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1 Introduction

It was proved by Lebesgue [18] that the Fejér means [5] of the trigonometric Fourier
series of an integrable function converge almost everywhere to the function, i.e.,

n

Z(skf(x)—f(x)) -0 as n— o

k=0

n+1

for almost every x € T, where T denotes the torus and s f the kth partial sum
of the Fourier series of the one-dimensional function f. The set of convergence is
characterized as the Lebesgue points of f.

Hardy and Littlewood [16] considered the so called strong summability and verified
that the strong means

1
n+1

> lsef ) = )
k=0

tend to 0 at each Lebesgue-point of f,asn — oo, whenever f € L,(T)(1 < p < 00)

(for Fourier transforms see Giang and Moéricz [10]). This result does not hold for

p = 1 (see Hardy and Littlewood [17]). However, the strong means tend to 0 almost

everywhere for all f € L{(T). This is due to Marcinkiewicz [19] for ¢ = 2 and to

Zygmund [33] for all ¢ > 0O (see also Bary [1]). Later Gabisoniya [6,7] (see also

Rodin [22]) characterized the set of convergence as the so called Gabisoniya points.
In the two-dimensional case Marcinkievicz [20] verified that

1 n
onf (X, y) = D skaf(xy) = fx,y) ae,as n— oo
k=0

for all functions f € LlogL(T?). Here we take the Fejér means of the two-
dimensional Fourier series over the diagonal. Later Zhizhiashvili [31,32] extended
this convergence to all f € L (Tz) and to Cesaro means. Recently the author [27,29]
generalized this result forall f € L;(RR?). The set of the convergence is not yet known.
In this direction the only result is due to Griinwald [15], he proved that if the integrable
function f is continuous at (x, y), then the convergence holds at (x, y).

A general method of summation, the so called #-summation method, which is
generated by a single function # and which includes the well known Fejér, Riesz,
Weierstrass, Abel, etc. summability methods, is studied intensively in the literature
(see e.g. Butzer and Nessel [2], Trigub and Belinsky [25], Gat [8,9], Goginava [11-
13], Simon [23] and Weisz [28,30]). The Marcinkiewicz means generated by the
f-summation are defined by

-1 0
O-']Qf(-xvy)zT/O 9/(%)St,lf(x7y)dt'
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The choice 6(¢) = max(1 — |¢], 0) yields the Fejér summation. We proved in [27,29]
that a? f — f almost everywhere if f € Li(R?).

In this paper we generalize this result for Wiener amalgam spaces and we char-
acterize the set of convergence. We introduce the concept of modified Lebesgue
points and modified strong Lebesgue points. We show that almost every point is
a modified Lebesgue point and a modified strong Lebesgue point of f € Lj(R?)
or f € W(Lyq, lso) (R?). Here W(Lp, Eq)(]Rz) denotes the Wiener amalgam space.
Under some conditions on 8 we show that the Marcinkiewicz-6-means of a func-
tion f € W(L1, £oo)(R?) converge to f at each modified strong Lebesgue point. The
same result holds for the modified Lebesgue points of f € W (L, Eoo)(Rz), whenever
1< p<oo.

As an application we generalize the classical one-dimensional strong summability
results mentioned above for f € W(L1, £~ )(R) and for strong 6-summability. More
exactly, we will show that

N B e 2
Jim == [ e (?)|s,f(x) — ffdr=0

at each Lebesgue point x of f € W(L,£,)(R) D L;(R)(1 < g < 00) when
f is locally bounded at x. The convergence holds at each Lebesgue point of f if
feW(Ly ty)R) D L,MR)(1 < p <o00,1 <g < 00). Moreover, it holds at each
Gabisoniya point if f € W(L1, £4)(R) (1 < g < 00). Finally, some special cases of
the #-summation are considered, such as the Weierstrass, Abel, Picar, Bessel, Fejér,
de La Vallée-Poussin, Rogosinski and Riesz summations.

2 Wiener Amalgam Spaces

We briefly write L p(Rz) instead of the L, (R2, 1) space equipped with the norm

1/p
I fllp == (/R2 If(x)l”dk(x)) (1 <p<o0),

with the usual modification for p = oo, where A is the Lebesgue measure.
Now we generalize the L, spaces. A measurable function f belongs to the Wiener
amalgam space W (L p, Zq)(Rz) (1<p,qg <o0)if

1/q
IF WL, = ( >Ufe +k>||§p[o,l)z) < o0,
keZ?
with the obvious modification for g = oo.

It is easy to see that W(L, ¢ p)(Rd) =L p(Rd) and the following continuous
embeddings hold true:

W(Lpis ) (R?) D W (Lpy, £g) (R (p1 < p2)
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and
W(Lp. £q,)(R?) € W(Lp, £0) (R?) (41 < q2),
(1 = p1, p2, 91,92 < 00). Thus
W (Loo. £1)(R?) € Lp(R?) € W(L1. £oo) (R?) (1 < p < 00).

In this paper the constants C and Cj, may vary from line to line and the constants C,
are depending only on p.

3 The Kernel Functions

Let us recall some results for the inverse Fourier transforms. The Fourier transform
of f € L1(R?) is given by

1
flx,y) = 2—/ fu, v)e T gy dy  (x,y € R),
T JR2

where 1 = 4/—1. Suppose first that f € L p(Rz) for some 1 < p < 2. The Fourier
inversion formula

1 - —~~
Fee) =50 [ Fawe® o dudo (vy R Fe Li(2)
21 R2

motivates the definition of the Dirichlet integral s, f (r > 0):

| YL LN

s f(x,y) = —/ / f(u, v)e CHYY gy dy
2 )t )
1
= m/sz(x—u,y—v)D,(u,v)dudv, (1)

where the Dirichlet kernel is defined by

ot sintx sint
Dy (x,y) = / / U dyudy = 4 >
—tJ—t X y

Obviously, |D,| < Cr2.

It is easy to see that, with the help of the integral in (1), the definition of s; f can be
extended to all f € W(Ly, Zq)(Rz) with 1 < g < oo. Note that W (L, E,,)(]Rz) D
LP(Rz), where | < p < oo. It is known (see e.g. Grafakos [14] or [30]) that for
feL,R?, 1< p<oo,

lim sy f=f inthe LP(RZ)—norm and a.e.
T—o00
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Note that 7 € R.. This convergence does not hold for p = 1. However, using a
summability method, we can generalize these results. We may take a general sum-
mability method, the so called Marcinkiewicz-6-summation defined by a function
6 : R4 — R. This summation contains all well known summability methods, such as
the Marcinkiewicz—Fejér, Riesz, Weierstrass, Abel, Picard, Bessel summations.

