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Abstract Let � be a closed co-compact subgroup of a second countable locally com-
pact abelian (LCA)groupG. In this paperwe study translation-invariant (TI) subspaces
of L2(G) by elements of �. We characterize such spaces in terms of range functions
extending the results from the Euclidean and LCA setting. The main innovation of
this paper, which contrasts with earlier works, is that we do not require that � be dis-
crete. As a consequence, our characterization of TI-spaces is new even in the classical
setting of G = R

n . We also extend the notion of the spectral function in R
n to the

LCA setting. It is shown that spectral functions, initially defined in terms of �, do not
depend on �. Several properties equivalent to the definition of spectral functions are
given. In particular, we show that the spectral function scales nicely under the action
of epimorphisms of G with compact kernel. Finally, we show that for a large class of
LCA groups, the spectral function is given as a pointwise limit.
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1 Introduction

The main goal of this paper is to develop a comprehensive analogue of the theory
of shift-invariant (SI) spaces in the setting of locally compact abelian (LCA) groups.
Classically, SI spaces are closed subspaces of L2(Rn) that are invariant under all integer
translations. The theory of shift-invariant subspaces of L2(Rn) plays an important role
in many areas, most notably in the theory of wavelets, spline systems, Gabor systems,
and approximation theory [3–5,7,29,30]. Hence, we are interested in finding out how
much of the classical SI space theory extends to the LCA setting.

Let G be a second countable LCA group. The aim of this paper is to investigate
the structure of subspaces of L2(G) that are invariant under translations by elements
of a closed co-compact subgroup � ⊂ G, where co-compact means that the quotient
group G/� is compact. We characterize such spaces in terms of range functions
which originated in the characterization of doubly invariant spaces by Helson [17]
and Srinivasan [32]. Our work extends the results from the Euclidean setting G = R

n

by the first author [5] and the LCA setting by Cabrelli and Paternostro [9] and by
Kamyabi Gol and Raisi Tousi [23]. The main innovation of this paper, which contrasts
with earlier works, is that we do not require that � be discrete. To emphasize the fact
that � need not be discrete we deliberately adopt the name translation-invariant (TI)
spaces instead of SI spaces. As a consequence, our characterization of �-TI spaces
is new even in the classical setting of G = R

n . Moreover, our paper also applies to
LCA groupsG that do not have uniform lattices (discrete co-compact subgroups ofG)
such as the group Qp of p-adic numbers and its compact subgroup of p-adic integers,
where the results of [9,23] are not applicable. In what follows we describe the content
of the paper.

In Sect. 2 we introduce a general machinery of multiplicatively-invariant (MI) sub-
spaces of the vector-valued space L2(�,H), where � is a σ -finite measure space and
H is a separable Hilbert space. In Theorem 2.4 we show that MI spaces are character-
ized in terms of range functions. This result extracts a measure theoretic component
behind existing proofs of range function characterizations of SI spaces in various set-
tings. In a similar vein, we provide a decomposition of MI spaces into orthogonal
sums of principal MI spaces, each generated by a single vector-valued function in
L∞(�,H). In Sect. 3 we prove our main result, Theorem 3.8, which characterizes
TI subspaces of L2(G). Since a closed subgroup � ⊂ G is assumed to be merely
co-compact, this theorem unifies under the same framework the characterization of SI
spaces (when � is assumed to be discrete) and Wiener’s theorem on TI spaces (when
� = G). At the same time it yields intermediate results when � is a non-discrete
closed co-compact proper subgroup of G. The key role in our arguments is played
by the fiberization map defined on a Borel section of the quotient of the dual group
̂G with the annihilator of �. In the case when � is not discrete, � has infinite mea-
sure which requires some special technical tools such as a continuous variant of the
Parseval identity in Lemma 3.5.

In Sect. 4 we define the spectral function for TI spaces on LCA groups which
was originally introduced by Rzeszotnik and the first author [7,8] for SI subspaces of
L2(Rn). We show that that spectral function, initially defined in terms of �, actually
does not depend on the choice of �. This is a generalization of [8, Corollary 2.7]. To
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illustrate more properties of the spectral function, we introduce in Sect. 5 the notion of
continuous frame sequences for TI spaces. In the case when � is discrete, this notion
coincides with the classical definition of an SI frame. Theorem 5.1 provides a charac-
terization of continuous frames in terms of the fiberization operator by generalizing
the corresponding result onR

n by the first author [5] and its LCA extension byCabrelli
and Paternostro [9]. We also show the decomposition of TI spaces as an orthogonal
sum of principal TI spaces. Several properties are established for spectral functions,
such as Theorems 5.4 and 5.5, which generalize the respective results from [7].

In Sect. 6 we investigate how the spectral function behaves under the action of
dilations. The results of Rzeszotnik and the first author [7,8] show that the spectral
function on R

n scales nicely when an SI space is dilated by an invertible matrix. We
obtain a satisfactory analogue of this result for a general LCA group G by replacing
an invertible matrix onR

n by an epimorphism ofG with compact kernel. In Sect. 7 we
show that the spectral function can be obtained as a pointwise limit using the Lebesgue
Differentiation Theorem. Our result requires the existence of so-called D′-sequences
which exist for compactly generated abelian Lie groups. However, it is shown that
D′-sequences do not exist for all LCA groups such as the “tubby torus” T

ℵ0 . Finally,
in the ‘Appendix’ we give a simplified proof of Theorem (9.12) in the book of Hewitt
and the second author [20].

2 General Range Functions and Multiplicatively-Invariant Spaces

In this section (�,m) represents a σ -finite measure space, and H is a separable
Hilbert space. Our goal is to establish a general machinery of multiplicatively-
invariant subspaces of the vector-valued space L2(�,H). In a nutshell, our result
on multiplicatively-invariant subspaces, Theorem 2.4, extracts a measure theoretic
component from the proof of the characterization of shift-invariant spaces on L2(Rn)

in [5]. In turn, Theorem 2.4 can be used not only to recover the existing results on
SI spaces on LCA groups [9,23], but also to obtain our main result on TI spaces in
Theorem 3.8. Also our machinery is versatile enough to apply in the study of shift-
modulation spaces [6]. Thus, Theorem 2.4 yields a streamlined approach in a variety
of settings instead of repeating ad hoc arguments as has been done in the past.

Definition 2.1 A range function is a mapping J : � → {closed subspaces ofH}.
For ω ∈ �, we write PJ (ω) for the projection of H onto J (ω). A range function is
measurable if for each a ∈ H, ω �→ PJ (ω)(a) from �→ H is measurable, which is
equivalent in our setting to: for a, b ∈ H, ω �→ 〈PJ (ω)(a), b〉 is measurable.

Remark 2.1 J is a measurable range function if and only ifω → 〈PJ (ω)(�(ω)), b〉 is
measurable for each � in L2(�,H). This can be deduced from Pettis’s measurability
theorem; see Theorem 2 in [11, Chapter 2]. Indeed, suppose J is a measurable range
function. Then, using linearity, ω �→ 〈PJ (ω)(�(ω)), b〉 is measurable if� is a simple
measurable function, i.e., �(ω) =∑n

k=1 IAk (ω)ak , where Ak are measurable subsets
of � and ak ∈ H. By Pettis’s measurability theorem any � is a limit a.e. (in �) of a
sequence (� j ) of simple functions. So 〈PJ (ω)(�(ω)), b〉 = lim j 〈PJ (ω)(� j (ω)), b〉
is also measurable.
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We will work with

L2(�,H) := { measurable � : �→ H : ‖�‖2 =
∫

�

‖�(ω)‖2H dm(ω) <∞}.

The inner product on L2(�,H) is given by

〈�,�〉 =
∫

�

〈�(ω),�(ω)〉H dm(ω).

The following result is well known; see [5] or [9, Lemma 3.8].

Proposition 2.1 Let J be a (not necessarily measurable) range function. Then

MJ := {� ∈ L2(�,H) : �(ω) ∈ J (ω) a.e. ω ∈ �} (2.1)

is a closed linear subspace of L2(�,H).

Let PJ denote the orthogonal projection of L2(�,H) onto MJ . The next proposi-
tion relates this function to the projections PJ (ω) of H onto J (ω), in the case when
J is measurable. Proposition 2.2 is an abstract version of a lemma due to Helson [17,
Lecture VI], which was reproven in various special settings in [5,6,9].

Proposition 2.2 Let J be a measurable range function. Then, for � ∈ L2(�,H), we
have

PJ (�)(ω) = PJ (ω)(�(ω)) a.e. ω ∈ �. (2.2)

Proof Define QJ : L2(�,H)→ L2(�,H) by

QJ (�)(ω) = PJ (ω)(�(ω)).

It suffices to prove QJ = PJ .
By Remark 2.1, QJ (�) is measurable for each � in L2(�,H), and clearly QJ is

linear. Since each PJ (ω) is a projection, each PJ (ω) has norm 1, so

‖QJ (�)‖22 =
∫

�

‖QJ (�)(ω)‖2H dm(ω) =
∫

�

‖PJ (ω)(�(ω))‖2H dm(ω)

≤
∫

�

‖�(ω)‖2H dm(ω) = ‖�‖22 <∞.

Thus, QJ is well defined and it has norm ≤ 1.
Since Q2

J (�)(ω) = P2
J (ω)(�(ω)) = PJ (ω)(�(ω)), we have Q2

J = QJ and
similarlyQ∗J = QJ , so QJ is a projection onto a closed subspace M of L2(�,H). It
suffices to show M = MJ , and clearly M ⊂ MJ . If M �= MJ , then there is � ∈ MJ

such that � �= 0 and � ⊥ M . For all � in L2(�,H), we now have

0 = 〈QJ (�),�〉 = 〈�,QJ (�)〉,
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soQJ (�) = 0. Thus PJ (ω)(�(ω)) = 0 a.e. ω ∈ �. Since �(ω) ∈ J (ω) a.e. ω ∈ �,
we conclude that 0 = PJ (ω)(�(ω)) = �(ω) a.e. ω ∈ �, and this contradicts � �= 0.

��
Proposition 2.3 is another abstract variant of a known result; see [5] or [9,

Lemma 3.11].

Proposition 2.3 If J and K are measurable range functions and MJ = MK , then
J (ω) = K (ω) a.e. ω ∈ �.

Proof The projections PJ and PK are equal, so by (2.2),

PJ (ω)(�(ω)) = PK (ω)(�(ω)) a.e. ω ∈ �,

for each� in L2(�,H). Let D be a countable dense subset ofH, and let�′ be a subset
of � of finite measure. For each a ∈ D, we apply this to the function �(ω) = a1�′ .
Thus PJ (ω)(a) = PK (ω)(a) a.e. on �′, for each a ∈ D. Since � is σ -finite, we
conclude that

for a.e. ω ∈ �, we have PJ (ω)(a) = PK (ω)(a) for all a ∈ D.

For each such ω, the functions a �→ PJ (ω)(a) and a �→ PK (ω)(a) are continuous on
H and agree on the dense subset D of H, so PJ (ω) = PK (ω) a.e. ω ∈ �. Therefore,
J (ω) = K (ω) a.e. ω ∈ �. ��

The following concept plays a key role in our development of multiplicatively-
invariant spaces.

Definition 2.2 A subset D of L∞(�) is a determining set for L1(�) if

for every f ∈ L1(�),

∫

�

f g dm = 0 for all g ∈ D �⇒ f = 0. (2.3)

In particular, any subset D of L∞(�), for which span(D) is weak-∗ dense in L∞(�),
is a determining set for L1(�).

