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Abstract In this paper we propose to develop harmonic analysis on the Poincaré
ball B

n
t , a model of the n-dimensional real hyperbolic space. The Poincaré ball B

n
t

is the open ball of the Euclidean n-space R
n with radius t > 0, centered at the

origin of R
n and equipped with Möbius addition, thus forming a Möbius gyrogroup

where Möbius addition in the ball plays the role of vector addition in R
n . For any

t > 0 and an arbitrary parameter σ ∈ R we study the (σ, t)-translation, the (σ, t)-
convolution, the eigenfunctions of the (σ, t)-Laplace–Beltrami operator, the (σ, t)-
Helgason Fourier transform, its inverse transform and the associated Plancherel’s
Theorem, which represent counterparts of standard tools, thus, enabling an effective
theory of hyperbolic harmonic analysis. Moreover, when t → +∞ the resulting
hyperbolic harmonic analysis on B

n
t tends to the standard Euclidean harmonic analysis

on R
n, thus unifying hyperbolic and Euclidean harmonic analysis. As an application

we construct diffusive wavelets on B
n
t .
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1 Introduction

Möbius addition, ⊕, in the ball Bn
t = {x ∈ R

n : ‖x‖ < t} plays a role analogous
to that of vector addition, +, in the Euclidean n-space R

n , giving rise to the Möbius
gyrogroup (Bn

t ,⊕), which is analogous to the Euclidean group (Rn,+) [20,23,25].
Möbius gyrogroup turn out to be isomorphic, in the gyrovector sense, to corresponding
Einstein gyrogroup [23, Sect. 6.19].

The gyrogroup structure is a natural extension of the group structure, discovered
in 1988 by Ungar in the context of Einstein’s velocity addition law [18]. The term
gyrogroup was coined in 1991 [19, 23, Sect. 1.2], following which it has been exten-
sively studied by Ungar and others; see, for instance, [9,10,16,21,23,24,26,27], in
the context of abstract algebra, non-Euclidean geometry, mathematical physics, and
quantum information and computation.

Möbius addition in the open unit disc D = {z ∈ C : |z| < 1} is the well-known
binary operation a ⊕ z = (a + z)(1 + āz)−1, a, z ∈ D, given by a fractional linear
transformation. Möbius addition is neither commutative nor associative, but it is both
gyrocommutative and gyroassociative under gyrations defined by gyr [a, b] = (1 +
ab̄)/(1 + āb), a, b ∈ D. The generalisation to higher dimensions of the Möbius
addition is done by considering Möbius transformations on the ball.

Möbius transformations in R
n were studied by Vahlen in his seminal but almost

forgotten paper [29]. Their matricial representation and general properties were redis-
covered by Ahlfors [1,2] almost seventy years later, and independently by Hua [13].
Ahlfors noticed that changing the role of the variables in the Möbius transformation on
the ball gives the same Möbius transformation up to a specific orthogonal transforma-
tion [1]. This orthogonal transformation (denoted by Ungar as Ahlfors rotation) plays
a central role in gyrogroup theory and hyperbolic geometry [22,23] and gives rise
to the gyration operator. Moreover, it can be regarded as an analogue of the Thomas
precession in the theory of special relativity for the Beltrami–Klein model of hyper-
bolic geometry governed by Einstein’s addition of velocities. By incorporating the
gyration operator gyr [a, b] in the algebraic structure, gyrogroup theory repairs the
breakdown of associativity and commutativity. In parallel to these advances, Clifford
algebras appear as an adequate tool for representation of Möbius transformations (see
e.g. [4,28]). For instance, using the Clifford algebra representation the gyration oper-
ator has an explicit spin representation in the case of the Möbius gyrogroup, which
in turn allows the construction of explicit factorisations of the ball with respect to
Möbius addition [8,9].

In this paper we propose to study hyperbolic gyroharmonic analysis on the Poincaré
ball B

n
t . With this aim in mind we generalize the results obtained in [17]. The goal of

our study is two-fold: first, to understand how the gyration operator affects harmonic
analysis on the ball; second, to set the stage for an operator calculus in the framework of
wavelet analysis, Gabor analysis, and diffusive wavelets on the ball using the algebraic
structure of the Möbius gyrogroup.
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In our approach we consider a generalised Laplace–Beltrami operator on the ball
depending on the radius t ∈ R

+ and on an additional parameter σ ∈ R. This operator
is a variation of the common Laplace–Beltrami operator, or conformal Laplacian
on the unit ball, which plays an important role in scattering and potential theory. It
has connections with other equations like the Weinstein equation (see e.g. [17] and
references therein). Using the gyrolanguage we prove new theorems like a Young’s
inequality for the (σ, t)-convolution (Theorem 1), the gyrotranslation invariance of
the (σ, t)-convolution (Theorem 2), the gyroassociative law of the (σ, t)-convolution
(Theorem 3), and the generalised convolution theorem with respect to the (σ, t)-
Helgason Fourier transform (Theorem 5). Each of those theorems involves the gyration
operator in a natural way. In the context of the unit ball [17] and symmetric spaces
[11,12] Theorems 3 and 5 are known only in the radial case. In contrast, the gyrogroup
theoretic techniques used in this paper enable us to remove the radial condition. It is
interesting to explore the translation of these theorems to other models of hyperbolic
geometry as, for instance, the upper half space or the hyperboloid, and more generally,
Riemannian globally symmetric spaces of noncompact type, but we will not address
these problems here.

The paper is organised as follows. In Sect. 2 we present the Möbius addition in the
ball B

n
t and its properties. Sections 3 and 4 are dedicated to the study of the (σ, t)-

translation and the (σ, t)-convolution. In Sect. 5 we construct the eigenfunctions of
the generalised Laplace–Beltrami operator and study the associated (σ, t)-spherical
functions. In Sect. 6 we define the (σ, t)-Helgason Fourier transform, which is the
relativistic counterpart of the Euclidean Fourier transform. In Sect. 7 we obtain the
inversion formula for the (σ, t)-Helgason Fourier transform, the Plancherel’s Theo-
rem, and show that in the limit t → +∞ we recover the inverse Fourier transform and
Plancherel’s Theorem in Euclidean harmonic analysis. Finally, in Sect. 8 we construct
diffusive wavelets on B

n
t arising from the heat kernel associated to the generalised

Laplace–Beltrami operator �σ,t . Two appendices, A and B, concerning all neces-
sary facts on spherical harmonics and Jacobi functions, are found at the end of the
article.

2 Möbius Addition in the Ball

The Poincaré ball model of n-dimensional hyperbolic geometry is the open ball B
n
t =

{x ∈ R
n : ‖x‖ < t} of R

n, endowed with the Poincaré metric

ds2 = dx2
1 + · · · + dx2

n(
1 − ‖x‖2

t2

)2 .

The Poincaré metric is normalised so that in the limit case t → +∞ one recovers the
Euclidean metric. The group M(Bn

t ) of all conformal orientation preserving transfor-
mations of B

n
t is given by the mappings Kϕa, where K ∈ SO(n) and ϕa are Möbius

transformations on B
n
t given by (see [2,9])
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ϕa(x) = (a + x)
(

1 − ax

t2

)−1
(1)

= (1 + 2
t2 〈a, x〉 + 1

t2 ‖x‖2)a + (1 − 1
t2 ‖a‖2)x

1 + 2
t2 〈a, x〉 + 1

t4 ‖a‖2‖x‖2
(2)

where a, x ∈ B
n
t , 〈a, x〉 being the usual scalar product in R

n, and ‖x‖ being the
Euclidean norm. Furthermore, ax stands for the Clifford multiplication which we now
recall. The Clifford algebra C�0,n over R

n is the associative real algebra generated
by R

n and R subject to the relation x2 = −‖x‖2, for all x ∈ R
n . Therefore, given

an orthonormal basis {e j }n
j=1 of R

n we have the multiplication rules: e j ek + eke j =
0, j 	= k, and e2

j = −1, j = 1, . . . , n. Any non-zero vector x ∈ R
n is invertible and

its inverse is given by x−1 = − x
‖x‖2 . The geometric product between two vectors is

given by

xy = 1

2
(xy + yx)+ 1

2
(xy − yx)

involving the symmetric part 1
2 (xy + yx) = −〈x, y〉 and the anti-symmetric part

1
2 (xy − yx) := x ∧ y, also known as the outer product. The norm in R

n can be
extended to C�0,n and then, for two vectors we have ‖xy‖ = ‖x‖‖y‖. This equality
is not true for general elements in the Clifford algebra. For more details about the
Clifford product and the Clifford norm see [5,9]. In order to endow the manifold B

n
t

with an algebraic structure one defines the Möbius addition as

a ⊕ x := ϕa(x), a, x ∈ B
n
t . (3)

In [9] we proved that (Bn
t ,⊕) is a gyrogroup, i.e., the following properties hold:

(P1) There is a left identity: 0 ⊕ a = a, for all a ∈ B
n
t ;

(P2) There is a left inverse: (�a)⊕ a = 0, for all a ∈ B
n
t ;

(P3) Möbius addition is gyroassociative, that is, for any a, b, c ∈ B
n
t

a ⊕ (b ⊕ c) = (a ⊕ b)⊕ gyr [a, b]c. (4)

Here gyr [a, b]c = 1 − ab
t2∥∥∥1 − ab
t2

∥∥∥
c

1 − ba
t2∥∥∥1 − ba
t2

∥∥∥
is the gyration operator [9], which

corresponds to a spin rotation induced by an element of the group Spin(n) (double
covering group of SO(n));

(P4) The gyroautomorphism gyr [a, b] possesses the left loop property

gyr [a, b] = gyr [a ⊕ b, b].

