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Abstract We introduce and study a series of new moduli of smoothness in the mul-
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0 < p < 1. We prove a direct Jackson-type estimate and provide necessary and
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equivalence of these moduli and polynomial K -functionals related to the Laplace-
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terms of the introduced moduli.
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1 Introduction

For a 2π -periodic function f (x), x = (x1, . . . , xd), of d variables in the space L p,
0 < p ≤ +∞, equipped with the standard norm denoted by ‖ · ‖p and for a natural
number m we introduce a new modulus of smoothness by (δ ≥ 0)

ωm,d( f, δ)p = sup
0≤ h ≤δ

∥
∥
∥
∥

σm

d

d
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m
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ν = −m
ν �= 0

(−1)ν
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f (x+νhe j )− f (x)
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∥
∥
∥
p

,

(1.1)

where

σm =
(

2
m

∑

ν=1

(−1)ν

ν2

(

2m
m − ν

) )−1

(1.2)

and e j , j = 1, . . . , d, are the unit vectors in direction of the coordinates of the
d-dimensional torus T

d . In analogy to the classical one-dimensional modulus of
smoothness we call the operators given by (I is the identity operator)

T (m,d)
h f (x) = σm

d

d
∑

j=1

m
∑

ν = −m
ν �= 0

(−1)ν

ν2

(

2m
m − | ν |

)

f (x + νhe j ), (1.3)

�
(m,d)
h = T (m,d)

h − I, (1.4)

translation operator and difference operator, respectively. It will be shown in Sect. 2
that at least on the set T of real-valued trigonometric polynomials the identities

�
(m,d)
h g(x) =

∑

ν ∈Zd

θ∧
m,d(ν) g(x + hν) =

∑

k ∈Zd

θm,d(hk) g
∧(k) eikx (1.5)

hold true. Here g∧(k), k ∈ Z
d , are the Fourier coefficients of g and the generator θm,d

of modulus (1.1) is defined by

θm,d(ξ) = 1

d

d
∑

j=1

θm(ξ j ), ξ = (ξ1, . . . , ξd) ∈ R
d , (1.6)

θm(ξ) = γm

ξ∫

0

t∫

0

(

sin2m(τ/2) − αm
)

dτdt, ξ ∈ R, (1.7)
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where αm is the mean value of the function sin2m(τ/2) on [0, 2π ] and γm is chosen
such that the condition θ∧

m (0) = −1 is satisfied, i. e.,

αm = 2−2m
(

2m
m

)

, γm =−22m σm =22m−1
( m

∑

ν=1

(−1)ν−1

ν2

(

2m
m − ν

) )−1

. (1.8)

Relations (1.8) follow from the well-known formula

sin2m(τ/2) = 21−2m
m

∑

ν=1

(−1)ν
(

2m
m − ν

)

cos ντ + 2−2m
(

2m
m

)

(1.9)

in combination with (1.2).
By Taylor’s formula applied to the function sin x we obtain from (1.6)–(1.7) for

ξ → 0

θm,d(ξ) = −αmγm

2d
| ξ |2 + γm2−2m

d(2m + 1)(2m + 2)

d
∑

j=1

ξ
2(m+1)
j + O

( d
∑

j=1

ξ
2(m+2)
j

)

,

(1.10)

where | ξ |2 = ξ21 + · · · + ξ2d . Taking into account that

�g(x) =
d

∑

j=1

∂2g

∂x2j
(x) = −

∑

k ∈Zd

| k |2g∧(k) eikx (1.11)

for sufficiently smooth functions g, in particular for g in T , in view of (1.5) and (1.10)
we get

� = 2d

αmγm
lim

h → +0

T (m,d)
h − I

h2
(1.12)

in L p-sense at least on the setT of real-valued trigonometric polynomials. Theoperator
relation (1.12) shows that all moduli ωm,d( f, δ)p are related to the Laplace-operator
independently on m.

Some special cases of construction (1.1) are well-known. For example, the mod-
ulus 2ω1,1( f, δ)p coincides with the classical modulus smoothness of second order
ω2( f, δ)p. In the d-dimensional case (d > 1) one has

ω1,d( f, δ)p = (2d)−1 ω̃( f, δ)p, f ∈ L p, δ ≥ 0 (1.13)

for each 0 < p ≤ +∞, where

ω̃( f, δ)p = sup
0≤ h ≤ δ

∥
∥
∥
∥

d
∑

j=1

(

f (x + he j ) + f (x − he j )
) − 2d f (x)

∥
∥
∥
∥
p

(1.14)
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is the modulus introduced and studied by Z. Ditzian for 1 ≤ p ≤ +∞ in [2]. In
particular, it has been shown that for 1 ≤ p ≤ +∞ themodulus ω̃( f, δ)p is equivalent
to the K -functional related to the Laplace-operator which is defined by

K�( f, δ)p = inf
g ∈C2

{

‖ f − g ‖p + δ2‖�g ‖p

}

, f ∈ L p, δ ≥ 0, (1.15)

where C2 is the space of twice continuously differentiable 2π -periodic functions.
Clearly, this result is an extension of the well-known one-dimensional result of Johnen
with respect to the equivalence of the classical modulus of smoothness and J. Peetre’s
K -functional (see e. g. [1], Ch. 6) to the multivariate case.

The above result is not true for 0 < p <1. It has been proved in [3,6] that in this
case K -functionals with classical derivatives are identically equal to 0. For this reason
the concept of a polynomial K -functional given by

K (P)
� ( f, δ)p = inf

T ∈T1/δ

{

‖ f − g ‖p + δ2‖�g ‖p

}

, f ∈ L p, δ > 0, (1.16)

where (c is a complex conjugate to c)

Tσ =
{

T (x) =
∑

| k | ≤ σ

cke
ikx : c−k = ck

}

, σ ≥ 0, (1.17)

has been introduced in [6]. Note that in (1.15) the infimum is taken over the infinitely
dimensional space C2, whereas in (1.16) C2 is replaced by the finite dimensional
space T1/δ of real-valued trigonometric polynomials of (spherical) order at most 1/δ.
Functionals (1.15) and (1.16) are shown to be equivalent if 1 ≤ p ≤ +∞ in [4].