Example 2.2 (a) LetD consist of all characteristic functions 1A formeasurable subsets
A of � having finite measure. Then D is a determining set for L1(�).

(b) Let G be a second countable LCA group. Then the set ̂G of characters on G
is a determining set for L1(G,mG), where mG is a Haar measure on G. This follows
from the uniqueness theorem for Fourier transforms:

∫

G
χ(x) f (x) dmG(x) = 0 for all χ ∈ ̂G �⇒ f = 0.

Definition 2.3 Let W be a closed linear subspace of L2(�,H). We say that W is
multiplicatively-invariant with respect to a determining subset D for L1(�) (briefly,
D-MI) if

� ∈ W and g ∈ D �⇒ g� ∈ W. (2.4)
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Note that we may as well assume that the constant function 1 is inD. Note also that
g� is the product of a bounded measurable scalar-valued function and a measurable
Hilbert-space-valued function on �. Thus � �→ g� maps L2(�,H) into itself. The
equivalence of (ii) and (iii) below was shown by Helson [18, Theorem 1, p. 7].

Theorem 2.4 Suppose that L2(�) is separable, so that L2(�,H) is also separable.
Let W ⊂ L2(�,H) be a closed subspace, and let D be a determining set for L1(�).
The following are equivalent:

(i) W is D-MI,
(ii) W is L∞(�)-MI,
(iii) there exists a measurable range function J such that

W = {� ∈ L2(�,H) : �(ω) ∈ J (ω) a.e. ω ∈ �}. (2.5)

Identifying range functions which are equal almost everywhere, the correspondence
between D-MI spaces and measurable range functions is one-to-one and onto.

Moreover, since L2(�,H) is separable, there are countable subsetsA ⊂ L2(�,H)

such that W is the smallest closed D-MI space containing A. For any such A, the
measurable range function J associated to W satisfies

J (ω) = span{�(ω) : � ∈ A}, a.e. ω ∈ �. (2.6)

Proof The implications (i i i) �⇒ (i i) �⇒ (i) are trivial. Hence, it remains to
show (i) �⇒ (i i i). At the same time we prove the “moreover” part of Theorem 2.4.

Suppose W is a D-MI subspace of L2(�,H). Since L2(�,H) is separable,

W = span{g� : g ∈ D,� ∈ A} (2.7)

for some countableA ⊂ L2(�,H). Now we define J via (2.6), so J is clearly a range
function.

We need the following lemma.

Lemma 2.5 Let J and W be given by (2.6) and (2.7), respectively. For any � in
L2(�,H), we have

� ⊥ W ⇐⇒ �(ω) ∈ J (ω)⊥ a.e. ω ∈ �. (2.8)

Thus, W⊥ = {� ∈ L2(�,H) : �(ω) ∈ J (ω)⊥ a.e. ω ∈ �}.

Proof To show �⇒ in (2.8), the definition of J implies that it suffices to show

〈�(ω),�(ω)〉 = 0 a.e. ω ∈ �, � ∈ A. (2.9)
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Fix � in A, and let F(ω) = 〈�(ω),�(ω)〉. Since |F(ω)| ≤ ‖�(ω)‖H‖�(ω)‖H, we
have

∫

�

|F(ω)| dm(ω) ≤
∫

�

‖�(ω)‖H‖�(ω)‖H dm(ω)

≤
(∫

�

‖�(ω)‖2H dm(ω)

)1/2 (∫

�

‖�(ω)‖2H dm(ω)

)1/2

= ‖�‖2‖�‖2 <∞.

Therefore, F is in L1(�). For g ∈ D, we have g� ∈ W , so

∫

�

gF dm =
∫

�

〈g(ω)�(ω),�(ω)〉 dm(ω) = 〈g�,�〉 = 0.

Since D is a determining set for L1(�), we have F(ω) = 0 a.e. ω ∈ �, i.e., (2.9)
holds.

For⇐� in (2.8), it suffices to observe that �(ω) ∈ J (ω)⊥ a.e. ω ∈ � implies

〈g�,�〉 =
∫

�

g(ω)〈�(ω),�(ω)〉 dm(ω) = 0 for all g ∈ D, � ∈ A.

Thus, (2.5) holds for W⊥ and the range function ω �→ J (ω)⊥. ��
We return to the proof of (i) �⇒ (i i i) in Theorem 2.4.We first establish (2.5), i.e.,

W = MJ . By assumption,W is a closed subspace of L2(�,H), andMJ given by (2.1)
is a closed subspace of L2(�,H) by Proposition 2.1. To show thatW ⊂ MJ , consider
g ∈ D and� ∈ A. Then,�(ω) is in J (ω) for almost all ω ∈ � by (2.6), so g(ω)�(ω)

is also in J (ω) for almost all ω ∈ �. So W ⊂ MJ . To show the converse implication,
on the contrary suppose there exists� ∈ MJ \W ,� �= 0.We can choose� orthogonal
to W . Then, by Lemma 2.5 and (2.1), we have �(ω) ∈ J (ω) ∩ J (ω)⊥ = {0} for a.e.
ω ∈ �, contradicting � �= 0. Thus, we conclude that W = MJ .

Next we show that the range function J is measurable. Let I be the identity on
L2(�,H), and let PJ be the projection of L2(�,H) onto MJ , as in Proposition 2.2.
If � is in L2(�,H), then (I−PJ )(�) is orthogonal to MJ = W . Hence, by Lemma
2.5, ((I− PJ )(�))(ω) is in J (ω)⊥ a.e. ω ∈ �. So

PJ (ω)(((I− PJ )(�))(ω)) = 0 a.e. ω ∈ �,

and this implies PJ (ω)(�(ω)) = PJ (ω)(PJ (�))(ω)) = PJ (�)(ω) a.e.ω ∈ �. Thus,
ω �→ PJ (ω)(�(ω)) is measurable, and by Remark 2.1, J is measurable.

Finally, to show that the correspondence between measurable range functions and
D-MI subspaces of L2(�,H) is one-to-one, we invoke Proposition 2.3. ��
Remark 2.3 In light of Theorem 2.4, any space W satisfying either (i), (ii), or (iii) is
said to be multiplicatively-invariant (MI). Lemma 2.5 shows that properties (i)–(iii)
in Theorem 2.4 are equivalent to the same properties with W replaced by W⊥ (and
J (ω) replaced by J (ω)⊥). In particular, W is MI ⇐⇒ W⊥ is MI.
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Definition 2.4 The dimension function dimW : �→ {0, 1, 2, . . . , dimH} is defined
by dimW (ω) = dim(J (ω)) for ω ∈ �.

Suppose we have two MI spaces W1 and W2 with corresponding range functions
J1 and J2. Then using Lemma 2.5 one can show that

W1 ⊥ W2 ⇐⇒ J1(ω) ⊥ J2(ω) for a.e. ω ∈ �.

Consequently, for any collection of measurable range functions Jn , n ∈ N, and the
corresponding MI spaces MJn , n ∈ N, we have

J (ω) =
⊕

n∈N
Jn(ω) for a.e. ω ∈ � ⇐⇒ MJ =

⊕

n∈N
MJn . (2.10)

We have the following decomposition result which is an abstract version of [5,
Theorem 3.3]; see also [18, Theorem 2, p. 8].

Theorem 2.6 Suppose that W ⊂ L2(�,H) is anMI space. Then there existMI spaces
Wn, n ∈ N, such that:

(i) W can be decomposed as an orthogonal sum

W =
⊕

n∈N
Wn, (2.11)

(ii) the dimension function satisfies dimWn (ω) ≤ 1 for a.e. ω ∈ �, and

dimWn (ω) = 1 ⇐⇒ dimW (ω) ≥ n, for n ∈ N. (2.12)

(iii) there exist functions�n ∈ L∞(�,H) such that ||�n(ω)|| ∈ {0, 1}, and the range
function Jn of Wn is given by Jn(ω) = span�n(ω).

Proof Let {ek}k∈N be an orthonormal basis of H. For any MI space V we shall con-
struct a function �(V ) ∈ L∞(�,H) using the following procedure. Let JV be the
range function corresponding to V given by Theorem 2.4(iii), and let PV (ω) be the
orthogonal projection of H onto JV (ω). If V = {0}, then �(V ) = 0. Otherwise,
define Ak = {ω ∈ � : PV (ω)ek �= 0} for k ∈ N. Define sets Bk , k ∈ N, inductively
by B1 = A1, Bk = Ak \⋃k−1

j=1 A j . Finally, define �(V ) ∈ L∞(�,H) so that

�(V )(ω) = PV (ω)ek/||PV (ω)ek || for ω ∈ Bk, and

�(V )(ω) = 0 for ω ∈ � \
∞
⋃

k=1
Bk .

Clearly, for a.e. ω ∈ � we have

�(V )(ω) ∈ JV (ω) and ||�(V )(ω)|| =
{

1 when dimV (ω) ≥ 1,

0 when dimV (ω) = 0.
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In addition, suppose that for some k0 ∈ N we have m(Ak) = 0 for all 1 ≤ k < k0.
Equivalently,

JV (ω) ⊂ span{ek : k ≥ k0} for a.e. ω ∈ �.

Consider the MI space

Ṽ = {� ∈ V : �(ω) ⊥ �(V )(ω) for a.e. ω ∈ �}. (2.13)

Then the range function JṼ of Ṽ satisfies

JṼ (ω) = JV (ω)� span�(V )(ω) ⊂ span{ek : k ≥ k0 + 1} for a.e. ω ∈ �.

(2.14)
Indeed, if � ∈ Ṽ , then for a.e. ω ∈ Ak0

〈�(ω), ek0〉 = 〈�(ω), PV (ω)ek0〉 = ||PV (ω)ek0 ||〈�(ω),�(V )(ω)〉 = 0.

Since the above equality also holds for ω �∈ Ak0 , we have JṼ (ω) ⊥ ek0 for a.e. ω ∈ �.
This shows (2.14).

Define a sequence of nested MI spaces {Vn}n∈N and a sequence of functions
{�n}n∈N in L∞(�,H) by the following inductive procedure. Let V1 = W and �1 =
�(V1). Once �1, . . . , �n and V1, . . . , Vn are constructed define �n+1 = �(Vn+1),
where

Vn+1 = {� ∈ Vn : �(ω) ⊥ �n(ω) for a.e. ω ∈ �}. (2.15)

For any n ∈ N we have Vn = Vn+1 ⊕ Wn , where Wn is a MI space with the
range function Jn(ω) = span�n(ω). Hence, to establish (2.11) we need to show
that

⋂

n∈N Vn = {0}. Indeed, by (2.13), (2.14), and (2.15), the range function of Vn
satisfies

JVn (ω) ⊂ span{ek : k ≥ n} for a.e. ω ∈ �.

