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Abstract In this article we study the basic theoretical properties of Mellin-type frac-
tional integrals, known as generalizations of the Hadamard-type fractional integrals.
Wegive a new approach and version, specifying their semigroup property, their domain
and range. Moreover we introduce a notion of strong fractional Mellin derivatives and
we study the connections with the pointwise fractional Mellin derivative, which is
defined by means of Hadamard-type fractional integrals. One of the main results is a
fractional version of the fundamental theorem of differential and integral calculus in
the Mellin frame. In fact, in this article it will be shown that the very foundations of
Mellin transform theory and the corresponding analysis are quite different to those of
the Fourier transform, alone since even in the simplest non-fractional case the integral
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operator (i.e. the anti-differentiation operator) applied to a function f will turn out to
be the

∫ x
0 f (u)du/u with derivative (xd/dx) f (x). Thus the fundamental theorem in

the Mellin sense is valid in this form, one which stands apart from the classical New-
tonian integral and derivative. Among the applications two fractional order partial
differential equations are studied.

Keywords Mellin transform · Hadamard-type fractional derivatives and integrals ·
Strong fractional Mellin derivative · Generalized Stirling functions and Stirling
numbers · Fractional order partial differential equations

Mathematics Subject Classification 47G10 · 26A33 · 44A15

1 Introduction

The theory of Mellin transforms as well as Mellin approximation theory was intro-
duced by R.G. Mamedov in his treatise [45], which includes also previous results in
this subject obtained in collaboration with G.N. Orudzhev (see [46–48]). In his review
Professor H.J. Glaeske (MR1235339–94:44003) writes: This book deals with the the-
ory of The Mellin transform and its applications to approximation theory based on
results of the school of I.M. Dzhrbashyan and the methods of the school of P.L. Butzer
on Fourier Analysis and approximation. Somewhat later Mellin transform theory was
presented in a systematic form, fully independently of Fourier analysis, by Butzer and
Jansche in their papers [18,19]. Further important developments were then given in
[20], and later on in the present line of research in [2,3,6–12,49].

In the papers [22–26] a broad study of fractional Mellin analysis was developed in
which the so-called Hadamard-type integrals, which represent the appropriate exten-
sions of the classical Riemann–Liouville andWeyl fractional integrals, are considered
(see also the book [42]). These integrals are also connected with the theory of moment
operators (see [11,12,14]). The purpose of this article is not only a continuation of
these topics but also to present a new, almost independent approach, one starting from
the very foundations. As remarked in [22], in terms of Mellin analysis, the natural
operator of fractional integration is not the classical Riemann–Liouville fractional
integral of order α > 0 on R+, namely (see [33,34,50,55])

(
I α
0+ f

)
(x) = 1

�(α)

∫ x

0
(x − u)α−1 f (u)du (x > 0) (1)

but the Hadamard fractional integral, introduced essentially by Hadamard in [39],

(
Jα
0+ f

)
(x) = 1

�(α)

∫ x

0

(

log
x

u

)α−1

f (u)
du

u
(x > 0). (2)

Thus not
∫ x
0 f (u)du is the natural operator of integration (anti-differentiation) in the

Mellin setting, but
∫ x
0 f (u) duu (the case α = 1). It is often said that a study of Mellin

transforms as an independent discipline is fully superfluous since one supposedly can
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reduce its theorems and results to the corresponding ones of Fourier analysis by a
simple change of variables and functions. It may be possible to reduce a formula by
such a change of operations but not the precise hypotheses under which a formula
is valid. But alone since (1) is not the natural operator of integration in the Mellin
frame but that the Hadamard fractional integral (2), [which is a compact form of
the iterated integral (6) (see Sect. 4)] will turn out to be the operator of integration,
thus anti-differentiation to the operator of differentiation D0+,0 f in (4) (see below)—
in the sense that the fundamental theorem of the differential and integral calculus
must be valid in the Mellin frame—makes the change of operation argument fully
obsolete. This will become evident as we proceed along, especially in Theorems 3–4,
and Theorems 6–12 below. Thus the very foundations to Mellin analysis are quite
different to those of classical Fourier analysis. As a final remark, if one goes beyond
the real variables and considers complex variables, the usual substitutionw = ez does
not work. Indeed, while the range of ex is the positive real semiaxisR+, in the complex
case the range of ez is all non zero complex numbers. In fact, ez may be a negative
real number and therefore out of the domain of the involved functions.

For the development of the theory, it will be important to consider the follow-
ing generalization of the fractional integral, known as the Hadamard-type fractional
integrals, for μ ∈ R, namely (see [22–26,42])

(
Jα
0+,μ f

)
(x) = 1

�(α)

∫ x

0

(
u

x

)μ(

log
x

u

)α−1

f (u)
du

u
(x > 0) (3)

for functions belonging to the space Xc of all measurable complex-valued functions
defined on R

+, such that (·)c−1 f (·) ∈ L1(R+). As regards the classical Hadamard
fractional integrals and derivatives, some introductory material about fractional cal-
culus in the Mellin setting was already treated in [45] and [55].

In Sect. 2 we recall some basic tools and notations of Mellin analysis, namely the
Mellin transform, along with its fundamental properties, the notion of the basicMellin
translation operator, which is now defined via a dilation operator instead of the usual
translation (see [18]. For other classical references see [15,36,52,58,62,63]).

In Sect. 3 we will introduce and study a notion of a strong fractional derivative
in the spaces Xc, which represents an extension of the classical strong derivative of
Fourier analysis in L p−spaces (see [28]). The present notion is inspired by an anal-
ogous construction given in [33,60] for the Riemann–Liouville fractional derivatives
in a strong sense. This method is based on the introduction of certain fractional dif-
ferences, which make use of the classical translation operator. Another important fact
is that fractional differences are now defined by an infinite series. Our definition here,
follows this approach, using theMellin translation operator. Our definition reproduces
the Mellin differences of integral order, as given in [20], in which we have a finite
sum.

It should be noted that a different approach for spaces X0 was introduced in [45], pp.
175–176, starting with the incremental ratios of the integral (2). A relevant part of the
present paper (Sect. 4) deals with the pointwise fractional derivative of order α > 0,
knownas the ”Hadamard-type fractional derivative” in the local spaces Xc,loc, andwith
its links with the strong derivatives. This notion originates from the analogous concept
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of Riemann–Liouville theory, and was introduced in [23] using the Hadamard-type
fractional integrals. It read as follows

(
Dα
0+,μ f

)
(x) = x−μδmxμ

(
Jm−α
0+,μ f

)
(x), (4)

where m = [α] + 1 and δ := (
x d
dx

)
is the Mellin differential operator (δ f )(x) =

x f ′(x), provided f ′(x) exists. For μ = 0 we have the so called Hadamard fractional
derivative, treated also in [45,55]. Note that the above definition reproduces exactly the
Mellin derivatives �k

c f of integral order when α = k ∈ N. Thus Dα
0+,μ f represents

the natural fractional version of the differential operator �k
c, in the same way that the

Riemann–Liouville fractional derivative is the natural extension of the usual derivative.
Paper [41], gives some sufficient conditions for the existence of the pointwise fractional
derivative for functions defined in bounded intervals I ⊂ R

+, involving spaces of
absolutely continuous functions in I.

Since the definition of the pointwise fractional derivatives is based on a Hadamard-
type integral, it is important to study in depth the domain and the range of these
integral operators. As far as we are aware this was not sufficiently developed in the
literature so far. Here we define the domain of the operator (3) as the subspace of all
functions such that the integral exists as a Lebesgue integral. A basic result in this
respect is the semigroup property of Jα

0+,c. This was first studied in [45] and [55] for
the Hadamard integrals (2) and then developed for the integrals (3) in [24] and [41]
(see also the recent books [5,42]). However, the above property was studied only for
functions belonging to suitable subspaces of the domain, namely the space X p

c of all
the functions f : R+ → C such that (·)c−1 f (·) ∈ L p(R+), or for L p(a, b) where
0 < a < b < ∞.

Here we prove the semigroup property in a more general form, using minimal
assumptions. This extension enables us to deduce the following chain of inclusions
for the domains of the operators Jα

0+,c.

DomJβ
0+,c ⊂ Xc,loc = DomJ 10+,c ⊂ DomJα

0+,c,

for α < 1 < β, and all inclusions are strict.
Concerning the range, we show that Jα

0+,c f ∈ Xc,loc whenever f ∈ DomJα+1
0+,c f

and in general f ∈ DomJα
0+,c does not imply that Jα

0+,c f ∈ Xc,loc.

For spaces Xc we have the surprising result that Jα
0+,c f /∈ Xc for any nontrivial

non-negative function f ∈ DomJα
0+,c. This fact gives problems for the evaluation of

the Mellin transform of the function Jα
0+,c f. In order to avoid this problem, we prove

that if f ∈ DomJα
0+,c ∩⋂μ∈[ν,c] Xμ, then Jα

0+,c f ∈ Xν and so its Mellin transform
can be evaluated on the line ν + i t, with ν < c.

We then apply the theory to deduce one of the main results of this paper, namely the
fundamental theorem of the fractional differential and integral calculus in the Mellin
frame, here established under sharp assumptions.We consider also somemore general
formulae, involving different orders of fractional integration and differentiation. Sim-
ilar results were also given in [41,42] however in restricted subspaces (see the remarks
in Sect. 4). In particular, one of the two fundamental formulae is given there under the
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strong assumption that the functions f belongs to the range of Jα
0+,μ

(
X p
0+,c

)
, with

μ > c.
In Sect. 5 we prove an equivalence theorem with four equivalent statements, which

connects fractional Hadamard-type integrals, strong and pointwise fractional Mellin
derivatives and the Mellin transform (see Theorem 8 below). As far as we know, a
fundamental theorem with four equivalent assertions in the form presented here for
the Mellin transform in the fractional case has never been stated explicitly, for the
Fourier transform.1

As a fundamental theorem in the present sense it was first established for 2π -
periodic functions via the finite Fourier transform in [33], and for the Chebyshev
transform (see e.g. [36], pp. 116–122), in [30,31]. Fractional Chebyshev derivatives
were there defined in terms of fractional order differences of the Chebyshev transla-
tion operator, the Chebyshev integral by an associate convolution product. The next
fundamental theorem, after that for Legendre transforms (see e.g. [36], pp.122–131;
[16,57]), was the one concerned with the Jacobi transform, see e.g. [32]. In their inim-
itable book [36], Glaeske et al. study the Mellin transform and its essential properties
(pp. 55–67), not as an independent discipline but by making use of the corresponding
properties of the Fourier transform, the reduction being carried out with unusual preci-
sion. In other respects their presentation is standard. Thus their integral is the classical
one, i.e. F(x) = ∫ x

0 f (u)du, with Mellin transform M[F](s) = −s−1M[ f ](s + 1).
They were not aware of [18]. However, their sections on the Chebyshev, Legendre,
Gegenbauer and Jacobi transforms make interesting reading and are unorthodox. Here
their chief properties are based on the definitions of an associated translation opera-
tor for each transform, an approach carried out systematically for the Chebyshev and
Legendre transforms in [31] and [57], which are cited by the three authors. However,
they do not continue the process and define the associated derivative concepts in terms
of the respective translation operators (probably due to lack of space). This would
have led them to the fundamental theorems of the differential and integral calculus
in the setting of the respective transforms. Nevertheless the material of these sections
has never been treated in a book-form as yet. The chapter on Mellin transforms in the
unique handbook [62], also written in the classical style, bears the individual stamp
of the author, Zayed.

In Sect. 6 we describe some special cases of interest in applications, while in Sect. 7
we apply our theory to two fractional partial differential equations. The use of Mellin
transforms for solving partial differential equations originates from certain boundary
value problems in wedge-shaped regions, see e.g. [43,63] and, in the fractional frame,
was considered by various authors for the study of fractional versions of the diffusion

1 An important question is whether there exists a fractional integral operator of order α > 0 which is the
counterpart of the fractional Marchaud derivative in the sense that the fundamental theorem of the calculus
is also valid in the Fourier transform setting, thus that each operator is the inverse operator of the other,
under certain conditions apart from f belonging to L2(R). This problem is treated in the book of Samko
([54], pp. 14–24, 75–76, 85, 212). The proofs of his results are modeled upon the corresponding ones for
Fourier series developed in [33], which is based upon a fundamental theorem of Westphal [60] and is cited
regularly in the relevant literature. However, the fully complete fundamental theorem is unfortunately not
there. His very useful volume, listing 318 books and papers in the field, with an elaborate author index, and
excellent biographical notes after the eleven chapters, is carried out in a multidimensional setting.
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equation (see e.g. [40,42,56,61]). However, the use of Mellin transforms for solving
fractional differential equations withHadamard derivatives is not usual. Also, there are
a few contributions dealingwith pureHadamard derivatives (see e.g. [5,37,42,44,53]).
Most fractional equations, are studied using different types of fractional derivatives,
(Riemann–Liouville, Caputo, etc). Here we apply our theory to an integro-differential
equation which can be reduced to a fractional evolution equation, with Hadamard
fractional derivative.A similar equationwas also considered in [42] butwith theCaputo
fractional derivative. Here we give the exact solution of the evolution equation, using
just Mellin transforms and the fractional theory developed in this paper. As a second
example, we consider a boundary value problem for a fractional diffusion equation,
using the same approach. In both the examples the (unique) solution is given in terms
of a Mellin convolution operator.

In the very recent book [5] numerical methods for solving fractional differential
equation are treated, using mainly Caputo and Riemann–Liouville fractional theories.

2 Preliminaries

Let L1 = L1(R+) be the space of all Lebesgue measurable and integrable complex-
valued functions defined on R

+, endowed with the usual norm.
Let us consider the space, for some c ∈ R,

Xc =
{
f : R+ → C : f (x)xc−1 ∈ L1(R+)

}

endowed with the norm

‖ f ‖Xc = ‖ f (·)(·)c−1‖L1 =
∫ ∞

0
| f (u)|uc−1du.

More generally by X p
c we denote the space of all functions f : R+ → C such that

(·)c f (·) ∈ L p(R+), with 1 < p < ∞. In particular when c = 1/p, the space X p
c

coincides with the classical L p(R+) space.
For a, b ∈ R we define the spaces X(a,b), X[a,b] by

X(a,b) =
⋂

c∈]a,b[
Xc, X[a,b] =

⋂

c∈[a,b]
Xc

and, for every c in (a, b) or [a, b], ‖ f ‖Xc is a norm on them.
Note that, for any a, b ∈ R, with a < b, if f ∈ Xa ∩ Xb, then f ∈ X[a,b] and

moreover

‖ f ‖Xc ≤ ‖ f ‖Xa + ‖ f ‖Xb ,

for every c ∈ [a, b]. For these and other results see [18].
In what follows, we denote by χA(x) the characteristic function of the set A ⊂ R

+.
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We define for every f ∈ Xc the Mellin transform [ f ]∧M of f by

M[ f ](s) ≡ [ f ]∧M (s) =
∫ ∞

0
us−1 f (u)du

where s = c + i t, t ∈ R.