Suppose that 6 is continuous on R, the support of 6 is [0, c] for some 0 < ¢ < oo
and 6 is differentiable on (0, ¢). Suppose further that

0(0) =1, / (t v 1210’ (1)| dt < oo, Jlim 26(t) = 0, )
0 — 00

where Vv denotes the maximum and A the minimum.
For T > 0 the Marcinkiewicz-6-means of a function f € L p(Rz)(l <p<2)are
defined by

ol f(x,y) = 2;/ 9(|”|;|”|)f( ) S dy dy.

It is easy to see that

ol flx,y) = %/IR{Z fx—u,y—v)Ku,v)dudv, 3)

where the Marcinkiewicz-0-kernel is given by

v
Kf(x,y) = — |)e’("“+yv) dudv

1
2

- / ! ) dt '™ du dv
2nT R2 Iulvlv\

— /t / z(xu+yv) dudv dt
27T

—1 o0 ,

Observe that K ? is well defined because

1 o0 o0 oo o
-/ 0(lu| v |v]) dudv =/ / 1{u<v}9(v)dudv+/ / V)0 () dut dv
4 Jr2 o Jo o Jo

= 2/00 ub () du = c*0(c) — /C w0’ (u) du, (5)
0 0

which is finite by (2). Hence

—1
off(x,y) = 7/0 9/( )Szf(x y)dr.
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Note that for the Marcinkiewicz—Fejér means (i.e. for () = max((1 — |7]), 0)) we
get the usual definition

1 T
o f(x,y) = 7/0 5o f (x. y)di.

We may suppose that x > y > 0. The first two inequalities of the next lemma
follows from (4), the others were proved in Weisz [27].

Lemma 1 If

‘ /oo 0’(t) cos(tu) dt
0

o0
<Cu™“, ‘/ 0’ ()t sin(tu)dt| < Cu™®  (6)
0

for some 0 < a < 00, then

|K§(x, )| = CT?, ©)
’K?(x, y| < cx~ty !, (8)
|KS (e, )| < ey e — )7, )
K (x, )| = cT'ox (e — ) (10)

We have proved the next lemma in Weisz [26].
Lemma 2 [f (6) is satisfied for some 0 < o < 00, then fRZ |K§|d)» < C(T e Ry).
Now we can extend the definition of the Marcinkiewicz-6-means 0? f with the

formula (3) to all f € W (L, £oo)(R?).

4 Modified Lebesgue Points

Ll[f"(Rz)(l < p < o0) denotes the space of measurable functions f for which
| f17 is locally integrable. We say that f is locally bounded at (x, y) if there exists a
neighborhood of (x, y) such that f is bounded on this neighborhood.

For f € Li;’” (R?) the Hardy-Littlewood maximal function is defined by

1 h rh 1/p
M, f(x,y) :=sup (—2/ / If(x—s,y—f)lpdsdt) .
n=0 \4h= J_p J_p

We are going to generalize the Hardy-Littlewood maximal function. Let p (k) and
v(h) be two continuous functions of 2 > 0, strictly increasing to oo and 0 at & = 0.
Let

1 w(h)  pv(h) 1/p
MDY f(x,y) = (4M(h)v(h)/ |f(x—s,y—t)|”dsdt) ,

w(h) J—v(h)
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where [ € L;"C(Rz). If w(h) = v(h) = h, then we get back the usual Hardy-

Littlewood maximal function. For p = 1, we write simply Mf and M-#V £ Tt
is known that the usual maximal function is of weak type (1, 1) and bounded on
L p(Rz) (1 < p < 00). We can prove in the same way that M (- has these properties
as well, i.e.,

sup ph (M1 f = p) < ClIflh - (f € Li(R?)) (1)
p>
and

MO p] < Colifll,  (f € Lp(R), 1 < p < o0) (12)

(see Zygmund [34], Stein [24] or Weisz [28]), where the constants C and C, are
independent of & and v.
Forsome r > Oand f € Llp”c(Rz) let

MPD f(x, y)

i) 2/h 1/p
= sup 27T ( / / |f(x—s,y—t)|pdsdt) .
i,jeN,h>0 4.2i+ip? 2ip 2ih

Again MO £ .= MV £ Applying inequality (11) to w(h) = 2'h and v(h) = 2/h,
we obtain

™

pA(MWf > p) < p )L(M(l),u,!)f - 2r(i+/>p)

27TEEDYFIl < Cllf I (13)

IA
a

Me L[Mz2
.Mg Tc|>

Il
)
Il
S

J

forall f € L1(R?) and p > 0. The inequality

IMOF], < Clifl,  (f € Lp(R), 1< p < o0) (14)

can be shown similarly.
We modify slightly the definition of the maximal function. Let

@i w(h)  ps+v(h) ) 1/p
M flx,y) = ( / / [f(x —s,y—1) dtds)
h>0 A (hyv(h) J—pmy Js—vn

and

MP f(x, )

J 1/
= sup 27 r(""/)( - 2/ /Y+2h|f(x—s,y—t)|pdtds) p.
i,jeN,h>0 4.2i%ih s—2ih
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With the same proof we can see that (11) and (12) holds also for M @)y f =
MPHY £ and (13) and (14) for M@ f := M'? f (see also Zhizhiashvili [32]). The
next theorem can be proved with the method of Feichtinger and Weisz [4] for

My f @, y) =MD fx,y) + MP f(x, ).

Theorem 1 Forl < p < oo,

sup (M f = )7 < Cllflly - (f € Lp(R2)).
P>

Mo < Collfle (f €L (RY), p<r < o0)

and

sup sup pAM, f > o, [k k+ )P < Clliflwie i (f € W(Lp, o) (R?)),
keZd p>0

Mol o < Clf W ey (F € Wi L) (RP), p <7 < 00).

A point (x, y) € R? is called a p-Lebesgue point (or a Lebesgue point of order p)
of f € L’;C(]Rz) if

1 h h 1/p
m(m/_h/_h|f(x—s,y—r)—f(x,y>|Pdsdr) —o.