This shows
⋂

n∈N Vn = {0}, so that (i) and (iii) hold.
By (2.10) and (2.11) we have that J (ω) = ⊕

n∈N Jn(ω) for a.e. ω ∈ �. Hence,
dimW = ∑

n∈N dimWn . Combining this with the fact that 1 ≥ dimWn ≥ dimWn+1 for
all n ∈ N, we obtain (ii). ��

3 Translation-Invariant Spaces on LCA Groups

In this section we establish a characterization of TI subspaces of L2(G) under the
action of a closed co-compact subgroup � ⊂ G. We deliberately adopt the name
TI instead of the commonly used shift-invariant (SI) subspaces since the subgroup
� does not have to be discrete as in the existing works [3,5,9,23]. This is the main
innovation of our approach which has substantial consequences. On the one hand,
Theorem 3.8 generalizes the characterization of SI spaces on LCA groups [9,23]
including the familiar R

n setting [5]. On the other hand, Theorem 3.8 encompasses a
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range of results so that Wiener’s theorem on TI subspaces and the characterization of
shift-invariant spaces are two extremes of the same result. Some of the intermediate
results are new even in the case of L2(Rn); see Example 3.3.

3.1 Standing Hypotheses

Our standing hypotheses on an LCA group G, with character group ̂G, are any/all of
the following equivalent conditions:

(i) G is second countable, i.e., has a countable base.
(ii) G is σ -compact and metrizable,
(iii) ̂G is σ -compact and metrizable,
(iv) ̂G is second countable,
(v) G is topologically isomorphic with R

n × G0, where G0 contains a compact
metrizable open subgroup H0 such that G0/H0 is countable,

(vi) L2(G) and L2(̂G) are separable Hilbert spaces. Of course, these Hilbert spaces
are isometrically isomorphic, by Plancherel’s theorem [19, Theorem (31.18)],
provided the Haar measures on G and ̂G are chosen properly.

Unless otherwise specified, throughout this paper, � will denote a closed co-
compact subgroup of G, i.e., G/� is compact. Haar measure on G will be denoted
by m = mG . For topological groups G1 and G2, we write G1 ∼= G2 if the groups are
topologically isomorphic. Other LCA terminology will be as in [19,20,28].

Remark 3.1 Our standing hypotheses on G agree exactly with those in Cabrelli and
Paternostro [9], aswell as in R.A.KamyabiGol andR. Raisi Tousi [22–24]. In contrast
to their work, we shall not require � to be a discrete subgroup (in addition to being
co-compact). In other words, � does not have to be a uniform lattice.

Example 3.2 (a) Every second countable LCA group G has at least one co-compact
closed subgroup, namely � = G. For some groups this is the only choice. For
example, the group of p-adic numbers Qp has no proper co-compact closed sub-
groups; in fact, except for the trivial subgroup {0}, all the proper closed subgroups
H ⊂ Qp are compact and open, so G/H is infinite and discrete.

(b) Obviously all closed subgroups of compact groups are co-compact. For a torsion-
free compact abelian group, such as the group 	p of p-adic integers, the only
discrete subgroup is {0}, though there are numerous closed co-compact subgroups.
See [20, Theorem (25.8)] for a characterization of such groups. The product
Qp × 	p is an example of a noncompact group with a nontrivial co-compact
closed subgroup but no discrete subgroups.

Definition 3.1 Let �∗ be the annihilator of � in ̂G defined by

�∗ = {χ ∈ ̂G : χ(γ ) = 1 for all γ ∈ �}.

Let� ⊂ ̂G be aBorel section of ̂G/�∗, also known as a fundamental domain of ̂G/�∗,
whose existence is guaranteed by [26, Lemma 1.1] or [14]. Then, ̂G = �⊕ �∗, i.e.,
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every χ ∈ ̂G has the form ω+ κ for some ω ∈ � and κ ∈ �∗, and this representation
is unique.

By the duality theorem [31, Lemma 2.1.3], �∗ is topologically isomorphic to the
dual of G/�, i.e., �∗ ∼= (̂G/�). Consequently, � is co-compact in G ⇐⇒ �∗ is
a discrete subgroup of ̂G. Thus, by our assumption on �, �∗ will always be discrete.
Observe also that the group ̂G/�∗ ∼= ̂� need not be compact, so the fundamental
domain � need not be pre-compact. Since G is σ -compact, �∗ is countable, so ̂G =
�∗ ⊕ � is a countable union of translates of �. Therefore, � has positive, possibly
infinite, measure. In the special case of a uniform lattice � ⊂ G considered in [9,23,
25], � can be chosen to be pre-compact and � necessarily has finite measure.

We always choose the Haar measure on �∗ so that m�∗({0}) = 1. With this agree-
ment, we can choose the Haar measure on ̂G/�∗ so that the following version of [19,
Theorem (28.54)] holds.

Theorem 3.1 For φ in L1(̂G),

∫

̂G
φ dm

̂G =
∫

̂G/�∗

∑

κ∈�∗
φ(χ + κ) dm

̂G/�∗(χ + �∗), (3.1)

where
∑

κ∈�∗ φ(χ + κ) converges absolutely for m
̂G-a.e. χ .

Proposition 3.2 The function ω �→ �∗ + ω is a measure-preserving mapping from
(�,m

̂G) onto (̂G/�∗,m
̂G/�∗). The group � is discrete if and only if m

̂G(�) is finite.
For a function φ on �, we define

φ′(�∗ + ω) = φ(ω) for �∗ + ω ∈ ̂G/�∗, ω ∈ �. (3.2)

Then φ �→ φ′ is an isometry of L p(�) onto L p(̂G/�∗) for 1 ≤ p ≤ ∞.

Proof Thefirst sentence is verified by applyingTheorem3.1 to characteristic functions
of measurable subsets of � having finite measure. The second claim holds because �

is discrete if and only if its character group ̂G/�∗ is compact, and this holds if and
only if m

̂G/�∗(̂G/�∗) is finite.
The last claim follows from the fact that φ �→ φ′ preserves linearity, pointwise

multiplication, and the taking of absolute values. ��
For γ ∈ G, the corresponding character on ̂G is written Xγ , where Xγ (χ) = χ(γ )

for χ ∈ ̂G. For γ ∈ �, we write X∗γ for the corresponding character on ̂G/�∗ defined
by X∗γ (�∗ + χ) = Xγ (χ) for χ ∈ ̂G.

Corollary 3.3 For φ in L1(�,m
̂G), we have

∫

�

φ(ω)dm
̂G(ω) =

∫

̂G/�∗
φ′dm

̂G/�∗ . (3.3)
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In particular, for any γ ∈ �, we have

∫

�

Xγ (ω)φ(ω)dm
̂G(ω) =

∫

̂G/�∗
X∗γ φ′dm

̂G/�∗ . (3.4)

Proof Equation (3.4) follows from (3.3), because (Xγ |�φ)′ = X∗γ φ′; indeed

(Xγ |�φ)′(�∗ + ω) = (Xγ |�φ)(ω) = Xγ (ω)φ(ω) = X∗γ (�∗ + ω)φ′(�∗ + ω)

for ω ∈ �. ��
The next corollary is Proposition 2.16 in [9].

Corollary 3.4 If � is discrete, then m
̂G(�) is finite, and {Xγ |�}γ∈� is an orthogonal

basis in L2(�).

Proof In this case, ̂G/�∗ is a compact group, and {X∗γ }γ∈� is an orthogonal basis for

L2(̂G/�∗). Apply (3.4) with γ = γ1 and φ = Xγ2 |� to obtain

∫

�

Xγ1(ω)Xγ2(ω)dm
̂G(ω) =

∫

̂G/�∗
X∗γ1X∗γ2dm̂G/�∗ ,

from which the corollary follows. ��
When � is not discrete, we have the following substitute for Corollary 3.4.

Lemma 3.5 For φ in L1(�,m
̂G), we have

∫

�

∣

∣

∣

∣

∫

�

Xγ (ω)φ(ω)dm
̂G(ω)

∣

∣

∣

∣

2

dm�(γ ) =
∫

�

|φ(ω)|2dm
̂G(ω); (3.5)

both sides of the equation can be infinite.

Proof Since the character group of ̂G/�∗ is �, for φ in L1(�,m
̂G), we have

̂φ′(γ ) =
∫

̂G/�∗
X∗γ φ′dm

̂G/�∗ for γ ∈ �.

Thus by (3.4),

∣

∣

∣

∣

∫

�

Xγ (ω)φ(ω)dm
̂G(ω)

∣

∣

∣

∣

2

=
∣

∣

∣

∣

∫

̂G/�∗
X∗γ φ′dm

̂G/�∗

∣

∣

∣

∣

2

= |̂φ′(−γ )|2 for γ ∈ �,

and the left-hand-side of (3.5) is
∫

�
|̂φ′|2 dm�. Hence to verify equation (3.5), it

suffices to verify
∫

�

|̂φ′|2 dm� =
∫

�

|φ(ω)|2dm
̂G(ω). (3.6)
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If φ ∈ L2(�,m
̂G), then φ′ ∈ L2(̂G/�∗,m

̂G/�∗) by Proposition 3.2. By the
Plancherel Theorem [19, Theorem (31.18)] and Corollary 3.3, we have

∫

�

|̂φ′|2 dm� =
∫

̂G/�∗
|φ′|2 dm

̂G/�∗ =
∫

�

|φ(ω)|2 dm
̂G(ω),

so that (3.6) holds.
However, if φ �∈ L2(�,m

̂G), then φ′ �∈ L2(̂G/�∗,m
̂G/�∗) by Proposition 3.2.

Then, [19, (31.44a)] implies that ̂φ′ �∈ L2(�,m�). This shows that both sides of (3.6)
are equal to∞. ��
Corollary 3.6 The set of functions {Xγ |� : γ ∈ �} constitutes a determining set for
L1(�).

Proof This result is essentially noted in Example 2.2. Considerφ ∈ L1(�) and assume
that

∫

�
Xγ φ dm

̂G = 0 for all γ ∈ �. Then by (3.5), we have
∫

�
|φ|2 dm

̂G = 0 and so
φ = 0. ��

The following definition formalizes the concept of a TI subspace of L2(G).

Definition 3.2 Suppose that � ⊂ G is a closed co-compact subgroup of G. Let
V ⊂ L2(G) be a closed subspace. We say that V is TI under �, in short �-TI, if
f ∈ V implies Tγ f ∈ V for all γ ∈ �, where Ty f (x) = f (x − y) for x, y ∈ G.
Given a countable subset A of L2(G), we define a �-TI space generated by A as

S�(A) := span{Tγ φ : φ ∈ A, γ ∈ �} ⊂ L2(G).

The following result is a well-known consequence of the Plancherel Theorem. In
the context of LCA groups, it is shown by Cabrelli and Paternostro in [9].

Proposition 3.7 The fiberization mapping T : L2(G)→ L2(�, 2(�∗)) defined by

T f (ω) = { f̂ (ω + κ)}κ∈�∗ ,

is an isometric isomorphism. Also, for every ω ∈ � and f ∈ L2(G), we have

T (T−γ f )(ω) = Xγ (ω) · (T f )(ω) for all γ ∈ �. (3.7)

Proof The fact that T is an isometric isomorphism was shown in [9, Proposition 3.3].
Indeed, the additional assumption made in [9], that � is discrete, was not used in the
proof.