The notation M[ f (·)](s) of the Mellin transform signifies the fact that one of
its essential roles is to solve analytical problems by transforming them into another
function space, solve the problem (which should be simpler) in the transformed state,
and then apply a (suitable) Mellin inversion formula to obtain the solution in the
original function space.

Basic in this respect are the linearity and boundedness properties, thus

M[a f (·) + bg(·)](s) = aM[ f (·)](s) + bM[g(·)](s) ( f, g ∈ Xc, a, b ∈ R)

|M[ f (·)](s)| ≤ ‖ f ‖Xc (s = c + i t).

As a consequence of the boundedness property, if ( fn)n is a sequence of functions in
Xc convergent in Xc to a function f, then M[ fn] converges uniformly to M[ f ] on the
line s = c + i t, t ∈ R.

We need several operational properties.
The Mellin translation operator τ ch , for h ∈ R

+, c ∈ R, f : R+ → C, is defined
by

(
τ ch f

)
(x) := hc f (hx)

(
x ∈ R

+) .

Setting τh := τ 0h , then

(
τ ch f

)
(x)=hc(τh f )(x), ‖τ ch f ‖Xc =‖ f ‖Xc ,

(
τ ch
) j

f (x)=h jc f
(
h j x

)
=(τ ch j f

)
(x).

Proposition 2 and Lemma 3 in [18], state the following:

Lemma 1 The Mellin translation operator τ ch : Xc → Xc for c, c ∈ R, h ∈ R
+ is an

isomorphism with (τ ch )−1 = τ c1/h and

‖τ ch f ‖Xc = hc−c‖ f ‖Xc ( f ∈ Xc)

having the properties

(i) M[τ ch f ](s) = hc−sM[ f ](s), in particular M[τh f ](s) = h−sM[ f ](s);
(ii) limh→1 ‖τ ch f − f ‖Xc = 0.

When c = 0 Property (ii), in case of continuous functions f , expresses uniform
continuity in the Mellin frame, taking the usual L∞-norm, i.e.

lim
h→1

‖τh f − f ‖∞ = 0.
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It is equivalent to the so-called log-uniform continuity due to Mamedov (see [45], p.
7), which may be expressed as follows: a function f : R+ → C is log-uniformly
continuous on R+ if for every ε > 0 there exists δε > 0 such that | f (u) − f (v)| < ε,

whenever | log u − log v| < δε. Indeed the continuity of the operator τh implies that
| f (hx) − f (x)| < ε, for |h| < δε, uniformly with respect to x ∈ R

+. It should
be noted that this notion is different from the usual uniform continuity. For example,
the function f (u) = sin u is obviously uniformly continuous, but not log-uniformly
continuous on R

+, while the function g(u) = sin(log u) is log-uniformly continuous
but not uniformly continuous onR+.However, the two notions are equivalent on every
bounded interval [a, b] with a > 0.

TheMellin convolution product, denoted by f ∗g, of two functions f, g : R+ → C,

is defined by

( f ∗ g)(x) :=
∫ +∞

0
g
( x

u

)
f (u)

du

u
=
∫ +∞

0

(
τ c1/u f

)
(x)g(u)uc

du

u

(
x ∈ R

+)

in case the integral exists. It has the properties

Lemma 2 (i) If f, g ∈ Xc, for c ∈ R, then f ∗ g exists (a.e.) on R
+, it belongs to

Xc, and

‖ f ∗ g‖c ≤ ‖ f ‖Xc‖g‖Xc .

If in addition xc f (x) is uniformly continuous on R+, then f ∗ g is continuous on
R

+.

(ii) (Convolution Theorem) If f, g ∈ Xc and s = c + i t, t ∈ R, then

M[ f ∗ g](s) = M[ f ](s)M[g](s).

(iii) (Commutativity and Associativity) The convolution product is commutative and
associative, thus for f1, f2, f3 ∈ Xc there holds true (a.e.)

f1 ∗ f2 = f2 ∗ f1, ( f1 ∗ f2) ∗ f3 = f1 ∗ ( f2 ∗ f3).

In particular Xc is a Banach algebra.

3 The Strong Mellin Fractional Differential Operator

Let us denote by I the identity operator over the space of all measurable functions on
R

+.

The Mellin fractional difference of f ∈ Xc of order α > 0, defined by

�
α,c
h f (x) := (τ ch − I )α f (x) =

∞∑

j=0

(
α

j

)

(−1)α− jτ ch j f (x)



J Fourier Anal Appl (2015) 21:961–1017 969

for h > 0 with
(

α

j

)

= α(α − 1) · · · (α − j + 1)

j ! ,

has the following properties

Proposition 1 For f ∈ Xc the difference �
α,c
h f (x) exists a.e. for h > 0, with

(i) ‖�α,c
h f ‖Xc ≤ ‖ f ‖Xc

∑∞
j=0

∣
∣
∣
∣

(
α

j

) ∣∣
∣
∣

(ii) M[�α,c
h f ](c + i t) = (h−i t − 1)αM[ f ](c + i t).

(iii) The following semigroup property holds for α, β > 0,

(
�

α,c
h �

β,c
h f

)
(x) =

(
�

α+β,c
h f

)
(x).

Proof At first, we have for x > 0, h > 0

∣
∣�α,c

h f (x)
∣
∣ ≤ 1

xc

∞∑

j=0

∣
∣
∣
∣

(
α

j

) ∣∣
∣
∣h

cj xc| f (h j x)|;

thus we have to prove the convergence of the latter series. For this purpose, by inte-
gration, we have

∫ ∞

0

∞∑

j=0

∣
∣
∣
∣

(
α

j

) ∣∣
∣
∣(h

j x)c| f (h j x)|dx
x

=
∞∑

j=0

∣
∣
∣
∣

(
α

j

) ∣∣
∣
∣

∫ ∞

0
(h j x)c| f (h j x)|dx

x
:= J.

Now, putting in the second integral h j x = t , we have

J = ‖ f ‖Xc

∞∑

j=0

∣
∣
∣
∣

(
α

j

) ∣∣
∣
∣.

Thus, since

(
α

j

)

= O( j−α−1), j → +∞, we observe that the integral is finite for

any h > 0, if f ∈ Xc, and so the integrand is finite almost everywhere. Thus the
original series defining the difference, converges almost everywhere.

As to (i), we have

‖�α,c
h f ‖Xc =

∫ ∞

0
xc−1

∣
∣
∣
∣

∞∑

j=0

(
α

j

)

(−1)α− j hcj f (h j x)

∣
∣
∣
∣dx

≤
∫ ∞

0

tc−1

h j (c−1)

∞∑

j=0

∣
∣
∣
∣

(
α

j

) ∣∣
∣
∣h

cj | f (t)| dt
h j

= ‖ f ‖Xc

∞∑

j=0

∣
∣
∣
∣

(
α

j

) ∣∣
∣
∣,

and so the assertion.
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An alternative proof makes use of Lemma 1 in the following way. The left hand
side of (i) can be estimated by

‖�α,c
h f ‖Xc ≤

∞∑

j=0

∣
∣
∣
∣

(
α

j

) ∣∣
∣
∣‖τ ch j f ‖Xc =

∞∑

j=0

∣
∣
∣
∣

(
α

j

) ∣∣
∣
∣‖ f ‖Xc

which is independent of h > 0. As to (ii), the Mellin transform on the left equals, by
the linearity property, which uses an integration by series,

∞∑

j=0

(
α

j

)

(−1)α− j h−i t j [ f ]∧M (c + i t),

which yields (ii). Note that the complex number h−i t has modulus 1, so it lies on in the
boundary of the circle of convergence of the power series which defines the binomial
expansion. But, since the following series are absolutely convergent and bounded,

∞∑

j=0

(
α

j

)

(−1)α− j h−i t j ,

∞∑

j=0

∣
∣
∣
∣

(
α

j

)∣∣
∣
∣ ,

using the Abel–Stolz theorem for power series (see e.g. [1]), we obtain

∞∑

j=0

(
α

j

)

(−1)α− j h−i t j = (h−i t − 1)α.

In order to justify the integration by series, we have for s = c + i t,

∫ ∞

0
|xs−1|

∞∑

j=0

∣
∣
∣
∣

(
α

j

) ∣∣
∣
∣h

cj | f (h j x)|dx

=
∞∑

j=0

∣
∣
∣
∣

(
α

j

) ∣∣
∣
∣h

cj |h j (1−s)− j |
∫ ∞

0
|t s−1|| f (t)|dt =

∞∑

j=0

∣
∣
∣
∣

(
α

j

) ∣∣
∣
∣‖ f ‖Xc < +∞.

As to (iii), using (i) and (ii), taking the Mellin transform of both sides of the formula,
we obtain

[
�

α,c
h �

β,c
h f

]∧
M

(c + i t) = (h−i t − 1)α
[
�

β,c
h f

]∧
M

(c + i t)

= (h−i t − 1)α+β [ f ]∧M (c + i t)

=
[
�

α+β,c
h f

]∧
M

(c + i t),

and so the assertion follows from the uniqueness theorem for Mellin transforms (see
Theorem 8 in [18]).
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Note that the fractional differences introduced here depend fundamentally on
the Mellin translation operator. In the classical theories of Riemann–Liouville and
Grünwald–Letnikov fractional calculus, the corresponding differences were based on
the classical translation operator, and were first studied in a precise and systematic
form in [33]; see also [42], where property iii) for these differences is also given, with-
out proof. Moreover, other generalizations of fractional differences, via the Stirling
functions of first kind, were also introduced in [26,27].

For spaces X[a,b], we have the following 
�
Proposition 2 Let f ∈ X[a,b], and let c ∈]a, b[.
(i) If 0 < h ≤ 1, we have �

α,c
h f ∈ X[a,c], and for every ν ∈ [a, c[

∥
∥�α,c

h f
∥
∥
Xν

≤ ‖ f ‖Xν

∞∑

j=0

∣
∣
∣
∣

(
α

j

)∣∣
∣
∣ h

(c−ν) j .

Moreover,

M
[
�

α,c
h f

]
(ν + i t) = (hc−ν−i t − 1)αM[ f ](ν + i t), t ∈ R.

(ii) If h > 1, we have �
α,c
h f ∈ X[c,b], and for every μ ∈]c, b]

‖�α,c
h f ‖Xμ ≤ ‖ f ‖Xμ

∞∑

j=0

∣
∣
∣
∣

(
α

j

)∣∣
∣
∣ h

(c−μ) j .

Moreover,

M
[
�

α,c
h f

]
(μ + i t) = (hc−μ−i t − 1)αM[ f ](μ + i t), t ∈ R. (5)

Proof We prove only (i) since the proof of (ii) is similar. Let ν ∈ [a, c[ be fixed. Using
an analogous reasoning as in Proposition 1, we have

‖�α,c
h f ‖Xν ≤

∫ ∞

0
xν−1

∞∑

j=0

∣
∣
∣
∣

(
α

j

) ∣∣
∣
∣h

cj | f (h j x)|dx = ‖ f ‖Xν

∞∑

j=0

∣
∣
∣
∣

(
α

j

) ∣∣
∣
∣h

j (c−ν),

the last series being absolutely convergent for 0 < h ≤ 1. Moreover, as above, we can
obtain, for ν ∈ [a, c[ the assertion (5). 
�
Definition 1 If for f ∈ Xc there exists a function g ∈ Xc such that

lim
h→1

∥
∥
∥
∥
�

α,c
h f (x)

(h − 1)α
− g(x)

∥
∥
∥
∥
Xc

= 0

then g is called the strong fractional Mellin derivative of f of order α, and it is denoted
by g(x) = s-�α

c f (x). If α = 0 it is easy to see that s-�0
c f (x) = f (x).
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We introduce now the Mellin Sobolev space Wα
Xc

by

Wα
Xc

:= {
f ∈ Xc : s-�α

c f exists and s-�α
c f ∈ Xc

}
,

with W 0
Xc

= Xc. Analogously, for any interval J we define the spaces Wα
X J

, by

Wα
X J

= {
f ∈ X J : s-�α

c f exists for every c ∈ J and s-�α
c f ∈ X J

}
.

For integral values ofα our definition of strongMellin derivative and the corresponding
Mellin–Sobolev spaces reproduce those introduced in [19], being the differences given
now by a finite sum.

Using an approach introduced in [19] for the integer order case, we prove now

Theorem 1 The following properties hold:

(i) If f ∈ Wα
Xc

, then for s = c + i t, t ∈ R we have

M[s-�α
c f ](s) = (−i t)αM[ f ](s).

(ii) If f ∈ Wα
X[a,b] , then for every ν, c ∈ [a, b] we have

M[s-�α
c f ](ν + i t) = (c − ν − i t)αM[ f ](ν + i t) (t ∈ R).

Proof As to (i), since

lim
h→1

(
h−i t − 1

h − 1

)α

= (−i t)α,

we have, by Proposition 1(ii),

∣
∣
∣
∣(−i t)α[ f ]∧M (s) − [s-�α

c f ]∧M (s)

∣
∣
∣
∣ = lim

h→1

∣
∣
∣
∣

(
h−i t − 1

h − 1

)α

[ f ]∧M (s) − [s-�α
c f ]∧M (s)

∣
∣
∣
∣

= lim
h→1

∣
∣
∣
∣

[
�

α,c
h f

(h − 1)α

]∧

M
(s) − [s-�α

c f ]∧M (s)

∣
∣
∣
∣

= lim
h→1

∣
∣
∣
∣

[
�

α,c
h f

(h − 1)α
− s-�α

c f

]∧

M
(s)

∣
∣
∣
∣

≤ lim
h→1

∥
∥
∥
∥

�
α,c
h f

(h − 1)α
− s-�α

c f

∥
∥
∥
∥
Xc

= 0

and thus (i) holds. As to (ii), we can use the same approach, applying one-sided limits
and Proposition 2. 
�
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4 Mellin Fractional Integrals and the Pointwise Fractional Mellin Differential
Operator

In terms of Mellin analysis the natural operator of fractional integration is not the
classical Liouville fractional integral of order α ∈ C, on R+, with Re α > 0, namely
(1), but the integral (2)

(
Jα
0+ f

)
(x) = 1

�(α)

∫ x

0

(

log
x

u

)α−1

f (u)
du

u
(x > 0).

The above integrals were treated already inMamedov’s book [45], p. 168, in which the
fractional integral of order α is defined by (−1)α

(
Jα
0+ f

)
(x). This is due to a different

notion of Mellin derivatives (of integral order), see Sect. 4.2. Our approach here is
more direct and simple since it avoids the use of the complex coefficient (−1)α.

However, for the development of the theory, it is important to consider the gener-
alization of the fractional integral, for μ ∈ R, in the form (3).

Note that for integer values α = r, in case μ = c and f ∈ Xc (see [18], Definition
13), this turns into the iterated representation

(
Jr0+,c f

)
(x) = x−c

∫ x

0

∫ u1

0
. . .