We remark that �a = −a and Möbius addition (3) corresponds to a left gyrotrans-
lation as defined in [23]. In the limit t → +∞, the ball B

n
t expands to the whole of

the space R
n, Möbius addition reduces to vector addition in R

n and, therefore, the
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gyrogroup (Bn
t ,⊕) reduces to the translation group (Rn,+). The Möbius gyrogroup

is gyrocommutative since Möbius addition satisfies the property

a ⊕ b = gyr [a, b](b ⊕ a). (5)

Some useful gyrogroup identities ([23], pp. 48 and 68) that will be used in this article
are

� (a ⊕ b) = (�a)⊕ (�b) (6)

a ⊕ ((�a)⊕ b) = b (7)

(gyr [a, b])−1 = gyr [b, a] (8)

gyr [a ⊕ b,�a] = gyr [a, b] (9)

gyr [�a,�b] = gyr [a, b] (10)

gyr [a,�a] = I (11)

gyr [a, b](b ⊕ (a ⊕ c)) = (a ⊕ b)⊕ c (12)

Properties (8) and (9) are valid for general gyrogroups while properties (6) and (12)
are valid only for gyrocommutative gyrogroups. Combining formulas (9) and (12)
with (8) we obtain new identities

gyr [�a, a ⊕ b] = gyr [b, a] (13)

b ⊕ (a ⊕ c) = gyr [b, a]((a ⊕ b)⊕ c). (14)

Möbius transformations (1) satisfy the following useful relations

(a + x)
(

1 − ax

t2

)−1 =
(

1 − xa

t2

)−1
(a + x) (15)

and

1 − ‖ϕa(x)‖2

t2 =
(

1 − ‖a‖2

t2

) (
1 − ‖x‖2

t2

)

∥∥∥1 − ax
t2

∥∥∥
2 . (16)

In the special case when n = 1, the Möbius gyrogroup becomes a group since
gyrations are trivial (a trivial map being the identity map). For n ≥ 2 the gyrosemidirect
product [23] of (Bn

t ,⊕) and Spin(n) gives a group B
n
t �gyr Spin(n) for the operation

(a, s1)(b, s2) =
⎛
⎝a ⊕ (s1bs1),

1 − as1bs1
t2∥∥∥1 − as1bs1
t2

∥∥∥
s1s2

⎞
⎠ .

We remark that this group is a realisation of the proper Lorentz group Spin+(1, n)
(double covering group of SO0(1, n)). In the limit t → +∞ the group B

n
t �gyr Spin(n)

reduces to the Euclidean group E(n) = R
n
�Spin(n).The harmonic analysis presented
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in this paper is associated to the family of Laplace–Beltrami operators �σ,t defined
by

�σ,t =
(

1 − ‖x‖2

t2

)((
1 − ‖x‖2

t2

)
�− 2σ

t2
〈x,∇〉 + σ

t2 (2 − n − σ)

)
,

σ ∈ R, t ∈ R
+.

These operators are considered in [17] for the case of the unit ball. The case σ = 2−n
and t = 1 corresponds to the conformally invariant operator associated to the Poincaré
disk model. In the limit t → +∞ the operator �σ,t reduces to the Laplace operator
in R

n . Therefore, harmonic analysis associated to�σ,t in B
n
t provides a link between

hyperbolic harmonic analysis and the classic harmonic analysis in R
n .

3 The (σ, t)-Translation

Definition 1 For a function f defined on Bn
t and a ∈ B

n
t we define the (σ, t)-

translation τa f of f by
τa f (x) = f ((−a)⊕ x) ja(x) (17)

with

ja(x) =
⎛
⎜⎝

1 − ‖a‖2

t2∥∥∥1 + ax
t2

∥∥∥
2

⎞
⎟⎠

n+σ−2
2

=
⎛
⎝ 1 − ‖a‖2

t2

1 − 2
t2 〈a, x〉 + ‖a‖2‖x‖2

t4

⎞
⎠

n+σ−2
2

. (18)

The multiplicative factor ja(x) is a positive function and agrees with the Jacobian of
the transformation ϕ−a(x) = (−a)⊕ x when σ = n + 2. In the case σ = 2 − n the
(σ, t)-translation reduces to τa f (x) = f ((−a) ⊕ x). Moreover, for any σ ∈ R, we
obtain in the limit t → +∞ the Euclidean translation operator τa f (x) = f (−a+x) =
f (x − a).

Lemma 1 For any a, b, x, y ∈ B
n
t the following relations hold

(i) j−a(−x) = ja(x) (19)

(ii) ja(a) ja(0) = 1 (20)

(iii) ja(x) = jx (a) ja(0) jx (x) (21)

(iv) ja(a ⊕ x) = ( j−a(x))
−1 (22)

(v) j(−a)⊕x (0) = jx⊕(−a)(0) = jx (a) ja(0) = ja(x) jx (0) (23)

(vi) j(−a)⊕x ((−a)⊕ x) = ( ja(x))
−1 jx (x) (24)

(vii) τa jy(x) = [τ−a jx (y)] jx (x) jy(0) (25)

(viii) τ−a ja(x) = 1 (26)

(ix) τa jy(x) = ja⊕y(x) (27)

(x) τa f (x) = [τx f (−gyr [x, a]a)] ja(0) jx (x) (28)



J Fourier Anal Appl (2015) 21:281–317 287

(xi) τbτa f (x) = τb⊕a f (gyr [a, b] x) (29)

(xii) τ−aτa f (x) = f (x) (30)

(xiii) τbτa f (x) = [τ−bτx f (−gyr [−b, x ⊕ a] gyr [x, a] a)] ja(0) jx (x). (31)

Proof In the proof we use the following properties of the Clifford product:

a2 = −‖a‖2 and ‖ab‖ = ‖a‖‖b‖ for any a, b ∈ B
n
t ⊂ R

n .

Identities (19)-(21) can be easily verified by definition. Now we prove equality (22):

ja(a ⊕ x) =

⎛
⎜⎜⎜⎝

1 − ‖a‖2

t2∥∥∥∥1 + a
t2 (a + x)

(
1 − ax

t2

)−1
∥∥∥∥

2

⎞
⎟⎟⎟⎠

n+σ−2
2

=
⎛
⎜⎝

1 − ‖a‖2

t2∥∥∥1 − ax
t2 + a

t2 (a + x)
∥∥∥

2 ∥∥∥1 − ax
t2

∥∥∥
−2

⎞
⎟⎠

n+σ−2
2

=
⎛
⎜⎝

∥∥∥1 − ax
t2

∥∥∥
2

1 − ‖a‖2

t2

⎞
⎟⎠

n+σ−2
2

= ( j−a(x))
−1.

Equality (23) follows from (16):

j(−a)⊕x (0) =
(

1 − ‖ϕ−a(x)‖2

t2

) n+σ−2
2

=
⎛
⎜⎝

(
1 − ‖a‖2

t2

) (
1 − ‖x‖2

t2

)

∥∥∥1 + ax
t2

∥∥∥
2

⎞
⎟⎠

n+σ−2
2

= ja(x) jx (0)

= jx (a) ja(0).

Equality (24) follows from (20) and (23) since we have

j(−a)⊕x ((−a)⊕ x) = ( j(−a)⊕x (0))
−1 = ( ja(x) jx (0))

−1 = ( ja(x))
−1 jx (x).

To prove equality (25) we note first that by (16) we can write ja(x) as

ja(x) =
⎛
⎝1 − ‖ϕ−a(x)‖2

t2

1 − ‖x‖2

t2

⎞
⎠

n+σ−2
2

. (32)
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By definition we have

τa jy(x) = jy((−a)⊕ x) ja(x) = jy(ϕ−a(x)) ja(x).

Since

ϕ−y(ϕ−a(x)) = (−y)⊕ ((−a)⊕ x) (by (3))

= −(y ⊕ (a ⊕ (−x))) (by (6))

= −gyr [y, a]((a ⊕ y)⊕ (−x)) (by (14))

= −gyr [y, a]ϕa⊕y(−x) (by (3))

then ‖ϕ−y(ϕ−a(x))‖ = ‖ϕa⊕y(−x)‖ and by (32) and (16) we obtain

jy(ϕ−a(x)) =
⎛
⎝1 − ‖ϕa⊕y(−x)‖2

t2

1 − ‖ϕ−a(x)‖2

t2

⎞
⎠

n+σ−2
2

=
⎛
⎜⎝

(
1 − ‖a⊕y‖2

t2

) (
1 − ‖x‖2

t2

)

∥∥∥1 + xa⊕y
t2

∥∥∥
2 (

1 − ‖ϕ−a(x)‖2

t2

)

⎞
⎟⎠

n+σ−2
2

(33)

=
⎛
⎜⎝

(
1 − ‖a‖2

t2

) (
1 − ‖y‖2

t2

) (
1 − ‖x‖2

t2

)

∥∥∥1 − ay
t2

∥∥∥
2 ∥∥∥1 + xa⊕y

t2

∥∥∥
2 (

1 − ‖ϕ−a(x)‖2

t2

)

⎞
⎟⎠

n+σ−2
2

. (34)

Therefore, by (34) and (26) we obtain

τa jy(x) = jy(ϕ−a(x)) ja(x)

= jx (a ⊕ y) j−a(y) jx (x) jy(0)

= [τ−a jx (y)] jx (x) jy(0).

The proof of this identity can also be done using definition (18) with the Clifford
product. Equality (26) follows from (22):

τ−a ja(x) = ja(a ⊕ x) j−a(x) = ( j−a(x))
−1 j−a(x) = 1.

Equality (27) follows from (33) and (32):

τa jy(x) = jy(ϕ−a(x)) ja(x) = ja⊕y(x).

To prove (28) we have the following identities:

[τx f (−gyr [x, a]a)] ja(0) jx (x)= f (−gyr [x, (−x)⊕ a] ((−x)⊕ a)) jx (a) ja(0) jx (x)

= f (−gyr [a,−x] ((−x)⊕ a)) ja(x) (by (13), (21))
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= f (−(a ⊕ (−x))) ja(x) (by (5))

= f ((−a)⊕ x) ja(x) (by (6))

= τa f (x).

Now we prove equality (29):

τbτa f (x) = f ((−a)⊕ ((−b)⊕ x))τb ja(x) (by (17))

= f (gyr [−a,−b](((−b)⊕ (−a))⊕ x)) jb⊕a(x) (by (14), (27))

= f (gyr [a, b]((−(b ⊕ a))⊕ x)) jb⊕a(x) (by (10), (6))

= τb⊕a f (gyr [a, b]x) (by (17)).

Equality (30) follows from (29) considering b = −a since (−a) ⊕ a = 0 and
gyr [a,−a] = I by (11). Finally, we prove the last identity:

[τ−bτx f (−gyr [−b, x ⊕ a] gyr [x, a] a)] ja(0) jx (x) =
= [τ−b f (−gyr [−b, x ⊕ ((−x)⊕ a))] gyr [x, (−x)⊕ a] ((−x)⊕ a)) jx (a)]

× ja(0) jx (x) (by (17))
= [ f (−gyr [−b, b ⊕ a] gyr [x, (−x)⊕ (b ⊕ a)] ((−x)⊕ (b ⊕ a)))

×(τ−b jx (a))] ja(0) jx (x) (by (17), (7))
= f (−gyr [a, b] gyr [b ⊕ a,−x] ((−x)⊕ (b ⊕ a))) τb ja(x) (by (13), (25))
= f (−gyr [a, b] ((b ⊕ a)⊕ (−x))) τb ja(x) (by (5))
= f (−(a ⊕ (b ⊕ (−x)))) τb ja(x) (by (14))
= f ((−a)⊕ ((−b)⊕ x)) τb ja(x) (by (6))
= τb f ((−a)⊕ x) ja(x) (by (17))
= τbτa f (x) (by (17)).

