

Namely, there are many decomposition results allowing one to express a (0, 1)-matrix
as the sum of permutation matrices; see [2]. In this area of combinatorial matrix
theory, we are not aware of any polynomial expressions of type (3.2).10 In particular,
it does not appear straightforward to see when a (0, 1)-matrix is a realization of such a
polynomial structure. For example, by (2.8) we know that the matrix of all ones is. In

9 Since the study of matrix subspaces is (finite dimensional) operator space theory [16], this provides a
link between analysis and discrete mathematics. Figure 1 corresponds to a circulant graph.
10 It would be tempting to call such a (0, 1)-matrix a polynomial digraph. It has, however, another meaning
[2, p.157].
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Fig. 1 On the left the sparsity pattern in (3.2) corresponding to P = S, P1 = P2 = I for n = 103 and
j = 200. On the right the corresponding symmetric sparsity pattern

particular, for any sparse standard matrix subspace this leads to the following notion
of “graph bandwidth” in accordance with regular graphs.

Definition 3.2 Let V be a standard matrix subspace of C
n×n . The polynomial per-

mutation degree of V is the smallest possible j allowing V to be included in (3.2) for
some permutations P , P1 and P2.

Clearly, the polynomial degree is at most n − 1. When the degree is low, we have a
sparse matrix structure. In particular, such a polynomial structure arises in connection
with finite difference matrices with very small values of j .

Example 1 The set of tridiagonal matrices (and any of their permutation equivalences)
is a matrix subspace of polynomial degree two. To see this, let P be the cyclic shift
and set j = 2, P1 = PT and P2 = I . Then V includes tridiagonal matrices. In this
manner, finite difference matrices including periodic problems [9, p. 159] are covered
by the structure (3.2).

Aside from the polynomial permutation degree of Definition 3.2, there is another
natural option to classify sparsity here. Recall that a polynomial is said to be sparse
if most of its coefficients are zeros; see, e.g., [17]. Adapting this notion analogously,
allow j to be large. Then a natural notion of sparseness arises when only a small
number of coefficients are allowed to be nonzero diagonal matrices.

4 Factoring Polynomials in a Permutation Matrix over Diagonal
Matrices

To demonstrate that the matrix structure (3.2) extending PD + PD is genuinely
polynomial, we want perform factoring. In forming products, we are concerned with
the following algebraic structure.
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Definition 4.1 SupposeV1 andV2 are matrix subspaces of Cn×n over C (orR). Then

V1V2 = {
V1V2

∣
∣ V1 ∈ V1 and V2 ∈ V2

}

is said to be the set of products of V1 and V2.

A matrix subspace V is said to be factorizable if, for some matrix subspaces V1 and
V2, there holds

V1V2 = V, (4.1)

i.e., the closure of V1V2 equals V , assuming the dimensions satisfy 1 < dim V j <

dim V for j = 1, 2.As illustrated by theGaussian elimination applied to bandmatrices,
taking the closure may be necessary. For a wealth of information on computational
issues related with band matrices, see [9, Chapter 4.3]. For the geometry of the set of
products more generally, see [11].

Factoring of the matrix subspace (3.2) in the case j = 2 can be handled as follows.

Example 2 This is Example 1 continued. Let V1 = D + DP and V2 = D + DPT .
Then (4.1) holds. Namely, to factor an element in a generic case, the problem reduces
into solving a system of equations of the form

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x1 + a1
xn

= b1
x2 + a2

x1
= b2

x3 + a3
x2

= b3
...

...

xn + an
xn−1

= bn

(4.2)

with a j �= 0 and b j �= 0 for j = 1, . . . , n given. From the first equation x1 can be
solved in terms of xn and substituted into the second equation. Thereafter x2 can be
solved in terms of xn and substituted into the third equation. Repeating this, the system
eventually turns into a univariate polynomial in xn . Solving this combined with back
substitution yields a solution. Computationally a more practical approach is to execute
Newton’smethod on (4.2). Solving linear systems at each step is inexpensive by imple-
menting the method of Proposition 2.5. Consequently, under standard assumptions on
the convergence of Newton’s method, finding a factorization is an O(n) computation.