∫ ur−1

0
f (ur )u

c
r
dur
ur

. . .
du2
u2

du1
u1

(x > 0). (6)

Several important properties of the operators Jα
0+,μ were given by Butzer et al. in

[22–24], (see also the recent monographs [5] and [42]). In particular, a boundedness
property is given in the space Xc, when the coefficient μ is greater than c, (indeed
a more general result is given there, for spaces X p

c ). This is due to the fact that only
for μ > c (or, in the complex case, Re μ > c) we can view Jα

0+,μ f as a Mellin
convolution between two functions f, g∗

μ ∈ Xc, where

g∗
μ

( x

u

)
:=
( x

u

)−μ χ]0,x](u)

�(α)

(

log
( x

u

))α−1

.

Indeed, we have

(J0+,μ f )(x) = 1

�(α)

∫ x

0

(
u

x

)μ(

log
x

u

)α−1

f (u)
du

u

= 1

�(α)

∫ +∞

0

(
u

x

)μ

χ]0,x](u)

(

log
x

u

)α−1

f (u)
du

u

=
∫ +∞

0
g∗
μ(

x

u
) f (u)

du

u
= ( f ∗ g∗

μ)(x).

Now, for μ > c the function:

g∗
μ(u) = u−μ χ]1,+∞](u)

�(α)
(log u)α−1

belongs to the space Xc, as it is immediate to verify.
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However, we are interested in properties of Jα
0+,μ f , when μ = c, since in the defi-

nition of the pointwise fractional Mellin derivative (see Sect. 4.2), we have to compute
such an integral with parameter c. Hence in Sect. 4.1 we will describe properties con-
cerning the domain and the range of these fractional operators. As an example, we
will show that for any non-trivial function f in the domain of Jα

0+,c the image Jα
0+,c f

cannot be in Xc. This depends also on the fact that g∗
c /∈ Xc. This implies that we

cannot compute its Mellin transform of g∗
c in the space Xc.

4.1 The Domain of Jα
0+,c and the Semigroup Property

From now on we can consider the case α > 0, the extension to complex α with Re
α > 0 being similar but more technical. We define the domain of Jα

0+,c, for α > 0
and c ∈ R, as the class of all the functions f : R+ → C such that

∫ x

0
uc
(

log
x

u

)α−1

| f (u)|du
u

< +∞ (7)

for a.e. x ∈ R
+. In the following we will denote the domain of Jα

0+,c by DomJα
0+,c.

Recall that Xc,loc is the space of all the functions such that (·)c−1 f (·) ∈ L1(]0, a[)
for every a > 0.

Proposition 3 We have the following properties:

(i) If f ∈ Xc,loc, then the function (·)c f (·) ∈ X1,loc.

(ii) If c < c′, then Xc,loc ⊂ Xc′,loc.

Proof (i) Let a > 0 be fixed and let f ∈ Xc,loc. Then

∫ a

0
xc| f (x)|dx =

∫ a

0
xxc−1| f (x)|dx ≤ a

∫ a

0
xc−1| f (x)|dx

and so the assertion.
(ii) Let f ∈ Xc,loc. Then, as before, setting α = c′ − c, we can write

∫ a

0
xc

′−1| f (x)|dx ≤ aα

∫ a

0
xc−1| f (x)|dx,

that is (ii) holds. 
�
Note that the inclusion in (ii) does not hold for spaces Xc.

Concerning the domain of the operator Jα
0+,c, we begin with the following propo-

sition.

Proposition 4 Let α > 1, c ∈ R be fixed. Then DomJα
0+,c ⊂ Xc,loc.

Proof Assume that for a.e. x ∈ R
+ the integral

(
Jα
0+,c| f |

)
(x), exists and put F(u) =

uc−1 f (u). We have to show that F is integrable over ]0, a[, for any a > 0. Let a > 0
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be fixed and let x > a be such that
(
Jα
0+,c| f |

)
(x) exists. Then, for u ∈]0, a[we have,

since | log(x/u)| ≤ | log(x/a)|

|F(u)| ≤
∣
∣
∣
∣ log

x

u

∣
∣
∣
∣

α−1

|F(u)|
∣
∣
∣
∣ log

x

a

∣
∣
∣
∣

1−α

,

and the right-hand side of the inequality is integrable as a function of u. 
�
Note that for α = 1 we have immediately DomJ 10+,c = Xc,loc.

The case 0 < α < 1 is more delicate. We will show that in this instance Xc,loc ⊂
DomJα

0+,c.

In order to give a more precise description of the domain of Jα
0+,c, we now give

a direct proof of the semigroup property in the domain of fractional integrals. This
property is treated in [23,41,42], but for the spaces X p

c (a, b) of all the functions
f : (a, b) → C such that (·)c f (·) ∈ L p(a, b), with 0 < a < b ≤ +∞, 1 ≤ p ≤
∞. However we prove this property under minimal assumptions, working directly in
DomJα

0+,c.

Theorem 2 Let α, β > 0, c ∈ R be fixed. Let f ∈ DomJα+β
0+,c . Then

(i) f ∈ DomJα
0+,c ∩ DomJβ

0+,c

(ii) Jα
0+,c f ∈ DomJβ

0+,c and Jβ
0+,c f ∈ DomJα

0+,c.

(iii)
(
Jα+β
0+,c f

)
(x) =

(
Jα
0+,c(J

β
0+,c f )

)
(x), a.e. x ∈ R

+.

(iv) If α < β then DomJβ
0+,c ⊂ DomJα

0+,c.

Proof At first, let f ∈ DomJα+β
0+,c be a positive function. Then the integral

(
Jα+β
0+,c f

)
(x) = 1

�(α + β)

∫ x

0

(
v

x

)c(

log
x

v

)α+β−1

f (v)
dv

v

is finite and nonnegative for a.e. x ∈ R
+.

By Tonelli’s theorem on iterated integrals of non-negative functions, and using
formula (2.8) concerning the Beta function in [23], namely

∫ x

v

(

log
x

u

)α−1(

log
u

v

)β−1 du

u
= B(β, α)

(

log
x

v

)α+β−1

,

we have

(Jα+β
0+,c f )(x) = 1

�(α)�(β)

�(β)�(α)

�(α + β)

∫ x

0

(
v

x

)c(

log
x

v

)α+β−1

f (v)
dv

v

= x−c

�(α)�(β)

∫ x

0
vc f (v)

[

B(β, α)

(

log
x

v

)α+β−1]dv

v
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= x−c

�(α)�(β)

∫ x

0
vc f (v)

[ ∫ x

v

(

log
x

u

)α−1(

log
u

v

)β−1 du

u

]
dv

v

= x−c

�(α)�(β)

∫ x

0

∫ x

0
vcχ]v,x[(u)

(

log
x

u

)α−1(

log
u

v

)β−1

f (v)
dv

v

du

u

= x−c

�(α)�(β)

∫ x

0

∫ x

0
vcχ]0,u[(v)

(

log
x

u

)α−1(

log
u

v

)β−1

f (v)
dv

v

du

u

= 1

�(α)

∫ x

0

(
u

x

)c(

log
x

u

)α−1[ 1

�(β)

∫ u

0

(
v

u

)c(

log
u

v

)β−1 f (v)

v
dv

]
du

u

= (Jα
0+,c(J

β
0+,c f ))(x).

This proves all the assertions (i), (ii), (iii), for positive functions. In the general case,
we can apply the above argument to the functions f +, f − using the linearity property
of the integrals. Property (iv) follows immediately by writing β = α + (β − α) and
applying (i). 
�

Corollary 1 Let 0 < α ≤ 1, c ∈ R be fixed. Then Xc,loc ⊂ DomJα
0+,c.

By this corollary, a consequence of (iv), we have the inclusions for α < 1 < β,

DomJβ
0+,c ⊂ Xc,loc ⊂ DomJα

0+,c.

These inclusions are strict. Indeed

Examples For any c ∈ R, β > 1, consider the function

f (x) = x−c

| log x |β χ]0,1/2[(x).

Then f ∈ Xc,loc but for any x > 1,

�(β)
(
Jβ
0+,c f

)
(x)= x−c

∫ x

0
uc
(

log
x

u

)β−1

f (u)
du

u
= x−c

∫ 1/2

0

(

log x
u

)β−1

u| log u|β du

≥ x−c
∫ 1/2

0

(

log 1
u

)β−1

u| log u|β du = x−c
∫ 1/2

0

1

u| log u|du = +∞.

Moreover, for 0 < α < 1, consider the function:

f (x) = x−c

| log x |γ χ]0,1/2[(x), (8)
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where α < γ < 1. Then f /∈ Xc,loc, but for any x > 1/2, we have

�(α)
(
Jα
0+,c f

)
(x) = x−c

∫ 1/2

0

1

u

(

log 1
u

)γ−α+1

(

log 1
u

)1−α

(

log x
u

)1−α
du

≤ M

xc

∫ 1/2

0

1

u| log u|γ−α+1 du < +∞.

Note that, more generally, the inclusion in (iv) of Theorem 2 is strict for any choice of
α and β. It is sufficient to consider the function (8) with α < γ < β. The calculations
are the same.

We now give some sufficient conditions in order that a function f belongs to the
domain of the fractional integrals of orderα > 1. In this respect we have the following:

Proposition 5 Let α > 1. If f ∈ Xc,loc is such that f (u) = O(u−(r+c−1)) for
u → 0+ and 0 < r < 1, then f ∈ DomJα

0+,c.

Proof Let x > 0 be fixed. Then we can write

∫ x

0
uc−1| f (u)|

(

log
x

u

)α−1

du =
(∫ x/2

0
+
∫ x

x/2

)

uc−1| f (u)|
(

log
x

u

)α−1

du

:= I1 + I2.

The integral I1 can be estimated by considering the order of infinity at the point 0. The

estimate of I2 is easy since the function

(

log x
u

)α−1

is now bounded in the interval

[x/2, x]. 
�
Let us define

X̃c,loc =
{
f ∈ Xc,loc : ∃r ∈]0, 1[, such that f (u) = O(u−(r+c−1)), u → 0+} .

We have the following

Corollary 2 Let α > 0, c ∈ R be fixed. Then

X̃c,loc ⊂
⋂

α>0

DomJα
0+,c.

Now let f be a convergent power series of type

f (x) =
∞∑

k=0

akx
k (ak ∈ C, k ∈ N0),
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for x ∈ [0, �], � > 0. For these functions the following series representation for
Jα
0+,c f holds, when c > 0 (see Lemmas 4 and 5(i) in [25]):

(
Jα
0+,c f

)
(x) =

∞∑

k=0

(c + k)−αakx
k (x ∈ [0, �]).

The assumption c > 0 is essential. For c = 0, corresponding to the classical Hadamard
integrals, we have the following

Proposition 6 Let α > 0 be fixed and let f be a convergent power series as above.
Then f ∈ DomJα

0+ if and only if f (0) = 0. In this case we have

(
Jα
0+ f

)
(x) =

∞∑

k=1

akk
−αxk (0 < x < �). (9)

Proof Let f ∈ DomJα
0+. Then the integral (7) is finite and

∫ x

0

(

log
x

u

)α−1

f (u)
du

u
=
∫ x

0

(

log
x

u

)α−1 ∞∑

k=1

aku
k du

u

+ a0

∫ x

0

(

log
x

u

)α−1 du

u
= I1 + I2.

As to I1 we obtain

∫ x

0

(

log
x

u

)α−1 ∞∑

k=1

|ak |uk−1du ≤
∞∑

k=1

|ak |xk−1
∫ x

0

(

log
x

u

)α−1

du.

Since, using the change of variables log(x/u) = t,

∫ x

0

(

log
x

u

)α−1

du = x�(α),

we can integrate by series, yielding

I1 =
∞∑

k=1

ak

∫ x

0

(

log
x

u

)α−1

uk−1du < +∞.

As to I2, we get I2 < +∞ if and only if a0 = f (0) = 0, since

∫ x

0

(

log
x

u

)α−1 du

u
= +∞.
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As to formula (9),

(
Jα
0+ f

)
(x) =

∞∑

k=1

ak
1

�(α)

∫ x

0

(

log
x

u

)α−1

uk−1du =
∞∑

k=1

ak
(
Jα
0+tk

)
(x)

=
∞∑

k=1

akk
−αxk,

where in the last step we have applied the simple Lemma 3 in [25], namely that(
Jα
0+tk

)
(x) = k−αxk, k > 0. 
�

Concerning the range of the operators Jα
0+,c, we have the following important

propositions.

Proposition 7 Let α > 0, c ∈ R be fixed. If f ∈ DomJα+1
0+,c, then Jα

0+,c f ∈ Xc,loc.

Proof Let f ∈ DomJα+1
0+,c.We can assume that f is nonnegative; thus, for any a > 0,

�(α)

∫ a

0
xc−1(Jα

0+,c f )(x)dx =
∫ a

0
uc−1 f (u)

[ ∫ a

u

1

x

(

log
x

u

)α−1

dx

]

du

= 1

α

∫ a

0
uc−1 f (u)

(

log
a

u

)α

du < +∞.


�
Note that, in view of Proposition 7, we can deduce that if f ∈ DomJα

0+,c, not

necessarily does Jα
0+,c f ∈ Xc,loc, unless f ∈ DomJα+1

0+,c, which is a proper subspace
of DomJα

0+,c.

For example, we can take again the function f of (8) with α < γ < α + 1. Then
f ∈ DomJα

0+,c but f /∈ DomJα+1
0+,c and Jα

0+,c f /∈ Xc,loc.

For spaces Xc we have the following

Proposition 8 Let α > 0, c ∈ R be fixed. If f ∈ DomJα
0+,c is a non-negative

function, then Jα
0+,c f /∈ Xc, unless f = 0 a.e. in R+.

Proof Using an analogous argument as above, assuming f ≥ 0, we write

∫ +∞

0
xc−1(Jα

0+,c f )(x)dx

=
∫ +∞

0
x−1

(
1

�(α)

∫ +∞

0
uc−1χ]0,x[(u)

(

log
x

u

)α−1

f (u)du

)

dx

=
∫ +∞

0

1

�(α)

(∫ +∞

0
x−1uc−1χ]u,+∞[(x)

(

log
x

u

)α−1

f (u)dx

)

du

= 1

�(α)

∫ +∞

0

(∫ +∞

u
x−1

(

log
x

u

)α−1

dx

)

uc−1 f (u)du.
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Thus (Jα
0+,c f ) /∈ Xc, since for every u

∫ +∞

u

1

x(log x
u )1−α

dx = +∞.


�
The above result implies that a function f ∈ DomJα

0+,c such that J
α
0+,c f ∈ Xc, must

necessarily change its sign. However the converse is not true in general, as proved by
the following example: for a given a > 1, put

f (x) = −χ[1/a,1](x) + χ]1,a](x).

It is easy to see that f ∈ DomJα
0+,c ∩ Xc, but Jα

0+,c f /∈ Xc, for any c ∈ R.

The following result, which will be useful in the following, is well known (see also
[22], [42])

Proposition 9 Let α > 0 and c ∈ R be fixed and let f ∈ DomJα
0+,c ∩ Xc be such

that Jα
0+,c f ∈ Xc. Then

M[Jα
0+,c f ](c + i t) = (−i t)−αM[ f ](c + i t), t ∈ R.

Using Proposition 9 we study the structure of the functions f such that f ∈
DomJα

0+,c ∩ Xc for which Jα
0+,c f ∈ Xc.