��

Corollary 1 Let f be a radial function defined on B
n
t , i.e. f (x) = f (‖x‖),∀x ∈ B

n
t .

Then for any a, b, x ∈ B
n
t we have

(i) τa f (x) = [τx f (a)] ja(0) jx (x); (35)

(ii) τbτa f (x) = τb⊕a f (x); (36)

(iii) τbτa f (x) = [τ−bτx f (a)] ja(0) jx (x). (37)

Before we prove that the generalised Laplace–Beltrami operator �σ,t commutes
with (σ, t)-translations we present a representation formula for the operator�σ,t using
the Laplace operator in R

n .

Proposition 1 For each f ∈ C2(Bn
t ) and a ∈ B

n
t

(�σ,t f )(a) = ( ja(0))
−1�(τ−a f )(0)+ σ(2 − n − σ)

t2 f (a) (38)
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Proof Let a ∈ B
n
t and denote by T1, . . . , Tn the coordinates of the mapping ϕa(x).

Then by the chain rule we have

�(τ−a f )(0) =
⎡
⎣

n∑
j,k=1

∂2 f

∂x j∂xk
(a)

n∑
i=1

∂Tk

∂xi
(0)
∂Tj

∂xi
(0)+

n∑
k=1

∂ f

∂xk
(a)

n∑
i=1

∂2Tk

∂x2
i

(0)

⎤
⎦

× j−a(0)+ 2
n∑

k=1

∂ f

∂xk
(a)

n∑
i=1

∂Tk

∂xi
(0)
∂ j−a

∂xi
(0)+ f (a)

n∑
i=1

∂2 j−a

∂x2
i

(0).

Since

∂Tk

∂xi
(0) =

(
1 − ‖a‖2

t2

)
δk,i

∂2Tk

∂x2
i

(0) =
(

1 − ‖a‖2

t2

)
(2ak − 4aiδk,i )

t2

and
∂ j−a

∂xi
(0) = − ja(0)(n + σ − 2)

ai

t2

(2 − n − σ)

2

∂2 j−a

∂x2
i

(0) = ja(0)
(n + σ − 2)((n + σ)a2

i − ‖a‖2)

t2 .

we obtain by putting μa = 1 − ‖a‖2

t2

�(τ−a f )(0) = ja(0)μa

(
μa� f (a)− 2σ

t2

n∑
k=1

∂ f

∂xk
(a)ak + σ(2 − n − σ)

t2 f (a)

)

−σ(2 − n − σ)

t2 f (a) ja(0)

= ja(0)

(
(�σ,t f )(a)− σ(2 − n − σ)

t2 f (a)

)
.

Therefore, we get

(�σ,t f )(a) = ( ja(0))
−1�(τ−a f )(0)+ σ(2 − n − σ)

t2 f (a).

��

Proposition 2 The operator �σ,t commutes with (σ, t)-translations, i.e.

�σ,t (τb f ) = τb(�σ,t f ) ∀ f ∈ C2(Bn
t ), ∀b ∈ B

n
t .
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Proof Using (38) we have

�σ,t (τb f )(a) = ( ja(0))
−1�(τ−aτb f )(0)+ σ(2 − n − σ)

t2 τb f (a)

= ( ja(0))
−1�( f ((−b)⊕ (a ⊕ x))τ−a jb(x)) |x=0 +

+σ(2 − n − σ)

t2 f ((−b)⊕ a) jb(a).

Now, since

(−b)⊕ (a ⊕ x) = ((−b)⊕ a)⊕ gyr [−b, a]x (by (4))

and

τ−a jb(x) = j(−a)⊕b(x) (by (27))

= jb⊕(−a)(gyr [b,−a]x) (by (5), (8))

= jb⊕(−a)(gyr [−b, a]x) (by (10))

then together with the invariance of� under the group SO(n), (23) and (19) we obtain

�σ,t (τb f )(a) = ( ja(0))
−1�( f (((−b)⊕a)⊕gyr [−b, a]x) jb⊕(−a)(gyr [−b, a]x)) |x=0

+σ(2 − n − σ)

t2 f ((−b)⊕ a) jb(a)

= ( ja(0))
−1�(τ−((−b)⊕a) f )(0)+ σ(2 − n − σ)

t2 f ((−b)⊕ a) jb(a)

= ( j(−b)⊕a(0))
−1 jb(a)�(τ−((−b)⊕a) f )(0)

+σ(2 − n − σ)

t2 f ((−b)⊕ a) jb(a) = (�σ,t f )((−b)⊕ a) jb(a)

= τb(�σ,t f )(a).

��
For studying some L2-properties of the invariant Laplace �σ,t and the (σ, t)-

translation we consider the weighted Hilbert space L2(Bn
t , dμσ,t ) with

dμσ,t (x) =
(

1 − ‖x‖2

t2

)σ−2

dx,

where dx stands for the Lebesgue measure in R
n . For the special case σ = 2 − n we

recover the invariant measure associated to the Möbius transformations ϕa(x).

Proposition 3 For f, g ∈ L2(Bn
t , dμσ,t ) and a ∈ B

n
t we have

∫

B
n
t

τa f (x) g(x) dμσ,t (x) =
∫

B
n
t

f (x) τ−ag(x) dμσ,t (x). (39)
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Proof By definition we have

I =
∫

B
n
t

τa f (x) g(x) dμσ,t (x) =
∫

B
n
t

f ((−a)⊕ x) ja(x) g(x) dμσ,t (x).

Making the change of variables (−a)⊕x = z,which is equivalent by (7) to x = a⊕z,
the measure becomes

dμσ,t (a ⊕ z) =
⎛
⎜⎝

1 − ‖a‖2

t2∥∥∥ 1 − az
t2

∥∥∥
2

⎞
⎟⎠

n (
1 − ‖a ⊕ z‖2

t2

)σ−2

dz

= ( j−a(z))
2 dμσ,t (z) (by (16), (18)). (40)

Therefore, it follows

I =
∫

B
n
t

f (z) ja(a ⊕ z) g(a ⊕ z)( j−a(z))
2 dμσ,t (z)

=
∫

B
n
t

f (z) g(a ⊕ z)τ−a ja(z) j−a(z) dμσ,t (z)

=
∫

B
n
t

f (z) τ−ag(z) dμσ,t (z) (by (26)).

��
Corollary 2 For f, g ∈ L2(Bn

t , dμσ,t ) and a ∈ B
n
t we have

(i)
∫

B
n
t

τa f (x) dμσ,t (x) =
∫

B
n
t

f (x) j−a(x) dμσ,t (x); (41)

(ii) If σ = 2 − n then
∫

B
n
t

τa f (x) dμσ,t (x) =
∫

B
n
t

f (x) dμσ,t (x);

(iii) ‖τa f ‖2 = ‖ f ‖2.

From Corollary 2 we see that the (σ, t)-translation τa is an unitary operator in
L2(Bn

t , dμσ,t ) and the measure dμσ,t is translation invariant only for the case σ =
2 − n.

An important property of the Laplace operator in R
n is that it is a self-adjoint

operator. The same holds for the hyperbolic operator �σ,t due to the representation
formula (38) (see [17] for the proof in the case t = 1).

4 The (σ, t)-Convolution

In this section we define the (σ, t)-convolution of two functions, we study its properties
and we establish the respective Young’s inequality and gyroassociative law. In the limit
t → +∞ both definitions and properties tend to their Euclidean counterparts.
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Definition 2 The (σ, t)-convolution of two measurable functions f and g is given by

( f ∗ g)(x) =
∫

B
n
t

f (y)τx g(−y) jx (x) dμσ,t (y), x ∈ B
n
t . (42)

The (σ, t)-convolution is commutative, i.e., f ∗ g = g ∗ f. This can be seen by
(39) and a change of variables z �→ −y. It is well defined only for σ < 1 as the next
proposition shows.

Proposition 4 For σ < 1 and f, g ∈ L1(Bn
t , dμσ,t ) the (σ, t)-convolution is well

defined and satisfies the inequality

|| f ∗ g||1 ≤ Cσ || f ||1 ||̃g||1 (43)

where g̃(r) = ess supξ∈S
n−1

y∈B
n
t

g(gyr [y, rξ ]rξ) for any r ∈ [0, t[, and

Cσ =
⎧⎨
⎩

1, if σ ∈]2 − n, 0[

(n/2)
(1 − σ)



( 2−σ

2

)


( n−σ

2

) , if σ ∈] − ∞, 2 − n] ∪ [0, 1[ .

Proof Using (28), (20), (41), and (19) we have

I =
∫

B
n
t

|τx g(−y)| jx (x) dμσ,t (x)

=
∫

B
n
t

|τy g(gyr [y, x]x)| jx (0) jy(y) jx (x) dμσ,t (x)

=
∫

B
n
t

|g(gyr [y, x]x)| j−y(x) j−y(−y) dμσ,t (x)

= An−1

∫ t

0

(
1 − r2

t2

)σ−2

rn−1 dr
∫

Sn−1
|g(gyr [y, rξ ]rξ)| j−y(rξ) j−y(−y) dσ(ξ).

In the last equality we have used polar coordinates rξ, with r ∈ [0, t[ and ξ ∈ S
n−1,

and the normalised surface area dσ(ξ) = dξ/An−1,with An−1 being the surface area
of S

n−1. For each r ∈ [0, t[ we consider g̃(r) = ess supξ∈S
n−1

y∈B
n
t

g(gyr [y, rξ ]rξ) =
ess supξ∈Sn−1 g(rξ). By similar arguments as in ([17], Lemma 3.12) we have

∫

Sn−1
j−y (rξ) j−y(−y) dσ(ξ) ≤ Cσ

for all y ∈ B
n
t , r ∈ [0, t[, and σ < 1. Therefore,

∫

B
n
t

|τx g(−y)| jx (x) dμσ,t (x) ≤ Cσ ||̃g||1.
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Finally,

|| f ∗ g||1 =
∫

B
n
t

∣∣∣∣∣
∫

B
n
t

f (y)τx g(−y) jx (x) dμσ,t (y)

∣∣∣∣∣ dμσ,t (x)

≤
∫

B
n
t

∫

B
n
t

| f (y)| |τx g(−y)| jx (x) dμσ,t (y) dμσ,t (x)

=
∫

B
n
t

| f (y)|
(∫

B
n
t

|τx g(−y)| jx (x) dμσ,t (x)

)
dμσ,t (y)

≤ Cσ || f ||1 ||̃g||1.

