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Abstract The aim of this paper is to prove Cotlar’s ergodic theorem modeled on the
set of primes.

Keywords Maximal truncated Hilbert transform - Prime numbers - Pointwise
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1 Introduction

Let (X, B, u, S) be a dynamical system on a measure space X endowed with a o-
algebra B, a o-finite measure u and an invertible measure preserving transformation
S : X — X.In 1955 Cotlar (see [4]) established the almost everywhere convergence
of the ergodic truncated Hilbert transform

. f(S8"x)
dim D> ==

o0
I<|n|<N

for all f € L"(n) with 1 < r < oo. The aim of the present paper is to obtain the
corresponding result for the set of prime numbers P. Let Py = PN (1, N]. We prove
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Theorem 1 For a given dynamical system (X, B, i, S) the almost everywhere con-
vergence of the ergodic truncated Hilbert transform along P
lim

f(SPx)
N—oo

pE:I:PN

log |p|

holds for all f € L™ () with 1 < r < o0.

In view of Calderdn’s transference principle, it is more convenient to work with the
set of integers rather than an abstract measure space X. In these settings we consider
discrete singular integrals with Calderén-Zygmund kernels. Given K € C! (]R \ {O})
satisfying

1K ()] + 12K ()] < 1 ()

for |x| > 1, together with a cancellation property

/ K(x)dx

I=lx|=A

sup
A1

=<1 2

asingular transform 7" along the set of prime numbers is defined for a finitely supported
function f : Z — Cas

Tfn)y= > f(n—p)K(p)log|pl.

pexP

Let T denote the truncation of 7, i.e.

Tnf)= > fn—pK(p)loglpl.

pei]P’N

We show
Theorem 2 The maximal function

T*f(n) = sup |Ty f(n)|
NeN

is bounded on £" (Z) for any 1 < r < o0o. Moreover, the pointwise limit
lim Ty f(n)
N—o00

exists and coincides with the Hilbert transform T f which is also bounded on £’ (7Z)
forany 1 <r < oo.

For r = 2, the proof of Theorem 2 is based on the Hardy and Littlewood circle
method which allows us to construct appropriate approximating multipliers (see for
instance (13)) and control the error terms as in Proposition 3.2. These ideas were
pioneered by Bourgain (see [1-3]) in the context of pointwise ergodic theorems along
integer valued polynomials. For r # 2, we shall compare the discrete norm || - || of
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our approximating multipliers with the continuous norm || - ||z of certain multipliers
which are a priori bounded on L”, we refer to the proof of Proposition 3.3 and Theorem
3. Initially we wanted to follow elegant arguments from [23] which used very specific
features of the set of prime numbers. However, we identified an issue in [23] (see
Appendix 1) which made the proof incomplete. Instead, we propose an approach (see
Lemmas 1 and 2) which rectifies Wierdl’s proof (see Appendix 1 for details) as well
as simplifies Bourgain’s arguments.

Bourgain’s works have inspired many authors to investigate discrete analogues of
classical operators with arithmetic features (see e.g. [5-7,12—-14,17-19]). Neverthe-
less, not many have been proved for the operators and maximal functions modelled
on the set of primes (see e.g. [9,10,23]). To the authors best knowledge, there are no
other results dealing with maximal functions corresponding with truncated discrete
singular integrals.

It is worth mentioning that Theorem 2 extends the result of Ionescu and Wainger
[6] to the set of prime numbers. However, our approach is different and provides a
stronger result since we study maximal functions corresponding with truncations of
discrete singular integral rather than the whole singular integral. Furthermore, we are
able to define the singular integral as a pointwise limit of its truncations. Theorem 2
encourages us to study maximal functions associated with truncations of the Radon
transforms from [6]. For more details we refer the reader to the forthcoming article [8].

1.1 Notation

Throughout the paper, unless otherwise stated, C > 0 stands for a large positive
constant whose value may vary from occurrence to occurrence. We will say that A < B
(A Z B) if there exists an absolute constant C > 0 such that A < CB (A > CB). If
A < B and A 2 B hold simultaneously then we will shortly write that A ~ B. We
will write A <s B (A 25 B) to indicate that the constant C > 0 depends on some
8 > 0. We always assume zero belongs to the set of natural numbers N.