Proposition 10 Let f ∈ DomJα
0+,c ∩ Xc. If Jα

0+,c f ∈ Xc then

∫ +∞

0
xc−1 f (x)dx = 0.

Proof Since Jα
0+,c f ∈ Xc, we can apply the Mellin transform on the line s = c + i t,

obtaining

[Jα
0+,c f ]∧M (s) = (−i t)−α[ f ]∧M (s) (s = c + i t, t ∈ R)

and this transform is a continuous and bounded function of s. Therefore, taking t = 0
we must have [ f ]∧M (c) = 0, i.e. the assertion. 
�
Classes of functions f ∈ DomJα

0+,c ∩ Xc for which Jα
0+,c f ∈ Xc may be easily

constructed among the functions (of non-constant sign) with compact support in R+.

However we have the following property (see also [42], Lemma 2.33). We give the
proof for the sake of completeness

Proposition 11 Let α > 0, c, ν ∈ R, ν < c, being fixed. If f ∈ DomJα
0+,c ∩ X[ν,c],

then Jα
0+,c f ∈ Xν and

‖Jα
0+,c f ‖Xν ≤ ‖ f ‖Xν

(c − ν)α
.
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Moreover, for any s = ν + i t, we have

M[Jα
0+,c f ](ν + i t) = (c − ν − i t)−αM[ f ](ν + i t), t ∈ R.

|M[Jα
0+,c f ](s)| ≤ ‖ f ‖Xν

(c − ν)α
.

Proof We have by Tonelli’s theorem,

�(α)‖Jα
0+,c f ‖Xν ≤ �(α)

∫ +∞

0
uν−1| (Jα

0+,c f
)
(u)|du

≤
∫ +∞

0
uν−1

[ ∫ u

0

(
y

u

)c(

log
u

y

)α−1

| f (y)|dy
y

]

du

=
∫ +∞

0

[ ∫ +∞

y
uν−1−c

(

log
u

y

)α−1

du

]

yc−1| f (y)|dy.

For the inner integral, putting log(u/y) = z, we have:

∫ +∞

y
uν−1−c

(

log
u

y

)α−1

du =
∫ +∞

0
yν−ce−(c−ν)z zα−1dz = yν−c

(c − ν)α
�(α),

and thus

�(α)‖Jα
0+,c f ‖Xν = �(α)

(c − ν)α
‖ f ‖Xν .

As to the last part, the formula for the Mellin transform is established in [22], not-
ing that the Mellin transform on the line s = ν + i t of the function g∗

c (u) =
u−c(log u)α−1χ]1,+∞[(u)(�(α))−1 is given by [g∗

c ](s) = (c−s)−α = (c−ν − i t)−α,

while for the estimate we easily have

|M[Jα
0+,c f ](s)| ≤ ‖Jα

0+,c f ‖Xν = ‖ f ‖Xν

(c − ν)α
.


�

Note that when 0 < α < 1, the assumption f ∈ DomJα
0+,c ∩ X[ν,c], can be

replaced by f ∈ X[ν,c], since X[ν,c] ⊂ DomJα
0+,c, by Corollary 1.

4.2 The Pointwise Fractional Mellin Differential Operator

The pointwise fractional Mellin derivative of order α > 0, or the Hadamard-type
fractional derivative, associated with the integral Jα

0+,c f , c ∈ R, and f ∈ DomJm−α
0+,c ,

is given by
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(
Dα
0+,c f

)
(x) = x−cδmxc(Jm−α

0+,c f )(x) (10)

where m = [α] + 1 and δ = (x
d

dx
). For c = 0, corresponding to the Hadamard

fractional derivative, we put
(
Dα
0+ f

)
(x) :=

(
Dα
0+,0 f

)
(x). The above definition

was introduced in [22], and then further developed in [41], in which some sufficient
conditions for the existence of the pointwise derivative are given in spaces of absolutely
continuous type functions on bounded domains. This notion originates from the theory
of the classical Mellin differential operator, studied in [18]. We give a short survey
concerning this classical operator.

In the frame of Mellin transforms, the natural concept of a pointwise derivative of
a function f is given, as seen, by the limit of the difference quotient involving the
Mellin translation; thus if f ′ exists,

lim
h→1

τ ch f (x) − f (x)

h − 1
= lim

h→1

[

hcx
f (hx)− f (x)

hx − x
+ hc − 1

h − 1
f (x)

]

= x f ′(x) + c f (x).

This gives the motivation of the following definition: the pointwise Mellin differential
operator �c, or the pointwise Mellin derivative �c f of a function f : R+ → C and
c ∈ R, is defined by

�c f (x) := x f ′(x) + c f (x), x ∈ R
+ (11)

provided f ′ exists a.e. on R
+. The Mellin differential operator of order r ∈ N is

defined iteratively by

�1
c := �c, �r

c := �c

(
�r−1

c

)
. (12)

For convenience set �r := �r
0 for c = 0 and �0

c := I, I denoting the identity. For
instance, the first three Mellin derivatives are given by:

�c f (x) = x f ′(x) + c f (x),

�2
c f (x) = x2 f ′′(x) + (2c + 1)x f ′(x) + c2 f (x),

�3
c f (x) = x3 f ′′′(x) + (3c + 3)x2 f ′′(x) + (3c2 + 3c + 1)x f ′(x) + c3 f (x).

Let us return to Mamedov’s book [45]. He defined the Mellin derivative of integral
order in case c = 0, in a slightly different, but essentially equivalent form, using the
quotients

f (xh−1) − f (x)

log h
,

a definition connectedwith his notion of log-continuity. It must be emphasised that this
was a fully innovative procedure at the time he introduced it. (His translation operator
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is actually τh f (x) = f (xh−1), with incremental ratio log h, instead of log(1/h) =
− log h). His first order derivative, (E1 f )(x), turns into, noting L’Hospital’s rule,

(E1 f )(x) = (−x) f ′(x) =: −�0 f (x).

His derivatives of higher orders are defined inductively,

(Em f )(x) = (−1)m�m
0 f (x), m ∈ N.

This is also Mamedov’ s motivation of his definition of the fractional Mellin integral.
Indeed, he used it to define the fractional derivative (c = 0) for α ∈]0, 1[, by

(Eα f )(x) := lim
h→1

(−1)1−α
(
J 1−α
0+ f

)
(xh−1) −

(
J 1−α
0+ f

)
(x)]

log h
,

and for α > 1, by

(Eα f )(x) = E [α](Eα−[α] f )(x).

Thus for example, if α ∈]0, 1[, we have easily

(Eα f )(x) = (−1)2−α�0

(
J 1−α
0+ f

)
(x) = (−1)2−α

(
Dα
0+ f

)
(x),

which also gives the link between Mamedov’s definition and our present one. Anal-
ogously he proceeds in case α > 1. Using his definition of the fractional integral,
Mamedov then studies the Mellin transforms of the fractional integrals and deriva-
tives of a function f, (see Section 23 of [45]). From these results it would have been
possible to deduce a version of the fundamental theorem of the integral and differential
calculus in his fractional frame, in the special case when the function f, its fractional
derivative and fractional integral belong to the space X0.However he presents it explic-
itly only for integer values of α, (formula (22.3), p. 169). Nevertheless it is indeed a
surprising result, the only comparative result being that for the Chebyshev transform
[30] of 1975. For this very reason is the late Prof. Mamedov a true pioneer of Mellin
analysis. On the other hand, the approach given in [18] is somewhat more direct and
simpler, and the present versions of the fundamental theorem in local spaces Xc,loc,
given in Theorems 3 and 4 below, are more general and elegant. But recall that Mame-
dov’s first papers appeared in 1979/81, [46–48], thus almost twenty years earlier than
[18].

We have the following

Proposition 12 We have, for m ∈ N, x > 0,

δmxc f (x) = xc�m
c f (x).
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Proof For m = 1 we have

δxc f (x) = x(cxc−1 f (x) + xc f ′(x)) = xc(c f (x) + x f ′(x)) = xc�c f (x).

Now we suppose that the relation holds for m and prove that it holds for m + 1.

δm+1(xc f (x))=δ(δm(xc f (x)) = δ(xc�m
c f (x)) = xc�c(�

m
c f (x))= xc�m+1

c f (x),

and so the assertion. 
�
For r ∈ N, �r

c f (x) is given by the following proposition, also giving the connec-
tions between Mellin and ordinary derivatives (these relations was also given in [22],
[42], but without proofs).

Proposition 13 Let f ∈ Xc,loc be such that �r
c f (x) exists at the point x for r ∈ N.

Then (Dr
0+,c f )(x) exists and

(Dr
0+,c f )(x) = �r

c f (x) =
r∑

k=0

Sc(r, k)x
k f (k)(x),

where Sc(r, k), 0 ≤ k ≤ r, denote the generalized Stirling numbers of second kind,
defined recursively by

Sc(r, 0) := cr , Sc(r, r) := 1, Sc(r + 1, k) = Sc(r, k − 1) + (c + k)Sc(r, k).

In particular for c = 0

�r f (x) =
r∑

k=0

S(r, k)xk f (k)(x)

S(r, k) := S0(r, k) being the (classical) Stirling numbers of the second kind.

Proof For r = 1 (that is m = 2), we have

(D1
0+,c f )(x) = x−cδ2xc

1

�(1)

∫ x

0

(
u

x

)c(

log
x

u

)1−1

f (u)
du

u

= x−cδ

(

x
d

dx

)∫ x

0
uc−1 f (u)du = x−cδxc f (x) = �c f (x).

For r = 2, (that is m = 3), we have

(
D2
0+,c f

)
(x) = x−cδ3xc

1

�(2)

∫ x

0

(
u

x

)c(

log
x

u

)1−1

f (u)
du

u

= x−cδ

(

x
d

dx

)

xc f (x) = x−cδx(cxc−1 f (x) + xc f ′(x))
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= cx f ′(x) + c2 f (x) + (c + 1)x f ′(x) + x2 f ′′(x)
= x2 f ′′(x) + (2c + 1)x f ′(x) + c2 f (x)

= �2
c f (x).

In the general case, using Proposition 12 we have

(
Dr
0+,c f

)
(x) = x−cδr

(
δxc(J 10+,c f

)
(x))

= x−cδr (xc f (x)) = x−cxc�r
c f (x) = �r

c f (x).

Now in accordance with (11) and (12) we have (see [18])

�r+1
c f (x) = �c(�

r
c f )(x) = x

d

dx
�r

c f (x) + c�r
c f (x)

=
r∑

k=0

Sc(r, k)((k + c)xk f (k)(x) + xk+1 f (k+1) f (x))=
r+1∑

k=0

Sc(r+1, k)xk f (k)(x),

and so the assertion follows. 
�
Note that in Proposition 13 the basic assumption that f ∈ Xc,loc is essential. Let for
example g(x) = 1, for every x ∈ R

+ and c = 0. Then g /∈ X0,loc = DomJ 10+. This
implies that we cannot compute Dr

0+ f, while obviously we have �r f (x) = 0, for
any r ∈ N. Another example is given by the function h(x) = log x, x ∈ R

+. In this
instance, for c = 0 and r = 1 we have �h(x) = 1, while h /∈ X0,loc.

Now we turn to the fractional case. The above Proposition shows that the notion
of Hadamard-type fractional derivative Dα

0+,c is the natural extension of the Mellin

derivative �k
c f, with k ∈ N, to the fractional case as also applies to the ordinary and

Riemann–Liouville fractional derivatives. A simple consequence of Proposition 12 is
the following alternative representation of the fractional derivative of f , for α > 0

(
Dα
0+,c f

)
(x) = �m

c

(
Jm−α
0+,c f

)
(x)

wherem = [α]+1.Using this representation we can obtain the following Proposition

Proposition 14 Let α > 0, c ∈ R, be fixed and m − 1 ≤ α < m. Let f ∈ Xc,loc be
such that f (m) ∈ Xc,loc, then

(
Dα
0+,c f

)
(x) =

m∑

k=0

Sc(m, k)xk(Jm−α
0+,c+k f

(k))(x)).

Proof At first note that from the assumptions, for any 0 < γ ≤ 1 the derivatives f (k),

k = 1, . . .m, belongs to the domain of J γ

0+,c+k . Note that using a simple change of
variable we can write, for every c ∈ R,
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(
J γ
0+,c f

)
(x) = 1

�(γ )

∫ +∞

1

1

vc+1 (log v)γ−1 f
( x

v

)
dv.

Thus differentiating under the integral we easily have

(
J γ
0+,c f

)′
(x) = 1

�(γ )

∫ +∞

1

1

vc+2 (log v)γ−1 f ′ ( x
v

)
dv =

(
J γ
0+,c+1 f

′) (x)

and by an easy induction we obtain, for x > 0 and k ∈ N,

(
J γ
0+,c f

)(k)
(x) =

(
J γ

0+,c+k f
(k)
)

(x).

Hence by Lemma 9 in [18], (see also Proposition 13), we have

(
Dα
0+,c f

)
(x) = �m

c

(
Jm−α
0+,c f

)
(x) =

m∑

k=0

Sc(m, k)xk
(
Jm−α
0+,c+k f

(k)
)

(x),

that is the assertion. 
�
First, let f be a convergent power series as in Proposition 6. In this instance, we obtain
the following formula for the derivative Dα

0+ f :

Proposition 15 Let α > 0 be fixed and f be as in Proposition 6, such that f (0) = 0.
Then for 0 < x < �,

(
Dα
0+ f

)
(x) =

∞∑

k=1

akk
αxk .

Proof Putting m = [α]+ 1, by integration and differentiation by series, using similar
reasonings as in Proposition 6, we have

(
Dα
0+ f

)
(x) = δm

1

�(m − α)

∫ x

0

(

log
x

u

)m−α−1 ∞∑

k=1

aku
k du

u

= δm
∞∑

k=1

ak
(
Jm−α
0+ tk

)
(x)

= δm
∞∑

k=1

akk
−(m−α)xk =

∞∑

k=1

akk
−(m−α)δmxk =

∞∑

k=1

akk
αxk .


�
The above Proposition extends Lemma 5 (ii) in [25] to the case c = 0.
An interesting representation, for analytic functions, of the derivative Dα

0+,c f is
given in terms of infinite series involving the Stirling functions of the second kind
Sc(α, k), which can be defined for c ∈ R by
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Sc(α, k) := 1

k!
k∑

j=0

(−1)k− j
(
k
j

)

(c + j)α (α ∈ C, k ∈ IN0).

This representation, given in [25], is as follows:

Proposition 16 Let f : R+ → R be an arbitrarily often differentiable function such
that its Taylor series converges and let α > 0, c > 0. Then

(
Dα
0+,c f

)
(x) =

∞∑

k=0

Sc(α, k)xk f (k)(x) (x > 0).

For c = 0 also an inverse formula is available, expressing the classical Riemann–
Liouville fractional derivative in terms of the Mellin derivatives (see [27]), namely

xα
(Dα

0+ f
)
(x) =

∞∑

k=0

s(α, k)
(
Dk
0+ f

)
(x), (α > 0, x > 0),

where Dα
0+ f denotes the Riemann–Liouville fractional derivative and s(α, k) the

Stirling functions of the first kind.
An analogous representation holds also for the fractional integrals Jα

0+,c f, namely
(see [25]).