��
In the special case when g is a radial function we obtain as a corollary that || f ∗g||1 ≤

Cσ || f ||1||g||1 since g̃ = g. We can also prove that for f ∈ L∞(Bn
t , dμσ,t ) and

g ∈ L1(Bn
t , dμσ,t ) we have the inequality

|| f ∗ g||∞ ≤ Cσ ||̃g||1 || f ||∞. (44)

By (43), (44), and the Riesz–Thorin interpolation Theorem we further obtain for
f ∈ L p(Bn

t , dμσ,t ) and g ∈ L1(Bn
t , dμσ,t ) the inequality

|| f ∗ g||p ≤ Cσ ||̃g||1 || f ||p.

To obtain a Young’s inequality for the (σ, t)-convolution we consider only the case
σ ≤ 2 − n.

Theorem 1 Let σ ≤ 2 − n, 1 ≤ p, q, r ≤ ∞, 1
p + 1

q = 1 + 1
r , s = 1 − q

r ,

f ∈ L p(Bn
t , dμσ,t ) and g ∈ Lq(Bn

t , dμσ,t ). Then

|| f ∗ g||r ≤ 4
2−n−σ

2 ||̃g||1−s
q ||g||sq || f ||p (45)

where g̃(x) := ess supy∈B
n
t

g(gyr [y, x]x), for any x ∈ B
n
t .

Proof First case: p = 1 and r = q. The following estimate is used in the proof:

jx (y) jx (x) ≤ 4
2−n−σ

2 , ∀x, y ∈ B
n
t , ∀σ ∈] − ∞, 2 − n]. (46)

Then, considering K = || f ∗ g||q we have

K =
(∫

B
n
t

∣∣∣∣∣
∫

B
n
t

f (y)τx g(−y) jx (x) dμσ,t (y)

∣∣∣∣∣
q

dμσ,t (x)

)1/q

≤
∫

B
n
t

| f (y)|
(∫

B
n
t

|τx g(−y) jx (x)|q dμσ,t (x)

)1/q
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dμσ,t (y) (Minkowski’s inequality)

=
∫

B
n
t

| f (y)|
(∫

B
n
t

|g(x ⊕ (−y)) jx (y) jx (x)|q dμσ,t (x)

)1/q

dμσ,t (y) (by (17))

=
∫

B
n
t

| f (y)|
(∫

B
n
t

|g(gyr [x,−y]((−y)⊕ x)) jy(x) jy(y)|q dμσ,t (x)

)1/q

dμσ,t (y)

(by (5), (21), (20))

=
∫

B
n
t

| f (y)|
(∫

B
n
t

|g(gyr [y ⊕ z,−y]z) jy(y ⊕ z) jy(y)|q ( jy(−z))2 dμσ,t (z)

)1/q

dμσ,t (y)(change of variables z = (−y)⊕ x ⇔ x = y ⊕ z, and (40))

=
∫

B
n
t

| f (y)|
(∫

B
n
t

|g(gyr [y ⊕ z,−y]z)|q ( jy(y ⊕ z) jy(y))
q−1 jy(−z) jy(y) dμσ,t (z)

)1/q

dμσ,t (y)(by (26))

≤ 4
2−n−σ

2

∫

B
n
t

| f (y)|
(∫

B
n
t

|g(gyr [y, z]z)|q dμσ,t (z)

)1/q

dμσ,t (y) (by (9), (46))

= 4
2−n−σ

2 || f ||1 ||̃g||q .

Second case: r = ∞ and 1
p + 1

q = 1. Then,

|| f ∗ g||∞ ≤ sup
x∈B

n
t

∫

B
n
t

| f (y)τx g(−y) jx (x)| dμσ,t (y)

≤ sup
x∈B

n
t

|| f ||p

(∫

B
n
t

|g(x ⊕ (−y)) jx (y) jx (x)|qdμσ,t (y)

)1/q

(Hölder)

= || f ||p sup
x∈B

n
t

(∫

B
n
t

|g(z) jx (x ⊕ (−z)) jx (x)|q( jx (z))
2dμσ,t (z)

)1/q

(change of variables z = x ⊕ (−y) ⇔ y = x ⊕ (−z), and (40))

= || f ||p sup
x∈B

n
t

(∫

B
n
t

|g(z)|q( jx (x ⊕ (−z)) jx (x))
q−1 jx (z) jx (x) dμσ,t (z)

)1/q

(by (46))

≤ 4
2−n−σ

2 || f ||p ||g||q (by (26)).

General case: Let 1 ≤ q ≤ ∞ and g ∈ Lq(Bn
t , dμσ,t ).Considering the linear operator

T defined by Tg( f ) = f ∗ g we have by the previous cases

||Tg( f )||q ≤ 4
2−n−σ

2 ||̃g||q || f ||1, i.e. T : L1 → Lq

and

||Tg( f )||∞ ≤ 4
2−n−σ

2 ||g||q || f ||p, i.e. T : L p → L∞
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with 1/p + 1/q = 1. By the Riesz–Thorin interpolation theorem we obtain

||Tg( f )||r ≤ 4
2−n−σ

2 ||̃g||1−s
q ||g||sq || f ||p

with 1
p + 1

q = 1 + 1
r and s = 1 − q

r . ��

Corollary 3 Let σ ≤ 2 − n, 1 ≤ p, q, r ≤ ∞, 1
p + 1

q = 1 + 1
r , f ∈ L p(Bn

t , dμσ,t )
and g ∈ Lq(Bn

t , dμσ,t ) a radial function. Then,

|| f ∗ g||r ≤ 4
2−n−σ

2 ||g||q || f ||p. (47)

Remark 1 For σ = 2 − n and taking the limit t → +∞ in (45) we recover Young’s
inequality for the Euclidean convolution in R

n since in the limit g̃ = g.

Another important property of the Euclidean convolution is its translation invari-
ance. In the hyperbolic case the convolution is gyrotranslation invariant.

Theorem 2 The (σ, t)-convolution is gyrotranslation invariant, i.e.,

τa( f ∗ g)(x) = (τa f (·) ∗ g(gyr [−a, x] · ))(x). (48)

Proof By (17), (42), and (24) we have

τa( f ∗ g)(x) = ( f ∗ g)((−a)⊕ x) ja(x)

=
∫

B
n
t

f (y)τ(−a)⊕x g(−y) j(−a)⊕x ((−a)⊕ x) ja(x) dμσ,t (y)

=
∫

B
n
t

f (y)τ(−a)⊕x g(−y) jx (x) dμσ,t (y).

From (29) we can easily conclude that

τb⊕a f (x) = τbτa f (gyr [b, a]x) (49)

since gyr [a, b]gyr [b, a] = I by (8). Therefore, applying (49) we obtain

τa( f ∗ g)(x) =
∫

B
n
t

f (y)τ(−a)⊕x g(−y) jx (x) dμσ,t (y)

=
∫

B
n
t

f (y)τ−aτx g(−gyr [−a, x]y) jx (x) dμσ,t (y)

=
∫

B
n
t

τa f (y)τx g(−gyr [−a, x]y) jx (x) dμσ,t (y) (by (39))

= (τa f (·) ∗ g(gyr [−a, x] · ))(x).

��
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In Theorem 2 if g is a radial function then we obtain the translation invariant
property τa( f ∗ g) = (τa f ) ∗ g. The next theorem shows that the (σ, t)-convolution
is gyroassociative.

Theorem 3 If f, g, h ∈ L1(Bn
t , dμσ,t ) then

( f ∗a (g ∗x h))(a) = (
(
( f (x) ∗y g(gyr [a,−(y ⊕ x)]gyr [y, x]x))(y)) ∗a h(y))(a)

(50)

Proof The result of the theorem is proved in the following chain of equations:

( f ∗ (g ∗ h))(a) =
∫

B
n
t

f (x)τa(h ∗ g)(−x) ja(a) dμσ,t (x) (g ∗ h = h ∗ g)

=
∫

B
n
t

f (x)(h ∗ g)(a ⊕ (−x)) ja(x) ja(a) dμσ,t (x) (by (18))

=
∫

B
n
t

f (x)
∫

B
n
t

h(y)τa⊕(−x)g(−y) ja⊕(−x)(a ⊕ (−x)) ja(x) dμσ,t (y) ja(a)

dμσ,t (x)(by (42))

=
∫

B
n
t

f (x)
∫

B
n
t

h(y)τaτ−x g(−gyr [a,−x]y) jx (x) dμσ,t (y) ja(a) dμσ,t (x)

(by (19), (24), (49))

=
∫

B
n
t

f (x)
∫

B
n
t

τ−ah(y)τ−x g(−gyr [a,−x]y) jx (x) dμσ,t (y) ja(a) dμσ,t (x)

(by (39))

=
∫

B
n
t

f (x)
∫

B
n
t

h(a ⊕ y) j−a(y)g(−gyr [a,−x](x ⊕ y)) j−x (y) jx (x)

dμσ,t (y) ja(a) dμσ,t (x)(by (18))

=
∫

B
n
t

f (x)
∫

B
n
t

τah(−y)τx g(gyr [a,−x]y) jx (x) dμσ,t (y) ja(a) dμσ,t (x)

(by change y �→ −y, (19), (17))

=
∫

B
n
t

τah(−y)
∫

B
n
t

f (x)τx g(gyr [a,−x]y) jx (x) dμσ,t (x) ja(a) dμσ,t (y)

(Fubini)

=
∫

B
n
t

τah(−y)
∫

B
n
t

f (x)τy g(−gyr [a,−(y ⊕ x)]gyr [y, x]x) jy(y) dμσ,t (x) ja(a)

dμσ,t (y)(by (28), (20))

= (
(
( f (x) ∗y g(gyr [a,−(y ⊕ x)]gyr [y, x]x))(y)) ∗a h(y))(a).

��
Corollary 4 If f, g, h ∈ L1(Bn

t , dμσ,t ) and g is a radial function then the (σ, t)-
convolution is associative. i.e.,

f ∗ (g ∗ h) = ( f ∗ g) ∗ h.
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From Theorem 3 we see that the (σ, t)-convolution is associative up to a gyration of
the argument of the function g.However, if g is a radial function then the corresponding
gyration is trivial (that is, it is the identity map) and therefore the (σ, t)-convolution
becomes associative. Moreover, in the limit t → +∞ gyrations reduce to the identity,
so that formula (50) becomes associative in the Euclidean case. If we denote by
L1

R(B
n
t , dμσ,t ) the subspace of L1(Bn

t , dμσ,t ) consisting of radial functions then, for
σ < 1, L1

R(B
n
t , dμσ,t ) is a commutative associative Banach algebra under the (σ, t)-

convolution.

5 Eigenfunctions of �σ,t

We begin by defining the (σ, t)-hyperbolic plane waves which are the relativistic
counterpart of the Euclidean plane waves and proceed with the study of its properties.