With these preparations, for j > 2, consider the problem of factoring a matrix
subspace (3.2) into the product of lower degree factors of the same type. As described,
it suffices to consider factoring a given polynomial p of degree j ≤ n − 1 in a cyclic
shift S ∈ C

n×n into linear factors. That is, assume having

A = p(S) =
j∑

k=0

FkS
k (4.3)
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with given diagonal matrices Fk , for k = 0, . . . , j . Then the task is to find diagonal
matrices D0 and D1 and E0, . . . , E j−1 such that

(D0 + D1S)

j−1∑

k=0

EkS
k =

j∑

k=0

FkS
k (4.4)

holds. Once solved, this can then be repeated with
∑ j−1

k=0 Ek Sk . For a solution, there
are several ways to proceed. To begin with, by using the identity (2.1), the problem
separates into the equations D0E0 = F0 and D1EST

j−1 = Fj and

D0Ek+1 + D1E
ST
k = Fk+1 (4.5)

for k = 0, . . . , j − 2.
There are, however, redundancies. These can be removed so as to attain maximal

simplicity in terms of a univariate polynomial-like factorization result. To formulate
a precise statement for performing this, let us invoke the following lemma.

Lemma 4.2 Let f : C
n → C

k be a polynomial function. If there exists a point
x ∈ C

n such that the derivative D f (x) has full rank, then f (Cn) contains an open
set whose complement is of zero measure. In particular, the open set is dense and
f (Cn) contains almost all points of Ck (in the sense of Lebesgue-measure.)

Proof This follows from [14, Theorem10.2].

This is of use in proving the following theorem underscoring how the matrix struc-
ture (3.2) is in every sense univariate polynomial.

Theorem 4.3 There exists an open dense set G ⊂ C
n×n containing almost all matri-

ces of Cn×n (in the sense of Lebesgue-measure) such that if A ∈ G, then

A = (S − D1)(S − D2) · · · (S − Dn−1)Dn (4.6)

for diagonal matrices Di , i = 1, . . . , n.

Proof For 1 ≤ j ≤ n, define the following nj-dimensional subspaces of Cn×n

A j =
⎧
⎨

⎩
A ∈ C

n×n
∣
∣ A =

j−1∑

k=0

Ek S
k for some diagonal Ek ∈ C

n×n

⎫
⎬

⎭
.

Consider the polynomial functions f j : A1 × A j−1 → A j defined by

f j (D, E) = (S − D)E .

After differentiating, we have

Df j (D, E)(�D,�E) = (S − D)(�E) + (−�D)E .
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Now choose D = 0, E = I to obtain

Df j (0, I )(�D,�E) = S(�E) − �D.

Hence Df j (0, I ) is of full rank. By Lemma 4.2 it follows that the equation

f j (D, E) = F

is solvable for D and E for almost all matrices F ∈ A j . Denote the subset of those
matrices F by B j = f j (A1 × A j−1). Define B̃2 = B2 and, furthermore, define

B̃ j = B j ∩ f j (A1 × B̃ j−1), j = 3, . . . , n.

Then A j \ B̃ j is of measure zero (in A j ) and it follows that when A ∈ B̃n we can
solve for D1, . . . , Dn in (4.6) by successively solving the equations (where E1 = A)

f j (Dj , E j+1) = E j , j = 1, 2, . . . , n − 1

and finally setting Dn = En . Hence almost all matrices A ∈ C
n×n have a factorization

(4.6). That the set of these matrices contains an open set with complement of zero
measure follows by applying [14, Theorem 10.2].

The identity (4.6) allows regarding matrices as polynomials which have been fac-
tored. The indeterminate is a permutation (now S) while the role of C is taken by D.
The representation is optimal in the sense that the number of factors (and diagonal
matrices) cannot be reduced further in general. Of course, if Dk = αk I with αk ∈ C

for k = 1, . . . , n, then we are dealing with circulant matrices, a classical polynomial
structure among matrices [6].

Like with polynomials, this gives rise to a notion of degree.

Definition 4.4 The polynomial permutation degree of A ∈ C
n×n is the smallest

possible j admitting a representation A = P1
∑ j

k=0 Dk Pk P2 for some permutations
P , P1 and P2 and diagonal matrices Dk for k = 0, . . . , j .

To compute the diagonal matrices Di in (4.6) for a matrix A ∈ C
n×n , the equations

(4.4) hence simplify as follows. Let j = n − 1 and A = ∑ j
k=0 FkS

k with given
diagonal matrices Fk . For an integer i , define [i] = 1 + ((i − 1) mod n). Denote
Dn− j = diag(x1, x2, . . . , xn). Then eliminating the diagonalmatrices Ek by imposing

(S − Dn− j )

j−1∑

k=0

EkS
k = A (4.7)
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we obtain the following system of polynomial equations

a[1],1 + a[2],1x[1] + a[3],1x[1]x[2] + · · ·+ a[ j+1],1x[1]x[2] · · · x[ j] = 0
a[2],2 + a[3],2x[2] + a[4],2x[2]x[3] + · · ·+ a[ j+2],2x[2]x[3] · · · x[ j+1] = 0

...

a[n],n + a[n+1],nx[n] + a[n+2],nx[n]x[n+1] + · · ·+ a[ j+n],nx[n]x[n+1] · · · x[n+ j−1] = 0.