Proposition 17 Let f ∈ DomJα
0+,c, and f : R

+ → R satisfy the hypothesis of
Proposition 13. Then

(
Jα
0+,c f

)
(x) =

∞∑

k=0

Sc(−α, k)xk f (k)(x) (x > 0).

Since
(
Dα
0+,c f

)
(x),

(
Jα
0+,c f

)
(x), for α > 0, and Sc(α, k), for α ∈ R, k ∈ N0,

are three continuous functions of c ∈ R at c = 0, we can let c → 0 in the previous
Propositions, and can deduce corresponding representations of Hadamard fractional
differentiation and integrations in terms of the Stirling functions S(α, k) and classical
derivatives, if both Jα

0+ f and Dα
0+ f exists (for details see [25]).

Now we introduce certain Mellin–Sobolev type spaces which will be useful in the
following (see also [18]). Firstly, we define

ACloc :=
{

f : R+ → C : f (x) =
∫ x

0
g(t)dt, for a given g ∈ L1

loc(R
+)

}

.

Recall that L1
loc(R

+) stands for the space of all (Lebesgue) measurable functions
g : R+ → C such that

∫ x

0
g(t)dt
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exists as a Lebesgue integral for every x > 0. For any f ∈ ACloc we have f ′ = g
a.e., where f ′ denotes the usual derivative. For any c ∈ R, we define

ACc,loc := {
f ∈ Xc,loc : (·)c f (·) ∈ ACloc

}
.

For any c ∈ R we define AC1
c,loc = ACc,loc and for m ∈ N, m ≥ 2,

ACm
c,loc :=

{
f ∈ ACc,loc : δm−1((·)c f (·)) ∈ ACloc

}
.

We have the following

Lemma 3 If f ∈ ACm
c,loc, then the Mellin derivative �m

c f exists and �m
c f ∈ Xc,loc.

Proof Since δm−1((·)c f (·)) ∈ ACloc, we have

d

dx
δm−1(xc f (x)) ∈ L1

loc(R
+).

But, using Proposition 12

d

dx
δm−1(xc f (x)) = x−1δm(xc f (x)) = xc−1�m

c f (x),

and so the assertion follows. 
�
Lemma 4 If f ∈ ACm

c,loc, m ≥ 2, then δ j ((·)c f (·)) ∈ ACloc, for j = 0, 1, . . . ,m −
2, and

lim
x→0+ δ j ((x)c f (x)) = 0.

Proof The case m = 2 follows immediately from the definitions, while for m > 2
one can use the relation

δ j−1((x)c f (x)) =
∫ x

0
δ j ((u)c f (u))

du

u
, j = 1, 2 . . .m − 2.


�
The following result gives a representation of functions in ACm

c,loc. A similar result
for functions defined on a compact interval [a, b] ⊂ R

+ is given in [41].

Lemma 5 Let f ∈ ACm
c,loc,m ≥ 1,and let us assume thatϕm := d

dx δm−1((·)c f (·)) ∈
DomJm0+,1. If there exists α ∈]0, 1[ such that ϕm(x) = O(x−α), x → 0+, then we
have necessarily

f (x) = x1−c Jm0+,1ϕm(x).
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Proof For m = 1, there exists ϕ1 ∈ L1
loc(R

+) such that

f (x) = x−c
∫ x

0
ϕ1(t)dt = x1−c J 10+,1ϕ1(x),

and so the assertion follows.
For m = 2, δ((·)c f (·)) ∈ ACloc, and so there exists ϕ2 ∈ L1

loc(R
+) such that

δ(tc f (t)) =
∫ t

0
ϕ2(u)du.

Let ε > 0 be fixed. Integrating the above relation in the interval [ε, x] we have
∫ x

ε

δ(tc f (t))
dt

t
=
∫ x

ε

(∫ t

0
ϕ2(u)du

)
dt

t
.

Integrating by parts, we get

xc f (x) − εc f (ε) =
[

log t
∫ t

0
ϕ2(u)du

]x

ε

−
∫ x

ε

log tϕ2(t)dt

= log x
∫ ε

0
ϕ2(t)dt +

∫ x

ε

log
x

t
ϕ2(t)dt − log ε

∫ ε

0
ϕ2(t)dt.

Letting ε → 0+, since ϕ2 ∈ DomJ 20+,1, by Lemma 4, we obtain

xc f (x) =
∫ x

0
log

x

t
ϕ2(t)dt − lim

ε→0+ log ε

∫ ε

0
ϕ2(t)dt.

Since by assumption, ϕ2(t) = O(t−α), t → 0+, using the De L’Hopital rule, the
limit on the right-hand side of the previous relation is zero. Thus,

f (x) = x−c
∫ x

0
log

x

t
ϕ2(t)dt = x1−c J 20+,1ϕ2(x).

For the general case one can apply the same method, using the binomial formula 
�
Now, for every c ∈ R and m ∈ N, we introduce the Mellin–Sobolev space by

Xm
c,loc := {

f ∈ Xc,loc : f = g a.e. inR+, for g ∈ ACm
c,loc

}

A non-local version of the above space, denoted by Xm
c is defined in [18]. It contains

all the functions f : R+ → C such that f ∈ Xc and there exists g ∈ ACm
c,loc such

that f = g a.e. in R+ with �m
c f ∈ Xc.

Note that, if f ∈ Xc is such that Jm0+,c f ∈ Xc then Jm0+,c f ∈ Xm
c (see [18],

Theorem 11).
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In particular, a function f ∈ Xm
c is such that f ∈ Xc, �m

c f exists and �m
c f ∈ Xc.

This suggests a way to define the fractional versions of the above spaces. For a given
α > 0, we define

X α
c := {

f ∈ Xc : (Dα
0+,c f

)
(x) exists a.e. and Dα

0+,c f ∈ Xc
}

and its local version

X α
c,loc := {

f ∈ Xc,loc : (Dα
0+,c f

)
(x) exists a.e. and Dα

0+,c f ∈ Xc,loc
}
.

Analogously we can define the spaces X α
J , for any interval J as

X α
J := {

f ∈ X J : (Dα
0+,c f

)
(x) exists a.e. for every c ∈ J and

(
Dα
0+,c f

)
(x) ∈ X J

}

and its local version X α
J,loc. We begin with the following

Proposition 18 Let f ∈ X α
c,loc be such that�

m
c f ∈ Xc,loc,where m = [α]+1. Then

(
Dα
0+,c f

)
(x) = �m

c

(
Jm−α
0+,c f

)
(x) = Jm−α

0+,c

(
�m

c f
)
(x).

Proof Since f ∈ Xc,loc and 0 < m−α < 1, f ∈ DomJm−α
0+,c and�m

c f ∈ DomJm−α
0+,c

by Corollary 1. The first equality is already stated as a consequence of Proposition 12,
thus we will prove the other equality. We obtain by (10)

(
Dα
0+,c f

)
(x) = x−cδm

(
xc
(
Jm−α
0+,c f

))
(x)

= x−c
(

δm
[

xc
1

�(m − α)

∫ x

0

(
v

x

)c(

log
x

v

)m−α−1

f (v)
dv

v

])

(x)

= x−c
(

δm
[

1

�(m − α)

∫ +∞

1

xc

tc+1 (log t)m−α−1 f
( x

t

)
dt

])

(x)

= x−c
m∑

k=0

S(m, k)xk
dk

dxk

[
1

�(m − α)

∫ +∞

1

xc

tc+1 (log t)m−α−1 f
( x

t

)
dt

]

= x−c

�(m − α)

∫ +∞

1

m∑

k=0

S(m, k)xk
dk

dxk

(
xc f

( x

t

))
(log t)m−α−1 dt

tc+1 .

Using the elementary formula for the derivatives of the product, we have

(
Dα
0+,c f

)
(x)

= x−c

�(m − α)

∫ +∞

1

m∑

k=0

S(m, k)xk
k∑

j=0

(
k
j

)

×
j−1∏

ν=0

(c − ν)
xc− j

t k− j
f (k− j)(x/t)(log t)m−α−1 dt

tc+1
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= x−c

�(m − α)

∫ x

0

m∑

k=0

S(m, k)vk
dk

dvk
(vc f (v))(log(x/v))m−α−1 dv

v

= x−c

�(m − α)

∫ x

0
(δm(vc f (v))(log(x/v))m−α−1 dv

v
= Jm−α

0+,c

(
�m

c f
)
(x).

where we have used Proposition 12. Thus the assertion follows. 
�

In order to prove a new fractional version of the fundamental theorem of the differ-
ential and integral calculus in theMellin frame, first we give the following proposition
concerning the case α = m ∈ N. Recall that in this case, using the representation in
terms of iterated integrals, Jm0+,c f ism-times differentiable, whenever f ∈ DomJm0+,c.

Proposition 19 We have:

(i) Let f ∈ X 1
c,loc, then

J 10+,c(�c f )(x) = f (x), a.e. x ∈ R
+.

(ii) Let m ∈ N,m > 1, and let f ∈ Xm
c,loc be such that �m

c f ∈ DomJm0+,c. Then

Jm0+,c

(
�m

c f
)
(x) = f (x), a.e. x ∈ R

+.

(iii) Let f ∈ Xc,loc, then

�c

(
J 10+,c f

)
(x) = f (x), a.e. x ∈ R

+.

(iv) Let f ∈ DomJm0+,c, then

�m
c

(
Jm0+,c f

)
(x) = f (x), a.e. x ∈ R

+.

Proof As to (i) we have, by the absolute continuity and Lemma 4

J 10+,c(�c f )(x) =
∫ x

0

(
u

x

)c

(�c f )(u)
du

u
= x−c

∫ x

0

d

du
(uc f (u))du = f (x),

a.e. x ∈ R
+.
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For (ii) we can obtain the result using the iterated representation of Jm0+,c f,m-times
the absolute continuity, Lemma 4 and Proposition 12.

As to (iii) note

�c

(
J 10+,c f

)
(x) = x

d

dx

(
J 10+,c f

)
(x) + c

(
J 10+,c f

)
(x).

and we have

x
d

dx

(
J 10+,c f

)
(x) = −cx−c

∫ x

0
uc−1 f (u)du + f (x)

from which we obtain the assertion.
Finally we prove (iv) and we will use again induction. Assuming that (iv) holds for

m − 1, we have by Theorem 2 (iii),

�m
c

(
Jm0+,c f

)
(x) = �c

(
�m−1

c

(
Jm−1
0+,c

(
J 10+,c f

)))
(x) = f (x),

a.e. x ∈ R
+, by the induction assumption. 
�

Proposition 19 gives a version of Theorem 11 in [18] for the spaces Xc,loc, without
the use of Mellin transforms and under sharp assumptions. As a consequence, for
spaces Xc, we deduce again the formula for the Mellin transform of Jm0+,c f whenever
Jm0+,c f ∈ Xc

[
Jm0+,c f

]∧
M

(c + i t) = (−i t)−m[ f ]∧M (c + i t).

Now we are ready to prove the fundamental theorem of the fractional differential
and integral calculus in the Mellin frame.

Theorem 3 Let α > 0 be fixed and m = [α] + 1.

a) Let f ∈ X α
c,loc ∩ Xm

c,loc, such that Dα
0+,c f,�

m
c f ∈ DomJm0+,c. Then

(
Jα
0+,c

(
Dα
0+,c f

))
(x) = f (x), a.e. x ∈ R

+.

b) Let f ∈ DomJm0+,c, be such that Jα
0+,c f ∈ Xc,loc. Then

(
Dα
0+,c

(
Jα
0+,c f

))
(x) = f (x), a.e. x ∈ R

+.

Proof As to part (a), by Propositions 12, 18, 19 and Theorem 2, we have for a.e.
x ∈ R

+

(
Jα
0+,c

(
Dα
0+,c f

))
(x) = Jα

0+,c

(

x−c(δm(xc Jm−α
0+,c f ))

)

(x)

=
(
Jα
0+,c

(
Jm−α
0+,c

(
�m

c f
)))

(x) = (Jm0+,c

(
�m

c f
)
)(x) = f (x).
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As to part (b), we have, by Propositions 12, 19 and Theorem 2,

(
Dα
0+,c(J

α
0+,c f )

)
(x) = x−cδm

(
xc Jm−α

0+,c (Jα
0+,c f )

)
(x)

= x−cδm
(
xc Jm0+,c f

)
(x) = �m

c

(
Jm0+,c f

)
(x) = f (x),

almost everywhere. 
�
A result related to part (a) is also described in [42], Lemma 2.35, for functions f

belonging to the subspace

Jα
0+,μ(X p

c ) :=
{
f = Jα

0+,μg, for g ∈ X p
c

}

with μ > c. In this instance the formula is a simple consequence of part (b), using the
integral representation of f. Related results in spaces X p

ν with c > ν are given in [42],
Property 2.28. Note that for p = 1, if f ∈ Xν, with c > ν, then Jα

0+,c f ∈ Xν, so
that our assumption is satisfied. For bounded intervals I similar results are also given
in [41], for functions belonging to L p(I ).

More generally, we can, with our approach, also consider compositions between
the operators of Hadamard-type fractional integrals and derivatives, in local spaces
(for similar results in X p

c spaces see [41] on bounded intervals, and [42] in R+).
Theorem 4 Let α, β > 0 with β > α and m = [α] + 1.

(a’) Let f ∈ X α
c,loc ∩ Xm

c,loc, such that Dα
0+,c f ∈ DomJβ

0+,c and �m
c f ∈

DomJm+β−α
0+,c . Then

(
Jβ
0+,c

(
Dα
0+,c f

))
(x) =

(
Jβ−α
0+,c f

)
(x), a.e. x ∈ R

+.

(b’) Let f ∈ DomJm+β−α
0+,c . Then

(
Dα
0+,c

(
Jβ
0+,c f

))
(x) =

(
Jβ−α
0+,c f

)
(x), a.e. x ∈ R

+.

Proof Regarding (a’), as in the proof of Theorem 3, we have for a.e. x ∈ R
+

(
Jβ
0+,c

(
Dα
0+,c f

))
(x) =

(
Jβ
0+,c

(
Jm−α
0+,c

(
�m

c f
)))

(x) = Jβ−α
0+,c (J

m
0+,c

(
�m

c f
)
)(x)

= (Jβ−α
0+,c f )(x).

Regarding (b’), we have

(
Dα
0+,c

(
Jβ
0+,c f

))
(x) = x−cδm(xc Jm−α+β

0+,c f )(x) = �m
c (Jm+β−α

0+,c f )(x)

= (Jβ−α
0+,c f )(x).


�
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5 A Relation Between Pointwise and Strong Fractional Mellin Derivatives

In this sectionwewill compare the definitions of theMellin derivative in the strong and
pointwise versions. For this purpose, we need some further notations and preliminary
results.

For h, x ∈ R
+ and c̃ ∈ R, we define

mc̃
h(x) :=

{
x−c̃χ[1/h,1](x), if h ≥ 1,
−x−c̃χ[1,1/h](x), if 0 < h < 1.