2 Preliminaries

We start by recalling some basic facts from number theory. A general reference is [11].
Given g € N we define A, to be the setof alla € Z N [1, q] such that (a, g) = 1. By

u we denote Mobius function, i.e. for g = p‘fl -pgz . ..opptwhere pi,...,pp €P
| ED oy =ay=r = =1,
wq) = [0 otherwise,

and n(1) = 1. In what follows, a significant role will be played by Ramanujan’s
identity

(g) =D ¥ (a,q) =1,

reAy

and the Mobius inversion formula
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d
> Fla/g) =Y ulg/d) Y Fla/d) 3)
a=1

achy dlq

satisfied by any function F. Let ¢ be the Euler’s totient function, i.e. for ¢ € N the
value ¢(q) is equal to the number of elements in A,. Then for every € > 0 there is a
constant C. > 0 such that

9(q) = Ceq'™*. “

If we denote by d(g) the number of divisors of g € N, then for every € > 0 there is a
constant C. > 0 such that

d(q) < Ceq©. (&)

3 Maximal Function on Z
The measure space Z with the counting measure and the bilateral shift operator will
be our model dynamical system which permits us to prove Theorem 1.

From now on, all the maximal functions will be defined on non-negative finitely
supported functions f : Z — R and unless otherwise stated f always has a finite
support.

Let us fix T € (1,2] and define a set A = {t/ : j € N}. Given a kernel K €
C!'(R\ {0}) satisfying (1) and (2) we consider a sequence (K : j € N) where

o[ K@) if x| e (rf, 7T,
Kj@) = [ 0 otherwise.

Let F denote the Fourier transform on R defined for any function f € L'(R) as
FrE) = / F0)eET ¥ dx.
R
If f €£"(Z) we set

f& =" fmye i,

nez

then for ®; = F K, integration by parts shows that
@& < lgl™ e, ©)

for £ € R. We define a sequence (m jiJ€ N) of multipliers

mjE) = > &P K;(p)loglpl.
pexP
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3.1 £2-Approximation
To approximate the multiplier 7 ; we adopt the argument introduced by Bourgain [3]
(see also Wierdl [23]) which is based on the Hardy-Littlewood circle method (see e.g.

[20]).
For any & > 0 and j € N major arcs are defined by

mi= U U o

I=q=j%acAy
where

MY (a/q) = (€ €10,11: 1§ —a/ql <77/ j*}.

Here and subsequently we will treat the interval [0, 1] as the circle group IT = R/Z
identifying O and 1.

Proposition 3.1 For & € 9)”(‘;‘ (a/g)N fm‘;‘

(&) - ‘;E—Z;@/@ —ajg)| = Caj .

The constant Cy, depends only on a.

Proof Since for a prime number p, p | g if and only if (p mod ¢, q) > 1, we have

E E ATEPK ((p)log p| < v/ E log p < v/ log . @)
I<r<q peP peP
(rg)>1 ql(p—r) rlq

Letd =& —a/q.If p=r (mod ¢q) then
Ep=0p+ra/qg (mod 1)

and consequently

Z z e2ﬂi§ij(p) logp — Z eZnira/q Z ezﬂieij(p) logp (8)

reAy peP reAy peP
ql(p=r) ql(p=r)

Using the summation by parts (see e.g. [11, p. 304]) for the inner sum on the right
hand side in (8) we obtain
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z eZﬂiQnK(n)]lP(n) logn — '(//'('L'j+l; q, r)eZﬂiﬂr.f+1K(Tj+l)

neNj

ql(n—r)

_ lﬁ(Tj;q,r)eznigij(Tj)

T/'-H

d .
[ wwang (@) a ©
.y dt
where N; = NN (t/, 7/t and for x > 2 we have set

V(x;q,r) = E log p.
pePx
ql(p—r)

Similar reasoning gives

. . sl . . . i .
Z eZm@nK(n) — .L,j-HeZm@tf K(‘L’]+1) _ _L,]eZmOr/K(_L,])
neN;

i+l

d 2mi0t
—/ﬂ_ IE(e K(t))dt. (10)

By Siegel-Walfisz theorem (see [16,22]) we know that for every o > 0 and x > 2

'Wx q,r)—? < x(logx) ™ (11)

where the implied constant depends only on «. Therefore (9) and (10) combined with
the estimates (1) and (11) yield

1
‘ Z ezn’lng (p) logp _ e2m€nK (n)
acy neN

ql(p=r)

i+
‘w(r’“,q r—— |K(r1+1)| + ‘I/f(ff q.1) = ——||K(t/)]

(@) oD
+

< e +/_ (logt)_3°‘(|9| +17")dr
T

J

Jj+l1

Yt q,r) — — (f‘|9| +172)dr
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what is bounded by j~2¢. Finally, by (8),