Moreover, it follows from [6] that in the case 0 < p < 1, d = 1 the polynomial
K -functional given by (1.16) is equivalent to the classical modulus of smoothness of
second order. In the multivariate case (d > 1) and if 0 < p < 1 modulus (1.14) has
been systematically studied in [5]. In particular, it is proved that in this case modulus
(1.14) and polynomial K -functional (1.16) are equivalent if and only if d/(d + 2) <

p ≤ +∞. The occurence of the critical value d/(d + 2) can be explained as follows.
Analysing the proof given in [5] one observes that the equivalence problem can be
reduced to the behavior of the Fourier transform of the second item of expansion (1.10)
with m = 1 divided by the generator of the Laplace-operator. The Fourier transform
of the function

| ξ |−2

⎛

⎝

d
∑

j=1

ξ4j

⎞

⎠ η(ξ),

where η is an infinitely differentiable functionwith compact support satisfying η(0) �=
0 (test-function), belongs to L p(R

d) if and only if p > d/(d +2). This follows from
(Theorem 4.1, [10]) where it has been proved that the Fourier transform of ψη for an
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infinitely differentiable (defined onRd\{0}) homogeneous functionψ of order α > 0,
which is not polynomial, belongs to the space L p(R

d) if and only if p > d/(d + α).
In the general case the order of homogeneity of the second item in (1.10) divided

by the generator of the Laplace-operator becomes 2m. Taking into account the above
arguments one can expect that in themultivariate case (d > 1) themodulusωm,d( f, δ)p
will be equivalent to K (P)

� ( f, δ)p at least for p > d/(d+2m). It means that in contrast
to the modulus of Z. Ditzian the collection of moduli (1.1) “covers” the range of all
admissible parameters 0 < p ≤ +∞ in the sense that for each p there exists a natural
number m such that the moduli (1.14) and functionals (1.16) are equivalent in L p.
The confirmation of this hypothesis is one of our main goals and will be done in
Theorem 4.3. Moreover, in the present paper we essentially improve and simplify the
research scheme given in [5]. In future work it will enable us to introduce and study
general moduli of smoothness generated by arbitrary periodic functions satisfying
some natural conditions.

Let us mention that there exists an universal modulus of smoothness related to the
Laplace-operator which is relevant for all 0 < p ≤ +∞ in the sense of its equivalence
to a correponding polynomial K -functional in L p for all admissible p. As it follows
from the results below, in order to construct such a modulus it is enough to choose
the Fourier coefficients of a certain 2π -periodic infinitely differentiable function θ

satisfying ψ(ξ) = −|ξ |2 near the point ξ = 0 as coefficients of values f (x + νh),
ν ∈ Z

d . However, such a construction is of theoretical interst only, since in contrast
to (1.1) the Fourier coefficients of such a function can not be presented in an explicit
form.

The paper is organized as follows. Section 1 provides necessary definitions, nota-
tions and preliminaries. The basic properties of moduli (1.1) are studied in Sect. 2.
Section 3 is devoted to the proof of a Jackson-type estimate. The equivalence ofmoduli
(1.1) and polynomial K -functionals related to the Laplace-operator is studied in Sect.
4. Some applications, in particular, the description of the quality of approximation by
families of linear polynomial operators generated by Bochner–Riesz kernels in terms
of θm,d -moduli are given in Sect. 5. In this sense our paper is a continuation of [12].

2 Notations, Preliminaries and Auxiliary Results

2.1 Notational Agreements

By the symbolsN,N0,Z,R,C,Zd ,Zd+,Rd we denote the sets of natural, non-negative
integer, integer, real, complex numbers and d-dimensional vectors with integer, non-
negative integer and real components, respectively. The symbol Td is reserved for the
d-dimensional torus [0, 2π)d .We shall also use the notations xy = x1y1+· · ·+xd yd ,
| x | = (x21 + · · · + x2d )

1/2, | x |1 = | x1 | + · · · + | xd | for the scalar product as well
as for 2- and 1-norms of x = (x1, . . . , xd) . We denote by

Br = {x ∈ R
d : |x | < r}, Br = {x ∈ R

d : |x | ≤ r}
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the open and closed ball of radius r , respectively. Unimportant positive constants
denoted by c (with subscripts and superscripts) may have different values in different
formulas (but not in the same formula). By A � B we denote the relation A ≤ cB,
where c is a positive constant independent of f (function) and n or δ (approxima-
tion methods, K -functionals and moduli may depend on). The symbol 
 indicates
equivalence which means that A � B and B � A simultaneously.

2.2 Spaces L p

As usual, L p ≡ L p(T
d), where 0 ≤ p < +∞, is the space of measurable real-valued

2π -periodic with respect variable functions f (x), x = (x1, . . . , xd), such that

‖ f ‖p =
( ∫

Td

| f (x)|p dx
)1/p

< +∞.

Moreover C ≡ C(Td) (p = +∞) is the space of real-valued 2π -periodic continuous
functions equipped with the Chebyshev norm

‖ f ‖∞ = ‖ f ‖C = max
x∈Td

| f (x)|.

Spaces L p of non-periodic functions defined on R
d will be denoted L p(R

d). The
functional ‖ · ‖p is a norm if and only if 1 ≤ p ≤ +∞. For 0 < p < 1 it is a quasi-
norm and the “triangle” inequality is valid for its pth power. If we put p̃ = min(1, p),
the inequality

‖ f + g‖ p̃
p ≤ ‖ f ‖ p̃

p + ‖g‖ p̃
p, f, g ∈ L p, (2.1)

holds for all 0 < p ≤ +∞. Such a form of the “triangle” inequality is convenient
because both cases can be treated uniformly. Moreover, for the sake of simplicity we
shall use the notation “norm” also in the case 0 < p < 1.

2.3 Best Approximation and Jackson Type Estimate

We define, as usual, the best approximation of f by trigonometric polynomials of
order σ in L p by

Eσ ( f )p = inf
T∈Tσ

‖ f − T ‖p, σ ≥ 0. (2.2)

Here Tσ is given by (1.17). As it has been shown in [5] the Jackson type estimate

Eσ ( f )p ≤ c
d

∑

j=1

ω
( j)
k

(

f, (σ + 1)−1)

p, f ∈ L p, σ ≥ 0, (2.3)
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where the positive constant c is independent of f and σ , holds for all k ∈ N and
0 < p ≤ +∞. In (2.3) we used the notations

ω
( j)
k

(

f, δ
)

p = sup
0≤h≤δ

∥
∥
∥

k
∑

ν=1

(−1)ν+1
(

k
ν

)

f (x + νhe j ) − f (x)
∥
∥
∥
p
, δ ≥ 0, (2.4)

for the partial modulus of smoothness of order k in direction e j .

2.4 Spaces lq

As usual, lq ≡ lq(Zd), where 0 < q < +∞, is the space of complex-valued sequences
(a(ν))ν∈Zd defined on Z

d and satisfying

‖a‖lq =
( ∑

ν ∈Zd

|a(ν)|q
)1/q

< +∞.