It is clear that mc̃
h ∈ X(−∞,∞) and we have (see [18])

[mc̃
h]∧M (s) =

{ 1
c̃−s (h

c̃−s − 1), if s ∈ C\{̃c},
log h, if s = c̃.

Denoting the r th-fold convolution of mc̃
h with itself by (mc̃

h∗)r , r ∈ N, we have, by
Theorem 3 in [18]

[
(mc̃

h∗)r
]∧
M (s) = (̃c − s)−r (hc̃−s − 1)r , s ∈ C\{̃c}.

We recall that by Proposition 2, one has for f ∈ X[a,b], c, ν ∈ [a, b] and r ∈ N,

M

[
r∑

k=0

(−1)r−k
(
r
k

)

τ chk f

]

(ν + i t) = (hc−ν−i t − 1)r M[ f ](ν + i t). (13)

In [18] (Proposition 6, formula (8.8)), the following lemma was established:

Lemma 6 If f ∈ X r[a,b], r ∈ N, then for c ∈ [a, b], h > 1 we have, for x ∈ R
+

r∑

k=0

(−1)r−k
(
r
k

)

τ chk f (x) = x−c
(

(m0
h∗)r ∗ (�r

c f (·)(·)c)
)

(x).

Lemma 7 If f ∈ X r[a,b], r ∈ N, then for c, ν ∈ [a, b], we have

M[�r
c f ](ν + i t) = (c − ν − i t)r M[ f ](ν + i t).

Proof Let us put, for x ∈ R
+

G(x) =
(

(m0
h∗)r ∗ (�r

c f (·)(·)c)
)

(x).

Since �r
c f ∈ Xν by assumption, it is easy to see that �r

c f (·)(·)c ∈ Xν−c. Then
G ∈ Xν−c and so (·)−cG(·) ∈ Xν . Hence by Lemma 6, Proposition 2 and (13) we
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have

M[(·)−cG(·)](ν + i t) = M

[
r∑

k=0

(−1)r−k
(
r
k

)

τ chk f

]

(ν + i t)

= (hc−ν−i t − 1)r M[ f ](ν + i t).

Using Proposition 1(c) in [18] and the convolution theorem, (Lemma 2(ii)), we have

M[(·)−cG(·)](ν + i t) = M[G](ν − c + i t)

= M[(m0
h∗)r ](ν − c + i t)M[�r

c f (·)(·)c](ν − c + i t)

= (hc−ν−i t − 1)r (c − ν − i t)−r M[�r
c f ](ν + i t),

from which we deduce the assertion. 
�
We prove the main theorem of this section.

Theorem 5 Let α > 0 be fixed.

(i) Let f ∈ X α
c such that �m

c f ∈ Xc, where m = [α] + 1. Then f ∈ Wα
Xc

and

(
Dα
0+,c f

)
(x) = s-�α

c f (x), a.e. x ∈ R
+.

(ii) Let f ∈ X α[a,b] such that �m
c f ∈ X[a,b], for c ∈]a, b[, where m = [α] + 1. Then

f ∈ Wα
X[a,b] and

(
Dα
0+,c f

)
(x) = s-�α

c f (x), a.e. x ∈ R
+, c ∈]a, b[.

Proof (i) By Proposition 18 we have

(
Dα
0+,c f

)
(x) = (Jm−α

0+,c (�m
c f ))(x),

which belongs to Xc. Thus, passing to Mellin transforms, we have, for t ∈ R,

[
Dα
0+,c f

]∧
M

(c + i t) =
[(

Jm−α
0+,c

(
�m

c f
))]∧

M
(c + i t)

= (−i t)α−m [�m
c f
]∧
M (c + i t) = (−i t)α[ f ]∧M (c + i t) = [s-�α

c f ]∧M (c + i t).

Hence, Dα
0+,c f and s-�

α
c f have the same Mellin transform along the line s = c+ i t ,

and so the assertion follows by the identity theorem (see [18]).
(ii) Again, using Proposition 18, and taking the Mellin transform on the line s =

ν + i t, for ν ∈]a, b[ with ν < c, we obtain

[Dα
0+,c f ]∧M (ν + i t) = [Jm−α

0+,c (�m
c f )]∧M (ν + i t) = (c − ν − i t)α[ f ]∧M (ν + i t),

and so the assertion follows as before. 
�
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The above theorem reproduces Theorem 4.3 in [19], for integral values of α, i.e.
for k ∈ N, the pointwise Mellin derivative �k

c f equals the strong derivative s-�k
c f,

as defined in [19], for functions belonging to the space Wk
Xc

.

As a consequence of Theorem 5, for the spaces Xc we can givemore direct proofs of
the fundamental formulae of integral and differential calculus in the fractional Mellin
setting, now using the Mellin transform. We begin with the following

Theorem 6 Let α > 0 be fixed.

(a) Let f ∈ X α
c be such that Dα

0+,c f ∈ DomJα
0+,c, and Jα

0+,c f ∈ Xc. Then

(
Jα
0+,c

(
Dα
0+,c f

))
(x) = f (x) a.e. x ∈ R

+.

(b) Let f ∈ DomJα
0+,c ∩ Xc be such that Jα

0+,c f ∈ X α
c . Then we have

(
Dα
0+,c J

α
0+,c f

)
(x) = f (x), a.e. x ∈ R

+.

Proof As to part (a), we can compute the Mellin transforms, obtaining

[
Jα
0+,c

(
Dα
0+,c f

)]∧
M

(c + i t) = (−i t)−α
[
Dα
0+,c f

]∧
M

(c + i t)

= (−i t)−α(−i t)α[ f ]∧M (c + i t) = [ f ]∧M (c + i t)

and so the assertion follows by the uniqueness theorem of Mellin transform.
Part (b) is carried out using the same approach. 
�
In comparison with Theorem 4we have, under different assumptions, the following

Theorem 7 Let α, β > 0 with β > α.

(a’) Let f ∈ X α
c . If Dα

0+,c f ∈ DomJβ
0+,c, and Jβ

0+,c

(
Dα
0+,c f

)
∈ Xc, then

(
Jβ
0+,c

(
Dα
0+,c f

))
(x) = Jβ−α

0+,c f (x), a.e. x ∈ R
+.

(b’) Let f ∈ DomJβ
0+,c ∩ Xc be such that Jβ

0+,c f ∈ X α
c . Then

(
Dα
0+,c J

β
0+,c f

)
(x) = (Jβ−α

0+,c f )(x), a.e. x ∈ R
+.

Proof As to part (a’), using again the Mellin transform, we have

[
Jβ
0+,c

(
Dα
0+,c f

)]∧
M

(c + i t) = (−i t)−β [Dα
0+,c]∧M (c + i t)

= (−i t)−β(−i t)α[ f ]∧M (c + i t) = [Jβ−α
0+,c f ]∧M (c + i t),

and so the assertion follows again by the uniqueness theorem. As to part (b’), the proof
is similar to the previous one. 
�
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For the special case of spaces X[a,b], we have the following two further results.

Theorem 8 Let α > 0 be fixed.

(a”) Let f ∈ X α[a,b] and c ∈]a, b]. If Dα
0+,c f ∈ DomJα

0+,c, then

(
Jα
0+,c

(
Dα
0+,c f

))
(x) = f (x) a.e. x ∈ R

+.

(b”) Let c, ν ∈ [a, b] with ν < c. If f ∈ DomJα
0+,c ∩ X[a,b] is such that Jα

0+,c f ∈
X α

ν , then

(
Dα
0+,c J

α
0+,c f

)
(x) = f (x), a.e. x ∈ R

+.

Proof As to part (a”) take ν ∈ [a, b] with ν < c. Using the Mellin transform on the
line s = ν + i t, we have by Proposition 11 and Theorem 5

[
Jα
0+,c

(
Dα
0+,c f

)]∧
M

(ν + i t) = (c − ν − i t)−α
[
Dα
0+,c

]∧
M

(ν + i t)

= (c − ν − i t)−α(c − ν − i t)α[ f ]∧M (ν + i t) = [ f ]∧M (ν + i t)

and so the assertion again follows by the uniqueness theorem. Part (b”) is carried out
similarly. 
�
Theorem 9 Let α, β > 0 be fixed with β > α.

(a”’) Let f ∈ X α[a,b] and c ∈]a, b]. If Dα
0+,c f ∈ DomJβ

0+,c, then

(
Jβ
0+,c

(
Dα
0+,c f

))
(x) = (Jβ−α

0+,c f )(x) a.e. x ∈ R
+.

(b”’) Let c, ν ∈ [a, b] with ν < c. If f ∈ DomJβ
0+,c ∩ X[a,b] is such that

Jβ
0+,c f ∈ X α

ν , then

(
Dα
0+,c J

β
0+,c f

)
(x) = (Jβ−α

0+,c f )(x), a.e. x ∈ R
+.

Proof The proof is essentially the same as in Theorem 8 taking Mellin transforms in
the space Xν . 
�

For what concerns the strong fractional Mellin derivatives we have

Theorem 10 Let α > 0 be fixed.

(i) Let f ∈ Wα
Xc

be such that s-�α
c f ∈ DomJα

0+,c and Jα
0+,c(s-�

α
c f ) ∈ Xc. Then

Jα
0+,c(s-�

α
c f )(x) = f (x), a.e x ∈ R

+.

(ii) Let f ∈ Wα
X[a,b] be such that s-�α

c f ∈ DomJα
0+,c, for c ∈]a, b[. Then

Jα
0+,c(s-�

α
c f )(x) = f (x), a.e x ∈ R

+.
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Proof (i) By assumptions, we can compute the Mellin transform of the function
Jα
0+,c(s-�

α
c f ), on the line s = c + i t, obtaining, as before,

[
Jα
0+,c

(
s-�α

c f
)]∧

M
(c + i t) = [ f ]∧M (c + i t), (t ∈ R).

Analogously (ii) follows, by taking Mellin transforms on s = ν + i t, with ν < c. 
�
Theorem 11 Let α > 0 be fixed.

(i) Let f ∈ Xc be such that Jα
0+,c f ∈ Wα

Xc
. Then

s-�α
c

(
Jα
0+,c f

)
(x) = f (x), a.e x ∈ R

+.

(ii) Let f ∈ X[a,b] be such that Jα
0+,c f ∈ Wα

Xν
, α > 0 and c ∈]a, b], ν < c. Then

s-�α
c

(
Jα
0+,c f

)
(x) = f (x), a.e x ∈ R

+.

Proof The proof is essentially the same as for the previous theorem. 
�
In order to state an extension to the fractional setting of the equivalence theorem

proved in [18] Theorem 10, we introduce the following subspace of Wα
Xc

, for α > 0
and c ∈ R,

W̃α
Xc

= { f ∈ Wα
Xc

: s-�α
c f ∈ DomJα

0+,c and Jα
0+,c(s-�

α
c f ) ∈ Xc}.

Theorem 12 Let f ∈ Xc and α > 0. The following four assertions are equivalent

(i) f ∈ W̃α
Xc
.

(ii) There is a function g1 ∈ Xc ∩ DomJα
0+,c with Jα

0+,cg1 ∈ Xc such that

lim
h→1

∥
∥
∥
∥

�
α,c
h f

(h − 1)α
− g1

∥
∥
∥
∥
Xc

= 0.

(iii) There is g2 ∈ Xc ∩ DomJα
0+,c with Jα

0+,cg2 ∈ Xc such that

(−i t)αM[ f ](c + i t) = M[g2](c + i t).

(iv) There is g3 ∈ Xc ∩ DomJα
0+,c such that Jα

0+,cg3 ∈ Xc, and

f (x) = 1

�(α)

∫ x

0

(
u

x

)c(

log
u

x

)α−1

g3(u)
du

u
a.e. x ∈ R

+.

If one of the above assertions is satisfied, then Dα
0+,c f (x) = s-�α

c f (x) = g1 = g2 =
g3 a.e. x ∈ R

+.
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Proof It is easy to see that (i) implies (ii) and (ii) implies (iii) by Theorem 1.We prove
now (iii) implies (iv). Let g2 ∈ Xc be such that (iii) holds. Then, putting g3 = g2 we
have, by Proposition 9,

M[Jα
0+,cg2](c + i t) = (−i t)−αM[g3](c + i t) = M[ f ](c + i t).

Thus by (iii) we have immediately the assertion by the identity theorem for Mellin
transforms. Finally we prove that (iv) implies (i). By (iv), we have in particular that
Jα
0+,cg3 ∈ Xc,loc. This implies that Jα

0+,cg3 ∈ DomJm−α
0+,c , since 0 < m − α < 1. So,

by the semigroup property (Theorem 2), g3 ∈ DomJm0+,c. Therefore the assumptions
of Theorem 3 part b) are satisfied and we have

(
Dα
0+,c f

)
(x) = (

Dα
0+,c

(
Jα
0+,cg3

))
(x) = g3(x) a.e. x ∈ R

+.

So the assertion follows. 
�
Analogous equivalence theorems hold for the spaces Wα

X[a,b] .

6 Some Particular Applications

In this section we discuss some basic examples.

1. The first example also discussed in [25], Lemma 3 and in Property 2.25 in [42]
and used in the proof of Propositions 6 and 15, is the following: Consider the
function g(x) = xb, b ∈ R. Then for any c ∈ R

+ such that c + b > 0 we have
g ∈ DomJα

0+,c, and

(
Jα
0+,cg

)
(x) = (c + b)−αxb.

In particular, for b > 0 and c = 0 we get
(
Jα
0+g

)
(x) = b−αxb. Analogously, we

have also

(
Dα
0+,cg

)
(x) = (c + b)αxb.

This also well enlightens the fundamental theorem in the fractional frame.
It should be noted that in this case we cannot compute Jα

0+1 and Dα
0+1 since the

function g(t) = 1, corresponding to b = 0, is not in the domain of Jα
0+. However

we can compute Jα
0+,c1 and Dα

0+,c1, with c > 0, obtaining easily
(
Jα
0+,c1

)
(x) =

c−α, and
(
Dα
0+,c1

)
(x) = cα. The last relation follows by δm(xccα−m) = cαxc,

for m − 1 < α < m, which is proved by an easy induction.
Moreover we could also calculate Jα

a+1 and Dα
a+1, with a > 0 in place of 0 in the

definitions of the Hadamard-type integrals and derivatives (see [42]).
2. As a second example, let us consider the function gk(x) = logk x, for k ∈ N. For

any α > 0 and c > 0 we have gk ∈ DomJα
0+,c and by a change of variables and

using the binomial theorem, we can write
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(
Jα
0+,cgk

)
(x) = 1

�(α)

∫ +∞

0
e−cvvα−1(log x − v)kdv

= 1

�(α)

k∑

j=0

(−1)k− j
(
k
j

)
�(α + k − j)

cα+k− j
log j x .

Putting

Bα(k, j) := �(α + k − j)

�(α)
=

k− j∏

ν=1

(α + k − j − ν),

we finally obtain

(
Jα
0+,cgk

)
(x) =

k∑

j=0

(−1)k− j
(
k
j

)
Bα(k, j)

cα+k− j
log j x .