It was proved in Feichtinger and Weisz [3,4] that almost every point (x, y) € R? is a
p-Lebesgue point of f € W(L, loo)(R?) (1 < p < 00).

We say that a point (x,y) € R? is a modified p-Lebesgue point (or a modified
Lebesgue point of order p) of f € LI“(R*)(1 < p < oo) if forall T > 0

@i+)) 1 2 v

li L -5, y—1t)— WP ds dt

rER) tj:§€l>0 (4 ' 21+]h2 / /2/h |f(x oY ) f(x y)| ’ )
2ih<r2lh<r

=0. 5)

If in addition

2/h 1/p
lim sup 2770HD . |f(x—s, y—1)— f(x, y)|P dt ds
4. 2’+/h2 Y Y

=0 jeN,h>0 —2ih
2h<r2ih<r

=0, (16)
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then we say that (x, y) € R?isamodified strong p-Lebesgue point (or amodified strong
Lebesgue point of order p). If p = 1, then we call the points modified Lebesgue points
or modified strong Lebesgue points. Obviously, every modified (strong) p-Lebesgue
point is a modified (strong) Lebesgue point.

Theorem 2 Almost every point (x,y) € R? is a modified p-Lebesgue point and a
modified strong p-Lebesgue point of f € W(L,, lo)R?) (1 < p < 00).

Proof 1t is enough to prove the theorem for the modified strong Lebesgue points and
for f € L P(RZ). Let t > 0 be arbitrary. If f is a continuous function, then (15) and
(16) hold for all (x, y € R?). Let us denote

Ur,pf(xa D
U fx,y)

U Fe, y) + USRS Fx, ),

sup 270D

i,jeN,h>0
2ih<r2) h<r

| 2n 2k 1/p
_ x—s8,y—1t)— flx, |’ dsdt ,
(535 [, [, 1H6 =5y =0 = reop asar)

UD Sy = sup 270D

i,jeEN,h>0
2ih<r,2) h<r

1 2'h ps+2/h 1/p
_ x—s,y—1) — f(x,y)|Pdtds .
(4 L0iFi 2 /_2’.}1 ~/S—2jh lfC y—1)— flx,yl )

In case p = 1 we omit the notation p and write simply U, f, Ur(l) f and Ur(z) f. Then,
by Theorem 1,

pPx(supUsp f > p) < pPA(MSD f > p/4) + pP2(MP f > p/4)
r>0

+20P1(f > p/4)
= C| [

Since the result holds for continuous functions and the continuous functions are dense
inL, (R?), the theorem follows from the usual density argument due to Marcinkiewicz
and Zygmund [21]. O

It is not sure that (x, x) is a modified (strong) p-Lebesgue point of a function
f e WLy, £50)(R?) for almost every x € R. However, under some conditions, we
can prove this result.

Theorem 3 Suppose that f(x,y) = fo(x)fo(y). If x and y are p-Lebesgue points

of fo € W(Lp,lx)R), then (x,y) is a modified p-Lebesgue point of f &
W(Lp, loo)(R?) (1 < p < 00).
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Proof We have

1 in p27n 1/p
(4.2i+jh2/ |f(x—5’y—t)—f(x,y)|”dtds)

2ip J—2in
1 2 p27h , » 1/p
N—= Jotx =) = fo(x)|" | foy —1)|" dt ds)
(4'2l+Jh2/—2ih/—21'h| | | |
1 20 p20h » » 1/p
H— —1) — dtd
(4_21+]h2 [zihﬁz_ih\fo(x)\ [foly = 1) = fo)] s)

= A1(x, y) + A2 (x, y).
It is easy to see that if y is a p-Lebesgue point of fo, then M, fo(y) is finite, where

M, fo denotes the maximal function of the one-dimensional function fy. Since x is
also a p-Lebesgue point of fj,

1 2in 1/p
A1(x,y) < Mpfo(y)(m/ . |fo(x —s) — fo(x)|p ds) <€,

-2

whenever 2/ < r and r is small enough. The term A, can be handled similarly,

1 2/h 1/p
Az(x,y)fc(z.zjh/ jh’fo(y—t)—fo(y)\pdt) <e

-2
whenever 27/ < r and r is small enough. O
The following corollary can be seen in the same way.

Corollary 1 Suppose that f(x,y) = fo(x) fo(y). If x and y are p-Lebesgue points
of fo € W(Lp, Loo)(R), then M;,l)f(x, y) is finite (1 < p < 00).

Proof 1t is easy to see that Mﬁ,l)f(x, ) < Mpfo(x)Mp fo(y).

For the modified strong Lebesgue points we need in addition that fy is almost
everywhere locally bounded.

Theorem 4 Suppose that f(x,y) = fo(x) fo(y). If x and y are p-Lebesgue points of
Jo € W(Lp, lx)R) and fy is locally bounded at x and y, then (x, y) is a modified
strong p-Lebesgue point of f € W(L, Loo)(R?) (1 < p < 00).

Proof We will prove (16), only. Then

1 2 ps42/h » 1/p
_— x—s,y—1t)— f(x, dt ds
(4~2’+1h2 /—Zih/s—zjh |f( y—1 = f( y)| )

1 2ih ps+27h 1/p
= (—4 2itin2 /2%/ | folx =) — fo)|”| foy — )|" dt ds)

—2/h
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2ih s+27h 1/p
( 21+,h2/ / \fo<x)|”|fo<y—r)—fo<y>|Pdtds)

= Az(x,y) + As(x, y).

Since x is a Lebesgue point of f and f{ is bounded in a neighborhood of y,

1 2ih 1/p
As(x,y) < C(m /_M | fox —s) — fo(x)\pdS) <e,
whenever 2ih < r, 2/h < r and r is small enough.
On the other hand,
Ag(x, y)
20p427h p2Th A 427 h) » ) 1/p
So) |7 foly =) — fo(y)|" ds dt) .
(4 2+ h? /Z'hzlh/zlhv(tlfh) | I |
Ifi > j, then

20y r420h 1/p
Asfol) <c(4 i o | |fo(y—r>—fo<y>\”dsdz)

2i+lp 2/h

1 20+l 1/p
=C(2 zlh/ |fo<y—z)—fo(y>|”dr) <e

andifi < j, then

2/t

2i 1/p
150 = (e [ [ 10 =0 = | asar)

1 27+ l/p
=C( / |fo(y—t)—fo(y)|”dr) <e,

2.27h

whenever 2'h < r, 2/h < r and r is small enough. This proves the theorem. O

5 Pointwise Convergence of Marcinkiewicz Summation

Now we prove that the Marcinkiewicz means a? f converge to f at each modified
strong Lebesgue points.