Z Z PTEP K () log p — M(‘I) Z 2T ()

" e
P 62””“/"(2 K (p) log p— —— ez’”g"K (n))‘sqj—zasﬁ".
reAy peP ( )

ql(p—r)

12)

Next, we can substitute an integral for the sum since for ng = [t/] and n; = [t/
we have

i+l ni—1

no
/‘ e2”i9’K(t)dt _ / Z”lG’K(t)dt + Z / 2ﬂ19(n+t)[((n + 1)dt
2 v/

n=ng
L+l

+/ TN K (1dt.

ni

Since |8] < 7/ j* we get

n|7]

1
z (827719)’!1((”) _/ 62ﬂ19(ﬂ+[)K(n + t)dt)
0

n=ng
ni—1 ni—1
<Z/ ‘1 _2’”9"|K(n)|dt+2/ |K(n) — K(n+1)|dt <t j%.
n=ngo n=ng
Hence, by (7) and (12) we obtain
o0
> TP K (p) log p — B[ prior g (yar| < v je 4 e
- @(q) Jo
pe
Repeating all the steps with p replaced by — p we finish the proof. O

For s € N we set
Ry ={alg €10,11NQ:2" < g <2’ and (a,q) = 1}.

Since we treat [0, 1] as the circle group identifying 0 and 1 we treat %y = {1}. Let us
consider

SO = 3 Lo 6 —a/on -al) (13)
a/qeXy

Birkhduser



J Fourier Anal Appl (2015) 21:822-848 829

where 1, (§) = n(A*T1€) and n : R — R is a smooth function such that 0 < n(x) < 1
and

|1 for|x] < 1/4,
”(x)—[o for |x| > 1/2.

The value of A is chosen to satisfy (18). Additionally, we may assume (this will be
important in Lemma 1) that  is a convolution of two smooth functions with compact
supports contained in [—1/2, 1/2]. Let v; = > v; For any s € N the multiplier
v‘;. is meant to be 1-periodic.

Proposition 3.2 For every a > 16

lmj(&) —v;©)] < Coj ™.

The constant Cy depends only on o.

Proof First of all notice that for a fixed s € N and £ € [0, 1] the sum (13) consists of
the single term. Otherwise, there wouldbe a/q, a’/q’ € %, suchthatng(§ —a/q) # 0
and (& —a’/q") # 0. Therefore,

/ /

—| =< é—c—l’+‘é—a—, <A
q q

which is not possible whenever A > 4, as it was assumed in (18).

Major arcs estimates: & € 93?‘;‘ (a/g)N E)ﬁ‘}‘ Let so be such that
20 < g < 2%+, (14)
We choose s satisfying
231+1 < ‘L']] 2s1+2

If s < s; then for any @’ /q’ € %s,d’/q’" # a/q we have

’
> _

Z 07 L R L e

q/

‘ a
q

1 ‘ a

Therefore, using (6)

T R
@& —d'/a)| S (g —a'/a[v)) " 57
Combining the last estimate with (4), we obtain that for any 0 < §; < 1

S]] Yll

=12 2 qug i€ —d'/d)ns(€ —d'/d) *“ZZ‘S”
s=0 o /q'cZs
a'/q'#alq
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Moreover, if 75, (6§ — a/q) < 1 then |€ —a/q| > 47'A=%0~1 By (14) we have
2% < j% Hence, (5) together with (6) implies

@) S
L= %%(&—a/g)(l—nm@—a/q))’5A‘°“r TS

In the last estimate it is important that the implied constant does not depend on sg.
Since ®; is bounded uniformly with respect to j € N, by (4) and the definition of s
we have

(g 1 ’y

L= E E D (E — G(E—

’ ‘ =51 d Jq' e v(q’) j(g @/amsE=a/q)
H//q,#ﬂ/fi

00
g zzﬂszs S (.L.fijOt)(SZ g ]ﬂx
=51

for appropriately chosen 8> > 0. Finally, in view of Proposition 3.1 and definitions of
so and s1 we conclude

mj€) —vi@®| <Coj “+h+hL+5< ;™

Minor arcs estimates § ¢ Dﬁ‘;‘ Firstly, by the summation by parts, we get

’Ze2niéij(p)10gp‘ < |Fr,-+1($)|’K(tf+1)‘ + |F,f(§)|’K(ri)’
peP
s

+/]_ |Fy()IIK'(1)|dt (15)
where

Fo&) = > e logp.