To verify (3.7), observe that T̂−γ f (χ) = χ(γ ) ̂f (χ) for χ ∈ ̂G, so that T̂−γ f (χ) =
Xγ (χ) ̂f (χ). Therefore, for ω ∈ �, we have

T (T−γ f )(ω)={T̂−γ f (ω+κ)}κ∈�∗ ={Xγ (ω+κ) ̂f (ω + κ)}κ∈�∗ = Xγ (ω)T ( f )(ω);

recall that Xγ (κ) = 1 for γ ∈ � and κ ∈ �∗. Thus equation (3.7) holds. ��
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Theorem 3.8 below, which is themain result of this section, characterizes TI spaces.
It is reminiscent of a characterization of shift-invariant (SI) spaces which dates back
to Helson [17] and Srinivasan [32]. The proof of this fact in the setting of SI spaces
on R

n and on a LCA group G can be found in [5, Proposition 1.5], [9, Theorem 3.10],
and [23, Theorem 3.1], respectively. Note that [9] and [23] require the assumption
that � is a uniform lattice, i.e., � is a discrete co-compact subgroup of G; see also
[23, Theorem 3.1]. The fact that � is not assumed to be discrete is the first innovation
of Theorem 3.8. The second innovation is the utilization of multiplicatively-invariant
(MI) spaces studied in Sect. 2.

Our main result has far reaching consequences. In particular, we can deduce a range
of results includingWiener’s characterization of TI subspaces and the characterization
of shift-invariant spaces as two extremes of the same result. These intermediate results
are new even in the case of R

n ; see Example 3.3 below. On a technical level, the
lack of discreteness of � translates into non-compactness of ̂G/�∗, which makes the
Borel section � have infinite measure. As we will see, this extra difficulty can be
circumnavigated.

Theorem 3.8 Let V ⊂ L2(G) be a closed subspace, and � ⊂ G be a closed co-
compact subgroup. Then, the following are equivalent:

(i) V is �-TI,
(ii) T (V ) is L∞(�)-MI,
(iii) there exists a measurable range function J : �→ {closed subspaces of 2(�∗)}

such that
V = { f ∈ L2(G) : T f (ω) ∈ J (ω) a.e. ω ∈ �}. (3.8)

Identifying range functions which are equal almost everywhere, the correspondence
between �-TI spaces and measurable range functions is one-to-one and onto.

Moreover, if V = S�(A) for some countable subset A of L2(G), then the measur-
able range function J associated to V is given by

J (ω) = span{T φ(ω) : φ ∈ A}, a.e. ω ∈ �. (3.9)

Proof By Corollary 3.6, D = {Xγ |� : γ ∈ �} is a determining set for L1(�). There-
fore, Proposition 3.7 implies that V is a �-TI subspace of L2(G) if and only if W =
T (V ) is aD-MI subspace of L2(�, 2(�∗)). Thus, Theorem 2.4 implies that V is a �-
TI space if and only if there is a range function J : �→ {closed subspaces of 2(�∗)}
such that

T (V ) = W = {� ∈ L2(�, 2(�∗)) : �(ω) ∈ J (ω) for a.e. ω ∈ �}.

Applying T −1 and Proposition 3.7 yields (3.8):

V = T −1(W ) = { f ∈ L2(G) : T f (ω) ∈ J (ω) for a.e. ω ∈ �}.

Now suppose that V = span{Tγ φ : φ ∈ A, γ ∈ �} for some countable subset
A of L2(G). Then B = T (A) is a countable subset of L2(�, 2(�∗)), and using
Proposition 3.7 we see that
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W = T (V ) = span{Xγ (ω)�(ω) : γ ∈ �,� ∈ B}
= span{g(ω)�(ω) : g ∈ D,� ∈ B}.

By Theorem 2.4, the measurable range function J associated to W is

J (ω) = span{�(ω) : � ∈ B} = span{T φ(ω) : φ ∈ A} for a.e. ω ∈ �.

Finally, the one-to-one correspondence between �-TI spaces and measurable range
functions J follows from the same assertion in Theorem 2.4. ��

As an immediate consequence of Theorem 3.8 we have the characterization of TI
subspaces of L2(G) which is often attributed to Wiener [36, Theorem I]. See also
[17,32] and [19, Theorem (31.39)].

Corollary 3.9 Let V ⊂ L2(G) be a closed subspace. Then, V is invariant under all
translations (G-TI) if and only if there exists a measurable set E ⊂ ̂G such that

V = { f ∈ L2(G) : supp f̂ ⊂ E}. (3.10)

Proof In the case� = G, the fiberizationmap T coincides with the Fourier transform,
and a range function J can be identified with 1E for some E ⊂ ̂G, since 2(�∗) is
1-dimensional. Thus, (3.8) can be rewritten as (3.10). ��
Example 3.3 Note that in the Euclidean settingG = R

n , any closed subgroup� ⊂ R
n

is co-compact ⇐⇒ � = P(Zk × R
n−k) for some P ∈ GLn(R) and 0 ≤ k ≤ n. In

other words, any such � is a direct sum of a rank k lattice and an (n− k) dimensional
subspace. In particular, if� = Z

n , then Theorem 3.8 is simply [5, Proposition 1.5]. On
the other hand, if we take � = R

n , then Corollary 3.9 yieldsWiener’s characterization
of TI subspaces of L2(Rn). However, the most interesting situation happens in the
intermediate case when 1 ≤ k ≤ n − 1.

Without loss of generality, by a change of coordinateswemay assume that� = Z
k×

R
n−k . Then �∗ = Z

k ×{0}n−k ∼= Z
k , and we can choose � = [−1/2, 1/2)k ×R

n−k .
The fiberization mapping T : L2(Rn)→ L2(�, 2(Zk)) is given by

T f (ξ) = ( f̂ (ξ1 + γ, ξ2))γ∈Zk , for ξ = (ξ1, ξ2) ∈ [−1/2, 1/2)k × R
n−k .

Here, the Fourier transform f̂ (ξ) = ∫

Rn f (x)e−2π i〈x,ξ〉dx . A range function is a
mapping

J : [−1/2, 1/2)k × R
n−k → {closed subspaces of 2(Zk)}.

By Theorem 3.8, any Z
k × R

n−k-TI space V ⊂ L2(Rn) is of the form

V = { f ∈ L2(Rn) : T f (ξ1, ξ2) ∈ J (ξ1, ξ2) a.e. (ξ1, ξ2) ∈ [−1/2, 1/2)k × R
n−k}

for some measurable range function J as above.
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Example 3.4 Suppose that G = Z
n . Any co-compact subgroup � ⊂ Z

n is of the form
� = PZ

n for some n × n invertible matrix P with integer entries. Then ̂G = T
n =

R
n/Z

n , and

�∗ = {ξ ∈ T
n : 〈ξ, γ 〉 ∈ Z for all γ ∈ �}

is a finite subgroup of T
n with p = | det P| elements. Indeed, �∗ is isomorphic with

(PT )−1Zn/Z
n = {d1, . . . , dp}. Thus, we can choose � = (PT )−1([−1/2, 1/2)n).

The fiberization mapping T : 2(Zn)→ L2(�, C
p) is given by

T a(ξ) = (â(ξ + d1), . . . , â(ξ + dp)) for ξ ∈ �.

Here the Fourier transformˆ : 2(Zn)→ L2(Tn) is given by

â(ξ) =
∑

γ∈Zn

aγ e
−2π i〈γ,ξ〉 for a = (aγ )γ∈Zn .

A range function is a mapping J : � → {subspaces of C
p}. Then Theorem 3.8

immediately recovers [6, Theorem 2.1].

Example 3.5 Let G be a compact LCA group. Then any closed subgroup � ⊂ G is
allowed and we have a complete characterization of all TI spaces. In particular, note
that if we take � = {0}, then �∗ = ̂G. Thus, the range function J is defined on the
single-element fundamental domain � = {0}. Thus, J (0) can be an arbitrary (closed)
subspace of 2(�∗), which corresponds to an arbitrary (closed) subspace of L2(G)

under the Fourier transform, since there is no translation invariance assumed a priori.

Theorem 3.8 can be also phrased in terms of direct integrals; see [15, Section 7.4].
That is, V is �-TI if and only if T (V ) = MJ for some measurable range function J ,
where MJ is identified with a direct integral

MJ = {� ∈ L2(�, 2(�∗)) : �(ω) ∈ J (ω) a.e. ω} =
∫ ⊕

�

J (ω)dω. (3.11)

Indeed, {J (ω)}ω∈� is a measurable field of Hilbert spaces together with vector fields
{ fκ}κ∈�∗ given by fκ (ω) = PJ (ω)(eκ), where {eκ }κ∈�∗ is the standard basis of 2(�∗).
Then Theorem 2.6 or the structure theorem on measurable vector fields [15, Proposi-
tion 7.27] yields vector fields forming an orthonormal basis of J (ξ). This result can
be used to establish (3.11); we leave details to the reader.

4 The Spectral Function

In this section we define the spectral function for TI spaces on second countable LCA
groups studied in Sect. 3. A limited introduction to spectral functions on LCA groups
is given in [24]. We shall employ Theorem 3.8 for the initial definition of the spectral
function, following [7, Definition 2.1]. The main result of this section states that the
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spectral function does not depend on the choice of a closed co-compact subgroup �,
which generalizes the result of the first author and Rzeszotnik [8].

Definition 4.1 Suppose V ⊂ L2(G) is a �-TI vector subspace, with range function
J : � → {closed subspaces of 2(�∗)}. For ω ∈ �, let PJ (ω) be the projection
of 2(�∗) onto J (ω). The dimension function of V is the mapping dim�

V : ̂G →
{0, 1, 2, 3, . . . ,∞} given by

dim�
V (ω + κ) = dim J (ω) for ω ∈ � and κ ∈ �∗. (4.1)

The spectral function of V is the mapping σ�
V : ̂G → [0, 1] given by

σ�
V (ω + κ) = ‖PJ (ω)eκ‖2 for ω ∈ � and κ ∈ �∗, (4.2)

where {eκ }κ∈�∗ denotes the standard basis of 2(�∗). Compare (4.1) with Definition
2.4.

This iswell defined, since ̂G = �⊕�∗.Weuse the superscript� onσV to emphasize
that the definition depends on �. However, we will see later in Theorem 4.2 that the
functions σ�

V do not depend on �, at which point we will drop the superscripts.
Following [7, equation (2.2)] one can easily show that the dimension function is a

�∗ periodization of the spectral function, i.e., we have

dim�
V (ω) =

∑

κ∈�∗
σ�
V (ω + κ) for a.e. ω ∈ �. (4.3)

Indeed,

∑

κ∈�∗
σ�
V (ω + κ) =

∑

κ∈�∗
‖PJ (ω)eκ‖2 =

∑

κ∈�∗
〈PJ (ω)eκ , eκ 〉 = trace(PJ (ω))

= dim(range(PJ (ω))) = dim�
V (ω).

The following theorem plays a key role in developing properties of the spectral
function; see [7, Lemma 2.8] and [8, Lemma 2.3].

Theorem 4.1 Suppose V is a �-TI subspace of L2(G) and that K is a measurable
subset of ̂G with finite measure such that

m
̂G(K ∩ (κ + K )) = 0 for all κ ∈ �∗ \ {0}.

Let PV be the orthogonal projection of L2(G) onto V . Then

‖PV (1̌K )‖2 =
∫

K
σ�
V (χ)dm

̂G(χ). (4.4)
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Proof Let f = 1̌K . Then for a.e.ω ∈ �, we haveT f (ω) = eκ if there is a κ ∈ �∗ such
that ω+ κ ∈ K ; otherwise 0. This is where the hypothesis on K is used; it guarantees
that for a.e. ω ∈ �, there is never more than one κ ∈ �∗ such that ω + κ ∈ K .

By Theorem 3.8 and Proposition 2.2 for any g ∈ L2(G) we have

T (PV g)(ω) = PJ (ω)(T g(ω)) for a.e. ω ∈ �.