Theorem 5 Suppose that (6) is satisfied for some 0 < a < 00 and f €
W (L1, €so)(R?). If (x, y) is a modified strong Lebesgue point of f and M f(x, y) is
finite, then

dim o7 £ (e, y) = fx. ).
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Proof Let 0y(s, t) := 0(|s| V |t]). The first equation of (4) implies that
KO e 20
7(s,1) :=T0(Ts, Tt).

Since Ay € L1(R?) by (5)and é{) € L1 (R?) by Lemma 2, the Fourier inversion formula
yields that

1 1 ~
— K?(s,t)dsdt:—/ Oo(s,t)dsdt =0(0) = 1.
2 R2 2 R2

Thus
1
of s = sl =5 [ |f@=sy=0= @l Kol dsar 1)

It is enough to integrate over the set {(s, 1) € R?Z:5 >t > 0}. Letus decompose this
set into the union U?zl A;, where

Al ={(,1):0<s<2/T,0<t <5},

Ay i={(s,t) :s>2/T,0<t <1/T},

Az :={(s,t): s >2/T,1/)T <t <s/2},
Agi={(s,t) 15 >2/T,s/2 <t <s—1/T},
As = {(s,t) :s >2/T,s —1/T <t <s}.

The sets A; can be seen on Fig. 1. Let t < «/2 A 1. Since (x, y) is a modified
strong Lebesgue point of f, we can fix a number r < 1 such that

Urf(x,y) <e.

Let us denote the square [0, 7/2] x [0,7/2] by S,/2 and let 2/T < r/2. We will
integrate the right hand side of (17) over the sets

5

5
J@ins,y and [ J(4insg,).
i=1 i=1

where §¢ denotes the complement of the set S. Of course, Ay C S;2. By (7),

/A |fx—s,y—1) = fQx, »||KGs, 0)| ds dt
1

) 2/T 2/T '
<CT / / |f(x—s,y—1)— fx,y)|dsdt < CUD f(x,y) < Ce.
0 0

Birkhduser



J Fourier Anal Appl (2015) 21:885-914 897

A
t

A
As 4

S
/2 As

A
1 A,

0 2/T 7/2 s

Fig. 1 The sets A;

Let us denote by rq the largest number i, for which r/2 < 2*1/T < r. By (10),

/ |[f(x—s,y—1) = flx, )||KEGs, 0| ds dt
AxNSy 2

70 9i _oof IN\TY p2FYT YT
§CZT1_“(?) 1(7—?) /2 /O |fx—s,y—t)— f(x,y)|dsdt
i=1

i/T

0 (T2 2%l LT
<C Yy 2T (2—)/ /O [ =s.y =1 = fx,y)|dsdr

i=1 YT

ro
<C O 2D f(x,y) < Ce,

i=1

because T < «.
Since s — ¢ > s/2 and s — ¢t > t on A3, we obtain by (9) that

|Kf.(s,0)| < cTos7 1m0/ 27 1mel2, (18)
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Hence

/ \f(x—s,y—t)—f(x,y)||K?(s,t)|dsdt
A3NS; 2

ro i—1 2i —1—a/2 2j —1-a/2
<ex3r(7) (%)

i=1 j=0
2i+1/T 2_/+1/T
/[_/T /y/T |fx—s,y—1t)— f(x,y)|dsdt
ro i—1
< CZsza/zmﬂ)
i=1 j=0
o T2 2i+l/T 2j+l/T
2—r(z+/)(ﬁ>/_ / |f(x—s,y—t)—f(x,y)|dsdt
iT 2//T
ro i—1
< C Y D 2PNy f(x, y) < Ce. (19)
i=1 j=0

Since t > s/2 on A4, (9) implies
|Ki(s,0)| < CT 572 (s — 1) ", (20

and so

/ [fx—s,y—0) — fx, »)||KGs, )| ds dt
AgNSy 2

ro i—l 2i\ "2 g0\ T 2T ps=21)T
SCZZT“(?) (?) / |flx—s,y=t)— f(x,y)|dtds

iy Js—2i+1T

i=1j=0
ro i—1
< szz(rfl)iz(ﬂrlfa)j
i=1j=0
T2 20+l as—20)T
2—r(l+j)(T)/ |f(x —s,y—1) — f(x, y)] dtds
2ty 2i/T S,2j+1/T
ro i—1
< CZZ2(t71)12(t+1701)jUr(2)f(x, y) < Ce
i=1 j=0

if2<oa<ocandt < 1.If0 < < 2, then

2 @=Din(r+1—a)j _ »(t—a/2)in(@/2=Din+1-a)j - »(t—a/2)in(t—a/2)j
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and so

/ |f(x—s,y—t)—f(x,y)HK?(s,t)}dsdt
AgNSy 2
ro i—1
<C ZZz(T—a/Z)(i+j)Ur(2)f(x’ y) < Ce
i=1 j=0

because T < «/2.
We get from (8) that

|Kf(s,0)] < Cs™2

on the set As. This implies

/ |fx—s,y—1)— fx, 0|k, )| ds dt
AsNS; 2

21 2t+l/T s
<Cz( ) /S_I/T|f(x—s’y_f)—f(x,y)|dtds

l/T

(T2
< sz(r—l)tz—rz (2_1)

i=1 YT

2i+1/T

/ |f(x =5,y —0) = f(x, y)|drds
s—1/T

ro
<C O 2TVUP f(x,y) < Ce.
i=1

Similarly, we can show that

/ | fa=s.y =0 = fx )| |KT (s, 0| ds dt
AzﬂSL/Z

< C Z z(tfot)iM(l)f(‘x, y) +C Z Zfotif(‘x’ y)

i=rg i=ro
< 20790 MM £ (x, y) + C2790 f(x, y)
< (T MY fx,y) + C(Tr) ™ f(x,y) = 0

and

/ |f(x—s,y—t)—f(x,y)’|K79~(s,t)|dsdt
AzNS'