The convolution of elements a, b in lq is given by

a ∗ b(ν) =
∑

j∈Zd

a( j)b(ν − j), ν ∈ Z
d . (2.5)

If 0 < q ≤ 1 and if a, b ∈ lq then we have a ∗ b ∈ lq and, moreover,

‖a ∗ b‖lq ≤ ‖a‖lq‖b‖lq . (2.6)

This follows from (2.5) and the elementary inequality

∣
∣
∣

∑

j

c( j)
∣
∣
∣

q ≤
∑

j

|c( j)|q , 0 < q ≤ 1.

2.5 Fourier Transform and Fourier Coefficients

The Fourier transform of g ∈ L1(R
d) is defined pointwise by

ĝ(x) =
∫

Rd

g(ξ) e−i xξdξ, x ∈ R
d . (2.7)

For convenience we shall sometimes use also the notation Fg in place of f̂ .
The Fourier coefficients of g ∈ L1 are defined by

g∧(ν) = (2π)−d
∫

Td

g(ξ)e−iνξdξ, ν ∈ Z
d . (2.8)
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To denote the sequence of Fourier coefficients of g we use shall the symbol g∧, that
is, g∧ = {g∧(ν)}ν∈Zd . It holds the equality

(g1 · g2)∧ = g∧
1 ∗ g∧

2 , g1, g2 ∈ L1. (2.9)

Indeed, for trigonometric polynomials formula (2.9) can be proved by direct calcula-
tion applying (2.5). The extension to arbirary functions in L1 is based on a density
argument.

Henceforth, the symbol Ck , k ∈ N, stands for the space of 2π -periodic k-times
continuously differentiable functions of d variables.

Lemma 2.1 Let 0 < q < +∞ and let g ∈ Cd([1/q]+1). Then g∧ belongs to lq .

Proof We put k = [1/q] + 1 and

M = max
1≤ j1<···< jn≤d

∥
∥
∥

∂ nkg

∂xkj1 , . . . , ∂x
k
jn

∥
∥
∥
C
.

Since nk ≤ d([1/q] + 1), the number M is finite. For any ν = (ν1, . . . , νd) ∈ Z
d

we choose the indices 1 ≤ j1 < · · · < jn ≤ d, for which ν jr �= 0, r = 1, . . . , n.
Integration by parts yields

|g∧(ν)| = (2π)−d
n

∏

r=1

|ν jr |−k
∣
∣
∣

∫

Td

∂nkg(ξ)

∂ξ kj1, . . . , ∂ξ kjn

eiνξdξ

∣
∣
∣

≤ M
n

∏

r=1

|ν jr |−k ≡ M
n

∏

r=1

ψ(ν j ),

(2.10)

where ψ(ν) is equal to | ν |−k if ν ∈ Z\{0} and ψ(0) = 1. By means of (2.10) and
taking into account that kq > 1 we obtain

‖g∧‖qlq ≤ M
∑

ν∈Zd

d
∏

j=1

(ψ(ν j ))
q = M

d
∏

j=1

+∞
∑

ν j=−∞
(ψ(ν j ))

q

≤ M
(

1 +
∑

ν �=0

|ν|−kq
)d

< +∞.

Thus, the function g∧(ν), ν ∈ Z
d , belongs to lq . The proof of Lemma 1.1 is complete.

�

2.6 Operators and Inequalities of Fourier Multiplier-Type

Let X (ξ), ξ ∈ R
d , be real- or complex-valued satisfyingX (−ξ) = X (ξ) for ξ ∈ R

d .
It generates the family of operators {Aσ (X )}σ>0 putting

A∞(X ) ≡ X (0)I ; Aσ (X )T (x) =
∑

k∈Zd

X
( k

σ

)

T∧(k)eikx , T ∈ T , (2.11)
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which is well-defined at least on the space T of real-valued trigonometric polynomials.
Let 0 < p ≤ +∞. We consider the inequality

‖Aσ (μ)T ‖p ≤ c(p, μ, ν)‖ Aσ (ν)T ‖p, T ∈ Tσ , σ > 0. (2.12)

Inequality (2.12) is said to be valid in L p for some 0 < p ≤ +∞ if it holds in the
L p-norm for all T ∈ Tσ and for all σ > 0 with a certain positive constant independent
of T and σ . Suppose that ν(ξ) �= 0 for ξ �= 0. Then inequality

‖Aσ (X )T ‖p ≤ c′(p, μ, ν) · ‖T ‖p, T ∈ Tσ , σ > 0, (2.13)

where

X (ξ) = μ(ξ)

ν(ξ)
, ξ ∈ R\{0}, (2.14)

is associated with (2.12). Clearly, (2.13) is of the same type, but the operator on the
right-hand side is the identity I . Let (A) and (B) be inequalities of type (2.12). We
say that inequality (A) implies inequality (B) for some p if the validity of (A) for p
implies the validity of (B) for p. We also say that (A) implies (B) if this is the case for
all 0 < p ≤ +∞.

Recall that p̃ = min(1, p). The following properties hold.

Proposition 2.2 (i) If μ(0) = ν(0) = 0 then (2.13) implies (2.12) independently
of the value X (0) .
(ii) Let μ(0) = ν(0) = 0. If X is continuous on R

d and if X̂η ∈ L p̃(R
d)

for a certain infinitely differentiable function η with compact support satisfying
η(ξ) = 1 for ξ ∈ B1, then inequality (2.12) is valid in L p .
(iii) Let X be continuous on R

d and let η be an infinitely differentiable function
with support contained the unit ball B1. If (2.12) is valid for a certain parameter
0 < p ≤ +∞, then X̂η ∈ L p∗(Rd), where p∗ = p for 0 < p ≤ 2 and
p∗ = p/(p − 1) for 2 < p ≤ +∞.

The continuity ofX onRd means that there exists limξ→0 X (ξ). Proofs of (i)–(iii)
can be found in [10] (Theorems 3.1 and 3.2) and [11]. For (ii) we also refer to [13],
pp. 150–151.

2.7 Homogeneous Functions

Let s > 0. By Hs we denote the class of functions ψ satisfying the properties

(1)ψ is a complex-valued function defined onRd and ψ(−ξ) = ψ(ξ) for ξ ∈ R
d ;

(2) ψ is continuous;
(3) ψ is infinitely differentiable on R

d\{0};
(4) ψ is homogeneous of order s, i. e. ψ(tξ) = t sψ(ξ) for t > 0, ξ ∈ R

d\{0};
(5) ψ(ξ) �= 0 for ξ ∈ R

d\{0}.
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Let η be an infinitely differentiable function defined on R
d satisfying η(ξ) = 1 for

| ξ | ≤ ρ1 and η(ξ) = 0 for | ξ | ≥ ρ2, where 0 < ρ1 < ρ2 < +∞. The following
properties hold.