For the fractional derivative, putting m = [α] + 1, we have

(
Dα
0+,cgk

)
(x) = x−c

k∑

j=0

(−1)k− j
(
k
j

)
Bm−α(k, j)

cm−α+k− j
δm(xc log j x).

In particular for k = 1, we have

(
Dα
0+,cg1

)
(x) = x−c

[−Bm−α(1, 0)

cm−α+1 δmxc + Bm−α(1, 1)

cm−α
δm(xc log x)

]

= x−c
[
m − α

cm−α+1 δmxc + 1

cm−α
δm(xc log x)

]

.

Now using an easy induction, δm(xc log x) = cmxc log x + mcm−1xc, thus we
finally obtain the formula:

(
Dα
0+,cg1

)
(x) = αcα−1 + cα log x .

This is another explanation of the fundamental theorem of fractional calculus in
the Mellin frame. Indeed, it is easy to see that

Jα
0+,c

(
Dα
0+,cg1

)
(x) = log x .

We can obviously obtain formulae for higher values of k.
Note that the assumption c > 0 is essential. Indeed as we remarked earlier, for
c = 0, the function log x does not belong to the domain of the operator Jα

0+.

In [42], Property 2.24, some related examples are treated concerning theHadamard
integrals Jα

a+ f, with a > 0 in place of 0.
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3. Let us consider the function g(x) = ebt , b ∈ R. Then for any c > 0 and α > 0,we
have g ∈ DomJα

0+,c and using the representation formula proved in [25], Lemma
5(i), we have

(
Jα
0+,cg

)
(x) =

∞∑

k=0

(c + k)−α b
k

k! x
k, x ∈ R

+

and the corresponding formula for the derivative, given in (Lemma 5(ii), [25])

(
Dα
0+,cg

)
(x) =

∞∑

k=0

(c + k)α
bk

k! x
k, x ∈ R

+.

As already remarked, assumption c > 0 is essential. Indeed for c = 0 Propositions
6 and 15 imply that we have similar representations for Jα

0+ and Dα
0+, only if the

analytic function f satisfies f (0) = 0.
Alternative representations are given by Propositions 16, 17, in terms of Stirling
functions. We have, for α > 0,

(
Dα
0+,ce

bt
)

(x) = ebx
∞∑

k=0

Sc(α, k)xkbk (x > 0)

and

(
Jα
0+,ce

bt
)

(x) = ebx
∞∑

k=0

Sc(−α, k)xkbk (x > 0).

4. Let us consider the ”sinc” function which is analytic over the entire real line. The
Taylor series is given by:

sinc(x) = sin πx

πx
=

∞∑

k=0

(−1)k
π2k

(2k + 1)! x
2k .

Moreover it is easy to see that sinc ∈ Xc,loc for c > 0, while sinc /∈ X0,loc. Using
Lemma 5 in [25] we have immediately

(
Jα
0+,csinc

)
(x) =

∞∑

k=0

(−1)k(c + 2k)−α π2k

(2k + 1)! x
2k

and

(
Dα
0+,csinc

)
(x) =

∞∑

k=0

(−1)k(c + 2k)α
π2k

(2k + 1)! x
2k .
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Another representation in termofStirling functions of second type is a consequence
of Proposition 13.
A formula for the (classical) derivatives of sinc can be found in [29]. For a given
s ∈ IN , differentiating by series, we have

(sinc x)(s) =
∞∑

k=s

(−1)k
π2k

(2k + 1)!
ds

dxs
x2k =

∞∑

k=s

(−1)k
π2k

(2k + 1)! As,k x
2k−s

=
∞∑

k=0

(−1)k+s π2k+2s

(2k + 2s + 1)! As,k+s x
2k+s,

where

As,k =
s−1∏

ν=0

(2k − ν).

Thus, using again Lemma 5 in [25], we have

(
Jα
0+,c(sinc t)

(s)
)

(x) =
∞∑

k=0

(−1)k+s(c + 2k + s)−α π2k+2s

(2k + 2s + 1)! As,k+s x
2k+s

and

(Dα
0+,c(sinc t)

(s))(x) =
∞∑

k=0

(−1)k+s(c + 2k + s)α
π2k+2s

(2k + 2s + 1)! As,k+s x
2k+s .

Note that for every odd s, the above formula is valid also for c = 0, since in this
instance (sinc x)(s) ∈ X0,loc.

7 Applications to Partial Differential Equations

In this section we apply our theory to certain fractional differential equations. We
notice here that the use of Mellin analysis in the theory of differential equations was
considered in [4], dealing with Cauchy problems for ordinary differential equations,
involving Mellin derivatives of integral order. In [35], Mellin analysis was applied to
numerical solutions of Mellin integral equations. In the fractional case, differential
equations were treated using various types of fractional derivatives, e.g. Riemann–
Liouville, Caputo, Hadamard, etc (see [42]). The use of integral transforms is a very
useful and used method for certain Cauchy or boundary value problems. However,
the use of Mellin transforms in fractional differential equations involving Hadamard
derivatives is so far not common.

Here we will examine certain boundary value problems related to an evolution
equation and to a diffusion problem, using the Mellin transform approach and using
Hadamard derivatives. In the first example, the fractional evolution equation originates
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from a Volterra integral equation with a special kernel. The second example is a
fractional diffusion equation.

7.1 An Integro-Differential Equation

Let α ∈]0, 1[ be fixed, and let

Kα(x, u) := 1

�(1 − α)

(

log
x

u

)−α

χ]0,x[(u), x > 0.

Let us consider the following problem: find a function w : R+ × R
+ → C such that

w(x, 0) = f (x), for a fixed boundary data f : R+ → C, and

Ax
∂

∂x

∫ ∞

0
Kα(x, u)w(x, y)

du

u
+ B

∂

∂y
w(x, y) = 0, (14)

A, B being two positive constants.
Now, Eq. (14) can be rewritten as a fractional partial differential evolution equation

in the Hadamard sense, as

A
(
Dα
0+w(·, y)) (x) + B

∂

∂y
w(x, y) = 0, (x, y ∈ R

+).

Without loss of generality we can assume A = B = 1, thus

(
Dα
0+w(·, y)) (x) = − ∂

∂y
w(x, y), (x, y ∈ R

+) (15)

with initial data w(x, 0) = f (x), x > 0. We call for a function w : R+ × R
+ → C

satisfying the following properties

(1) w(·, y) ∈ X α[a,0] for every y > 0 and for a fixed a < 0
(2) there is a function K ∈ Xν, ν ∈ [a, 0[, such that for every x, y > 0

∣
∣
∣
∣

∂

∂y
w(x, y)

∣
∣
∣
∣ ≤ K (x)

(3) for a fixed f ∈ Xν, we have limy→0+ ‖w(·, y) − f (·)‖Xν = 0.

Assuming that such a function exists we apply the Mellin transform with respect to
the variable x on the line ν + i t to both sides of (15), obtaining

[
Dα
0+w(·, y)]∧M (ν + i t) = −

[
∂

∂y
w(·, y)

]∧

M
(ν + i t).

Using Theorems 1 and 5 we have

[
Dα
0+w(·, y)]∧M (ν + i t) = (−ν − i t)α[w(·, y)]∧M (ν + i t).
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Moreover by property (2),

[
∂

∂y
w(·, y)

]∧

M
(ν + i t) =

∫ +∞

0
xν+i t−1 ∂

∂y
w(x, y)dx = ∂

∂y
[w(·, y)]∧M (ν + i t),

thus Eq. (15) is transformed into a first order ordinary differential equation

(−ν − i t)α[w(·, y)]∧M (ν + i t) = − ∂

∂y
[w(·, y)]∧M (ν + i t)

which has the solution

[w(·, y)]∧M (ν + i t) = A(ν + i t)e−(−ν−i t)α y

where A(ν + i t) is independent of y. The determination of A(ν + i t) follows from
condition 3); indeed we have that [w(·, y)]∧M (ν + i t) → [ f ]∧M (ν + i t) uniformly for
y → 0+ and for t ∈ R, and so A(ν + i t) = [ f ]∧M (ν + i t), obtaining

[w(·, y)]∧M (ν + i t) = [ f ]∧M (ν + i t)e−(−ν−i t)α y .

Now putting s = −ν − i t, we have Re s = −ν > 0 and so, since y > 0, the inverse
Mellin transform of e−ysα exists and it is given by (see Theorem 6 in [18])

G(x, y) := 1

2π

∫ +∞

−∞
e−(−ν−i t)α yx−ν−i t dt. (16)

Thus if the solution of (15) exists, by the Mellin–Parseval formula (see [18]), it has
the form

w(x, y) =
∫ +∞

0
f (v)G(

x

v
, y)

dv

v
, x, y > 0.

In order to verify that the function w(x, y) is actually a solution of the problem we
make a direct substitution. We have, by differentiating under the integral

−∂w

∂y
(x, y) =

∫ +∞

0
f (v)

[
1

2π

∫ +∞

−∞

(
x

v

)−ν−i t

(−ν − i t)αe−(−ν−i t)α ydt

]
dv

v

= 1

2π

∫ +∞

−∞
(−ν − i t)αx−ν−i t e−(−ν−i t)α y[ f ]∧M (ν + i t)dt.

Now, let us consider

(Dα
0+w(·, y))(x) = δ

(
J 1−α
0+ w(·, y)

)
(x).
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We have

(
Dα
0+w(·, y)) (x) = (x

∂

∂x
)

[
1

�(1 − α)

∫ x

0

(

log
x

u

)−α

×
(∫ ∞

0
f (v)G(

u

v
, y)

dv

v

)
du

u

]

= (x
∂

∂x
)

[
1

�(1 − α)

∫ +∞

1
(log z)−α

(∫ ∞

0
f (v)G(

x

zv
, y)

dv

v

)
dz

z

]

= x

�(1 − α)

∫ +∞

1
(log z)−α

(∫ ∞

0
f (v)

∂

∂x
G(

x

zv
, y)

dv

v

)
dz

z
.

Since

∂

∂x
G(x, y) = 1

2π

∫ +∞

−∞
e−(−ν−i t)α y(−ν − i t)x−ν−i t−1dt,

putting s = −ν − i t, we obtain

(
Dα
0+w(·, y)) (x)

= x

�(1−α)

∫ +∞

1
(log z)−α

(∫ ∞

0
f (v)

1

zv

(
1

2π

∫ +∞

−∞
e−sα ys

(
x

zv

)s−1

dt

)
dv

v

)
dz

z

= 1

2π

1

�(1 − α)

∫ +∞

1
(log z)−α

(∫ +∞

−∞
e−sα ys

(
x

z

)s

[ f ]∧M (−s)dt

)
dz

z

= 1

2π

1

�(1 − α)

∫ +∞

−∞
[ f ]∧M (−s)e−sα ys

(∫ x

0

(

log
x

u

)−α

us
du

u

)

dt.

Since Example 1 of Sect. 6, holds for c = 0 and complex b with Re b > 0, we have

1

�(1 − α)

∫ x

0

(

log
x

u

)−α

us
du

u
=
(
J 1−α
0+ us

)
(x) = sα−1xs,

and so we have

(Dα
0+w(·, y))(x) = 1

2π

∫ +∞

−∞
sαxse−sα y[ f ]∧M (ν + i t)dt,

i.e. the assertion. So we have proved the following

Theorem 13 Under the assumptions imposed, Eq. (15) with the initial data f , has
the unique solution given by

w(x, y) =
∫ +∞

0
f (v)G(

x

v
, y)

dv

v
, x, y > 0,

where the function G(x, y) is defined in (16).
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Note that for α = 1/2, we have a closed form for the function G(x, y). Indeed,
using formula 3.7 p. 174 in [51], we obtain

G(x, y) = y

2
√

π
(− log x)−3/2exp

(
y2

4 log x

)

χ]0,1[(x)

and the solution is then given by

w(x, y) = y

2
√

π

∫ 1

0
f (

x

v
)(− log v)−3/2exp

(
y2

4 log v

)
dv

v
.

Equation (15) was also discussed in [42], but using fractional Caputo derivatives. Our
treatment, however, contains real proofs.

7.2 A Diffusion Equation

For α > 0 let us consider the fractional diffusion equation

(
Dα
0+w(·, y)) (x) = ∂2

∂y2
w(x, y), (x, y ∈ R

+) (17)

with the initial condition

lim
y→0+ ‖w(·, y) − f (·)‖X0 = 0,

for a fixed f ∈ X0.

We call for a function w : R+ × R
+ → C satisfying the following assumptions:

(1) w(·, y) ∈ X α
0 for every y > 0, and there exists N > 0 such that ‖w(·, y)‖X0 ≤ N ,

for every y ∈ R
+.

(2) there are functions K1, K2 ∈ X0, such that for every x, y > 0

∣
∣
∣
∣

∂

∂y
w(x, y)

∣
∣
∣
∣ ≤ K1(x),

∣
∣
∣
∣

∂2

∂y2
w(x, y)

∣
∣
∣
∣ ≤ K2(x)

(3) for a fixed f ∈ X0, we have limy→0+ ‖w(·, y) − f (·)‖X0 = 0.

Using the same approach as in the previous example, taking the Mellin transforms of
both sides of the Eq. (17), we obtain

[
Dα
0+w(·, y)]∧M (i t) = −

[
∂2

∂y2
w(·, y)

]∧

M
(i t).

Using Theorems 1 and 5 we have

[Dα
0+w(·, y)]∧M (ν + i t) = (−i t)α[w(·, y)]∧M (i t).
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Moreover by property (2),

[
∂2

∂y2
w(·, y)

]∧

M
(i t) = ∂2

∂y2
[w(·, y)]∧M (i t),

thus Eq. (17) is transformed into the second order linear ordinary differential equation

(−i t)αzt (y) = z′′t (y), y > 0, (18)

with respect to the function

zt (y) := [w(·, y)]∧M (i t), t ∈ R.

If t = 0 the solution is the linear function z0(y) = A(0) + B(0)y, while for t �= 0,
the characteristic equation associated with (18)

λ2 = exp(α log(−i t)),

has two complex solutions

λ1 := |t |α/2
(

cos
απ

4
+ i sin

απ

4
(− sgn t)

)

,

λ2 := −|t |α/2
(

cos
απ

4
+ i sin

απ

4
(− sgn t)

)

.

Thus, for t �= 0, we obtain the general solution

zt (y) = A(t)e−|t |α/2(cos(απ/4)+i(− sgn t) sin(απ/4))y

+B(t)e|t |α/2(cos(απ/4)+i(− sgn t) sin(απ/4))y .

Now, let α be such that cos(απ/4) > 0. By the boundary condition (3), we have also
that zt (y) is uniformly convergent to [ f ]∧M as y → 0+. Moreover, by assumption (1),
there exists a constant N > 0 such that |zt (y)| ≤ N , for every t ∈ R. This means that
we must have B(t) = 0 for every t ∈ R, thus

zt (y) = [w(·, y)]∧M (i t) = [ f ]∧M (i t)e−|t |α/2(cos(απ/4)+i(− sgn t) sin(απ/4))y .