pePyx

Using Dirichlet’s principle there are (a, g) = 1, j* < g < t/j~ such that

1 2

& —a/ql <q 't j* <q%

Thus, by Vinogradov’s theorem (see [21, Theorem 1, Chapter IX] or [11, Theorem 8.5])
we get

F)] S 54 (tq 2 4 14905 4 1I2g12) < o e

for t € [t/, /%!]. Combining |K'(r)| < t™2/ with the last bound and (15) we
conclude

lmj&)| < jr <
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since @ > 16. In order to estimate the v; let us define s; by setting
282 < ]01/2 < 2S2+1'

Ifa/q € %, fors < sy theng < j¢ and

> 2—s—17:—jj<x z T—jjcc/Z.

a
p-;

q
Again, by (6) we obtain

-l .
|©( —a/p)| < (1§ —a/qle’) " < j~
Therefore, the first part of the sum may be majorized by

sp—1

o0
—a)2 -8
Zv;@)‘sj “ry om0,
s=0 s=0

as for I;. For the second part we proceed as for I3 to get

o0 o
> | £ 2

s=52 S=587

A suitable choice of §1, §2 > 0 in both estimates above was possible thanks to (4). O

3.2 {"-Theory

We start the section by proving two lemmas which will play a crucial role.

Lemma 1 There is a constant C > 0 such that forall s € Nandu € R

=C, (16)
e

H / P ity (£)ds

DI= o—

< ClulA™ L. (17)
)

H/ I 672711'5]'(1 _e2ni§u)ns(s)d§

Proof We only show (17) for u € R, since the proof of (16) is almost identical.
Recall, n = ¢ * ¢ for i, ¢ smooth functions with supports inside [—1/2, 1/2].
Hence, ny, = AT !¢ * ¥ and

1

A= / P2 (1 _ 2miEy ydE = Fg ()F ()

1
2

~F s (G = w)F (G — ).

Birkhauser



832 J Fourier Anal Appl (2015) 21:822-848

By Cauchy—Schwarz’s inequality and Plancherel’s theorem

> F || F ) = F G - w)|

JEZL

< Hf”dk

/ e*27‘[i$j(1 _e2ﬂisu)ws(g)dé
R

02

(1 — 2 54) g (&)

()

= lsllz2

L2(dg)

Moreover, since

/ ’1 _ e—2m’&‘u
R

we obtain

2
v (6)17dE < u? /}R &Py () PdE SuP ATy,

>0 D|[F ) = F G = 0] S A D g

JEZ
which finishes the proof of (17). O
Lemma 2 Letr > 1. Forall g € [2°, 2”1), s>randl €{1,2,...,q}

~ qfl/r

Hf‘ (ns f)(qj +1D
£ (j)

F! (ﬂsf)

[I‘

Proof We define a sequence (J1, J2, ..., Jg) by

J = Hf‘l (ns f)(qj +1)

()

Then J{ +J; +---+ J; = 1" where [ = |71 (nsf)
Minkowski’s inequality we obtain

0y Since 15 = nsns—1, by

’f—l (s f)(qj+D —F (s f)qj +1)

()

1
= H / | €I (1= 2D ) (6 g
2

/

what, by (17), is bounded by Cqg A™*I. We notice, the constant C > 0 depends only
on n. Hence, forall 1,1’ € {1,2,...,q)

0]

Nl—=

< e HE (1 = 2Ty ()dE| T,

2 0]

Jy<Jy+CqA”°I.

) Birkhduser
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Since ¢ < 2°F! taking
A > 32max{l, C} (18)

we obtain CgA™ < 2741 thus
Jp<2 g w2 (ecgAT) 1 < 2y 4 2 (19)
Therefore,
I"=J{ 405+ 0y <27 qU] + g2 8T <2 gy 4 2R

and using s > r, we get I” < 2"qJ;. For the converse inequality, we use again (19)
to conclude

qlf <27V T+ )+ g2 <2

Proposition 3.3 Forr > 1l ands € N

sup |f—l(wknsf)|H < | F (s f)
keN o

er

where Wy = ZI;-:O ;.

Proof Since n; = ny_1ns thus by Holder’s inequality we have

sup [ F = (Wens f) (m)|" < ( / sup | F ! (Wens f) O] |F g1 (m — t>|dt)
keN R keN

r—1

< [ swp |7 (W Aol |7 s om—olae |

keN L!