Proposition 2.3 (i) If ψi ∈ Hsi , i = 1, 2, then ψ1ψ2 ∈ Hs1+s2 .
(ii) If ψ ∈ Hs, s > 1, and j = 1, . . . , d, then ∂ψ/∂ξ j ∈ Hs−1 .
(iii) If ψ ∈ Hs then there exists a positive constant c1 such that

| ψ̂η(x) | ≤ c1
(| x | + 1

)−(d+s) (2.15)

holds for all x ∈ R
d .

(iv) If ψ ∈ Hs is not a polynomial, then there exist r0 > 0, u0 ∈ Sd−1, where
Sd−1 is the d-dimensional sphere, and 0 < θ0 < π/2 such that

|ψ̂η(x)| ≥ c2
(|x | + 1

)−(d+s)
, x ∈ � ≡ �(r0, u0, θ0), (2.16)

where

� = {x ∈ R
d : x = ru, r ≥ r0, u ∈ Sd−1, (u, u0) ≥ 1 − θ0} (2.17)

and where the positive constant c2 is independent of x .
(v) If ψ ∈ Hs is not a polynomial then the Fourier transform of ψη belongs to
L p(R

d) if and only if p > d/(d + s).

Statements (i)–(ii) are obvious. The proofs of (iii) and (iv) can be found in [10] (for-
mulae (4.6) and (4.7)). Part (v) is a consequence of (iii) and (iv).

3 Basic Properties of the Moduli ωm,d( f, δ) p

Some elementary properties of modulus (1.1) are collected in the following.

Lemma 3.1 Let m, d ∈ N, 0 < p ≤ +∞ and let p̃ = min(1, p).

(i) The operators T (m,d)
h and �

(m,d)
h given by (1.3) and (1.4), respectively, are

linear and uniformly bounded in L p.
(ii) Modulus (1.1) is well-defined in L p (convergence in L p) and there exists a
constant c such that

ωm,d( f, δ)p ≤ c‖ f ‖p < +∞, (3.1)

for each f ∈ L p and δ ≥ 0 . The function ωm,d( f, · ) is increasing on [0,+∞)

and it holds ωm,d( f, 0) = 0.
(iii) If f1, f2 ∈ L p and δ ≥ 0 then

ωm,d( f1 + f2, δ)
p̃
p ≤ ωm,d( f1, δ)

p̃
p + ωm,d( f2, δ)

p̃
p. (3.2)
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(iv) Let Aσ and θm,d be given by (2.11) and (1.6)–(1.8), respectively. Then it
holds

�
(m,d)
h = Ah−1(θm,d) (3.3)

for each h ≥ 0 at least on the space T of real-valued trigonometric polynomials.

Proof The linearity of translation and difference operator follows immediately from
(1.3) and (1.4). Their uniform boundedness follows from the estimate

‖T (m,d)
h f ‖ p̃

p ≤ c
d

∑

j=1

m
∑

ν = −m
ν �= 0

‖ f (x + νhe j )‖ p̃
p ≤ 2mdc‖ f ‖ p̃

p,

which can be derived from (1.3) and (2.1) for f ∈ L p and h ≥ 0. Here the constant

c ≡ c(m, d) =
(σm

d

) p̃
max|ν|≤m

(

2m
m − |ν|

) p̃

is independent of f and h. Part (i) is proved. Inequality (3.1) is a direct consequence
of part (i) and the definition (1.1) of the modulus. The other statements of part (ii)
immediately follow from (1.1). Inequality (3.2) follows from (1.1) in combination
with (2.1).

It remains to prove part (iv). In view of (2.11) we have

Ah−1(θm,d)T (x) =
∑

k∈Zd

θm,d(hk)T
∧(k)eikx

=
∑

k∈Zd

T∧(k)eikx
( ∑

ν∈Zd

θ∧
m,d(ν) eiνkh

)

=
∑

ν∈Zd

θ∧
m,d(ν)

( ∑

k∈Zd

T∧(k)eik(x+νh)
)

=
∑

ν∈Zd

θ∧
m,d(ν)T (x + νh)

(3.4)

for each T ∈ T and h ≥ 0. Applying formula (1.9) in combination with (1.2) and
(1.6)–(1.8) we find the representation

θ∧
m,d(ν) =

⎧

⎪⎪⎨

⎪⎪⎩

−1 , ν = 0
(−1)ν j σm

dν2j

(

2m
m − |ν j |

)

,
ν = ν j e j , 0 < |ν j | ≤ m,

j = 1, . . . , d

0 , otherwise

(3.5)

for the Fourier coefficients of the generator θm,d . Now (3.3) follows from (3.4) and
(3.5) by means of (1.3) and (1.4). This completes the proof. �
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4 Jackson-Type Estimate

In this section we prove a Jackson-type estimate for modulus (1.1). Our approach is
basedon the comparisonof ωm,g( f, δ)p and the partialmoduli ω

( j)
k ( f, δ)p introduced

in (2.4).

Lemma 4.1 Let m, d ∈ N.

(i) The generator θm,d given by (1.6)–(1.8) is analytic on R
d .

(ii)We have θm,d(ξ) < 0 for ξ ∈ R
d\2πZd , where 2πZd = {2πν, ν ∈ Z

d}.
(iii) The function 1/θm,d is analytic on R

d\2πZd .