Definition 3 For λ ∈ C, ξ ∈ S
n−1, and x ∈ B

n
t we define the functions eλ,ξ ;t by

eλ,ξ ;t (x) =
(

1 − ‖x‖2

t2

) 1−σ+iλt
2

(∥∥ξ − x
t

∥∥2
) n−1+iλt

2

. (51)

Proposition 5 The function eλ,ξ ;t is an eigenfunction of �σ,t with eigenvalue

− (1−σ)2
t2 − λ2.

Proof Since

�eλ,ξ ;t (x) =
(
(1 − σ + iλt)(−1 − σ + iλt)

(
1 − ‖x‖2

t2

)−2 ‖x‖2

t4

−(1 − σ + iλt)
n

t2

(
1 − ‖x‖2

t2

)−1

+ (1 + iλt)

t2

(n − 1 + iλt)∥∥ξ − x
t

∥∥2

+ 2

t2 (1−σ+iλt)(n − 1 + iλt)

(
1− ‖x‖2

t2

)−1 ‖x‖2

t2 − 〈x,ξ〉
t∥∥ξ − x

t

∥∥2

⎞
⎠ eλ,ξ ;t (x)

and

∇eλ,ξ ;t (x)=
(

−(1−σ+iλt)

(
1− ‖x‖2

t2

)−1
x

t2 −(n−1+iλt)
x
t2 − ξ

t∥∥ξ − x
t

∥∥2

)
eλ,ξ ;t (x)
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then we have, by straightforward computations,

�σ,t eλ,ξ ;t (x) =
(

1 − ‖x‖2

t2

)2

�eλ,ξ ;t (x)+
(

1 − ‖x‖2

t2

)(
−2σ

t2

〈
x,∇eλ,ξ ;t (x)

〉

+σ(2 − n − σ)

t2 eλ,ξ ;t (x)
)

= −
(
(1 − σ)2

t2 + λ2
)

eλ,ξ ;t (x).

��

The (σ, t)-hyperbolic plane waves eλ,ξ ;t (x) converge in the limit t → +∞ to the
Euclidean plane waves ei〈x,η〉, where η = λξ ∈ R

n, for λ ∈ R. For x ∈ R
n, choose

t0 > 0 such that x ∈ Bn
t0 . Then x ∈ B

n
t for all t > t0 and, moreover,

eλ,ξ ;t (x) =
(

t2 + ‖x‖2

t2 − ‖x‖2 − 2t 〈x, ξ 〉
t2 − ‖x‖2

)− (n−1+iλt)
2

(
1 − ‖x‖2

t2

) 2−n−σ
2

=
(

t2 + ‖x‖2

t2 − ‖x‖2 − 2

t
〈y, ξ 〉

)− (n−1+iλt)
2

(
1 − ‖x‖2

t2

) 2−n−σ
2

, t > t0,

where y = t2

t2−‖x‖2 x ∈ R
n . Letting t → +∞ we observe that y tends to x and

lim
t→+∞ eλ,ξ ;t (x) = lim

t→+∞

[(
1 − 2 〈y, η〉

t

)t]−iλ
2

= ei〈x,η〉, (52)

with η = λξ ∈ R
n . Moreover, the eigenvalues of �σ,t converge to −λ2 = −‖η‖2,

which are the eigenvalues of the Laplace operator in R
n associated to the eigen-

functions ei〈x,η〉. In the Euclidean case given two eigenfunctions ei〈x,λξ〉 and ei〈x,γω〉,
λ, γ ∈ R, ξ, ω ∈ S

n−1 of the Laplace operator with eigenvalues −λ2 and −γ 2 respec-
tively, the product of the two eigenfunctions is again an eigenfunction of the Laplace
operator with eigenvalue −(λ2 + γ 2 + 2λγ 〈ξ, ω〉). Indeed,

�(ei〈x,λξ 〉ei〈x,γω〉) = −‖λξ+γω‖2ei〈x,λξ+γω〉 = −(λ2+γ 2+2λγ 〈ξ, ω〉)ei〈x,λξ+γω〉.

Unfortunately, in the hyperbolic case this is no longer true in general. The only excep-
tion is the case n = 1 and σ = 1 as the next proposition shows.

Proposition 6 For n ≥ 2 the product of two eigenfunctions of�σ,t is not an eigenfunc-
tion of�σ,t and for n = 1 the product of two eigenfunctions of�σ,t is an eigenfunction
of �σ,t only in the case σ = 1.
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Proof For n ≥ 1, f, g ∈ C2(Bn
t ) the Leibniz rule for �σ,t is given by

�σ,t ( f g) = (�σ,t f )g + f (�σ,t g)+ 2

(
1 − ‖x‖2

t2

)2

〈∇ f ,∇g〉

−σ(2 − n − σ)

t2

(
1 − ‖x‖2

t2

)
f g. (53)

Considering eλ,ξ ;t and eγ,ω;t two eigenfunctions of�σ,t with eigenvalues − (1−σ)2
t2 −λ2

and − (1−σ)2
t2 − γ 2 respectively, we obtain by (53) and Proposition 5

�σ,t (eλ,ξ ;t (x)eγ,ω;t (x))

=
[
−2(1 − σ)2

t2 − λ2 − γ 2 + 2

(
(1 − σ + iλt)(1 − σ + iγ t)

‖x‖2

t2

+(1 − σ + iλt)(n − 1 + iγ t)

(
1 − ‖x‖2

t2

)
1

t4

‖x‖2 − t 〈x, ω〉∥∥ x
t − ω

∥∥2

+(1 − σ + iγ t)(n − 1 + iλt)

(
1 − ‖x‖2

t2

)
1

t4

‖x‖2 − t 〈ξ, ω〉∥∥ x
t − ξ

∥∥2

+[(n − 1 + iλt)(n − 1 + iγ t)

(
1 − ‖x‖2

t2

)2
1

t4

×‖x‖2 − t 〈x, ω〉 − t 〈x, ξ 〉 + t2 〈ξ, ω〉∥∥ x
t − ξ

∥∥2 ∥∥ x
t − ω

∥∥2

)

−σ(2 − n − σ)

t2

(
1 − ‖x‖2

t2

)]
eλ,ξ ;t (x)eγ,ω;t (x).

Therefore, for n ≥ 2 and σ ∈ R, the product of two eigenfunctions of �σ,t is not an
eigenfunction of �σ,t . For n = 1 the previous formula reduces to

�σ,t (eλ,ξ ;t (x)eγ,ω;t (x)) =
[
−λ2 − γ 2 − 2λγ ξω + 2

(
σ − 1

t2

(
1 − x2

t2

+iγ xω + iλxξ

))]
eλ,ξ ;t (x)eγ,ω;t (x).

For σ = 1, which corresponds to the case σ = 2 − n for n = 1, we further obtain

�σ,t (eλ,ξ ;t (x)eγ,ω;t (x)) = −
(
λ2 + γ 2 + 2λγ ξω

)
eλ,ξ ;t (x)eγ,ω;t (x).

Thus, only in the case n = 1 and σ = 1 the product of two eigenfunctions of �σ,t is
an eigenfunction of �σ,t . ��
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We remark that in the case when n = 1 and σ = 1 the hyperbolic plane waves (51)
are independent of ξ since they reduce to

eλ;t (x) =
(

1 + x
t

1 − x
t

) iλt
2

and, therefore, the exponential law is valid, i.e., eλ;t (x)eγ ;t (x) = eλ+γ ;t (x).
For the special case when σ = 2−n the (σ, t)-hyperbolic plane waves (51) defined

on B
n
t become the hyperbolic plane waves defined on the hyperboloid H+

n of radius
t embedded in R

n+1 (see [3]). Considering the coordinates z = (z0, z) ∈ H+
n where

z0 = t cosh(α) and z = t sinh(α)n, with α ∈ R
+ and n ∈ S

n−1, and the change of

variables given by cosh(α) = t2+‖x‖2

t2−‖x‖2 and sinh(α) = 2t‖x‖
t2−‖x‖2 ,with x ∈ B

n
t ,we obtain

the functions

�λ,ξ (z) = (cosh(α)− sinh(α) 〈n, ξ 〉)− n−1+iλt
2 (n = x/‖x‖)

=
(

z0 − 〈z, ξ 〉
t

)− n−1+iλt
2

.

These functions are also known as Shapiro functions and they form a complete orthog-
onal Dirac basis on the hyperboloid (see [3]), satisfying:

∫

H+
n

�λ,ξ (z) �λ′,ξ ′(z) dμ(z) = (2π)n N (n)(λt)δ

(
λ

2
ξ − λ′

2
ξ ′
)

(54)

where

dμ(z) = tn sinhn−1(α) dα dn and N (n)(λt) =
∣∣∣∣∣


( iλt
2 )



( n−1

2 + iλt
2

)
∣∣∣∣∣
2 (
λt

2

)n−1

.

(55)
Therefore, in the case σ = 2 − n, since dμ(z) = 2ndμσ,t (x) under the change of
variables above, and δ(λ/2) = 2nδ(λ) by the scaling property of the δ-function, it
is easy to see that the functions eλ,ξ ;t form a complete orthogonal Dirac basis on B

n
t

satisfying

∫

B
n
t

eλ,ξ ;t (x) eλ′,ξ ′;t (x) dμσ,t (x) = (2π)n N (n)(λt)δ(λξ − λ′ξ ′).

In the Euclidean case the translation of the Euclidean plane waves ei〈x,λξ 〉 decom-
poses into the product of two plane waves one being a modulation. In the hyperbolic
case we have an analogous result for the (σ, t)-translation of the (σ, t)-hyperbolic plane
waves but it appears a Möbius transformation acting on S

n−1 as the next proposition
shows.
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Proposition 7 The (σ, t)-translation of eλ,ξ ;t admits the factorisation

τaeλ,ξ ;t (x) = ja(0) eλ,ξ ;t (−a) eλ,a⊕ξ ;t (x). (56)

Proof By (16), (1) and (15) we have

τaeλ,ξ ;t (x) = eλ,ξ ;t ((−a)⊕ x) ja(x)

=
(

1 − ‖ϕ−a(x)‖2

t2

) 1−σ+iλt
2

∥∥∥ξ − ϕ−a(x)
t

∥∥∥
n−1+iλt

⎛
⎝ 1 − ‖a‖2

t2∥∥∥1 + ax
t2

∥∥∥

⎞
⎠

n+σ−2
2

=

[(
1 − ‖a‖2

t2

) (
1 − ‖x‖2

t2

) ∥∥∥1 + ax
t2

∥∥∥
−2
] 1−σ+iλt

2

[∥∥ξ − a
t

∥∥
∥∥∥∥
(
ξ + a

t

) (
1 − aξ

t

)−1 − x
t

∥∥∥∥
∥∥∥1 + ax

t2

∥∥∥
−1
]n−1+iλt

⎛
⎝ 1 − ‖a‖2

t2∥∥∥1 + ax
t2

∥∥∥

⎞
⎠

n+σ−2
2

=
(

1− ‖a‖2

t2

) 1−σ+iλt
2

∥∥ξ+ a
t

∥∥n−1+iλt

(
1 − ‖x‖2

t2

) 1−σ+iλt
2

∥∥∥∥
( a

t + ξ
) (

1− aξ
t

)−1− x
t

∥∥∥∥
n−1+iλt

(
1 − ‖a‖2

t2

) n+σ−2
2

= eλ,ξ ;t (−a) eλ,a⊕ξ ;t (x) ja(0).