~

Now we note that ||.7-"1ns_1HL] < 1and

— ) !
SF im -] AT 1+ (A= (m — 1))?

meZ mez
dx
<A1 — )1 <A1+ 4H <1
a7 (1+ [ ) ST+ A0 S

and the implied constants are independent of A. Thus we obtain

sup | £~ (Wi, f)|
keN

<

SF (05 f)]
o :

L7

L Q0)

sup |]-‘—‘ (%mf)!
keN

) Birkhduser
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where the last inequality is a consequence of [15]. The proof will be completed if we
show

|7 s )] < 177 (s f)
For this purpose we use (17) from Lemma 1. Indeed,

|7~ (s )
—Z/ |7~ (05 ) (x + )| dx

JEL

<2 HF ) + 2’1§:/|f (s f)x + ) = F " (ns ) (D] dx

JEL®
—or— 1”_7_- '75 H(Z' 4o 1/ H/ ’2”’5’(1—e zms)‘)ng(é)f(é)dé e()dx
"G

T e o A Tl T S P T

SIF s )l
This finishes the proof of the proposition. O

Theorem 3 For each r > 1 there are §, > 0 and C, > 0 such that

< C 275 fllpr

keN

forall f € " (Z).
There is an interesting question about the endpoint estimate for » = 1 in Theorem 3.
Unfortunately, our method does not settle this issue. However, we hope to return to

this problem at some point.

Proof Letus fix r > 1. For s < r, by Proposition 3.3 we have

sup |77 (e f -+ a/q)|
keN

< Crll fller-

¢(q)

keN o

Next, we consider s > r. Let ¢ € [2°, 2“‘1) be fixed. We are going to show that for
every € > 0 we have

=Ceq I fle- 21

or

sup | > F (Wil = a/gn - — /o) f)|

keN aGA
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J Fourier Anal Appl (2015) 21:822-848 835

By Mobius inversion formula (3) we see that

> F (W —a/gIns (- —a/q) f)(x) = Zu(q/b)Ze*z”'”/”f (Wens £+ a/b)) ().

a€Ay blg

(22)

Moreover, for x =/ (mod g) we may write

b
D e E (W £+ a/b)) (x) = FH (Wins Fp (-5 D) (x)  (23)
a=1
where for b | g we have set
b A .
Fy(&: D =D f(& +a/bye >,

a=1

Therefore, by formulas (22) and (23) we have

sup | 7 FH Wk — afgyne(- — a/q) f)|

keN HEA

Er

1/r
<Z( sup |.7: LI’k’?er( ))(‘U+ )| (i )) :
blq =

Thus in view of (5) it will suffice to prove that

- 1/r
supl7 ooy 0, ) =Gl ew
keN L240))

(z\

where the constant does not depend on b. For the proof let us fix f € €' (Z) and
consider a sequence (J1, J2, ..., J;) defined by

-

sup |[F 7 (Wens £) (@i +D|| -
keN o)

By Proposition 3.3, we have

r

I AT+t =1 = ;ug!f‘l(\lfkmf)lﬂ; SIF s,
(S

Birkhauser
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Also forany [,I' € {1,2,...,q}

sup

/ ’ e 2IE@IHD (1 — TS0y wy (£ )y (&) £ (£)dE
keN 5

2

()

H/ o2l (1 — PTEC-DYy () f(6)ds

()

Since n; = ngns—1, by Minkowski’s inequality and Lemma 1 we obtain that the last
expression can be dominated by

| / S k| ) = Can~ 1 )
Therefore, by (18)
h<dr+a ' | F s ),
Summing up overall ' € {1,2, ..., q} we obtain
gJf =2+ g F s Ny S 1F T s )
Finally, by Lemma 2 we conclude
[sup |77 (vens @i + 0l £ 177 ef)a 4Dl @)

keN

Next, we resume the analysis of (24). Using (25) we get

(>
: (Z |7 (s B D) @j +)

sup | F 1 (Wens Fy (- 3 ))<q1+)|
keN

1/r
s ))
. 1/r
ef(j)) '

We observe that by the change of variables

b
F s Fo(:D)(qj +D =D F (0 —a/b) f)(qj +1).

a=1

Thus by Minkowski’s inequality

(i H]—"—l(nst( D)(gj + )H(Z - ))l/r =< ]—"—l(ins(- _a/b))
I=1 a=1

£ ler-
2
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Since for j € Z

b . .
Z —2rmija/b _ b ifb | J>
0 otherwise

a=1

we conclude

b
Hfl(Znsc - a/b)) =
a=1 o

(0]

Now Lemmas 1 and 2 imply

< 1.