Proof Part (i) follows immediately from (1.6)–(1.8). In view of (1.6) it is enough to
prove part (ii) for d = 1. We consider the function

ϕ(t) =
t∫

0

(

sin2m(τ/2) − αm
)

dτ, t ∈ R. (4.1)

Using (1.8) and (1.9) we obtain

ϕ(t) = 21−2m
m

∑

ν=1

(−1)ν

ν

(

2m
m − ν

)

sin νt. (4.2)

By (4.2) the function ϕ is a 2π -periodic, odd and satisfies ϕ(π) = 0. Using (4.1) and
the properties of the function sin(τ/2) it is easy to see that ϕ is decreasing on [0, ξ0]
and increasing on [ξ0, π ], where ξ0 ∈ (0, π) satisfies sin2m(ξ0/2) = αm . According
to these properties the function (see also 1.7, 1.8)

γ −1
m θm(ξ) =

ξ∫

0

t∫

0

(

sin2m(τ/2) − αm
)

dτdt, ξ ∈ R,

is 2π -periodic and even. It decreases on [0, π ] and it increases on [π, 2π ]. Therefore,

γ −1
m θm(ξ) < 0, ξ ∈ R\2πZ. (4.3)

Combining (4.3) and (3.5) we get

γ −1
m = −γ −1

m θ∧
m (0) = −(2π)−1

2π∫

0

γ −1
m θm(ξ)dξ > 0. (4.4)

Now the statement of part (ii) immediately follows from (4.3) and (4.4). Part (iii) is a
direct consequence of parts (i) and (ii). This completes the proof. �
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Theorem 4.2 (Jackson-type estimate) Let m, d ∈ N, and let 0 < p ≤ ∞. Then
for any λ > 0

Eσ ( f )p ≤ cp(λ)ωm,d
(

f, λ(σ + 1)−1)

p, f ∈ L p, σ ≥ 0, (4.5)

where cp(λ) is a positive constant independent of f and σ .

Proof We put

k = 2d([1/ p̃]+1)+1 + d([1/ p̃] + 1) + 1 . (4.6)

Let j ∈ {1, . . . , d}. By Lemma 4.1 the function

� j (ξ) = − (1 − eiξ j )k

θm,d(ξ)
(4.7)

is analytic on R
d\2πZd . Let ν = (ν1, . . . , νd) ∈ Z

d+ such that |ν|1 ≤ d([1/ p̃] + 1).
Applying standard differentiation formulas and taking into account (1.9) and (4.6) we
find

∣
∣
∣
∣

∂ | ν |1� j (ξ)

∂ξ
ν1
1 , . . . , ∂ξ

νd
d

∣
∣
∣
∣
≤ c

|ξ j |k−ν j

|ξ |2|ν|1+1 ≤ c|ξ |k−|ν|1−2|ν|1+1 ≤ c|ξ |,

for | ξ | ≤ 1. In particular, it follows

lim
ξ→0

∂ |ν|1� j (ξ)

∂ξ
ν1
1 , . . . , ∂ξ

νd
d

= 0.

Thus, the function � j belongs to the space Cd([1/ p̃]+1). By Lemma 2.1 the sequence
(�∧

j (ν))ν∈Zd of its Fourier coefficients belongs to the space l p̃. Taking into account
formula (3.4) with � j in place of θm,d we can extend the operator Ah−1(� j ), h ≥ 0,
which is initially defined on T , to the space L p by the formula

Ah−1(� j ) f (x) =
∑

ν∈Zd

�∧
j (ν) f (x + νh). (4.8)

Using (4.8) we get

∥
∥Ah−1(� j ) f (x)

∥
∥
p̃
p ≤

∑

ν∈Zd

∣
∣�∧

j (ν)
∣
∣
p̃‖ f (x + νh)‖ p̃

p = ∥
∥�∧

j

∥
∥
p̃
l p̃

‖ f ‖ p̃
p

for each f ∈ L p. This implies that the series on the right-hand side of (4.8) converges
in L p and, moreover,

∥
∥Ah−1(� j )

∥
∥

(p) ≡ sup
‖ f ‖p≤1

∥
∥Ah−1(� j ) f (x)

∥
∥
p ≤ ∥

∥�∧
j

∥
∥
l p̃

< +∞. (4.9)
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Taking into account that the coefficients in (2.4) are the Fourier coefficients of the
function θ j (ξ) = −(1 − eiξ j )k and applying (3.4) with θ j in place of θm,d we can
rewrite the definition of the partial modulus of smoothness of order k defined in (2.4)
as

ω
( j)
k ( f, δ)p = sup

0≤h≤δ

∥
∥Ah−1(θ j ) f

∥
∥
p, f ∈ L p, δ ≥ 0. (4.10)

In view of (2.11), (3.3) and (4.7) we have

Ah−1(θ j ) = Ah−1(� j ) ◦ Ah−1(θm,d) = Ah−1(� j ) ◦ �
(m,d)
h (4.11)

in L p for each h ≥ 0. Combining (4.9) and (4.11) we obtain

∥
∥Ah−1(θ j ) f (x)

∥
∥
p ≤ ∥

∥Ah−1(� j )
∥
∥

(p)

∥
∥�

(m,d)
h f (x)

∥
∥
p

≤ ∥
∥�∧

j

∥
∥
l p

∥
∥�

(m,d)
h f (x)

∥
∥
p

(4.12)

for f ∈ L p and h ≥ 0. Combining (1.1), (1.3), (1.4), (4.10), and (4.12) we get the
estimate

ω
( j)
k ( f, δ)p ≤ cωm,d( f, δ)p, f ∈ L p, δ ≥ 0, (4.13)

where the positive constant c is independent of f and δ.
Recall that the inequality

ω
( j)
k ( f, tδ)p ≤ (1 + t)k/ p̃ ω

( j)
k ( f, δ)p, f ∈ L p, t, δ ≥ 0, (4.14)

holds for the classical moduli of smoothness (see e. g. [1]). Combining (2.3), (4.13),
and (4.14) we find the estimates

Eσ ( f )p ≤ c
d

∑

j=1

ω
( j)
k

(

f, (σ + 1)−1)

p ≤ c1

d
∑

j=1

ω
( j)
k

(

f, λ (σ + 1)−1)

p

≤ c2 ωm,d
(

f, λ (σ + 1)−1
)

p

for f ∈ L p,σ ≥ 0 andλ > 0,where the positive constants c, c1 and c2 are independent
of f and σ . The proof is complete. �

5 Equivalence of ωm,d( f, δ) p and K (P)
�

( f, δ) p

In order prove the main result of this paper on the equivalence of moduli (1.1) and
functionals (1.16) we need some auxiliary results.

Lemma 5.1 Let s, d ∈ N and assume s, d > 1. The polynomial Ps(ξ) = ξ2s1 +
· · · + ξ2sd is divisible by | ξ |2 = ξ21 + · · · + ξ2d if and only if d = 2 and s is an odd
number.
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Proof Sufficiency Let d = 2 and let s = 2k + 1, k ∈ N. Then

|ξ |2
s−1
∑

ν=0

(−1) j ξ2(s− j−1)
1 ξ

2 j
2 = ξ2s1 + (−1)s+1ξ2s2 = Ps(ξ).