��
Remark 2 The fractional linear mappings a ⊕ξ = ϕa(ξ), a ∈ B

n
t , ξ ∈ S

n−1 are given
by

a ⊕ ξ =
(a

t
+ ξ

) (
1 − a

t
ξ
)−1 =

2
(
1 + 1

t 〈a, ξ 〉) a
t +

(
1 − ‖a‖2

t2

)
ξ

1 + 2
t 〈a, ξ 〉 + ‖a‖2

t2

and map S
n−1 onto itself for any t > 0 and a ∈ B

n
t . In the limit t → +∞ they reduce

to the identity mapping on S
n−1. Therefore, formula (56) converges in the limit to the

well-known formula in the Euclidean case

ei〈−a+x,λξ 〉 = ei〈−a,λξ〉 ei〈x,λξ 〉, a, x, λξ ∈ R
n .

Now we study the radial eigenfunctions of �σ,t , which are called (σ, t)-spherical
functions.
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Definition 4 For each λ ∈ C, we define the elementary (σ, t)-spherical function φλ;t
by

φλ;t (x) =
∫

Sn−1
eλ,ξ ;t (x) dσ(ξ), x ∈ B

n
t . (57)

Using (81) in Appendix 1 and then (83) in Appendix 1 we can write φλ;t as

φλ;t (x) =
(

1 − ‖x‖2

t2

) 1−σ+iλt
2

2 F1

(
n − 1 + iλt

2
,

1 + iλt

2
; n

2
; ‖x‖2

t2

)

=
(

1 − ‖x‖2

t2

) 1−σ−iλt
2

2 F1

(
n − 1 − iλt

2
,

1 − iλt

2
; n

2
; ‖x‖2

t2

)
. (58)

Therefore, φλ;t is a radial function that satisfies φλ;t = φ−λ;t i.e., φλ;t is an even
function of λ ∈ C. Putting ‖x‖ = t tanh s, with s ∈ R

+, and applying (84) in
Appendix 1 we have the following relation between φλ;t and the Jacobi functions
(87):

φλ;t (t tanh s) = (cosh s)n−2+σ
2 F1

(
n − 1 − iλt

2
,

n − 1 + iλt

2
; n

2
;− sinh2(s)

)

= (cosh s)n−2+σ ϕ(
n
2 −1, n

2 −1)
λt (s). (59)

The following theorem characterises all (σ, t)-spherical functions.

Theorem 4 The function φλ;t is a (σ, t)-spherical function with eigenvalue

− (1−σ)2
t2 − λ2. Moreover, if we normalize (σ, t)-spherical functions φλ;t such that

φλ;t (0) = 1, then all (σ, t)-spherical functions are given by φλ;t .

Proof By Proposition 5 it is easy to see that φλ;t is an eigenfunction of �σ,t with

eigenvalue − (1−σ)2
t2 − λ2. Moreover, φλ,t (0) = 1. For the second part let f be a

spherical function with eigenvalue − (1−σ)2
t2 − λ2 and consider

f (x) =
(

1 − ‖x‖2

t2

) 1−σ+iλt
2

F

(‖x‖2

t2

)

with F a function defined on B
n
t . Putting ‖x‖2 = r2 and writing�σ,t in polar coordi-

nates

�σ,t =
(

1 − r2

t2

)2−σ

rn−1

∂

∂r

(
rn−1

(
1 − r2

t2

)σ
∂

∂r

)
+ σ(2 − n − σ)

t2

(
1 − r2

t2

)

+
(

1 − r2

t2

)2

r2 �Sn−1
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we see, by straightforward computations, that F satisfies the following hypergeometric
equation:

r2

t2

(
1 − r2

t2

)
F ′′
(

r2

t2

)
+
(n

2
−
(n

2
+ iλt + 1

)
t
)

F ′
(

r2

t2

)

−1 + iλt

2

(
n − 1 + iλt

2

)
F

(
r2

t2

)
= 0.

The smooth solutions at 0 of the last equation are multiples of 2 F1
( 1+iλt

2 , n−1+iλt
2 ;

n
2 ; ‖x‖2

t2

)
. Therefore, by (58) f is a constant multiple of φλ;t . ��

Now we study the asymptotic behavior of φλ;t at infinity. The resulting c-function is
very important for the inversion of the (σ, t)-Helgason Fourier transform.

Lemma 2 For Im(λ) < 0 we have

lim
s→+∞φλ;t (t tanh s) e(−iλt+1−σ)s = c(λt)

where c(λt) is the Harish-Chandra c-function given by

c(λt) = 21−σ−iλt
(n/2)
(iλt)



( n−1+iλt

2

)


( 1+iλt

2

) . (60)

Proof Considering (59), (90) in Appendix 2, (89) in Appendix 2 and the limit
lim

s→+∞ es/ cosh(s) = 2 we obtain

lim
s→+∞φλ;t (t tanh s) e(−iλt+1−σ)s = lim

s→∞ e(2−n−σ)s (cosh s)n−2+σ ϕ(
n
2 −1, n

2 −1)
λt (s)

×e(−iλt+n−1)s

= 22−n−σ c n
2 −1, n

2 −1(λt)

= 21−σ−iλt
(n/2)
(iλt)



( n−1+iλt

2

)


( 1+iλt

2

) . (61)

��
Finally, we prove the addition formula for the (σ, t)-spherical functions.

Proposition 8 For every λ ∈ C, t ∈ R
+, and x, y ∈ B

n
t

τaφλ;t (x) = ja(0)
∫

Sn−1
e−λ,ξ ;t (a) eλ,ξ ;t (x) dσ(ξ)

= ja(0)
∫

Sn−1
eλ,ξ ;t (a) e−λ,ξ ;t (x) dσ(ξ). (62)
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Proof By (56) we have

τaφλ;t (x) =
∫

Sn−1
τaeλ,ξ ;t (x) dσ(ξ)

= ja(0)
∫

Sn−1
eλ,ξ ;t (−a) eλ,a⊕ξ ;t (x) dσ(ξ).

Making the change of variables a ⊕ ξ = ξ ′ ⇔ ξ = (−a)⊕ ξ ′ the measure becomes

dσ(ξ) =
⎛
⎝ 1 − ‖a‖2

t2

‖1 + aξ ′
t ‖2

⎞
⎠

n−1

dσ(ξ ′).

Therefore,

τaφλ;t (x) = ja(0)
∫

Sn−1
eλ,(−a)⊕ξ ′;t (−a) eλ,ξ ′;t (x)

⎛
⎝ 1 − ‖a‖2

t2

‖1 + aξ ′
t ‖2

⎞
⎠

n−1

dσ(ξ ′).

Since

eλ,(−a)⊕ξ ′;t (−a)

⎛
⎜⎝

1 − ‖a‖2

t2∥∥∥1 + aξ ′
t

∥∥∥
2

⎞
⎟⎠

n−1

=
(

1 − ‖a‖2

t2

) 1−σ+iλt
2

∥∥∥∥
(− a

t + ξ ′) (1 + aξ ′
t

)−1 + a
t

∥∥∥∥
n−1+iλt

⎛
⎝ 1 − ‖a‖2

t2

‖1 + aξ ′
t ‖2

⎞
⎠

n−1

=
(

1 − ‖a‖2

t2

) 1−σ+iλt
2

∥∥∥1 + aξ ′
t

∥∥∥
−(n−1+iλt) (

1 − ‖a‖2

t2

)n−1+iλt

×
⎛
⎜⎝

1 − ‖a‖2

t2∥∥∥1 + aξ ′
t

∥∥∥
2

⎞
⎟⎠

n−1

=
(

1 − ‖a‖2

t2

) 1−σ−iλt
2

∥∥∥1 + aξ ′
t

∥∥∥
n−1−iλt

= e−λ,ξ ′;t (a)
(∥∥∥∥1 + aξ ′

t

∥∥∥∥ =
∥∥∥ξ ′ − a

t

∥∥∥
)

we have

τaφλ;t (x) = ja(0)
∫

Sn−1
e−λ,ξ ′;t (a) eλ,ξ ′;t (x) dσ(ξ ′).
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The second equality follows from the fact that φλ;t is an even function of λ, i.e.,
φλ;t = φ−λ;t . ��

6 The (σ, t)-Helgason Fourier Transform

Definition 5 For f ∈ C∞
0 (B

n
t ), λ ∈ C and ξ ∈ S

n−1 we define the (σ, t)-Helgason
Fourier transform of f as

f̂ (λ, ξ ; t) =
∫

B
n
t

f (x) e−λ,ξ ;t (x) dμσ,t (x). (63)

Remark 3 If f is a radial function i.e., f (x) = f (‖x‖), then f̂ (λ, ξ ; t) is independent
of ξ and reduces by (57) to the so called (σ, t)-spherical Fourier transform defined by

f̂ (λ; t) =
∫

B
n
t

f (x) φ−λ;t (x) dμσ,t (x). (64)

Moreover, by (52) we recover in the Euclidean limit the Fourier transform in R
n .

Since �σ,t is a self-adjoint operator and by Proposition 5 we obtain the following
result.

Proposition 9 If f ∈ C∞
0 (B

n
t ) then

�̂σ,t f (λ, ξ ; t) = −
(
(1 − σ)2

t2 + λ2
)

f̂ (λ, ξ ; t). (65)

Now we study the hyperbolic convolution theorem with respect to the (σ, t)-
Helgason Fourier transform. We begin with the following lemma.

Lemma 3 For a ∈ B
n
t and f ∈ C∞

0 (B
n
t )

τ̂a f (λ, ξ ; t) = ja(0) e−λ,ξ ;t (a) f̂ (λ, (−a)⊕ ξ); t). (66)

Proof By (39), (56) we have

τ̂a f (λ, ξ ; t) =
∫

B
n
t

τa f (x) e−λ,ξ ;t (x) dμσ,t (x)

=
∫

B
n
t

f (x) τ−ae−λ,ξ ;t (x) dμσ,t (x)

= ja(0) e−λ,ξ ;t (a)
∫

B
n
t

f (x) e−λ,(−a)⊕ξ ;t (x) dμσ,t (x)

= ja(0) e−λ,ξ ;t (a) f̂ (λ, (−a)⊕ ξ ; t).