Y2
oo i—1 oo i—1
<C Z 22(1—0/2)(1+./)M(1)f(x’ y)+C Z 22—0!/2(!+./)f(x’ ¥)
i=rg j=0 i=rg j=0

< 2D\ £(x y) + €270 £(x, y) — 0,
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asT — o00. If 0 < o < 2, then

/ |fx—s,y—0)— fx, »)||KFGs, )| ds dt
A4ﬂsf/2

oo i—1 oo i—1
<C Z 22(T—a/2)(i+j)M(2)f(x’ y)+C Z ZZ_Q/Z(i+j)f(x, ¥)
i=rg j=0 i=rg j=0

< C2TPOMP f(x, y) + C2720 f(x, y) — 0

and if 2 < o < 00, then

/ |[f(x—s,y—10) = fx, »||KS (s, )| ds dt
A4ﬂsf/2

oo i—1 co i—l
<C Z Z2(r71)i2(r+1701)jM(2)f(x7 y)+C Z Zz*iz(lfa)jf(x’ )
i=rg j=0 i=rg j=0

< C2TOMP f(x, y) + C270 f(x, y) = 0.

Finally,

/ |f(x—s,y—1) = fCx,)||KFGs, )| ds dt
AsN

S5

<CY2TMP e, ) +C Y27 f(xsy)

i=rg i=rg
< C20DOMD f(x,y) + C2770 f(x, y) — 0,
as T — oo. Note that A N Sy = . This completes the proof of the theorem. O

Since by Theorems 1 and 2 almost every point is a modified strong Lebesgue point
and the maximal operator M f is almost everywhere finite for f € W (L, lo0)(R?),
Theorem 5 imply

Corollary 2 Suppose that (6) is satisfied for some 0 < a < oo and f €
W(L1, £so)(R?). Then

Tlim a?f(x, y)= f(x,y) ae

If 1 < a < oo, then in Theorem 5 we can omit the condition that M f (x, y) is
finite. We will use this result later in the theory of strong summability.

Theorem 6 Suppose that (6) is satisfied for some 1 < a < o0 and f €
W (L1, €oo)(R?). If (x, y) is a modified strong Lebesgue point of f, then

dim o7 f (e, y) = fx. ).
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Proof The estimation of the integral (17) over the square S, > can be found in Theorem
5. Similarly,

/ | f e, ) || K5 (s, 1)| ds dt — 0,
SL‘

r/2

as T — oo. Hence we have to estimate the integral
/5 |f(x—s,y—t)HK?(s,t)|dsdt.
i=1 (Aimsf/z)

For small § > 0 let us introduce the sets
By ={(s,t):s >r/2,0 <t <6},
By :={(s,t):s>r/2,6 <t <s— 6},

By :={(s,t):s>r/2,s —§ <t <s}.

Then we have to integrate over these three sets. On B we use estimation (10) to obtain

/ |f(x =5,y = 0|k s, )| ds dt 1)
By
No—1 i+1 8
<Cr'™* > (v 1)*‘*“/ / |fx—s,y—0)|dsdt
i=0 i 0
o0 i+1 S
+CT' Y i_l_“/ / |f(x —s,y—1)|dsdt
i=No i 0

= cr' ”f L /2. N1 x[0.8] ”W(LI,ZOQ) + CTliaNo_a ”f”W(Ll,Eoo)'

The second term is less than € if Ny is large enough and the first term is less than € if
6 is small enough. The rest of the proof works for all 0 < o < oo. Indeed, by (8),

[ 17 sy =l o] s
B3

No—1

i+1 ps
5CZ(1’\/1)‘2/ / |f(x —s,y—1)|dsdt
i—0 i s—8
et ) i+1 ps
+C "/ / —s,y—1t)|dsdt
Zl i s—5|f(x al )| ’

i=Ny

< C”f 1{(3”):’/2<5<N0’375<15x}”W(Ll,lfoc) + C‘N()_1 ” f ||W(Lla£oo) <€
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if Ny is large enough and § is small enough. Moreover, by (18),
/ |f(x—s,y—t)||K§(s,t)|dsdt
ByNA3

0 i+1 1
<SCT™ ) (v 1)—‘—“/23—‘—“/2/ / |f(x —s,y —1)|dsdt
i=0 S

o i i+l pjtl
+CT‘”ZZi—1—a/2J-—1—a/2/ / |f(x—s,y—1)|dsdr
14 J

i=1 j—=1
=Ccr™* ||f||w<L1,ew) -0,

as T — oo.If 2 < o < o0, then by (20),

/ |f(x—s,y—0||KS(s,1)|ds dt
BoNAy

o i i+l ps—j
SCT™ D EvD?GV 1)‘“[ /s_,-il [f (= s,y —n|dsdt

i=0 j=0

<CT™| 0.

’f”W(Ll,Koo) -

If0 < o < 2, then

/ |f(x—s,y—t)||K?(s,t)|dsdt
ByNAy

0 i i+l ps—j
<CT™Y > v v 1)—1—“/2/ / O |f(x —s,y —1)|dsdt
i s—j—

i=0 j=0
=CT|flwa, o) = O
which finishes the proof. O
The preceding result holds also for 0 < o« < 1 when f(x, y) = fo(x) fo(y).

Theorem 7 Suppose that (6) is satisfied for some 0 < o < oo and f(x,y) =
Jfox) fo(y) with fo € W(L1,€oo)(R). If x and y are Lebesgue points of fy and
fo is locally bounded at x and y, then

lim of f(x,y) = f(x,y).
T—o00
Proof Taking into account Theorems 4 and 6, we have to estimate the integral (21) for
0 < «a < 1, only. Let §p the largest number j, for which§/2 <2//T < §.If T > ¢!
then (9) implies

|KSGs, | < s s - <N s -7
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903
If T < t~! then we get the same inequality from (10). Using this we get similarly to
(19) that

/>f<x—s,y—oqu(s,z)usd,

I /\

I M8 I Mg

r I |f(x—s,y—t)|dsdt

N 21+1/T 2j+l/T
2 “f — —1)|dsdt
2,+, /I/T /2 | folx = 9)|| foly — D) ds

J/T
<CcY. Z 279 M fo(x) M fo(y)

i=rg j=—00

S C(Tr) " (TH*Mfo(x)Mfo(y) <€

| /\

S 66 LL
2

if § is small enough, because M fy(x) is finite for a Lebesgue point x of fy €
W (L1, £so)(R). This completes the proof of the theorem

O
In the next theorem we do not need the maximal operator M ® f

Theorem 8 Suppose that (6) is satisfied for some 0 < a < o0 and f €

W(Lp, loo)(RY) (1 < p < 00). If (x, ) is a modified p-Lebesgue point of f and
Mg)f(x, y) is finite, then

Tli_)moo of f(x.y) = fx, ).