Necessity Suppose that Ps(ξ) is divisible by | ξ |2. Then the function

Qs(x) = xs1 + · · · + xsd
x1 + · · · + xd

, x = (x1, . . . , xd) ∈ R
d ,

is a polynomial as well. In particular, limx→x0 Qs(x) exists for any x0 ∈ R
d . Let first

d = 2. We put x0 = (1,−1). Since x1 + x2 tends to 0 for x → x0 the sum xs1 + xs2
should also tend to 0. It yields that 1 + (−1)s = 0 and that s is an odd number. Let
now d ≥ 3. If x0 = (1, 1,−2, 0, . . . , 0) then x1 + · · · + xd tends to 0. Therefore,
xs1 + · · ·+ xsd also tends to 0. It implies 1+ 1+ (−2)s = 0. Hence, s should be equal
to 1. The proof of Lemma 5.1 is complete. �

Let v and w be continuous functions defined on R
d and let 0 < p ≤ +∞. In the

following we write v(·) (p)≺ w(·), if there exists a function η infinitely differentiable
on R

d , satisfying η(ξ) = 1 for | ξ | ≤ ρ1 and η(ξ) = 0 for | ξ | ≥ ρ2, where
0 < ρ1 < ρ2 < +∞, such that F( (ηv)/w ) belongs to L p(R

d). The notation

v(·) (p)
 w(·) indicates equivalence. It means that v(·) (p)≺ w(·) and w(·) (p)≺ v(·)
hold simultaneously.

For d, m ∈ N we introduce the number as

pm,d =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

0 , d = 1
d

d + 2(m + 1)
, d = 2,m = 2k, k ∈ N

d

d + 2m
, otherwise

. (5.1)

Lemma 5.2 Let m, d ∈ N and let 0 < p < +∞.

(i) It holds | · |2 (p)
 θm,d(·) for p > pm,d .

(ii) If d > 1 and 0 < p ≤ pm,d , then both relations | · |2 (p)≺ θm,d(·) and

θm,d(·) (p)≺ | · |2 are false.

Proof First we consider the most general case d ≥ 3 or d = 2, m = 2k − 1, k ∈ N.
Combining (1.6), (1.7), (1.9) and using the power series representation of cos x we
see that

|ξ |−2 θm,d(ξ) = α(m,d) +
+∞
∑

ν=0

α(m,d)
ν ψ2(m+ν)(ξ), ξ ∈ R

d , (5.2)
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where

ψ2(s−1)(ξ) = | ξ |−2
d

∑

j=1

ξ2sj , s ∈ N. (5.3)

Clearly, the series on the right-hand side of (5.2) converges absolutely and uniformly
on each compact set K ⊂ R

d\{0} and it holds ψ2(s−1) ∈ H2(s−1) for s > 1.
By means of (5.2) and (5.3) we obtain

| ξ |−2 θm,d(ξ) η(ξ) = α(m,d) η(ξ) + α
(m,d)
0 ψ2m(ξ) η(ξ)

+
( N−1

∑

ν=1

α(m,d)
ν ψ2(m+ν)(ξ)

)

η(ξ)

+
( +∞

∑

ν=N

α(m,d)
ν ψ2(m+ν)(ξ)

)

η(ξ)

≡ �1(ξ) + �2(ξ) + �3(ξ) + �4(ξ), ξ ∈ R
d ,

(5.4)

where N = [d/2] + 3 is chosen. Since the function �1 is infinitely differentiable on
R
d we get

| �̂1(x) | ≤ c1 (| x | + 1)−(d+2(m+1)), x ∈ R
d . (5.5)

In view of (2.15) (Proposition 2.3, part (iii)) we have

| �̂2(x) | ≤ c2 (| x | + 1)−(d+2m) (5.6)

| �̂3(x) | ≤ c
[d/2]+1
∑

ν=1

(| x | + 1)−(d+2(m+ν)) ≤ c3 (| x | + 1)−(d+2(m+1)). (5.7)

for x ∈ R
d . Because of Proposition 2.3, part (ii), and taking into account that

2(m + ν) − (d + 2m + 2) ≥ 2(m + [d/2] + 3) − (d + 2m + 2) > 1

for ν ≥ N we conclude that

lim
ξ → 0

∂ | j |1�3(ξ)

∂ξ
j1
1 , . . . , ∂ξ

jd
d

= 0

for each j ∈ Z
d+ satisfying | j |1 ≤ d + 2(m + 1). It means that the function �3 has

continuous derivatives on R
d up to the order d + 2(m + 1). In view of elementary

properties of the Fourier transform this observation implies that

| �̂4(x) | ≤ c4 (| x | + 1)−(d+2(m+1)), x ∈ R
d . (5.8)
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Applying (5.4)–(5.8) we obtain

∥
∥ F

(| · |−2 θm,d(·) η(·) ) ∥
∥
p
p ≤ c

(

1 +
∫

| x |>1

dx

| x |p (d+2m)

)

≤ c′
(

1 +
+∞∫

1

dr

r p (d+2m)−d+1

)

< +∞

for p (d + 2m) − d + 1 > 1. Thus, in the case d ≥ 3 or d = 2, m = 2k − 1 (k ∈ N)

the estimate

θm,d(·) (p)≺ | · |2 (5.9)

follows for p > pm,d .
Now, assume 0 < p ≤ pm,d . Note that α

(m,d)
0 �= 0 . Moreover, the function ψ2m

is not a polynomial by Lemma 5.1. Hence, using Proposition 2.3, part (iv), as well as
formulae (1.7), (1.8), (1.10) we get

| �̂2(x) | ≥ c0 (| x | + 1)−(d+2m), x ∈ �, (5.10)

where the positive constant c0 is independent of x and where � ≡ �(r0, u0, θ0) is
given by (2.17). We put

r1 = max
{

r0, (2(c1 + c3 + c4)/c0)
1/2 }

. (5.11)

Combining (5.4), (5.5), (5.7), (5.8) with (5.10) and (5.11) we obtain

∣
∣ F

(| · |−2 θm,d(·) η(·) )

(x)
∣
∣ ≥ | �̂2(x) | −

∑

j=1,3,4

| �̂ j (x) |

≥ c0 (| x | + 1)−(d+2m)

−(c1 + c3 + c4) (| x | + 1)−(d+2(m+1))

> (c0/2) (| x | + 1)−(d+2m)

(5.12)

for x ∈ �1 ≡ �(r1, u0, θ0). By means of (5.12) we get

∥
∥ F

(| · |−2 θm,d(·) η(·) ) ∥
∥p
p ≥ c

∫

�1

dx

| x |p (d+2m)
= c′

+∞∫

r1

dr

r p (d+2m)−d+1
= +∞

for 0 < p ≤ pm,d . Thus, for such p relation (5.9) is false.
Next we prove that in the case under consideration (d ≥ 3 or d = 2, m = 2k − 1,

k ∈ N) the inverse relation, i. e.