1~

b|F )

< |F-!
el(j)”” s

This completes the proof of (24). Finally, by (4) and (21) we obtain that

sup\Zf v f)”' S 22N Sl 6)

keN

for any € > O and s € N. If r = 2 we may refine the estimate (26) (see also [1]). Let

Gy&) =D n1E —a/q)f &)

aciy

and note that

> F W —a/pn¢—a/f) = D F (W —a/gns (- —a/9)Gy)

achy achy

since 1y = nyns—1, and the supports of n; (- — a/q)’s are disjoint when a /g varies. By
(21) we have

sup | Z FU W — g

keN

whereas by (4), we have

2x+1_1
sup ZF ] < > g sup Zf (Wi (-—a/q)ns (-
eN ¢=2 keN

Birkhauser
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These two bounds yield

2x+1_1
sup ‘ Z]—' ‘H Z q_1+26
keN =2
g=
1/2
< Z—s/2+26s( H]: 77s 1 — a/q)f) ) ’

alqe%s

where the last estimate follows from Cauchy—Schwarz inequality and the definition
of G,. Finally, by Plancherel’s theorem we may write

2

-3 /ms (& — a/g) | F &) [

e a/qeXs

HJ’E ns—1(- —a/q) f)
a/qeRy

which is majorized by || f ||§2. Thus for appropriately chosen € > 0 we obtain

<27 flla. 27)

02

k
Ff
270

Next, for » # 2 we can use Marcinkiewicz interpolation theorem and interpolate
between (26) and (27) to conclude the proof. O
3.3 Maximal Function

We have gathered necessary tools to illustrate the proof of Theorem 2. First, we show
the boundedness on ¢ (Z) of the maximal function 7*.

Theorem 4 The maximal function T* is bounded on ¢ (Z) for each 1 < r < 0.

Proof Let us observe that for a non-negative function f

T*f(n) < sup
keN

2.7: mjf)(n)

+ Mfn)

where M f = supyn |An f1 is a maximal function corresponding with Bourgain—
Wierdl’s averages

Anfmy=N""">" f(n—p)logipl.

pexPy
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Indeed, suppose 8 < N < ¥*t! for k € N. Then

k
Tnf) =Y > fn—p)Ki(p)loglpl— D fn—p)K(p)loglpl.

Jj=0 petP PEEXRN

where Ry = PN (N, t¥t1). Therefore, by (1), we see

> fn— p)K(p)log |p|‘ St > f-ploglpl S A f(n).

PERN pexP i1

Since the maximal function M is bounded on ¢"(Z) for any r > 1 (see [3] or
Appendix 1) thus we have reduced the boundedness of T* to proving

S ller

sup‘Z]—'

keN

Let us consider f € €"(Z) for r > 1. By Theorem 3 we know that for j € N

k-1
H]:_I(ij)u, SZ F! o sup’Z}" Z}"_l(v;f)’
seN seN j=0 4
<D | sup Z Tl S22 e S Uf e
seN keN e seN

If f is non-negative then

|3 fa—pKipoglpl| st > f— ploglpl

pexP pexP 11

thus by Prime Number Theorem,

|7~ (m; £) WST"'( > logp)llflleréllfllzr-

PeP i

Hence,

H}tl((mj —v)f) Hz S Nl (28)

For r = 2 we use Proposition 3.2 to get

|77 = )|, = Iy =il e S 572000 @9)

Birkhauser



840 J Fourier Anal Appl (2015) 21:822-848

for any o > 0 big enough. If  # 2 we apply Marcinkiewicz interpolation theorem to
interpolate between (28) and (29) and obtain

”f (mj = v f) H Sl (30)
Since
3 ]| =3 o),
by (30) and Theorem 3 we finish the proof. O

Next, we demonstrate the pointwise convergence of (T : N € N).

Proposition 3.4 If f € (" (Z), 1 <r < oo then for everyn € 7Z
lim Ty f(n) = Tf(n) (31)
N—o00

and T is bounded on 0" (7).

Proof If N € N we define an operator TV by setting

TN f(n)= D" fn—p)K(p)log|p|

pexP
IpI>N

for any f € £"(Z). By Holder’s inequality we see that for every n € Z

7 r| <2( 3 (0 0 p) ) 15

peP
p>N

where r’ stands for the conjugate exponentto r,i.e. 1/r+1/r" = 1. The last inequality
shows that, on the one hand, T is well defined for any f € £"(Z), on the other proves
(31). Next, Fatou’s lemma with boundedness of 7* yield

ITfler = Jlimint T f | <timint |7 r| < |77| <050
N—o00 o N—o0 o o
which completes the proof. O

3.4 Oscillatory Norm for Hy
Let (N jiJ€ N) be a strictly increasing sequence of A elements. We set N; = ki
and Aj = AN(N;, Nji1]. In this Section we consider the kernel K (x) = x~L. Since
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each K ; for j € N has mean zero we have

|K;(x)|dx < |&]77. (32)

o) = [ 1
R

Let Hy denote the truncated Hilbert transform

Hyfon= 3 f( JO =) 1o

pE:EPN

The following argument is based on [1, Section 7].