Proof We have to integrate the integral in (17) again on the sets U7_; A;. Now let

5 4.

> A

T <a/2A1/4A1/(2qg), where 1/p+1/q = 1. Since (x, y) is amodified p-Lebesgue
point of f, we can fix a number r such that

U fx.y) <e.
Since

uf=ulyr and MUf=MPf

we can prove in the same way as in Theorem 5 that

/ |fx—s,y—1) = fG, ||k (s, )| dsdt < Ce
AiNSy2
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and
/ £ (= 5.3 — 1) — £ x| |[ K2, 0| ds di
AﬂS”/

< CZ(T_a/z)rO./\/l(l)f(x, y) + CZ_a/erf(x, y)
< C(Tr) MDY fx,y) + CTr) " f(x,y) = 0,

fori =1,2,3,as T — o0.
So we have to consider the sets A4 and As, only. It is easy to see that

/ !f(x—s,y—t)—f(x,y)HK?(s,t)|dsdt
A4ﬂSr/2

21+1/T 2j+1/T
<Z Z / /2 ’f(x_s’y_t)_f(xvy)HKg(S,l‘)|1A4dtds.

i=1 j=i—1 T /T
By (20) and Holder’s inequality,

/ }f(x—s,y—t)—f(x,y)||K?(s,t)|dsdt
A4ﬂSr/2

i 2l+l/T 2/+1/T l/p
( /2 |f(x—S’y—f)—f(x,y)}pdtds)

lljll e )T

24T ps—1)T 1/q
( / T~%5™2 (s — 1) %14, dt ds) .
2!

i/T tl/T

Ifg < 1/a, then

2T ps—1)T
/ / T2~ (s — 1)~ dt ds
20/T 2i-1/T

2+l i—1 —ag+1
< CT_‘W/ sy — = — ds
2i/T T
i\ —og+l i\ —2gq+1
<CTr ™ 2 z
T T

2g—2
< C( r ) p-iaq,
21

Thus

/ ’f(x—s y—1)— f(x, y)HK (s, t)|dsdt
A4NSy 2

ro i
<C, 3 S e

i=1 j=i—1
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( ) 21+1/T J+1/T , l/p
—t(i+j _ B _
(2!+1/ /2 [fG=s.y =1 = f(x, )] dtds)

ir /T

< C,,Z Z 20 “/2)(i+j)U,(,1,3f(x, y) < Ce.
i=1 j=i—1

For ¢ > 1/2a we have

21T hs—1/T
/ T2 (s — 1)~ dt ds
i/T 2i— l/T

24T ps—1)T
/ oth72q+1/2(S _ t)fotqfl/Z dt ds
i/T 2i— I/T

1 —ag+1/2 0i —2q+3/2
< CT % — —_
- T T

2g—2
T ,
—i/2
< C(zl) 27!

and
[ Ira=sy =0 r@pl[Khe.]|dsd
AgNS; 2

ro i
SCPZ Z 2 (T=1/4)+))

i=1 j=i—1

i+)) 2HYT 2T , 1/p
'L't-‘r] . B _
(21+// /2 [ =s.y =1 = f(x, )] dtds)

ir /T

prZ Z 207 UNED YD f(x, y) < Ce.
i=1 j=i—1

Similarly, for g < 1/«,

/ |f(x—s,y—t)—f(x,y)HK?(s,t)|dsdt
A4ﬂS:'/2

0 i 00 i

i=rg j=i—1 i=rg j=i—1
< CRAT M f(x, ) + €27 f(x, y) = 0,
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and for g > 1/2«,

/ |fx—s,y—0) — fx,)||K3Gs, )| ds dt
A4ﬂsf/2
< CR2@ D MD F(x, y) + €272 f(x, y) — 0.

For the set A5 we obtain

/ |f(x—s y—1)— f(x, y)HK (s, t)|dsdt
AsﬁSr/z

i 21+1/T ]+1/T l/p
<Z Z (/ /2 |f(x—s’y_f)—f(x,y)|pdtds)

i=1 j=i—1 YT /T

21T s 1/q
( / 5724 dy ds)
i/T s—1/T

i 21+1/T 2]+1/T l/p
<ZZ (/ /2 f(x_s’y_f)—f(x,y)|pdtds)

i=1 j=i—1 YT /T

“241/q
Tlm(i)
ro i

<, 33 o eD

i=1 j=i—1

(i+J) 24T 2T ) 1/p
—t(i+j _ B _
(2t+// /2 [ =5,y =10 =[x, )] dtds)

YT T

< sz Z (= 1/(2q))(i+./)Ur€1[3f(x’ y) < Ce.
i=1 j=i—1

Finally,

/ |f(x—s,y—t)—f(x,y)||K§(s,t)|dsdt
AsNS;

i 00 i
<C, z Z z(r—l/(Zq))(i-i-j)ME)l)f(x’ »+C, Z Z 2=E+D/CD £y y)

i=ry j=i—1 i=rg j=i—1

< sz(f—l/(211))roM§)1)f(x’ y) + sz—ro/(ZlI)f(x’ y) = 0,
as T — oo. This finishes the proof of the theorem. O

With the same proof as in Theorem 6 we can see that the finiteness of MS) fx,y)
can be omitted.
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Theorem 9 Suppose that (6) is satisfied for some 1 < a < oo and f €
W(Lp, loo)(R?) (1 < p < 00). If (x, y) is a modified p-Lebesgue point of f, then

Tli_)mooo?f(x, V)= fx, ).

The next corollary follows from Theorem 3, Corollary 1 and Theorem 8.

Corollary 3 Suppose that (6) is satisfied for some 0 < a < oo and f(x,y) =
Jox) fo(y) with fo € W(Lp,Loo)R) (1 < p < 00). If x and y are p-Lebesgue
points of fo, then

dim o7 f(x,y) = fx, ).

6 Strong Summability

In this section we generalize the classical one-dimensional strong summability results
and prove some new ones.