| · |2 (p)≺ θm,d(·) (5.13)
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also holds if and only if p > pm,d . We put

�m,d(ξ) =
+∞
∑

ν=0

α
(m,d)
ν

α(m,d)
ψ2(m+ν)(ξ), ξ ∈ R

d . (5.14)

Since limξ→0 �m,d(ξ) = 0 there exists ρ0 > 0 such that

| �m,d(ξ) | ≤ 1/2, ξ ∈ Bρ0 . (5.15)

Using the Taylor expansion of the function (x + 1)−1 at the point 0 we get

αm,d | ξ |2 (

θm,d(ξ)
)−1

η(ξ) = η(ξ)

1 + �m,d(ξ)
=

+∞
∑

j=0

(−1) j
(

�m,d(ξ)
) j

η(ξ)(5.16)

by (5.2), (5.14) and (5.15) for each ξ ∈ R
d . Here η is an infinitely differentiable

function satisfying η(ξ) = 1 for ξ ∈ Bρ1 , where 0 < ρ1 < ρ0, and η(ξ) = 0
for ξ /∈ Bρ0 . In view of (5.5) the series on the right-hand side of (5.16) converges
absolutely and uniformly on each compact set K ⊂ R

d . Note that

(

�m,d(ξ)
) j =

+∞
∑

ν1=0

. . .

+∞
∑

νd=0

j
∏

i=1

α
(m,d)
νi

α(m,d)
ψ2(m+νi )(ξ), ξ ∈ R

d ,

for j ∈ N. Combining (5.14) and (5.16) and applying Propsition 2.3, part (i), we
obtain

αm,d | ξ |2 (

θm,d(ξ)
)−1

η(ξ) = η(ξ) + α
(m,d)
0

α(m,d)
ψ2m(ξ) η(ξ)

+
( +∞

∑

ν=1

β(m,d)
ν ζ2(m+ν)(ξ)

)

η(ξ)

(5.17)

for ξ ∈ R
d , where ζ2(m+ν) ∈ H2(m+ν), ν ∈ N. Formula (5.17) is similar to repre-

sentation (5.4). Now the further proof of (5.13) follows the arguments above to prove
(5.9).

Now let us consider the other remaining cases. For d = 1 the functions
| · |−2 θm(·) η(·) and | · |2 (

θm(·))−1
η(·) are infinitely differentiable by (5.2), (5.3),

(5.17). Therefore, relations (5.9) and (5.13) are valid for all 0 < p ≤ +∞. If d = 2,
m = 2k (k ∈ N) then the function ψ2m is a polynomial by Lemma 5.1. To study
relation (5.9) in this case we modify representation (5.4) as follows
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| ξ |−2 θm,d(ξ) η(ξ) = (

α(m,d) η(ξ) + α
(m,d)
0 ψ2m(ξ) η(ξ)

)

+α
(m,d)
1 ψ2(m+1)(ξ) η(ξ)

+
( N1−1

∑

ν=2

α(m,d)
ν ψ2(m+ν)(ξ)

)

η(ξ)

+
( +∞

∑

ν=N1

α(m,d)
ν ψ2(m+ν)(ξ)

)

η(ξ)

≡ �1(ξ) + �2(ξ) + �3(ξ) + �4(ξ), ξ ∈ R
d ,

(5.18)

where N1 = [d/2] + 4 is chosen. Similarly to (5.5)–(5.8) and (5.10) we obtain

| �̂1(x) | ≤ c1 (| x | + 1)−(d+2(m+2)), x ∈ R
d , (5.19)

| �̂2(x) | ≤ c2 (| x | + 1)−(d+2(m+1)), x ∈ R
d , (5.20)

| �̂3(x) | ≤ c3 (| x | + 1)−(d+2(m+2)), x ∈ R
d , (5.21)

| �̂4(x) | ≤ c4 (| x | + 1)−(d+2(m+2)), x ∈ R
d , (5.22)

| �̂2(x) | ≥ c0 (| x | + 1)−(d+2(m+1)), x ∈ �(r0, u0, θ0). (5.23)

The further proofs of the statements connected with (5.9) coincide with the proofs
given above for the first case with obvious modifications. In order to study relation
(5.13) for d = 2, m = 2k, k ∈ N we modify representation (5.17) similarly to (5.18)
and apply the arguments given for (5.9).

The proof of Lemma 5.2 is complete. �

Theorem 5.3 (Equivalence Theorem) Let m, d ∈ N. Then it holds

ωm,d( f, δ)p 
 K (P)
� ( f, δ)p, f ∈ L p, δ ≥ 0, (5.24)

if and only if p > pm,d .

Proof It follows fromProposition 2.2, Lemma 4.1 andLemma 5.2 that the inequalities

‖ Ah−1(θm,d)T ‖p ≤ c ‖ Ah−1(| · |2)T ‖p, T ∈ Th−1, h ≥ 0, (5.25)

‖ Ah−1(| · |2)T ‖p ≤ c ‖ Ah−1(θm,d)T ‖p, T ∈ Th−1, h ≥ 0, (5.26)

are valid if and only if p > pm,d .
Sufficiency Let p > pm,d . We have Ah−1(θm,d) = �

(m,d)
h by part (iv) of Lemma

3.1 and Ah−1(| · |2) = −h2� . Hence, the equivalence

‖�
(m,d)
h T ‖p 
 h2 ‖�T ‖p, T ∈ Th−1 , h ≥ 0, (5.27)
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follows from (5.25) and (5.26). Applying (1.1)–(1.4), (3.1), (3.2) (parts (ii) and (iii)
of Lemma 3.1), and (5.27) we obtain

ωm,d( f, δ)
p̃
p ≤ ωm,d( f − T, δ)

p̃
p + ωm,d(T, δ)

p̃
p ≤ c ‖ f − T ‖ p̃

p

+ sup
0≤ h ≤ δ

‖�
(m,d)
h T ‖ p̃

p ≤ c1
( ‖ f − T ‖ p̃

p + δ2 p̃ ‖�T ‖ p̃
p
)

≤ c2 ( ‖ f − T ‖p + δ2 ‖�T ‖p ) p̃

for each T ∈ Tδ−1 . This implies the upper estimate in (5.24). To prove the lower
estimate we consider the polynomial T ∗ ∈ Tδ−1 of best approximation of f in L p

by trigonometric polynomials of order δ−1. Using the Jackson-type inequality from
Theorem 4.2 with λ = 1 and taking into account that (δ−1 + 1)−1 ≤ δ we get

‖ f − T ∗ ‖p = Eδ−1( f )p ≤ cωm,d
(

f, (δ−1 + 1)−1)

p ≤ cωm,d( f, δ)p. (5.28)

With the help of Lemma 3.1 (part (i)), (5.27), and (5.28) we obtain

δ2 p̃ ‖�T ∗‖ p̃
p ≤ c ‖�

(m,d)
δ T ∗‖ p̃

p ≤ c
(‖�

(m,d)
δ ( f − T ∗) ‖ p̃

p + ‖�
(m,d)
δ f ‖ p̃

p
)

≤ c1
( ( ‖ f − T ∗ ‖ p̃

p + ωm,d( f, δ)
p̃
p
) ≤ c2 ωm,d( f, δ)

p̃
p.