Hence,

‖PV ( f )‖2 = ‖T PV ( f )‖2 =
∫

�

‖PJ (ω)(T f (ω))‖2dm
̂G(ω)

=
∑

κ∈�∗

∫

�

‖PJ (ω)(eκ)‖21K (ω + κ)dm
̂G(ω)

=
∑

κ∈�∗

∫

̂G
1�(ω)σ�

V (ω + κ)1K (ω + κ)dm
̂G(ω)

=
∑

κ∈�∗

∫

̂G
1κ+�(ω + κ)σ�

V (ω + κ)1K (ω + κ)dm
̂G(ω)

=
∑

κ∈�∗

∫

̂G
1κ+�(ω)σ�

V (ω)1K (ω)dm
̂G(ω) =

∫

̂G
σ�
V (ω)1K (ω)dm

̂G(ω).

This shows (4.4) and completes the proof of Theorem 4.1. ��
Theorem 4.2 Suppose that V ⊂ L2(G) is both a �1-TI and �2-TI subspace for two
closed co-compact subgroups �1 and �2 of G. Then

σ
�1
V (χ) = σ

�2
V (χ) for almost all χ ∈ ̂G. (4.5)

Consequently, the spectral function σ�
V does not depend on the co-compact sub-

group � and, after the next proof, we shall omit the superscript � by writing σV .

Proof We will show that for every element χ0 in ̂G, there is a neighborhood of χ0
on which (4.5) holds. To retain the almost everywhere feature, it suffices to take a
countable subcover of this cover of ̂G.

So, consider χ0 in ̂G. Let U be a neighborhood of 0 in ̂G so that

U ∩ (�∗1 ∪ �∗2) = {0}. (4.6)

Let W be a symmetric neighborhood of 0 so that W −W ⊂ U . We will focus on �∗1 .
We claim that

(χ0 +W ) ∩ (κ + χ0 +W ) = ∅ for κ ∈ �∗1 \ {0}. (4.7)

Otherwise there exist χ1, χ2 in W and κ ∈ �∗1 \ {0} so that χ0 + χ1 = κ + χ0 + χ2.
Then

κ = χ1 − χ2 ∈ W −W ⊂ U and κ ∈ �∗1 ∪ �∗2 \ {0},

which contradicts (4.6).
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Now (4.7) implies that for everymeasurable subset K ⊂ χ0+W withfinitemeasure,

K ∩ (κ + K ) = ∅ for κ ∈ �∗1 \ {0}. (4.8)

From (4.4), we conclude that

∫

K
σ

�1
V (χ)dχ = ‖PV (1̌K )‖2 for all finite measure K ⊂ χ0 +W.

This also holds for �2, and the right-side does not depend on any �. So

∫

K
σ

�1
V (χ)dχ =

∫

K
σ

�2
V (χ)dχ for all finite measure K ⊂ χ0 +W.

From measure theory, this implies

σ
�1
V (χ) = σ

�2
V (χ) for almost all χ ∈ χ0 +W.

This verifies (4.5). ��

Example 4.1 Suppose anLCAgroupG satisfying our standing hypotheses is compact.
Then the dual ̂G is discrete and countable. Let � ⊂ G be a closed subgroup which
is automatically co-compact. Finally, let V be a �-TI subspace of L2(G). Note that
� might be the trivial subgroup {0}, so that V could be merely any (closed) subspace
of L2(G) without any additional translation invariance. What is then the spectral
function σV (χ)? With � = {0}, we have �∗ = ̂G and � = {0}. Let {eκ}κ∈̂G be
the standard basis of 2(̂G). Then the fiberization mapping from Proposition 3.7 is
the Fourier transform L2(G) → 2(̂G). Thus, the range function from Theorem 3.8
corresponding to V is J ({0}) = ̂V . Thus,

σV (κ) = ||P
̂V (eκ)||2 for all κ ∈ ̂G.

We end this section by observing that it is possible to introduce a more general
object than the spectral function, the local trace function, introduced for G = R

n by
Dutkay [12]. The nice feature of the local trace function is that it unifies the spectral
function and the dimension function into a very general class of functions “measuring
the size” of a TI-space. A potential disadvantage is that the local trace function in
general is no longer independent of the choice of the underlying co-compact subgroup
�. Hence, it behaves more like a dimension function.

To introduce the local trace function it is convenient to extend the domain of the
range function from the Borel section� to the whole group ̂G. That is, we require that
a range function has domain ̂G and satisfies a consistency formula with respect to �∗:

J (χ + κ0) = Sκ0(J (χ)) for all κ0 ∈ �∗, χ ∈ ̂G, (4.9)
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where Sκ0 : 2(�∗)→ 2(�∗) is the shift operator defined by

Sκ0((aκ)κ∈�∗) = (aκ+κ0)κ∈�∗ .

Indeed, if J is initially defined on �, which is a Borel section of ̂G/�∗, we define

J (ω + κ0) = Sκ0(J (ω)) for ω ∈ � and κ0 ∈ �∗.

Since Sκ0 ◦ Sκ1 = Sκ0+κ1 is a representation of the group �∗ we have (4.9).
To interpretTheorem3.8with this extendeddefinitionof the range function, suppose

that V = S�(A) for some countable subfamilyA of L2(G) and J is its corresponding
range function. Then for any χ = ω + κ0 ∈ ̂G we have

J (χ)=J (ω + κ0) = span{Sκ0(T φ(ω)) : φ ∈ A}=span{(φ̂(χ + κ))κ∈�∗ : φ ∈ A}.

Thus, (3.9) holds for a.e. χ ∈ ̂G under the convention T φ(χ) = (φ̂(χ + κ))κ∈�∗ .

Definition 4.2 Let T be a fixed positive (self-adjoint) operator on 2(�∗) and V a
�-TI space with corresponding range function J . The local trace function associated
to the pair (T, V ) is defined by

τ�
V,T (χ) = trace(T PJ (χ)) for χ ∈ ̂G.

In particular, [12, Proposition 4.14] holds in our setting. That is, if we take T to be
a rank 1 orthogonal projection onto span{e0} ⊂ 2(�∗), then the local trace function
coincides with the spectral function

τ�
V,T (χ) = 〈PJ (χ)e0, e0〉 = σV (χ).

On the other hand, taking T to be the identity operator I yields

τ�
V,I (χ) = dim�

V (χ).

We leave the verification of other properties of the local trace function shown in [12]
to the interested reader.

5 Frames and Riesz Sequences

In this section we obtain a characterization of frame and Riesz sequence property for
TI systems in terms of the fiberization operator. This formulation is due to the first
author [5, Theorem 2.3]. The extension of this result to the LCA setting for discrete
subgroups � ⊂ G was done by Cabrelli and Paternostro [9, Theorems 4.1 and 4.3]. In
the case when � is non-discrete, we need to consider a concept of continuous frames
which is a generalization of the usual (discrete) frames proposed by G. Kaiser [21]
and independently by Ali, Antoine, and Gazeau [2].



J Fourier Anal Appl (2015) 21:849–884 869

Definition 5.1 LetA be a countable subset of L2(G), and � ⊂ G be a subgroup. We
say that the set

E�(A) = {Tγ φ : γ ∈ �, φ ∈ A}

is a continuous frame sequence, or frame for its closed linear span S�(A) =
spanE�(A), if there exist bounds 0 < A ≤ B <∞ such that

A|| f ||2 ≤
∑

φ∈A

∫

�

|〈 f, Tγ φ〉|2dm�(γ ) ≤ B|| f ||2 for all f ∈ S�(A).

Likewise, we introduce the concept of continuous Riesz sequences as follows,
where C00(�) is the space of continuous functions on � with compact support.

Definition 5.2 We say that E�(A) is a continuous Riesz sequence if for any collection
of functions aφ ∈ C00(�), which are zero for all but finitely many φ ∈ A, we have

A
∑

φ∈A
||aφ ||2L2(�)

≤
∥

∥

∥

∥

∑

φ∈A

∫

�

aφ(γ )Tγ φ dm�(γ )

∥

∥

∥

∥

2

≤ B
∑

φ∈A
||aφ ||2L2(�)

. (5.1)

Observe that the integral in (5.1) is vector-valued with values in the space L2(G).
A standard reference for vector-valued integrals is Diestel and Uhl [11]. In the special
case when � is discrete, the above concepts coincide with the classical definitions
of frame and Riesz sequences. However, as we will see later there are no continuous
Riesz sequences satisfying Definition 5.2 unless � is discrete. The main result of this
section is the following generalization of [5, Theorem 2.3] and [9, Theorems 4.1 and
4.3].

Theorem 5.1 Let A be a countable subset of L2(G), let J be the measurable range
function associated to S�(A), and let 0 < A ≤ B <∞. The following are equivalent:

(i) The set E�(A) is a continuous frame (resp., continuous Riesz sequence) for
S�(A) with bounds A and B.

(ii) For almost every ω ∈ �, the set {T φ(ω) : φ ∈ A} ⊂ 2(�∗) is a frame (resp.,
Riesz basis) for J (ω) with bounds A and B.

We emphasize that part (i) of Theorem 5.1 requires continuous variants of frame
and Riesz sequences unlike part (ii) that deals with the usual (discrete) frames and
Riesz bases.

Proof of Theorem 5.1 for frames By Proposition 3.7, we have the following key cal-
culation for f ∈ L2(G) and φ ∈ A:
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∫

�

|〈Tγ φ, f 〉L2(G)|2dm�(γ ) =
∫

�

|〈T Tγ φ, T f 〉L2(�,2)|2dm�(γ )

=
∫

�

∣

∣

∣

∣

∫

�

Xγ (ω)〈T φ(ω), T f (ω)〉2dm̂G(ω)

∣

∣

∣

∣

2

dm�(γ )

(5.2)

=
∫

�

|〈T φ(ω), T f (ω)〉2 |2dm̂G(ω).

The last equality follows from Lemma 3.5 with φ replaced by 〈T φ(ω), T f (ω)〉2 ,
which is in L1(�,m

̂G). Summing (5.2) over φ ∈ A we obtain

∑

φ∈A

∫

�

|〈Tγ φ, f 〉L2(G)|2dm�(γ ) =
∫

�

∑

φ∈A
|〈T φ(ω), T f (ω)〉2 |2dm̂G(ω). (5.3)

Note that, a priori, the quantities on either side of (5.3) might be equal to ∞ as in
Lemma 3.5. However, either assumption (i) or (ii) implies that both sides of (5.3) are
finite.

With (5.3) established, the rest of the proof is a verbatim adaption of [5] and [9,
Theorem 4.1]. Indeed, the implication (ii) �⇒ (i) follows from Proposition 3.7,
Theorem 3.8, and the definition of a frame by a direct calculation. The reverse impli-
cation requires a straightforward adaptation of the argument from [5]. Consequently,
we leave the details to the reader. ��

Proof of Theorem 5.1 for Riesz sequences In the case when � is discrete this result
was shown in [9, Theorem 4.3]. The same result is vacuously true when � is not
discrete. That is, if either (i) or (ii) holds, then � is actually forced to be a discrete
subgroup. Indeed, suppose (ii) holds. Then, for any φ ∈ A, we have ||T φ(ω)||2 ≥ A
for a.e. ω ∈ �. Thus,

Am
̂G(�) ≤

∫

�

||T φ(ω)||2dm
̂G(ω) <∞.