Theorem 10 Suppose that (6) is satisfied for some 0 < o < oo and fo €
W(L1, £y)(R) for some 1 < q < oo. If x and y are Lebesgue points of fo and
fo is locally bounded at x and y, then

lim — 9’(%)(S;fo()é) — fo() (se fo(») — fo(y)) dr = 0.

T—oo T Jo

Proof Note that s, fj is well defined when fo € W(L1, £4)(R) for some 1 < g < oo.
One can show that

-1 [ (¢
T 0 (7)(Szf0(X) — fo@) (s fo(y) — fo(y)) dt
0
1
=2 Ja (folx =) = fo)) (foy — 1) — o) K7 (s, D)dsdr.  (22)
The result can be proved as Theorems 5 and 7. O

Writing x = y, we obtain
Corollary 4 Suppose that (6) is satisfied for some 0 < o < oo and fy €

W(L1, £5)(R) for some 1 < q < oo. If x is a Lebesgue point of fo and fo is locally
bounded at x, then

1 [oe
lim — 8’(%)|s,fo(x)—fo(x)|2dt:0.

T—oo T Jo
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If fo is almost everywhere locally bounded, then the corollary holds almost every-
where. It is not true that an integrable function is almost everywhere locally bounded.
Let us denote the Cantor set of Lebesgue measure 1/2 by H C [0, 1]. We obtain H
in the following way. In the first step we omit the interval / 11 of measure 1/4 from the
middle of [0, 1]. In the second step we omit the intervals 121 and 122 of length 1/16
from the middle of the remaining two intervals, in the kth step we omit the inter-
vals Ikl, e Ikzk_l of length 1/4%. We define the function fy by fo = 0 on H and

fo(x) = (x — a,{)_l/z/k2 ifx € ij = (a,{, b,{). Then fy is integrable and

oo 2k=1 1/2 00 2
b —ak)

/ fodk—zzz 2;2k‘,€217=%.
=1

k=1 j=1

On the other hand fy is not almost everywhere locally bounded, because for every
x € H and every neighborhood of x there are a;’s contained in this neighborhood,
and so fj is not locally bounded at x.

We will extend Corollary 4 to each fo € W(L1, £,)(R) (1 < g < 00) later. For
the convergence of fo € W(Lp, £5))(R) (1 < p < 00,1 < g < 00) at p-Lebesgue
points we get the following result. Note that W (L, £,)(R) = L, (R). With the help
of Theorem 9, the next result can be proved as Theorem 10.

Theorem 11 Suppose that (6) is satisfied for some 0 < o < oo and fy
W(Lp,t,)R) for some 1 < p < ococand 1 < g < oo. If x and y are p-Lebesgue
points of fo, then

) L [>* (t
lim — A ¢ (7)(Szfo(X)—fo(x))(Szfo(y)—fo(y))dt=0-

Corollary 5 Suppose that (6) is satisfied for some 0 < o < oo and fy
W(Lp,y)R) for some 1 < p < coand 1 < q < oo. If x is a p-Lebesgue point of
fo, then

I B R & ¢ 2
lim — 0 (T)IStfo(x)—fo(x)‘ dt = 0.
0

Obviously, the convergence holds almost everywhere. We will extend this result to
p = 1. Omitting the Lebesgue point property, we can show that almost everywhere
convergence holds for W(L1, £4)(R) functions (I < g < 00). More exactly, if in
Theorem 10 we suppose that x and y are so called Gabisoniya points of fj instead
of x and y are Lebesgue points of fy and fj is locally bounded, then a similar result
holds.

A point x is called a Gabisoniya point of fo € W(L1, £)(R) if

LT] T ilT 2
lim (7/( | folx —u) —fo(x)]du) =0.

T—o00 0 i-1)/T
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Here | T | denotes the integer part of 7. Note that the exponent 2 can be changed to
any 1 < y < oo. The next theorem is due to Gabisoniya [6] for f € L;(T). However,
Theorem 12 can be proved similarly.

Theorem 12 Almost every point x € R is a Gabisoniya point of f € W (L1, £x)(R).

Theorem 13 Suppose that (6) is satisfied for some 1 < a < co. If fo € W(L1, £4)(R)
for some 1 < g < oo and x and y are Gabisoniya points of fo, then

.o =1L [ [t
lim — 0 (7)(&]'0(36) — fo0) (s: fo(y) = fo(y)) dr = 0.

T-oo T Jo

Proof By (22) we have to prove that

Zg&éJmm—n—mumm@—ﬂ—mmmKﬁmﬂwm=&

Since every Gabisoniya point is a Lebesgue point, we can prove as in Theorem 5 that
fori =1,2,3,

AOSkmu—w—mumm@—n—h@mwﬁamwm<Ce
il 19r/2

if T is large enough.
On the sets A4 and As we decompose the integrals in another way. Let us denote
by r; the largest number i, for whichr/2 < (i +1)/T < r. By (20),

/14405,/2

S RONC

i=2 1<j<(i+1)/2

G+1)/T  ps—j/T
/ ‘(fo(x =) = fo)(foly =1 — fo(y))‘dt ds

i/T —-(j+1/T

s 3 ()

i=2 1<j<(i+1)/2

(ol =) = fot)) (foy = 1) = fo) || K5, 1) ds

i+1)/T i+1)/T—j/T
/ | folx =) —fo(X)|dS/ | foly = 1) = foy)ldr.