(5.29)

As a consequence of (5.28) and (5.29) we finally get

K (P)
� ( f, δ)p ≤ c

( ‖ f − T ∗‖p + δ2 ‖�T ∗‖p
) ≤ c1 ωm,d( f, δ)p.

Necessity Suppose that (5.24) holds. Then one has

‖�
(m,d)
h T ‖p ≤ ωm,d(T, h)p ≤ c K (P)

� (T, h)p ≤ c h−2 ‖�T ‖p

for each T ∈ Th−1 . This means that (5.25) holds and therefore p > pm,d follows.
The proof of Theorem 5.3 is complete. �
As it was alreadymentioned in the Introduction, Theorem 5.3 contains some known

results as special cases. If d = 1, m = 1 and 1 ≤ p ≤ +∞ then the equivalence
(5.24) is the well-known result of Johnen (see e. g. [1], Ch. 6, §2, Theorem 2.4) for the
classical modulus of smoothness of second order ω2( f, δ)p and Peetre’s K -functional
related to the derivative of the second order. The equivalence of ω2( f, δ)p and the
corresponding polynomial K -functional related to the second derivative in the case
0 < p < 1 is proved in [6]. The multivariate case for m = 1 is studied in [5].

6 Applications

Combining Theorem 5.3 and the properties of polynomial K -functionals described in
[9] we immediately obtain corresponding results for moduli of smoothness defined in
(1.1). Recall that p̃ = min(1, p).
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Theorem 6.1 Let m, d ∈ N and let pm,d < p ≤ +∞. Then there exists a positive
constant c such that

ωm,d( f, tδ)p ≤ c max
(

1, t d(1/ p̃−1)+2
)

ωm,d( f, δ)p (6.1)

holds for all f ∈ L p and δ, t ≥ 0.

Theorem 6.2 (Bernstein-type estimate) Let m, d ∈ N and let pm,d < p ≤ +∞.
Then there exists a positive constant c such that

ωm,d( f, δ)p ≤ cmin(δ2, 1)

(
∑

0≤ν < 1/δ

(ν + 1)2 p̃−1 Eν( f )
p̃
p

)1/ p̃

(6.2)

holds for all f ∈ L p and δ ≥ 0.

Obviously the definition in (5.1) implies that pm,d ≤ pm0,d for m > m0 . Hence,
the following equivalence result follows from Theorem 5.3.

Theorem 6.3 (Equivalence of moduli (1) for different m) Let m0, d ∈ N and let
pm0,d < p ≤ +∞. Then we have

ωm,d( f, δ)p 
 ωm0,d( f, δ)p, f ∈ L p, δ ≥ 0 (6.3)

for m > m0.

Finally we describe the quality of approximation by families of linear polyno-
mial operators generated by Bochner–Riesz kernels in terms of moduli of smoothness
ωm,d( f, δ)p. Let λ, x ∈ R

d and let n ∈ N0. We put (see also [12])

B(α)
n; λ

( f ; x) = (2n + 1)−d
2n
∑

ν=0

f
(

tνn + λ
)

B(α)
n

(

x − tνn − λ
)

. (6.4)

Here we used the notations

tνn = 2πν

2n + 1
, ν ∈ Z

d;
2n
∑

ν=0

≡
2n
∑

ν1=0

. . .

2n
∑

νd=0

,

B(α)
0 (h) = 1, B(α)

n (h) =
∑

| k | ≤ n

(

1 − | k |2
n2

)α

eikh, n ∈ N, h ∈ R
d . (6.5)

The functions B(α)
n are the well-known Bochner–Riesz kernels with parameter α > 0.

It has been proved in ([7] Theorem 4.1 and Section 5) that in the super-critical case
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α > (d − 1)/2 this family converges in L p if and only if p > 2d/(d + 2α + 1). More
precisely this means that

‖ f − B(α)
n;λ( f ) ‖p := (2π)−d/p

( ∫

Td

‖ f − B(α)
n;λ( f )‖p

pdλ

)1/p

→ 0(n → ∞) (6.6)

if and only if 2d/(d + 2α + 1) < p < +∞ and that

‖ f − B(α)
n;λ( f ) ‖C := max

λ∈Rd
‖ f − B(α)

n;λ( f )‖C → 0(n → ∞) (6.7)

in the case p = +∞. In this sense the family of operatorsB(α)
n acting from L p(T

d) into
L p(T

d ×T d) can be considered as a constructive approximation method, in particular
in the case 0 < p < 1. More information can be found in [7] and [8]. We have proved
in [12], Theorems 2 and 3, that

‖ f − B(α)
n;λ( f ) ‖p 
 K (P)

� ( f, 1/n)p, f ∈ L p, n ∈ N (6.8)

if α > (d − 1)/2 and p > 2d/(d + 2α + 1) (see also [8] Theorems 6.1 and 7.3 for a
more general approach). Combining Theorem 5.3 and (6.8) we obtain the following
equivalence theorem.

Theorem 6.4 (Quality of approximation by Bochner–Riesz families) Suppose
that m0, d ∈ N and α > (d − 1)/2. It holds

‖ f − B(α)
n;λ( f )‖p 
 ωm,d

(

f, (n)−1)

p, f ∈ L p, n ∈ N, (6.9)

for p > max(pm,d , 2d/(d + 2α + 1)), where pm,d is given by (5.1).

Of peculiar interest is the case 0 < p < 1 and d ≥ 2. Theorem 6.4 extends
the result of Theorem 5 in [12] which corresponds to the case m = 1 and which is
restricted to p > d/(d + 2). Note that pm,d → 0 if m → ∞. Hence, we are now able
to characterize the approximation error ‖ f −B(α)

n; λ
( f ) ‖p by an appropriate modulus

of smoothness ωm,d
(

f, (n)−1
)

p for a given p > 0 by choosing m large enough.
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