By Proposition 3.2, � is discrete. Likewise, suppose that (i) holds. Since the map-
ping γ �→ Tγ φ is continuous from G into L2(G), for every ε > 0 we can find a
neighborhood U of 0 such that

||Tγ φ − φ|| < ε for γ ∈ U.

We may also select U so that m�(� ∩ U ) < ∞. Then for any a ∈ C00(�) with
supp a ⊂ � ∩U we have

∥

∥

∥

∥

∫

�

a(γ )Tγ φ dm�(γ )−
( ∫

�

a(γ ) dm�(γ )

)

φ

∥

∥

∥

∥

< ε

∫

�

|a(γ )|dm�(γ ).
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Thus by (5.1) we have

√
A||a||L2(�) ≤

∥

∥

∥

∥

∫

�

a(γ )Tγ φ dm�(γ )

∥

∥

∥

∥

≤ (||φ|| + ε)‖a‖L1(�).

Since C00(�∩U ) is dense in L1(�∩U,m�), we have L1(�∩U,m�)⊂L2(�∩U,m�).
By [16, Exercise 5, Chapter 6], � ∩ U cannot have subsets with arbitrarily small
measure. Since m� restricted to � ∩ U is a regular measure, it would follow that
m�({0}) > 0.As noted in [20, (15.17.b)], this implies that� is discrete. This completes
the proof of the theorem by reducing it to [9, Theorem 4.3]. ��

Riesz and frame sequences can also be characterized using Gramians and dual
Gramians introduced and studied in the setting of SI spaces by Ron and Shen [29,30].

Definition 5.3 Let A be a countable subset of L2(G) such that

∑

φ∈A
|φ̂(χ)|2 <∞ for almost all χ ∈ ̂G. (5.4)

For almost allω ∈ �, define Gramian and dual Gramian as (possibly) infinite matrices

Gω =
(

∑

κ∈�∗
φ̂1(ω + κ)φ̂2(ω + κ)

)

φ1,φ2∈A
(5.5)

and

˜Gω =
⎛

⎝

∑

φ∈A
φ̂(ω + κ1)φ̂(ω + κ2)

⎞

⎠

κ1,κ2∈�∗
. (5.6)

By standard results in frame theory [10, Chapter 3], the following are equivalent:

(i) Gω defines a bounded operator on 2(A),
(ii) ˜Gω defines bounded operator on 2(�∗),
(iii) the synthesis operator Kω : 2(A)→ 2(�∗) corresponding to {T φ(ω) : φ ∈ A}

is bounded,
(iv) the analysis operator K ∗ω : 2(�∗)→ 2(A) corresponding to {T φ(ω) : φ ∈ A}

is bounded.

Recall that for φ ∈ A, Kω(1φ) = T φ(ω), where 1φ is the sequence that is 1 at φ and
0 elsewhere. For v ∈ 2(�∗), K ∗ω(v) = (〈v, T φ〉(ω))φ∈A. Moreover, Gω = K ∗ωKω

and ˜Gω = KωK ∗ω.
Then, we have a generalization of [5, Theorem 2.5] to the setting of LCA groups

which was shown for discrete � in [9, Proposition 4.9]. Compare also [23, Theo-
rem 4.1].

Theorem 5.2 Let A be a countable subset of L2(G) satisfying (5.4), and consider
0 < A ≤ B. Then the following are equivalent:
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(i) The set E�(A) is a continuous frame for S�(A) with constants A and B.
(ii) For almost all ω ∈ �,

A‖v‖2 ≤ 〈˜Gωv, v〉 ≤ B‖v‖2 for all v ∈ span{T φ(ω) : φ ∈ A}.

(iii) For almost all ω ∈ �, the spectrum σ(˜Gω) ⊂ {0} ∪ [A, B].
Theorem 5.2 has a variant for Riesz sequences which we will not use in this paper.

In this variant, condition (ii) is replaced by

A‖v‖2 ≤ 〈Gωv, v〉 ≤ B‖v‖2 for all v = (vφ)φ∈A ∈ 2(A),

and condition (iii) by σ(Gω) ⊂ [A, B].
Finally, we will need the following decomposition theorem which was shown in [5,

Theorem 3.3]. The extension of this result when � is a discrete co-compact subgroup
of an LCA group was formulated in [9, Theorem 4.11]. In the case when � ⊂ G is
merely co-compact, we have the following result.

Theorem 5.3 Let V be a �-TI subspace of L2(G). Then there exist functions φn ∈ V ,
n ∈ N such that:

(i) E�(φn) is a continuous Parseval frame for S�(φn),
(ii) V can be decomposed as an orthogonal sum

V =
⊕

n∈N
S�(φn).

In particular, E�({φn : n ∈ N}) is a continuous Parseval frame for V .

Proof By Theorem 3.8, the space W = T (V ) is of the form

W = {� ∈ L2(�, 2(�∗)) : �(ω) ∈ J (ω) for a.e. ω ∈ �}

for some measurable range function J . Theorem 2.6 yields the existence of functions
�n ∈ L∞(�, 2(�∗)) such that ||�n(ω)|| ∈ {0, 1} and

J (ω) =
⊕

n∈N
Jn(ω), where Jn(ω) = span�n(ω).

In the case when � is discrete, and hence � has finite measure, we can take
φn = T −1(�n). However, if � has infinite measure, then we need to partition �

as a countable union of sets of finite measure � = ˙⋃
m∈N�m . In this case we define

functions φn,m = T −1(�n1�m ). By Theorem 5.1, each E�(φn,m) is a continuous
Parseval frame for S�(φn,m). Since

J (ω) =
⊕

n,m∈N
Jn,m(ω) where Jn,m(ω) = span T φn,m(ω),
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by (2.10) we have

V =
⊕

n,m∈N
S�(φn,m).

A simple reindexing yields the conclusion of Theorem 5.3. ��
Theorem 5.3 enables us to employ the following equivalent way of defining the

spectral function; see [7, Lemma 2.3] or [8, Prop. 2.1].

Theorem 5.4 Let A be a countable subset of L2(G), and let V = S�(A). If E�(A)

forms a Parseval frame for the space V , then

σV (χ) =
∑

φ∈A
|φ̂(χ)|2 for almost all χ ∈ ̂G. (5.7)

In particular, (5.7) does not depend on the choice ofA as long as E�(A) is a Parseval
frame for V .

Proof The proof closely follows that of [7, Lemma 2.3]. Let J (ω) and PJ (ω) be as in
Definition 4.1. By Theorem 5.1, with A = B = 1, E�(A) is a Parseval frame for V
if and only if {T φ(ω) : φ ∈ A} is a Parseval frame for J (ω), for almost all ω. So for
almost all ω ∈ � and all v ∈ J (ω), we have

‖v‖2 =
∑

φ∈A
|〈v, T φ(ω)〉|2.

Hence

‖PJ (ω)v‖2 =
∑

φ∈A
|〈v, T φ(ω)〉|2 for all v ∈ 2(�∗).

In particular, for (almost all) ω ∈ � and κ ∈ �∗, we have

σV (ω + κ) = ‖PJ (ω)eκ‖2 =
∑

φ∈A
|〈eκ , T φ(ω)〉|2 =

∑

φ∈A
|φ̂(ω + κ)|2,

which completes the proof. ��
As a corollary, Theorem 5.2 describes the spectral function as diagonal entries of

the dual Gramian 〈G̃ωeκ , eκ 〉 of a �-TI system A as in Theorem 5.4. Finally, The-
orem 5.5 gives yet another equivalent way of defining the spectral function, see [7,
Proposition 2.2].

Theorem 5.5 Let S be the set of all �-TI subspaces of L2(G). Then the spectral
function σV of V in S is determined as the unique mapping σ : S → L∞(̂G) that
satisfies
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σS�(φ)(χ) =
{

|φ̂(χ)|2
(

∑

κ∈�∗ |φ̂(χ + κ)|2
)−1

for χ ∈ supp φ̂,

0 otherwise,
(5.8)

which is additive with respect to orthogonal sums, i.e.,

V =
⊕

i∈N
Vi for some Vi ∈ S implies σV =

∑

i∈N
σVi . (5.9)

Proof The property (5.9) is an immediate consequence of (2.10), Theorem 3.8, and
Definition 4.1. Hence, it remains to show (5.8). Given any φ ∈ L2(G) we define
� ∈ L∞(�, 2(�∗)) by

�(ω) =
{

T φ(ω)/||T φ(ω)|| ω ∈ supp T φ,

0 otherwise.

Then
||�(ω)|| ∈ {0, 1} for almost all ω ∈ �. (5.10)

Define functions φm = T −1(�1�m ), where �m’s are the same as in the proof of
Theorem 5.3. By (5.10) and Theorem 5.1, each E�(φm) is a continuous Parseval
frame for S�(φm). Thus, by (5.9) and Theorem 5.4 for any ω ∈ � and κ ∈ �∗ we
have

σS�(φ)(ω + κ) =
∑

m∈N
σS�(φm )(ω + κ) =

∑

m∈N
|φ̂m(ω + κ)|2 =

∑

m∈N
|〈T φm(ω), eκ 〉|2

= |〈�(ω), eκ 〉|2 = |φ̂(ω + κ)|2/‖T φ(ω)‖2.

This completes the proof of Theorem 5.5. ��

6 Modulations, Dilations, and Epimorphisms

The last equality holds when ω ∈ supp T φ, and otherwise equals 0.
In this section we shall show how the spectral functions behave under modulations

and epimorphisms on G.
For a character χ in ̂G, we define the modulation operator Mχ on L2(G) by

Mχ ( f )(x) = χ(x) f (x) for all x ∈ G.

We have the following generalization of [7, equation (2.7)].

Theorem 6.1 Let V ⊂ L2(G) be a �-TI subspace. Let χ0 be in ̂G. Then Mχ0(V ) is
a �-TI subspace and

σMχ0 (V )(χ) = σV (χ − χ0) for almost all χ ∈ ̂G. (6.1)
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Before we generalize dilations to the present setting, we introduce some nota-
tion and terminology. As is standard, we write Aut(G) for the group of topological
automorphisms α of G onto itself. Also, we write Epi(G) for the semigroup of con-
tinuous group homomorphisms α of G onto G. We also write Epick(G) for the set of
α ∈ Epi(G) having compact kernel ker α. Thus Aut(G) ⊂ Epick(G) ⊂ Epi(G). Let
Mor(G, H) be the set of all continuous group homomorphisms between LCA groups
G and H .

Example 6.1

(a) For G = R
n × Z

m , we have

Aut(G) = Epick(G) = Epi(G) = Mor(Zm, R
n) � (Aut(Rn)× Aut(Zm)).

This follows immediately from [34, Theorem 25.8].
(b) LetG =∏∞

n=1 T×∑∞
n=1 Z, where the sum is the discrete “weak direct sum”, i.e.,

all (k1, k2, . . .) inZ
ℵ0 such that all but finitelymany ki equal 0. Defineα : G → G

by

α(z1, z2, . . . ; k1, k2, . . .) = (z2, z3, . . . ; k2, k3, . . .).

Then α ∈ Epi(G) and ker α = {(z1, 1, 1, . . . ; k1, 0, 0, . . .) : z1 ∈ T, k1 ∈ Z} ∼=
T × Z. This shows that ker α need not be compact or discrete, even though G
satisfies our standing hypotheses.