��
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Theorem 5 (Generalised Hyperbolic Convolution Theorem) Let f, g ∈ C∞
0 (B

n
t ).

Then

f̂ ∗ g(λ, ξ) =
∫

B
n
t

f (y) e−λ,ξ ;t (y) ̂̃gy(λ, (−y)⊕ ξ ; t) dμσ,t (y) (67)

where g̃y(x) = g(gyr [y, x]x).
Proof Let I = f̂ ∗ g(λ, ξ). We have

I =
∫

B
n
t

(∫

B
n
t

f (y) τx g(−y) jx (x) dμσ,t (y)

)
e−λ,ξ ;t (x) dμσ,t (x)

=
∫

B
n
t

f (y)

(∫

B
n
t

τx g(−y) e−λ,ξ ;t (x) jx (x) dμσ,t (x)

)
dμσ,t (y) (Fubini)

=
∫

B
n
t

f (y)

(∫

B
n
t

τy g(gyr [x, y]x) e−λ,ξ ;t (x) jy(y) dμσ,t (x)

)
dμσ,t (y)

(by (28), (20))

=
∫

B
n
t

f (y) τ̂y g̃y(λ, ξ ; t) jy(y) dμσ,t (y)

=
∫

B
n
t

f (y) e−λ,ξ ;t (y) ̂̃gy(λ, (−y)⊕ ξ ; t) dμσ,t (y) (by (66), (20)).

��
Corollary 5 Let f, g ∈ C∞

0 (B
n
t ) and g radial. Then

f̂ ∗ g(λ, ξ ; t) = f̂ (λ, ξ ; t) ĝ(λ; t). (68)

Since in the limit t → +∞ gyrations reduce to the identity and (−y)⊕ξ reduces to ξ ,
formula (67) converges in the Euclidean limit to the well-know convolution Theorem:
f̂ ∗ g = f̂ · ĝ.

Next proposition shows that the Fourier coefficients of a given function f ∈
C∞

0 (B
n
t ) can be related with the (σ, t)-convolution.

Proposition 10 For f ∈ C∞
0 (B

n
t ) and λ ∈ C,

f ∗ φλ;t (x) =
∫

Sn−1
f̂ (λ, ξ ; t) eλ,ξ ;t (x) dσ(ξ). (69)

Proof By (62), (20), Fubini’s Theorem, and the fact that φλ,t is a radial function we
have

f ∗ φλ;t (x) =
∫

B
n
t

f (y) τxφλ;t (y) jx (x) dμσ,t (y)

=
∫

B
n
t

f (y)

(∫

Sn−1
eλ,ξ ;t (x) e−λ,ξ ;t (y) jx (0) jx (x) dσ(ξ)

)
dμσ,t (y)
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=
∫

Sn−1

(∫

B
n
t

f (y) e−λ,ξ ;t (y) dμσ,t (y)

)
eλ,ξ ;t (x) dσ(ξ)

=
∫

Sn−1
f̂ (λ, ξ ; t) eλ,ξ ;t (x) dσ(ξ).

��

7 Inversion of the (σ, t)-Helgason Fourier Transform and Plancherel’s Theorem

We obtain first an inversion formula for the radial case, that is, for the (σ, t)-spherical
Fourier transform and then we will derive a general inversion formula for the (σ, t)-
Helgason Fourier transform.

Lemma 4 The (σ, t)-spherical Fourier transform H can be written as

H = J n
2 −1, n

2 −1 ◦ Mσ

where J n
2 −1, n

2 −1 is the Jacobi transform (86 in Appendix 2) with parameters α = β =
n
2 − 1 and

(Mσ f )(s) := 22−2n An−1tn(cosh s)2−n−σ f (t tanh s). (70)

Proof Integrating (64) in polar coordinates x = rξ and making the change of variables
r = t tanh s we obtain

f̂ (λ; t) = An−1

∫ t

0
f (r) φ−λ;t (r)

(
1 − r2

t2

)σ−2

rn−1 dr

= An−1

∫ +∞

0
f (t tanh s) φ−λ;t (t tanh s) (cosh s)−2σ+4−2 (tanh s)n−1 tn ds.

Applying (59) yields

f̂ (λ; t) = An−1

∫ +∞

0
f (t tanh s)ϕ

( n
2 −1, n

2 −1)
λt (s) (sinh s)n−1 (cosh s)1−σ tn ds

= 22−2n An−1

∫ +∞

0
tn(cosh s)2−σ−n f (t tanh s)ϕ

( n
2 −1, n

2 −1)
λt (s)

×(2 sinh s)n−1(2 cosh s)n−1 ds

=
∫ +∞

0
(Mσ f )(s)ϕ

( n
2 −1, n

2 −1)
λt (s)(2 sinh s)n−1(2 cosh s)n−1 ds

= (J n
2 −1, n

2 −1 ◦ Mσ f )(λt).

��
In the sequel C∞

0,R(B
n
t ) denotes the space of all radial C∞ functions on B

n
t with

compact support and Cn,t,σ = 1

2−1+2σ tn−1π An−1
.
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Theorem 6 For all f ∈ C∞
0,R(B

n
t ) we have the inversion formula

f (x) = Cn,t,σ

∫ +∞

0
f̂ (λ; t) φλ;t (x) |c(λt)|−2 t dλ. (71)

Proof Applying the formula (88) (in Appendix 2) for the Jacobi transform and
Lemma 4 we obtain

Mσ f (s) = 1

2π

∫ +∞

0
f̂ (λ; t) ϕ

( n
2 −1, n

2 −1)
λt (s)

∣∣∣c n
2 −1, n

2 −1(λt)
∣∣∣
−2

t dλ

= 1

2π

∫ +∞

0
f̂ (λ; t) (cosh s)2−n−σ φλ;t (x)

|c(λt)|−2

2−4+2n+2σ t dλ.

In the last equality we use (59) and (61). By the definition (70) of Mσ f we obtain

f (t tanh s) = Cn,t,σ

∫ +∞

0
f̂ (λ; t) φλ;t (x) |c(λt)|−2 dλ.

Since t tanh s = r we obtain the desired result. ��
Remark 4 The inversion formula (71) can be written as

f (x) = Cn,t,σ

2

∫

R

f̂ (λ; t) φλ;t (x) |c(λt)|−2 dλ (72)

since the integrand is an even function of λ ∈ R. Note that f is radial and therefore
f̂ (λ; t) is an even function of λ, φλ;t = φ−λ;t , and |c(−λt)| = |c(λt)| = |c(λt)|, for
λ ∈ R.

Finally, we state our main results, the inversion formula for the (σ, t)-Helgason
Fourier transform and the Plancherel’s Theorem.

Theorem 7 If f ∈ C∞
0 (B

n
t ) then

f (x) = Cn,t,σ

∫ +∞

0

∫

Sn−1
f̂ (λ, ξ ; t) eλ,ξ ;t (x) |c(λt)|−2 dσ(ξ) dλ. (73)

Proof Given f ∈ C∞
0 (B

n
t ) and x, y ∈ B

n
t we consider the radial function

fx (y) =
∫

SO(n)
τK −1x f (−K y) jx (x) d K ,

where K ∈ SO(n) and d K is the normalised Haar measure on SO(n). Applying the
inversion formula (71) we get

fx (y) = Cn,t,σ

∫ +∞

0
f̂x (λ; t) φλ;t (y) |c(λt)|−2 dλ. (74)
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By (64), Fubini’s Theorem, and the change of variables K y �→ z we have

f̂x (λ; t) =
∫

B
n
t

(∫

SO(n)
τK −1x f (−K y) jx (x) d K

)
φ−λ;t (y) dμσ,t (y)

=
∫

SO(n)

(∫

B
n
t

f (x ⊕ (−K y)) jK −1x (y) jx (x) φ−λ;t (y) dμσ,t (y)

)
d K

=
∫

SO(n)

(∫

B
n
t

f (x ⊕ (−z)) jx (z) jx (x) φ−λ;t (z) dμσ,t (z)

)
d K

=
∫

B
n
t

τx f (−z) φ−λ;t (z) jx (x) dμσ,t (z)

= ( f ∗ φλ;t )(x). (75)

Since f (x) = fx (0) it follows from (74), (75), and (69) that

f (x) = Cn,t,σ

∫ +∞

0
f̂x (λ; t) φλ;t (0) |c(λt)|−2 dλ

= Cn,t,σ

∫ +∞

0
( f ∗ φλ;t )(x) |c(λt)|−2 dλ

= Cn,t,σ

∫ +∞

0

∫

Sn−1
f̂ (λ, ξ ; t) eλ,ξ ;t (x) |c(λt)|−2 dσ(ξ) dλ.

��
Remark 5 Applying the inversion formula (72) in the proof of Theorem 7 we can write
the inversion formula (73) as

f (x) = Cn,t,σ

2

∫

R

∫

Sn−1
f̂ (λ, ξ ; t) eλ,ξ ;t (x) |c(λt)|−2 dσ(ξ) dλ. (76)

Theorem 8 (Plancherel’s Theorem) The (σ, t)-Helgason Fourier transform extends
to an isometry from L2(Bn

t , dμσ,t ) onto L2(R+ × S
n−1,Cn,t,σ |c(λt)|−2dλdσ), i.e.,

∫

B
n
t

| f (x)|2 dμσ,t (x) = Cn,t,σ

∫ +∞

0

∫

Sn−1
| f̂ (λ, ξ ; t)|2 |c(λt)|−2 dσ(ξ) dλ. (77)

Proof For f, g ∈ C∞
0 (B

n
t )we obtain Parseval’s relation by the inversion formula (73)

and Fubini’s Theorem:

Cn,t,σ

∫ +∞

0

∫

Sn−1
f̂ (λ, ξ ; t) ĝ(λ, ξ ; t) |c(λt)|−2 dσ(ξ) dλ

= Cn,t,σ

∫ +∞

0

∫

Sn−1
f̂ (λ, ξ ; t)

∫

B
n
t

g(x) eλ,ξ ;t (x) dμσ,t (x) |c(λt)|−2 dσ(ξ) dλ
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=
∫

B
n
t

[
Cn,t,σ

∫ +∞

0

∫

Sn−1
f̂ (λ, ξ ; t) eλ,ξ ;t (x) |c(λt)|−2 dσ(ξ) dλ

]
g(x) dμσ,t (x)

=
∫

B
n
t

f (x) g(x) dμσ,t (x).