Proposition 3.5 There is C > 0 such that for every J € N and s € N we have

J

2

j=0

2
w [ v | = el )
TkGAj e

Proof Let Bj = {x € (—=1/2,1/2) : |x| < N;l}. By Plancherel’s theorem we have

J 2
sup |71 (e = Wi )1, f)|
j=0 r"eA 2
J ki1 2
<D D F W — W) 1p,, s f)
=0 k=k; e
Jj=

j+1

i+l Z |"I’k -

. EauCil s

By (32) we have
(W (&) — W, (8)| = Z <I>z<s>’ S lglet.
I=k;+1
Hence,
kjti
ZﬂB,H(@ > W@ — v,
=i k=k;
kj+1
< |§|2an,+l<s> S ER D> NS
=0 k=k;j JiNjpi <!
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Therefore, we obtain

J

>

j=0

sup |]:71((“I'k - ‘“Ijkj)]lBansfﬂ
TkEAj

12
¢ < H}—il(mf) e

Similar for Bf, replacing Wy; by Wy, ,, under the supremum, we can estimate

J 2
2| sup 177 (0 = v g )|
j=0'r7 eA 02
J kjt1 2
<220 | F (W, — w0 Lpens f)
J=0k=k; £

J+1

Z]ch Z "I'kj+1 - q”kizHLoo ”j:_l(mf) 1282

Now, using (6) we get
(Wi, () — W@ S 1617 F
thus

j+1 /+l

Zﬂgc@)Zmﬁl(&) G 221Bc<s)2r

Sl N—2 <l

jiNj=|E7!

Therefore, we conclude

2
ap |7 (01— q,kj)]lgﬁmf)‘u S Al
’ £

TkEAj

j=0

Finally, by Proposition 3.3

J . 2 J 2
> sup [P (= Wi L, )| S ”;—l(nlegﬁlnsf) B
=0 Il tkea; 2 =0

which is bounded by | F~" (n, £) |2 o
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Theorem 5 For every J € N there is Cj such that

J

2

j=0

2
2
<CylfI%

sup |Hrl\f Hy;, f|

rkeA

andlimj_o Cy/J = 0.

Proof By Proposition 3.2, we have

2 J kjsi
5(2 > l‘z)nfn@z,vnfnp

sup ‘ Z FH (mr =) f)

j=0 " TN =k 41 J=0I=k;+1
Consequently, it is enough to demonstrate
2
suﬁ\ Z F! wf\ L =Gl
T S

where limj_, o, Cy/J = 0.
Let so € N be defined as 2% < JU3 < psotl By Theorem 3 we have

LS TP Nl

We set

sup ‘Z Z Fl vlf‘[ZNZ‘

‘[kEA 5=50 I=k;j+ keN

By the change of variables, Cauchy—Schwarz inequality and by Proposition 3.5 we
get

7 so—1 & )
| sup Y f)
j=0 1 THEA; T =0 1=k;+1
so—1 2
Z(Z > () sup\ Z F <I>msf(+a/CJ))) )
j=0 ~s5=0 a/qe@ ¢4 T EA I=kj+1 £
so—1 2

53033

s=0 a/qeZ; j=0

sup 7 (W = Wi f -+ a/q))|

reA

02
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so—1 2

sos Y. Y |F e —ad)|,

s=0 a/qeX;

2
S Dysoll -

By the definition of %, we see that D; < 2% < J'/3 thus we achieve

>

j=0

sup‘Z]—'

TheA; 1=kj+1

< 1(1*5/3 + 7 P og J) IF12

which finishes the proof. O

4 Dynamical Systems

Let (X, B, u, S) be a dynamical system on a measure space X.Let S : X — X be an
invertible measure preserving transformation. For N > 0 we set

J(SPx) (
Hyfx) = ogpl.
pEiPN
We are going to show Theorem 1. We start from oscillatory norm.

Proposition 4.1 For each J € N there is Cj such that

S [Hn f = Hy, f| < Cillfl72

L2 ()

>

and im0 Cy/J = 0.