(c) Each α in Epi(T) has the form αn(z) = zn (for all z in T) for some n ∈ Z \ {0}.
Note that Epi(T) is a semigroup under composition since αn ◦ αn′ = αnn′ for
n, n′ ∈ Z \ {0}.

Theorem 6.2 Given G, Epick(G) is a semigroup (under composition). Moreover,
there is a semigroup homomorphism 	 : Epick(G)→ (0,∞) such that

∫

G
( f ◦ α)(x) dmG(x) = 	(α)

∫

G
f (x) dmG(x) (6.2)

for all integrable functions f on G with respect to the Haar measure mG.

Proof To check thatEpick(G) is a semigroup,we need that ker(β◦α) = α−1(β−1(0))
is compact for α, β ∈ Epick(G). Thus it suffices to show that if α ∈ Epick(G),
then α−1(K ) is compact for compact K ⊂ G. Let H = ker α = α−1(0). By
[20, Theorem (5.27)], G and G/H are topologically isomorphic, and the topolog-
ical isomorphism is given by �(x) = α−1(x). Clearly �(K ) is compact. Also
�(K ) = {α−1(k) : k ∈ K } = {x + H : x ∈ X} for some subset X ⊂ G. By
[20, (5.24.a)], X + H is compact in G. Therefore

X + H =
⋃

x∈X
(x + H) =

⋃

k∈K
α−1(k) = α−1(K )

is compact.
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To obtain 	 as described, it suffices by [20, Theorem (15.5)] to show that Jα( f ) =
∫

G( f ◦ α)(x) dmG(x) defines a positive translation-invariant linear functional on the
space C00(G) of continuous functions on G with compact support. The verifications
are routine, once it is checked that Jα( f ) is finite for all f ∈ C00(G). This is because
f ◦ α also has compact support, which follows from the conclusion in the second
sentence of this proof. ��

We call 	 the modular function on Epick(G). It extends the modular function
defined on Aut(G); see, for example [20, (15.26) and (26.21)].

Theorem 6.3 If G is compactly generated, then Epick(G) = Epi(G).

Proof Consider a compactly generated LCA group G. By the structure theorem [20,
Theorem (9.8)],G = A×F , where A = R

n×Z
m and F is compact. Let K = {0}×F ,

which is compact in G. Consider α in Epi(G). Since α takes compact subgroups into
compact subgroups, we have α(K ) ⊂ K . We define

β : G/K → G/K where β(g + K ) = α(g)+ K

for all g + K in G/K ; β is well defined since α(K ) ⊂ K . It easy to verify that β

is a continuous group homomorphism; see [20, (5.15), (5.17)]. Since α maps G onto
G, it follows that β is in Epi(G/K ). Since G/K is topologically isomorphic with
A = R

n×Z
m , Example 6.1(a) shows that Epi(G/K ) = Aut(G/K ), so ker β = {K }.

This implies that ker α ⊂ K , since α(g) = 0 �⇒ β(g + K ) = K �⇒ g + K ∈
ker β �⇒ g + K = K �⇒ g ∈ K . Since K is compact, so is ker α. ��

A simplified proof of [20, Theorem (9.12)], which is about compactly generated
LCA groups, is given in the ‘Appendix’.

Proposition 6.4 Consider a closed co-compact subgroup � of G, and consider α in
Epi(G). Then α−1� is co-compact.

Proof Since G is σ -compact, the open mapping theorem for topological groups [20,
Theorem (5.29)] shows that α is an open mapping. Then [20, Theorem (5.34)] implies
G/α−1� andG/� are topologically isomorphic, so ifG/� is compact, so isG/α−1�.

��
Proposition 6.5 Let α ∈ Epi(G), and let α̂ be the adjoint homomorphism defined
by α̂(χ) = χ ◦ α for χ ∈ ̂G. Then α̂ is a topological isomorphism of ̂G onto the
annihilator K ∗ of K = ker α. Also, we have

α̂�∗ = (α−1�)∗. (6.3)

Proof Since α maps G onto G, and G is σ -compact, the open mapping theorem [20,
Theorem (5.29)] gives that α is open and continuous. By [20, Theorem (24.40)], α̂ is
an open and continuous isomorphism of ̂G onto K ∗.

To show (6.3), consider χ ∈ �∗ and x ∈ α−1�. Then α(x) ∈ �, so α̂(χ)(x) =
χ(α(x)) = 1. Since this holds for all x ∈ α−1�, we conclude that α̂�∗ ⊂ (α−1�)∗.
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Now suppose that χ is in (α−1�)∗. Since K ⊂ α−1�, we have (α−1�)∗ ⊂ K ∗,
so χ ∈ K ∗. Therefore there is a (unique) ψ ∈ ̂G so that α̂(ψ) = χ . It suffices to
show that ψ is in �∗. Let x be in �. Since α maps G onto G, we have x = α(y) for
some y ∈ G. Then α(y) ∈ �, so y ∈ α−1�. Since χ is in (α−1�)∗, we conclude
ψ(x) = ψ(α(y)) = α̂(ψ)(y) = χ(y) = 1. ��
Definition 6.1 For α ∈ Epick(G), we define the α-dilation operator on L2(G) by

Dα f (x) = f (α(x)) for all x ∈ G.

We need the following lemma.

Lemma 6.6 Let α ∈ Epick(G) and K = ker α. Then for any f ∈ L2(G) we have

(̂Dα f )(χ) =
{

	(α) f̂ (α̂−1(χ)) for χ ∈ α̂(̂G) = K ∗,
0 otherwise.

(6.4)

Proof It suffices to prove this for f in L1(G) ∩ L2(G). We have

(̂Dα f )(χ) =
∫

G
χ(x ) f (α(x)) dm(x). (6.5)

If χ ∈ α̂(̂G), and we define ψ = α̂−1(χ), then χ = ψ ◦ α. Hence, using equation
(6.2), we have

(̂Dα f )(χ) =
∫

G
ψ(α(x)) f (α(x)) dm(x) = 	(α)

∫

G
ψ(x) f (x) dm(x)

= 	(α) f̂ (α̂−1(χ)), (6.6)

which confirms equation (6.4) in this case. Otherwise, χ /∈ K ∗, and we use equation
(6.5) and [19, Theorem (28.54)] to obtain

(̂Dα f )(χ) =
∫

G
χ(x ) f (α(x)) dm(x)

=
∫

G/K

∫

K
χ(x + y) f (α(x + y)) dmK (y) dmG/K (x + K ), (6.7)

with the Haar measures suitably normalized, say with mK (K ) = 1. Observe that for
each x ∈ G, equivalently each x + K ∈ G/K , we have α(x + y) = α(x) for all
y ∈ K , since α is constant on x + K . So f (α(x + y)) = f (α(x)) for all y ∈ K .
Therefore the inside integral above is equal to

χ(x) · f (α(x))
∫

K
χ(y) dmK (y),
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and this equals 0 because χ is not the constant character 1 on K (since χ /∈ K ∗); see
[20, Lemma (23.19)]. Since all the inside integrals in Eq. (6.7) equal 0, (̂Dα f )(χ) = 0.
This completes the proof of (6.4). ��

We have the following formula for the spectral function of Dα(V ), which is a
generalization of [7, equation (2.6)].

Theorem 6.7 Let V ⊂ L2(G) be a �-TI subspace. Let α ∈ Epick(G). Then Dα(V )

is an α−1�-TI subspace and

σDα(V )(χ) =
{

σV ((α̂)−1χ) for χ ∈ α̂(̂G) = K ∗,
0 otherwise.

(6.8)

Proof Consider any f ∈ Dα(V ) and γ̃ ∈ α−1�, i.e., f = Dαg for some g ∈ V and
α(γ̃ ) = γ for some γ ∈ �. Then,

Tγ̃ f (x) = g(α(x − γ̃ )) = g(α(x)− γ ) = Dα(Tγ g)(x) for x ∈ G.

Since Tγ g ∈ V , this shows that Dα(V ) is α−1�-TI.
Let E�(A) be a Parseval frame of V for some countable A ⊂ L2(G). By Theo-

rem 5.1, this means that {T φ(ω)}φ∈A is a Parseval frame of J (ω) for a.e. ω ∈ �. The
existence of suchA is guaranteed by Theorem 5.3. Then, by Theorem 5.4, the spectral
function of V is given by

σV (χ) =
∑

φ∈A
|φ̂(χ)|2 for almost all χ ∈ ̂G.

Let �0 be a Borel section of ̂G/K ∗, which is topologically isomorphic with ̂K .
Since K = ker α is compact,�0 is a discrete subset of ̂G. Since α̂(�)⊕α̂(�∗) = α̂(̂G),
and since α̂�∗ = (α−1�)∗ by Proposition 6.5, we have

α̂(�)⊕ (α−1�)∗ = α̂(̂G) = K ∗, (6.9)

so that α̂(�) is a Borel section of α̂(̂G)/(α−1�)∗. Since ̂G = K ∗ ⊕ �0 = α̂(�) ⊕
�0 ⊕ α̂(�∗), the set �̃ = α̂(�) ⊕ �0 is a Borel section of ̂G/(α−1�)∗ such that
α̂(�) ⊂ �̃.

Let T̃ : L2(G)→ L2(�̃, 2(α̂(�∗))) be the fiberization operator corresponding to
the subgroup α−1� ⊂ G. That is,

T̃ f (ω̃) = { f̂ (ω̃ + κ̃)}κ̃∈α̂(�∗) for ω̃ ∈ �̃. (6.10)

Taking f = Dαφ in (6.10), by Lemma 6.6 we have

T̃ f (ω̃) =
{

	(α){φ̂(α̂−1(ω̃ + κ̃))}κ̃∈α̂(�∗)) ω̃ ∈ α̂(�),

0 otherwise.
(6.11)
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Thus, if ω̃ = α̂(ω) for some ω ∈ �, then T̃ f (ω̃) = 	(α)T φ(ω), where we iden-
tify 2(α̂(�∗)) with 2(�∗) in a natural way using the action of α̂. Consequently,
	(α)−1T̃ (Dαφ)(ω̃) is a Parseval frame for the range function J̃ (ω̃) corresponding to
the space Dα(V ). By Theorem 5.1, Eα−1�(Ã) is a Parseval frame of Dα(V ), where
Ã = 	(α)−1Dα(A). By Theorem 5.4 and Lemma 6.6 we obtain (6.8). ��

Weend this section by summarizing several equivalentways of introducing the spec-
tral function associated to TI subspaces of L2(G)with respect to arbitrary co-compact
closed subgroups � of a second countable LCA group G. The spectral function of the
TI-space V can be defined using:

(i) diagonal of orthogonal projections onto the range function,
(ii) decomposition of V into orthogonal sums of principal TI spaces,
(iii) generators of a Parseval frame of V ,
(iv) diagonal of dual Gramians.

We can also collect together all the main properties of the spectral function in a
similar way as [7, Proposition 2.6].

Proposition 6.8 LetS be the set of all �-TI subspaces of L2(G). For V,W ∈ S, we
have:

(a) 0 ≤ σV (χ) ≤ 1 for almost all χ ∈ ̂G.
(b) V =⊕

i∈N Vi for some Vi ∈ S �⇒ σV =∑

i∈N σVi .