/T i/T—(j+1/T
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Furthermore,

/A4ﬂSr/2

i+0/T 2
<CZ( / }fO(X—S)—fo(x)|ds)

(folx =) = fo0)) (foly —1) — fo(y))“Kg(s, t)|ds dt

ri+1)/2 n T D/ T—j/T 2
+C j“(f/ foy —1) — fo(») dt)
,; i—Zz‘;‘ L JijT—(+0/T o 00l
N pGHD/T 2
<Ccy (—/ | folx —s) — fo(x)|ds)
i \P T
(n+1/2 (k+1)/T 2
+C Z _QZ(,{H/ ’fo(y—f)—fo(y)]dt)
L7] (+1)/T 2
< CZ( / }fo(x—s)—fo(x)|ds)

L7 G+)/T 2
+CZ(,+1/ |fo(y—f)—fo(y)|dt) -0,

as T — oo. Similarly,

/A5ﬂSr/2

i+D)/T ps
<C z / [_I/T ‘(fo(x —5) — fo(x))(fo(y —t) — f0(y))’dt ds

(folx =) = fo(0)) (foly — 1) — fo(y))“K?(s, t)|dsdt

(i+1)/T

: i+1)/T
<C —5) — d — 1) — d
Z( ) /T | folx = 9) — o) s/-,l s =0 foto]
i+1/T 2
sC ( / |fo(x—s)—fo(x)|ds)

(i+1/T 5
+C f/ o d) )
;(1 (—1)/T [foy =) = fon|dr) —

as T — oo. Finally,

lim f(x—s,y—t)—f(x,y)||K0}(s,t)|dsdt=0
T—o0 Aimsf/z
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fori = 1,...,5 can be proved in the same way as in Theorem 6. The proof of the
theorem is complete. O

Corollary 6 Suppose that (6) is satisfied for some 1 < o < oo.If fo € W(L1, £4)(R)
for some 1 < g < oo and x is a Gabisoniya point of fo, then

o0

-1 t 2
tim — [ 0'(=) - dr = 0.
Jim — : T |s¢ fox) = fox)|

Since almost every point is a Gabisoniya point of fo € W(Ly, £,)(R) (1 <
q < 00) (see Theorem 12), the convergence holds almost everywhere. Remark that
W(L1,£,)(R) D L,(R) forall 1 < p < oco. The following two corollaries follow
easily from Corollaries 4 and 5.

Corollary 7 Suppose that fo € W(L1,£,)[R) for some 1 < q < oo. If x is a
Lebesgue point of fo and fy is locally bounded at x, then

1
lim —/ Is: fox) — fo(x)|* di =0,

Corollary 8 Supposethat fo € W(L,, £4)(R) forsomel < p < ocandl < g < oo.
If x is a p-Lebesgue point of fo, then

1
lim —/ Is: fo(x) — fo(x)|* di =0,

The last corollary was proved by Giang and Méricz [10] for fo € L,(R) (1 < p <
00). The next result is an easy consequence of Corollary 6. Note that Corollary 9 is
due to Gabisoniya [6] for fo € L1(T).

Corollary 9 If fo € W(L1, £4)(R) for some 1 < g < oo and x is a Gabisoniya point
of fo, then

lim —/ Is: fo(x) — fo(x)|* di = 0.

T—o0

Proof 1t is easy to see that 6(¢) := e’ satisfies the condition of Corollary 6 with
o = 2 (see also Example 6). Then the proof follows from the inequality 1/e < e~"/T
on the interval [0, T']. O

Of course, the corollary holds almost everywhere. Note that this is the strong
summability with respect to the Fejér summation. The Fejér summation does not
satisfy the condition of Corollary 6, because @« = 1 in this case. Marcinkiewicz
[19] and Zygmund [33] proved that the convergence holds almost everywhere for all
Jfo € L1(T), but it does not hold at each Lebesgue point of fj (see Hardy and Little-
wood [17]). However, if f is almost everywhere locally bounded, resp. if fo € L, (R)
or W(L,,£¢,)(R) (1 < p < 00,1 < g < 00), then it holds at each Lebesgue point,
resp. p-Lebesgue point (see Corollary 5). The strong summability also holds for smaller
exponents than 2.
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Corollary 10 Suppose that 0 is non-increasing and 0 < r < 2. Under the same
conditions as in Corollaries 4, 5 or 6, respectively, we get that

lim Ll y(%) s fo(x) — fo(x)|"dt = 0.
0

Proof Since 8’ < 0, by Holder’s inequality

—/ ( )!stfo(X) fo(x)|" dt
=-—/‘ ( )’”hdmw .muwﬂw(§)ﬁﬁﬂdt

1 00 ot 5 r/2 00 It 1—r/2
57(A w(TNMhu»—mQNdQ (A w(fﬁm)
<c l/oo 6/ () llstfot) = foto) "
= T Jo T tJO 0 ’
which shows the corollary. O

Similarly, for the strong Fejér summation we have

Corollary 11 Suppose that 0 < r < 2. Under the same conditions as in Corollaries
7, 8 or 9, respectively, we get that

lim —/ st fo(x) — fo(x)|"dt =0.

7 Applications to Various Summability Methods

In this section we consider some summability methods as special cases of the
Marcinkiewicz-6-summation. Of course, there are a lot of other summability meth-
ods which could be considered as special cases. The elementary computations in the
examples below are left to the reader (see also Weisz [27]).

Example 1 (Fejér summation) Let

1— |t if |t] <1
oy J 11 il s
0 if [t] > 1.

Example 2 (de La Vallée-Poussin summation) Let

1 if 7] <1/2
0()=q1-20t1+2 ifl/2<t] <1
0 if |¢] > 1.
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Example 3 (Jackson-de La Vallée-Poussin summation) Let

1—32/24+3tP/4  ifjr] <1
0(t) =142 —|t)h)3/4 ifl <] <2
0 if |7] > 2.

The next example generalizes Examples 1-3.

Example 4 Let0 =g < a1 < ... < oy and By, ..., B (m € N) be real numbers,
Bo = 1, B = 0. Suppose that 0 is even, O(aj) = B; (j = 0,1,...,m), 0() =0
fort > ayy, 6 is a polynomial on the interval [oj 1, ;] (j =1, ..., m).

Example 5 (Rogosinski summation) Let

cosmt/2 if|t]| <142 .
0(1) = /2o T e,
0 if [t| >142j

Example 6 (Weierstrass summation) Let 6(¢) = eIt

that if y = 1, then we obtain the Abel summation.

for some 1 < y < oco. Note

Example 7 0(t) = ¢~ 11D 1 e R,1 < g < 00,0 <y < 00).

Example 8 (Picard and Bessel summations) 8(r) = (1 + [¢t]*) % (0 < § < 00,1 <
y <00,y >2).

Example 9 (Riesz summation) Let

(1=t ifje <1

0(t) =
D=1 if |t] > 1

forsome 0 < § < 00,1 <y < o0.

By an easy computation we get that the conditions (2) and (6) are satisfied for
Examples 1-5 and for Example 9 if 1 < §, y < oo with « = 1. Moreover, Examples
6-8 satisfy (2) and (6) with = 2 and Example 9 witha =6if0 <§ <1 <y < o0.
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