Proof Let R > N;. For a fixed x € X we define a function on Z by

_ | f(§"x) In| <R,
¢ = [0 otherwise.
Then for [n| < R — N
sn—p n—
Hyf(s = Y f( Diogipl= 3 L8P iogp| = Hypn).
pGiPN pE:l:IPN p
Hence,
g 2 2
> sup [Hnf(8"x) —Hy, f(S"x)|” < || sup |Hn¢ — Hy, 9]z
=0 NeA; NeA;
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Therefore, by Theorem 5 we can estimate

R—N; J
ST sup [Hy f(8"x) — Hy, £(8"0)| < Clil% = Cy Z £ (8™
Inj=0 j=0N€A; =0

Since § is a measure preserving transformation integration with respect to x € X
implies

J 2
2
(R=Np D, Sup [Hnf =M fl| < CoRI Nz,
j=0 j L=(w)
Finally, if we divide both sides by R and take R — oo we conclude the proof. O

Corollary 1 The maximal function

H* f(x) = sup [Hy f(x)]
NeN

is bounded on L" (1) for each 1 < r < oo.
Next, we show the pointwise convergence of (Hy : N € N).

Theorem 6 Let f € L" (), 1 < r < oo. For u-almost every x € X

Nlim Hn f(x) =Hf(x)

and H is bounded on L" (i1).

Proof Let f € L*(), since the maximal function 7* is bounded on L? (1) we may
assume f is bounded by 1. Suppose (Hy f : N € N) does not converge p-almost
everywhere. Then there is € > 0 such that

{x € X : limsup |HNf(x) HMf(x)| > 46} > 4e.

M,N—o0

Now one can find a strictly increasing sequence of integers (k jiJ€ N) such that for
each j e N

,u{xeX: sup |HNf(x)—HNjf(x)]>e}>e
Nj<N=<Nj4

where N; = thi and v = 1 +¢€/4.1f T < N < ! then setting P, = PN (zF, ¥+
we get

Hy f@) = Ha f@)] =775 log p.

PEP
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By Siegel-Walfisz theorem we get

Z logp=N+0 (N(log N)_l)
pePy

thus there is C > 0 such that

< Ck '(ogt)~!.

7k Zlogp—t+1
PEPk

Hence, whenever k > 4Ce~!(log )~ we have
[HN () = Ho f ()] < €/2.

In particular, we conclude

u[x € X : sup |kaf(x) —HNjf(x)| > 6/2] > €

7k EAj
for each k; > 4Ce™! (log r)’l which contradicts to Proposition 4.1. Indeed,
J

1
J—J()Z

j=0

2 c,

635
J—D

=
L2(u)

sup |Hoef —Hn, f]

ke
heA;

2
”f”LZ(M)

where Jo = min{j e N: k; > 4C e '(log 7)~'}. Now, the standard density argument
implies pointwise convergence for each f € L" () where r > 1, and the proof of the
theorem is completed. O
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Appendix: Boundedness of M

In the Appendix we discuss why the maximal function

M f(n) = sup
NeN

N7 DT fo—p)loglpl

pGiPN

is bounded on ¢ (Z). This fact was published by Wierdl in [23], however, on p. 331
in the last equality for ** the factor ¢ has the power 1 in place of p. Therefore, it is
not sufficient to show an estimate (24) from [23] to conclude the proof. In fact, one
has to prove the estimate corresponding to (25) from the present paper.
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For the completeness we provide the sketch of the proof based on the method used
in Sect. 3. First, we may restrict supremum to dyadic N. We modify the definition of
the multiplier m ; by setting

mjE) =271 > ¥ log|p|.
pG:I:PN

Hence, it suffices to show that for r > 1

sup |]-'*1 (mkf)|
keN

SIS ller

[V
Keeping the definition of the major arcs and setting
Wi(E) =27/ / ePTIEX gy
1<|x|<2/

Proposition 3.1 holds true. For proof we use the well-known result that for £ €
Sm‘])‘ (a/g)N ?JJI‘;‘ (see e.g. [11, Lemma 8.3])

_ik(q) 27i0n
jE) -2
my; (&) @ > e

I1<|n|<2/

and then, as in the proof of Proposition 3.1, we replace the sum by W;. Also the
demonstration of Proposition 3.2 has to be modified. There, the estimate for £ ¢ zm?
is a direct application of Vinogradov’s theorem. In the proof of Proposition 3.3 in the
place of (20) we use L"-boundedness of Hardy—Littlewood maximal function. Finally,
in the proof of Theorem 4 we replace the sum z];=0 mj with a single term my.
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