(c) V ⊂ W �⇒ σV ≤ σW .
(d) If V ⊂ W, then V = W ⇐⇒ σV = σW .
(e) σV = 1E for some measurable subset E ⊂ ̂G ⇐⇒ V = { f ∈ L2(G) :

supp f̂ ⊂ E}.
(f) σMχ0 (V )(χ) = σV (χ − χ0) for almost all χ ∈ ̂G, where Mχ0 is a modulation by

χ0 ∈ ̂G.
(g) σDα(V )(χ) = σV ((α̂)−1χ) for almost all χ ∈ α̂(̂G) and 0 otherwise, where Dα

is a dilation by α ∈ Epick(G).
(h) dim�

V (χ) =∑

κ∈�∗ σV (χ + κ) for almost all χ ∈ ̂G.

7 The Spectral Function as a Pointwise Limit

Rzeszotnik and the first author [7] have shown that the spectral function can also
be defined pointwise using the Lebesgue Differentiation Theorem. To generalize this
result to the LCA settingwe need the following concept; compare [13, Definition (2.1)]
or [19, Definition (44.10)].

Definition 7.1 In an LCA group G with Haar measure m = mG , a decreasing
sequence {Uj } of finite measure sets is called a D′-sequence if every neighborhood of
0 contains some Uj , and if there is a constant C > 0 satisfying

0 < m(Uj −Uj ) ≤ Cm(Uj ) for all j ∈ N. (7.1)
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Remark 7.1 If G has an invariant metric d satisfying the doubling property

m(B(0, 2r)) ≤ Cm(B(0, r)) for some constant C > 0, (7.2)

where B(0, r) is the ball about 0 of radius r , then {B(0, 2− j )} is a D′-sequence.
Indeed,

m(B(0, 2− j )− B(0, 2− j )) ≤ m(B(0, 2− j+1)) ≤ Cm(B(0, 2− j )) for all j ∈ N.

Proposition 7.1 If G is 0-dimensional or if G contains an open subgroup topolog-
ically isomorphic to R

a × T
b for nonnegative integers a and b, then G has a D′-

sequence.

Proof First note that, in reading [19, Section 44] or [13], every D′′-sequence is a D′-
sequence. Now, if G is 0-dimensional, then it is clear from [20, Theorem (7.7)] that G
has a D′-sequence using open subgroups, as noted in [13, (2.9)]. IfG contains an open
subgroup topologically isomorphic toR

a×T
b, then apply [19, Theorem (44.30)]; this

isn’t surprising either, since R
a × T

b has a D′-sequence. ��
The next theorem is the Lebesgue Differentiation Theorem [19, Theorem (44.18)].

Theorem 7.2 If {Uj } is a D′-sequence in G, then for every f ∈ L p(G), 1 ≤ p <∞,
we have

lim
j→∞

1

m(Uj )

∫

x+Uj

f dm = f (x) for almost all x ∈ G. (7.3)

Combining this theorem with Theorem 4.1 gives the following; compare [8, The-
orem 2.6].

Theorem 7.3 Suppose that ̂G has a D′-sequence {Uj } and that V ⊂ L2(G) is a �-TI
space for a closed co-compact subgroup � of G. Then

σV (χ) = lim
j→∞

‖PV (1̌Uj+χ )‖2
m

̂G(Uj )
for almost all χ ∈ ̂G. (7.4)

Proof Choose j0 so that Uj ∩ (κ +Uj ) = ∅ for all κ ∈ �∗ \ {0} and for j ≥ j0. By
Theorem 4.1, for χ ∈ ̂G, we have

‖PV (1̌Uj+χ )‖2 =
∫

Uj+χ

σV dm
̂G .

Now by Theorem 7.2, for almost all χ ∈ ̂G, we have

σV (χ) = lim
j→∞

1

m
̂G(Uj )

∫

χ+Uj

σV dm
̂G = lim

j→∞
‖PV (1̌Uj+χ )‖2

m
̂G(Uj )

.

��
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Example 7.2 It has been noted that the “tubby torus” T
ℵ0 , which is compact, does not

have a D′-sequence; see, for example, the Notes to [19, Section 44] or [13, p. 194].
In Proposition 7.4 we will show that fact. Hence not every compactly generated LCA
group has a D′-sequence. However, by Proposition 7.1 all groups in the category
CGAL of compactly generated abelian Lie groups do. This category, which consists
of all groups of the formR

a×T
b×Z

c×F where F is finite, is studied byM. Stroppel
[34]. The character groups ̂G of groups G inCGAL also have D′-sequences, because
the category CGAL is closed under taking character groups. In fact, it is the smallest
category containing R and closed with respect to taking closed subgroups, quotients
by closed subgroups, and finite products [34, Corollary (21.20)].

Proposition 7.4 T
ℵ0 has no D′-sequences.

Proof For finite n, we write λn andmn for Lebesguemeasure onR
n and Haar measure

on T
n , respectively. We write m for the Haar measure on the tubby torus T

ℵ0 . Let
πn : R

n → T
n be the quotient map given by πn(x) = x + Z

n for x ∈ R
n . Let

In = [− 1
2 ,

1
2 )

n . Then πn restricted to In is a measure-preserving map.
Consider any n. Since any basis of neighborhoods of 0 hasmembers that are subsets

of πn([− 1
4 ,

1
4 )

n)× T
ℵ0 , it suffices to show

m(U −U ) ≥ 2n−1m(U ) for all open U ⊂ πn

([

− 1

4
,
1

4

)n)

× T
ℵ0 . (7.5)

We will show that for sufficiently large k, there is an open subsetW ofT
n+k satisfying

W × T
ℵ0 ⊂ U and mn+k(W ) >

1

2
m(U ) (7.6)

and
mn+k(W −W ) ≥ 2nmn+k(W ). (7.7)

For then

m(U −U ) ≥ mn+k(W −W ) ≥ 2nmn+k(W ) > 2n
1

2
m(U ) = 2n−1m(U ),

which verifies (7.5).
There exists a compact set K ⊂ U so that m(K ) > 1

2m(U ). The set K can be
covered by finitely many translates (x j + Wj )× T

ℵ0 of neighborhoods of 0, each of
which is a subset of U , where x j ∈ T

n j and Wj is open in T
n j . The union of these

translates can be written as W × T
ℵ0 where W ⊂ T

n+k for sufficiently large k. Since
mn+k(W ) = m(W × T

ℵ0) ≥ m(K ), condition (7.6) holds.
To verify (7.7), we let ψ be the function from A = [− 1

2 ,
1
2 )

n ×[−1, 1)k onto In+k ,
so that the entry of each ψ(x) is equal to the corresponding entry of x modulo 1. Note
that πn+k(ψ(x)) = πn+k(x) for all x in A. Also, ψ−1(x) has 2k elements for each x
in In+k , and λn+k(ψ−1(C)) = 2kλn+k(C) for C ⊂ In+k . Hence

λn+k(E) ≤ 2kλn+k(ψ(E)) for measurable E ⊂ A, (7.8)
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since E ⊂ ψ−1(ψ(E)). SinceW ⊂ T
n+k andW×T

ℵ0 ⊂ U ⊂ πn([ 14 , 1
4 )

n)×T
ℵ0 , we

haveW = πn+k(V ) for an open subset V of [− 1
4 ,

1
4 )

n×[− 1
2 ,

1
2 )

k , so that V −V ⊂ A.
Since πn+k(ψ(V − V )) = πn+k(V )− πn+k(V ), we obtain

mn+k(W −W ) = mn+k(πn+k(V )− πn+k(V ))

= mn+k(πn+k(ψ(V − V )) = λn+k(ψ(V − V )).

Therefore, by (7.8) and the Brunn-Minkowski inequality ([27, Theorem 1.1], [35,
Theorem 3.16]), applied to V − V ⊂ R

n+k we have

mn+k(W −W ) ≥ 2−kλn+k(V − V ) ≥ 2−k2n+kλn+k(V )

= 2nmn+k(πn+k(V )) = 2nmn+k(W ).

This shows (7.7) and completes the proof of the proposition. ��
It is an interesting problem whether Theorem 7.3 can be generalized to an arbitrary

second countable LCA group G. More generally, one can ask whether the Lebesgue
Differentiation Theorem 7.2 holds for such groups. This question is ultimately related
to the boundedness of the Hardy-Littlewood maximal operator. The renowned result
of Stein and Strömberg [33] guarantees dimensionless bounds of strong type (p, p),
1 < p <∞, of the Hardy-Littlewoodmaximal operator with respect to centered balls.
However, a remarkable recent result of Aldez [1] shows that weak type (1, 1) bounds
of the Hardy-Littlewood maximal operator with respect to centered cubes grow to∞
as dimension increases. Hence, it is far from trivial what kind of boundedness results
hold for the Hardy-Littlewood maximal operator on infinite dimensional LCA groups
such as the “tubby torus” T

ℵ0 .

7.1 Open Question

Suppose that G is a second countable LCA group. Let d be an invariant metric on G
and let B(x, r) = {y ∈ G : d(x, y) < r) be the ball of radius r > 0 centred at x ∈ G.
Is it true that for any f ∈ L p(G), 1 ≤ p ≤ ∞, we have

lim
r→0

1

m(B(x, r))

∫

B(x,r)
f dm = f (x) for almost all x ∈ G?
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8 Appendix

Here we give an alternative and simpler proof of [20, Theorem (9.12)]; all number
references in this appendix are to [20].
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Theorem (9.12) Let τ be a topological isomorphism of Ra ×Z
b× F into R

c×Z
d ×

E, where a, b, c, d are nonnegative integers and F and E are compact groups (not
necessarily abelian). Then a ≤ c and a + b ≤ c + d.

First a lemma. An element in a topological group is compact if it belongs to a
compact subgroup of the group.

Lemma Let τ be a topological isomorphism of H into G × K, where H and G are
locally compact and K is a compact group. If H has no compact elements other than
the identity, then H is topologically isomorphic to a closed subgroup of G.

Proof Let π be the projection of G × K onto G. Since τ(H) is closed in G × K by
(5.11), the image π(τ(H)) is closed inG by (5.18). Also, π is one-to-one on τ(H). [If
(x, k1) and (x, k2) in τ(H) have the same image x in G, then (e, k1k

−1
2 ) is in τ(H).

Since K is compact, (e, k1k
−1
2 ) is a compact element in τ(H). Since only the identity

of τ(H) is a compact element, k1 = k2.]
Since π is a closed mapping by (5.18), it is also a closed mapping of the closed

subgroup τ(H) onto π(τ(H)). Since π is one-to-one on this closed subgroup, it is
also an open mapping, so that π is a topological isomorphism of τ(H) onto π(τ(H)).
Thus π ◦ τ is a topological isomorphism of H into G. ��
Proof of (9.12) First, we show a+ b ≤ c+ d. Restricting τ to R

a ×Z
b × {e} gives a

topological isomorphism of R
a × Z

b into R
c × Z

d × E ⊂ R
c+d × E . Applying the

Lemma with H = R
a × Z

b, G = R
c+d and K = E , we see that H is topologically

isomorphic to a closed subgroup of R
c+d . Hence a + b ≤ c + d by (9.11).

To prove a ≤ c, note that restricting τ to R
a × {0} × {e} gives a topological

isomorphism of R
a into R

c × Z
d × E . Since R

a is connected, τ maps R
a into R

c ×
{0} × E . Applying the Lemma with H = R

a , G = R
c and K = E , we see that R

a is
topologically isomorphic to a closed subgroup of R

c. Hence a ≤ c by (9.11). ��
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