Now, the function

e−|t |α/2(cos(απ/4)+i(− sgn t) sin(απ/4))y

is summable as a function of t ∈ R, and its inverse Mellin transform is given by

G(x, y) := 1

2π

∫ ∞

−∞
e−|t |α/2(cos(απ/4)+i(− sgn t) sin(απ/4))yx−i t dt.
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Then if a solution exists it has the form

w(x, y) =
∫ ∞

0
f (u)G(

x

u
, y)

du

u
, x, y > 0.

Analogously, if α is such that cos(απ/4) < 0, then we have A(t) = 0 for every t ∈ R,

and the corresponding function G(x, y) takes the form

G(x, y) = 1

2π

∫ ∞

−∞
e−|t |α/2(| cos(απ/4)|+i(− sgn t) sin(απ/4))yx−i t dt.

That the above function is really a solution can be proved, as before, by a direct
substitution into the differential equation.

The function G(x, y) can be written in a more simple form. Indeed, using Euler’s
formula, putting a := | cos(απ/4)|, b := sin(απ/4), we can write:

G(x, y) = 1

2π

∫ ∞

0
e−|t |α/2(a−ib)y(cos(t log x − i sin(t log x))dt

+ 1

2π

∫ ∞

0
e−tα/2(a+ib)y(cos(t log x + i sin(t log x))dt

= 1

π

∫ ∞

0
e−tα/2ay[cos(t log x) cos(tα/2by + sin(t log x) sin(tα/2by)]dt

= 1

π

∫ ∞

0
e−tα/2ay cos(t log x − tα/2by)dt.

For α = 1 using Proposition 13, we obtain the (not fractional) equation

x
∂w

∂x
(x, y) = ∂2w

∂y2
(x, y), x, y ∈ R

+

and using our approach the corresponding problem has a unique solution of the form

w(x, y) =
∫ ∞

0
f (u)G

( x

u
, y
) du

u
, x, y > 0,

where

G(x, y) = 1

π

∫ ∞

0
exp(−

√
2t y

2
) cos(

√
2t y

2
− t log x)dt.

This integral has a closed form. Indeed by an elementary substitution, we can write

I :=
∫ ∞

0
exp

(

−
√
2t y

2

)

cos

(√
2t y

2
− t log x

)

dt

= 2
∫ ∞

0
exp

(

−
√
2yu

2

)

cos

(√
2yu

2
− u2 log x

)

dt.
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Now, the above integral, depending on the sign of log x, can be reduced to the integrals
(p > 0) (see [38], p. 499)

∫ ∞

0
ve−pv cos(2v2 − pv)dv = p

√
π

8
exp(−p2/4),

if log x > 0 and

∫ ∞

0
ve−pv cos(2v2 + pv)dv = 0,

if log x ≤ 0. Indeed, if we put u = √
2/ log xv in the first case, and u = √

2/| log x |v
in the second case, we get easily

I =
√

π

log x
√
2 log x

exp

(

− y

2
√
2 log x

)

, x > 1,

while I = 0 for 0 < x < 1. Therefore,

G(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

√
π

2

1

(log x)3/2
exp

(

− y

2
√
2 log x

)

, x > 1, y > 0

0, 0 < x ≤ 1, y > 0.

For α = 1/2, the equation becomes

(D1/2
0+ w(·, y))(x) = ∂2

∂y2
w(x, y), (x, y ∈ R

+)

and putting a := cos(π/8) =
√
2 + √

2/2, b := sin(π/8) =
√
2 − √

2/2, we obtain
the following representation of the function G(x, y) :

G(x, y) = 1

π

∫ ∞

0
exp(− 4

√
tay) cos(t log x − 4

√
tby)dt.

For α = 4, using Proposition 13, our equation has the form

4∑

k=0

S0(4, k)x
k
(

∂

∂x

)(k)

w(x, y) = ∂2w

∂y2
(x, y), (x, y ∈ R

+) (19)

i.e.

x4
∂4w

∂x4
(x, y) + 6x3

∂3w

∂x3
(x, y) + 7x2

∂2w

∂x
(x, y) + x

∂w

∂x
(x, y) = ∂2w

∂y2
(x, y),

(x, y ∈ R
+)
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In this instance we have cos(απ/4) = −1, and so, the unique solution of our problem
for Eq. (19) has the form

w(x, y) =
∫ ∞

0
f (u)G

( x

u
, y
) du

u
, x, y > 0,

where

G(x, y) = 1

π

∫ ∞

0
e−t2 y cos(t log x)dt.

This integral can be reduced by an elementary substitution, to the classical integral

g(v) =
∫ ∞

0
e−t2 cos(tv)dt =

√
π

2
exp(−v2/4),

thus obtaining

G(x, y) = 1

2

√
π

y
exp(− log2 x/4y).

Another example in fractional case, is α = 5/2. In this case we have a =
| cos((5/8)π)| =

√
2 − √

2/2 and b = sin((5/8)π) =
√
2 + √

2/2. The correspond-
ing function G(x, y) is given by

G(x, y) = 1

π

∫ ∞

0
exp

(

−t5/8
√

2 − √
2y

)

cos

(

t log x − t5/4
√

2 + √
2y/2

)

dt.

The above approachworks for every value ofα except those for which cos(απ/4) = 0.
For α = 2, the resulting wave equation in the Mellin setting reads

x2
∂2

∂x2
w(x, y) + x

∂

∂x
w(x, y) = ∂2

∂y2
w(x, y), (x, y ∈ R

+)

But this equation is treated in detail in [18] with different boundary conditions.
Experts in the evaluations of integrals could surely obtainmore elegant representations
of the G(x, y)− functions.

8 A Short Biography of R.G. Mamedov and Some Historical Notes

Rashid Gamid-oglu Mamedov (changed into Mammadov since 1991), born in a peas-
ant family on December 27, 1931, in the village Dashsalakhly, Azerbaijan SSR, lost
his father at the age 6 and grew up with his mother and three sisters (Fig. 1).

After spending the school years 1938–1948 in themiddle school of his homevillage,
he was admitted to the Azerbaijan Pedagogical Institute (API) in Baku. In 1952, he
graduated from itsMathematicsDepartmentwith a so-called red diploma-honours (i.e.
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Fig. 1 A photo of Prof. Rashid
Mamedov together with his
spouse Flora Mamedova, who
now takes her husband’s role in
keeping alive Azerbaijani
customs among her
grandchildren. It was taken in
the year of his death, 2000

diploma cum laude). Immediately he was accepted for post-graduate study at the Chair
ofMathematicalAnalysis ofAPI, and defended his PhD thesis (”Kandidatskaya”) enti-
tled ”Some questions of approximation by entire functions and polynomials” in 1955.
This dissertation was one basis to themonograph ”Extremal Properties of Entire Func-
tions” published in 1962 by his scientific supervisor I.I. Ibragimov. During the years
1953–1960, R.G. Mamedov was affiliated with the Chair of Mathematical Analysis
at API in various positions, first as assistant (1953–1956) and senior lecturer (1956–
1957), later as docent (assistant professor, 1957–1960).

In 1960–1963, R.G.Mamedov held a position as senior researcher at the Institute of
Mathematics and Mechanics of the Azerbaijan Academy of Science. Free of teaching
duties, he published in a very short period of time his fundamental contributions to the
theory of approximation by linear operators whichmade him known both in the former
Soviet Union and abroad. These deep results comprised his ”Doktorskaya” (Habil-
itation degree) ”Some questions of approximation of functions by linear operators”
submitted to Leningrad State Pedagogical A.I.Herzen-Institute in 1964. At the age of
33 years, R.G. Mamedov was awarded the Dr. of Phys. and Math. degree and was
appointed as full professor to the Chair of Higher Mathematics at Azerbaijan Poly-
technic Institute in Baku. Here he started his remarkable career as university teacher
and educator, supervising as many as 23 PhD theses over the years, two of his students
obtained the Dr. of Phys. and Math. degree themselves. In 1966, he gave a contributed
talk at the ICM Congress in Moscow (Fig. 2).
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Fig. 2 Private photo of the 30 Azerbaijani participants at the ICM, held in Moscow 1966, and kindly
forwarded to the authors by Prof. Boris Golubov. Prof. Mamedov stands with his large briefcase in the first
row, on the extreme left, the President of the Azerbaijani Academy of Sciences (in 1966), Acad. Z. Khalilov,
stands in the center of the first row, eighth from the left, together with Prof.I.I. Ibragimov (fifth from the
left) and the Dean of the Mechanical-Mathematical Department of Azerbaijani State University, Prof. A.I.
Guseinov, sixth from the left. Prof.Golubov was invited to be present in this photo since he spent his first
3years (1956–1958) as a student at their university, and also participated in the Congress. We find him in
the second row, third from the right

In 1967, he published his first monograph ”Approximation of Functions by Linear
Operators”, recognised by the international mathematical community, although it was
written inAzerbaijani. His sonAykhan reported that his father possessed a copy of [28]
and recalls him speaking about the authors. In 1969, R.G. Mamedov, was appointed
head of the Chair of Higher Mathematics at Azerbaijan State Oil Academy in Baku, a
position which he held for 26 years. His cycle of investigations on properties of inte-
gral transforms of Mellin-type led to the publication of several research monographs,
in particular ”On Approximation of Conjugate Functions by Conjugate M-Singular
Integrals” (1977), ”On Approximation of Functions by Singular Integrals of Mellin
Type” (1979), and ”Mellin Transform and Theory of Approximation” (1991). With
equal enthusiasm, he created textbooks for use at the Azerbaijan institutions of higher
education that are still of widespread use. His three-volume ”Course of Higher Math-
ematics” (1978, 1981, 1984) has several editions. R.G. Mamedov is also the author
of 20 booklets and articles popularising mathematics among the general public and
raising the standards of mathematics education in his home country.

R.G. Mamedov was not only an outstanding scientist and educator but also
impressed everybody who met him by his outgoing character, friendly personality,
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and for being very accessible and supportive in personal and scientific matters. He
married in 1960, two of his three sons being mathematicians themselves. R.G. Mame-
dov died onMay 2, 2000, at the age of 68 after an infarct. He is survived by his spouse
Flora Mamadova and three sons, there now being seven grandchildren, five boys and
two girls, four being born after his death.

Work in the broad area of approximation theory at the University of Perugia, was
initiated by its former visionary, departmental director, C. Vinti (1926–1997) a mas-
ter in Calculus of Variation (see [59]). It was decisively influenced by the work of J.
Musielak, a chief representative of the Orlicz analysis school at Poznan, its first joint
work bring in the direction of (nonlinear) integral operators in the setting of modular
spaces ([13]), as well as by the work at Aachen, together with P.L. Butzer and R.L.
Stens. During recent research at Perugia in matters asymptotic expansions of certain
Mellin-type convolution operators and convergence properties in the spaces of func-
tions of bounded variation (see [2,3,6–12]), a MathSciNet search led to the treatise of
R.G. Mamedov under discussion. Since it was nowhere to be found, it was finally A.
Gadjiev, Academy of Sciences of Azerbaijan, who within a few weeks kindly sent a
copy, as a present. It has served us well not only in our local work at Perugia but also
in the present joint investigation.

As to the work at Aachen, although we knew of the existence of the great school
of approximation theory at Leningrad since 1949 (through G.G. Lorentz), it was the
Second All-Union Conference on Constructive Theory of Functions, held at Baku on
October 8–13, 1962, that drew our attention to approximation theory at Baku. That
was a couple of years after its proceedings (with p. 638) appeared in 1965. (The
Aachen group organised the first conference on approximation in the West (August
4–10, 1963; ISNM, Vol. 5, Birkhaeuser, Basel, 1964)).

It was Aachen’s former student E.L. Stark (1940–1984), who in view of his flu-
ent knowledge of Russian kept well aware of approximation theoretical studies at
Leningrad, Moscow and Kiev, was surprised when he discovered the Baku proceed-
ings. In fact, Russian approximation theory was a model for us in Aachen, especially
in its earlier years; and Stark’s great input benefited us all. We exchanged letters with
R.G.Mamedov and in 1974 invited him to participate in our Oberwolfach conference
on Linear Operators and Approximation II, heldMarch 30–April 6. But he was unable
to attend at the last moment (likewise in the case of S.M. Nikolskii, S.A. Teljakovski
and B.S. Mitijagin), as is recorded in its Proceedings (ISNM, Vol. 25, Birkhaeuser
Basel, 1974). In our volume with R.J Nessel,” Fourier Analysis and Approximation
(Birkhaeuser/Academic Press, 1971),we cited eight papers ofR.G.Mamedov , plus his
book ”Approximation of Functions by Linear Operators” (Azerbaijani, Baku, 1966).
They played a specific role in our book. The work on Mellin analysis at Aachen ,
together with S. Jansche (see [18–21]) was independent of that at Baku.

9 Concluding Remarks

The theory of Mellin analysis is a fascinating field of research, one still in the state
of development, one which will surely have further important applications in various
fields of applied mathematics. As noted in the Introduction, a pioneering contribution
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in this direction was the treatise of R.G. Mamedov [45]. The translation into Eng-
lish of the main part of Mamedov’s preface reads: In classical approximation theory,
approximation of functions by polynomials and entire functions are considered, and
relations between the order of best approximation of the functions and their structural
and differential properties are studied. In connection with the saturation problem and
P.P. Korovkin theorems on the convergence of linear positive operators, numerous
investigations are dedicated to the approximations of functions by linear operators, in
particular by linear positive operators, and by various singular integral operators. To
this aim some function classes are introduced and studied. Moreover, the saturation
classes of different linear operators by means of Fourier transform or other integral
transforms are investigated.Many results in this field and the base of the theory of inte-
gral Fourier transform were published in the fundamental monograph of P.L. Butzer
and R.J. Nessel ”Fourier analysis and approximation”. At present some other inte-
gral transforms are also used in studying different function classes and the associated
saturation order of approximation by linear operators.

The Mellin transform has important applications in the solution of boundary value
problems in wedge shaped regions. It is also one of the most important methods
for the study of classes of functions defined on the positive real line. The theory of
Mellin transform requires the introduction of new concepts of derivative and integral,
calledM-derivative andM-integral. In this field in recent years many results have been
produced. In this monograph we attempt significantly to complement those results and
introduce them from the unified point of view. I have used material written earlier in
the book with G.N. Orudzhev, namely ”On the approximation of functions by singular
integrals of Mellin type, Baku, 1979.

After that, Mellin analysis was introduced in a systematic way in [18–20], then
developed in [22–26] and later on in [6–12,49].Many other results and applications are
surely to be discovered and the present paper is a further contribution in this direction.

Our theory of Hadamard-type fractional integrals and derivatives is concerned with
real values of the parameter α. The extension to complex values of α can be carried out
essentially in the same way, assuming Re α ≥ 0 in place of α ≥ 0 (see also e.g. [25]).
For general complex values α ∈ C, the theory may be more delicate. As an example,
in Theorem 1, the assumption Re α > 0 is basic for the application of the Abel–Stolz
theorem. Indeed, for complex values of α such that Re α < 0 the convergence of the
binomial series on the boundary of its convergence disk may fail. For Re α ≤ −1, this
convergence fails at every point of the boundary, while for −1 < Re α < 0, it fails at
just one point.
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