This system of polynomial equations obviously possesses a very particular struc-
ture. (At this point we are not sure how it should be exploited.) After being solved,
the diagonal matrices Ek are determined by performing the substitutions

E j−1 = FS
j ,

Ek = (Fk+1 + Dn− j Ek+1)
S, k = j − 2, j − 3, . . . , 0.

Then let A = ∑ j−1
k=0 EkSk , decrease j by one and repeat the solving of (4.7) accord-

ingly.
Equipped with this recurrence, consider now the problem of factoring a matrix

A = p(S) into the product of circulant and diagonal matrices. First apply Theorem
4.3 to have a factorization (4.6) after completing the prescribed recurrence. Thereafter
apply Theorem 2.10 to transform each of the factors according to (2.10). This yields
(1.2).

For another approach to factor a matrix A = p(S) into the product of circulant and
diagonal matrices, consider imposing (4.4). Apply then Theorem 2.10 to invert the
first factor by assuming D0 and D1 to be invertible. We obtain

j−1∑

k=0

Êk S
k = (I + αS)−1 D̃1 p(S) (4.8)

with Êk = D̂2Ek , α ∈ C and D̃1 = D̂−1
1 . We may hence conclude that D̂2 is

redundant. Thereby the task reduces to finding α and D̃1 = diag(x1, x2, . . . , xn) in
such a way that the right-hand side of the identity attains the zero structure imposed
by the left-hand side. Any solution is homogeneous in D̃1. Therefore we can further
set x1 = 1 to reduce the problem to n free complex parameters. Once the equations
are solved, Êk’s are determined by α and D̃1 according to (4.8).

Consider the first factorization step in (4.8) by letting j = n − 1. Then zeros on
the left-hand side in (4.8) appear at the positions where Sn−1 = ST has ones, i.e.,
at ( j, j + 1), for j = 1, . . . , n − 1, and at (n, 1). To recover the entries at these
positions on right-hand side, by Theorem 2.9 the inverse of I + αS is the circulant
matrix 1

1+(−1)n−1αn C with C having the first row

(1, (−1)n−1αn−1, (−1)n−2αn−2, . . . , α2,−α). (4.9)
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Because on the left-hand side of the equations there are zeros, the factor 1
1+(−1)n−1αn

canbe ignored andweare leftwithC D̃1 p(S). Forcing its entries to be zeros at ( j, j+1),
for j = 1, . . . , n−1, and at (n, 1) yields n polynomial equations in which the highest
power of α is n − 1 while d j ’s appear linearly. Solve these, then let A = ∑ j−1

k=0 Êk Sk ,
decrease j by one and repeat the solving of accordingly.

Once the factorization is completed, we obtain (1.2). By the fact that now the
circulant matrices Ck are of the particular form I + αk S with αk ∈ C, the number of
free parameters in our factorization is only n2 + n − 1. Thereby we have only n − 1
“excess” free parameters.

Since the circulant matrices were of particular form, let us end the paper with a
speculative deliberation on the optimal number of factors and related compressions.
After all, the subspace of circulant matrices in C

n×n is of dimension n. Thereby, to
factor a generic matrix into the minimal number of circulant and diagonal factors, we
make the following conjecture.

Conjecture 1 There exists an open dense set G ⊂ C
n×n containing almost all matri-

ces of Cn×n (in the sense of Lebesgue-measure) such that if A ∈ G, then

A = B1B2 · · · Bn+1,

where Bi ∈ C
n×n is circulant for odd i and diagonal for even i .

This is supported by calculations. That is, we have verified the conjecture for the
dimensions n satisfying 2 ≤ n ≤ 20 by computer calculations utilizing Lemma 4.2
(with randomly chosen integer coordinates for the point x resulting in an integermatrix
for the derivative). Observe that, by a simple count of free parameters, no lower number
of factors can suffice.

In reality, approximate factorizations and expansions are typically of major prac-
tical interest. In this connection it is natural to formulate the problem more Fourier
analytically. Denote by F ∈ C

n×n the Fourier matrix. For a given A ∈ C
n×n , the

respective multiplicative Fourier compression problem then reads

inf
D1,...,Dj∈D

‖A − D1F
∗D2FD3F

∗D4 · · · F∗Dj−1FDj‖, (4.10)

for j = 1, 2, . . ., with respect to a unitarily invariant norm ‖ · ‖. This is a nonincreas-
ing sequence of numbers while j grows. Attaining zero with j = 1 means that A
is a diagonal matrix while attaining zero with j = 2 means that A is a product of a
diagonal and a circulant matrix. This paper is concerned with a constructive demon-
stration showing that j = 2n − 1 yields zero. From the outset, solving (4.10) appears
challenging.
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