By taking f = g we obtain (77) for f ∈ C∞
0 (B

n
t ) and the result can be extended

to L2(Bn
t , dμσ,t ) since C∞

0 (B
n
t ) is dense in L2(Bn

t , dμσ,t ). It remains to prove the
surjectivity of the (σ, t)-Helgason Fourier transform. This can be done in a similar
way as in [17, Theorem 6.14] and therefore we omit the details. ��

Having obtained the main results we now study the limit t → +∞ of the previous
results. It is anticipated that in the Euclidean limit we recover the usual inversion
formula for the Fourier transform and Parseval’s Theorem on R

n . To see that this is
indeed the case, we begin by noting that from the relation


(z)


(
z + 1

2

)
= 21−2z√π
(2z)

the c-function (60) simplifies to

c(λt) = 2−σ
√
π


(n

2

) 

( iλt

2

)



( n−1+iλt

2

) .

Therefore, we have

1

|c(λt)|2 = 22σπ(


( n

2

))2
∣∣∣∣∣


( n−1

2 + iλt
2

)



( iλt

2

)
∣∣∣∣∣
2

= 4σ−1(An−1)
2

πn−1

∣∣∣∣∣


( n−1

2 + iλt
2

)



( iλt

2

)
∣∣∣∣∣
2

, (78)

with An−1 = 2π
n
2



( n

2

) being the surface area of S
n−1. Finally, using (78) the (σ, t)-

Helgason inverse Fourier transform (73) simplifies to

f (x) = An−1

2πntn−1

∫ +∞

0

∫

Sn−1
f̂ (λ, ξ ; t) eλ,ξ ;t (x)

∣∣∣∣∣


( n−1

2 + iλt
2

)



( iλt

2

)
∣∣∣∣∣
2

× 1
(
λt
2

)n−1

(
λt

2

)n−1

dσ(ξ) dλ

= 1

(2π)n

∫ +∞

0

∫

Sn−1
f̂ (λ, ξ ; t) eλ,ξ ;t (x)

λn−1

N (n)(λt)
dξ dλ (79)

with N (n)(λt) given by (55). Some particular values are N (1)(λt) = 1, N (2)(λt) =
coth

(
λt
2

)
, N (3) = 1, and N (4)(λt) = (λt)2 coth

(
πλt

2

)

1+(λt)2
. Since lim

t→+∞ N (n)(λt) = 1, for
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any n ∈ N and λ ∈ R
+ (see [3]), we see that in the Euclidean limit the (σ, t)-Helgason

inverse Fourier transform (79) converges to the usual inverse Fourier transform in R
n

written in polar coordinates:

f (x) = 1

(2π)n

∫ +∞

0

∫

Sn−1
f̂ (λξ) ei〈x,λξ 〉 λn−1 dξ dλ, x, λξ ∈ R

n .

Finally, Plancherel’s Theorem (77) can be written as

∫

B
n
t

| f (x)|2 dμσ,t (x) = 1

(2π)n

∫ +∞

0

∫

Sn−1
| f̂ (λ, ξ ; t)|2 λn−1

N (n)(λt)
dξ dλ (80)

and, therefore, we have an isometry between the spaces L2(Bn
t , dμσ,t ) and L2(R+ ×

S
n−1, λn−1

(2π)n N (n)(λt)
dλdξ).Applying the limit t → +∞ to (80) we recover Plancherel’s

Theorem in R
n :

∫

Rn
| f (x)|2 dx = 1

(2π)n

∫ +∞

0

∫

Sn−1
| f̂ (λξ)|2λn−1 dξ dλ.

8 Diffusive Wavelets on the Ball

The idea of diffusive wavelets is to construct wavelets by a diffusion process. For an
overview of diffusive wavelets on groups and homogeneous spaces we refer to [6,7].

Definition 6 (Diffusive wavelets on a Lie group) Let pτ be a diffusive approximate
identity and α(ρ) > 0 a given weight function. A family ψρ ∈ L2(G) is called
diffusive wavelet family if it satisfies the admissibility condition

pτ =
∫ ∞

0
ψ̆ρ ∗ ψρ α(ρ) dρ,

where ψ̆ρ(g) = ψρ(g−1).

We want to construct a diffusive wavelet family from the heat kernel on B
n
t . Let’s

consider the heat equation associated to �σ,t :
{
∂τu(x, τ ) = �σ,t u(x, τ )
u(x, 0) = f (x)

, (x, τ ) ∈ B
n
t × R

+

where f ∈ C∞
0 (B

n
t ), τ > 0 is the time evolution parameter and u is assumed to

be a C∞ function and compactly supported in the spatial variable. Using the (σ, t)-
Helgason Fourier transform in the spatial variable and by (65) we obtain

û(λ, ξ, τ ; t) = e
−
(
(1−σ)2

t2
+λ2

)
τ

f̂ (λ, ξ ; t).
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Therefore, by (68) and applying the inverse (σ, t)-Helgason Fourier transform, the
solution of the heat equation is given as convolution u(x, τ ; t) = (pτ,t ∗ f )(x),where
the heat kernel pτ,t is given by

p̂τ,t (λ) = e
−
(
(1−σ)2

t2
+λ2

)
τ

and pτ,t (x) = F−1
H

⎡
⎣e

−
(
(1−σ)2

t2
+λ2

)
τ

⎤
⎦ .

with F−1
H [·] being the inverse of the (σ, t)-Helgason Fourier transform. A closed

formula for the heat kernel in the unit ball was obtained in [17, Thm. 7.3].
Given a weight function α(ρ) > 0 the heat wavelet family on B

n
t is given on the

Fourier side by (see [6])

ψ̂ρ,t (λ) = 1√
α(ρ)

√
(1 − σ 2)

t2 + λ2 e
−
(
(1−σ2)

t2
+λ2

)
ρ
2
.

In the limit t → +∞ this wavelet family coincide with the classical heat wavelet
family in R

n . For f ∈ L2(Bn
t ) we can define a wavelet transform on the ball by

Wψ f (ρ, b; t) = ( f ∗ ψ̆ρ,t )(b) =
∫

B
n
t

f (x) τb ˘ψρ,t (−x) jb(b) dμσ,t (x)

where ψ̆ρ,t (x) = ψρ,t (−x).
The wavelet transform W : L2(Bn

t , dμσ,t ) → L2(R+ × B
n
t , α(ρ)dρ dμσ,t (b)) is

a unitary operator and it can be inverted on its range by

f (x) =
∫ +∞

0
(Wψ f )(ρ, ·, t) ∗ ψρ,t α(ρ) dρ ∀ f ∈ L2(Bn

t ).
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Appendix 1: Spherical Harmonics

A spherical harmonic of degree k ≥ 0 denoted by Yk is the restriction to S
n−1 of a

homogeneous harmonic polynomial in R
n .The set of all spherical harmonics of degree

k is denoted by Hk(S
n−1). This space is a finite dimensional subspace of L2(Sn−1)

and we have the direct sum decomposition

L2(Sn−1) =
∞⊕

k=0

Hk(S
n−1).

The following integrals are obtained from the generalisation of Lemma 2.4 in [17].
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Lemma 5 [17] Let ν ∈ C, k ∈ N0, t ∈ R
+, and Yk ∈ Hk(S

n−1). Then

∫

Sn−1

Yk(ξ)∥∥ x
t − ξ

∥∥2ν dσ(ξ)= (ν)k

(n/2)k
2 F1

(
k+ν, ν− n

2
+1; k+ n

2
; ‖x‖2

t2

) ‖x‖k

tk
Yk(x

′)

where x ∈ B
n
t , x ′ = ‖x‖−1x, (ν)k denotes the Pochammer symbol, and dσ is the

normalised surface measure on S
n−1. In particular, when k = 0, we have

∫

Sn−1

1∥∥ x
t − ξ

∥∥2ν dσ(ξ) = 2 F1

(
ν, ν − n

2
+ 1; n

2
; ‖x‖2

t2

)
. (81)

The Gauss Hypergeometric function 2 F1 is an analytic function for |z| < 1 defined
by

2 F1(a, b; c; z) =
∞∑

k=0

(a)k(b)k
(c)k

zk

k!

with c /∈ −N0. If Re(c − a − b) > 0 and c /∈ −N0 then exists the limit
lim

t→1− 2 F1(a, b; c; t) and equals

2 F1(a, b; c; 1) = 
(c)
(c − a − b)


(c − a)
(c − b)
. (82)

Some useful properties of this function are

2 F1(a, b; c; z) = (1 − z)c−a−b
2 F1(c − a, c − b; c; z) (83)

2 F1(a, b; c; z) = (1 − z)−a
2 F1

(
a, c − b; c; z

z − 1

)
(84)

d

dz
2 F1(a, b; c; z) = ab

c
2 F1(a + 1, b + 1; c + 1; z). (85)

Appendix 2: Jacobi Functions

The classical theory of Jacobi functions involves the parameters α, β, λ ∈ C (see
[14,15]). Here we introduce the additional parameter t ∈ R

+ since we develop our
hyperbolic harmonic analysis on a ball of arbitrary radius t. For α, β, λ ∈ C, t ∈ R

+,
and α 	= −1,−2, . . . , we define the Jacobi transform as

Jα,βg(λt) =
∫ +∞

0
g(r)ϕ(α,β)λt (r) ωα,β(r) dr (86)
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for all functions g defined on R
+ for which the integral (86) is well defined. The

weight function ωα,β is given by

ωα,β(r) = (2 sinh(r))2α+1(2 cosh(r))2β+1

and the function ϕ(α,β)λt (r) denotes the Jacobi function which is defined as the even
C∞ function on R that equals 1 at 0 and satisfies the Jacobi differential equation

(
d2

dr2 + ((2α + 1) coth(r)+ (2β + 1) tanh(r))
d

dr
+ (λt)2 + (α + β + 1)2

)

ϕ
(α,β)
λt (r) = 0.

The function ϕ(α,β)λt (r) can be expressed as an hypergeometric function

ϕ
(α,β)
λt (r) = 2 F1

(
α + β + 1 + iλt

2
,
α + β + 1 − iλt

2
;α + 1;− sinh2(r)

)
. (87)

Since ϕ(α,β)λt are even functions of λt ∈ C then Jα,βg(λt) is an even function of
λt . Payley-Wiener Theorem and some inversion formulas for the Jacobi transform are
found in [15]. We denote by C∞

0,R(R) the space of even C∞-functions with compact
support on R and E the space of even and entire functions g for which there are positive
constants Ag and Cg,n, n = 0, 1, 2, . . . , such that for all λ ∈ C and all n = 0, 1, 2, . . .

|g(x)| ≤ Cg,n(1 + |λ|)−n eAg |Im(λ)|

where Im(λ) denotes the imaginary part of λ.

Theorem 9 ([15, p. 8]) (Payley–Wiener Theorem) For all α, β ∈ C with α 	=
−1,−2, . . . the Jacobi transform is bijective from C∞

0,R(R) onto E .

The Jacobi transform can be inverted under some conditions [15]. Here we only
refer to the case which is used in this paper.

Theorem 10 ([15, p. 9]) Let α, β ∈ R such that α > −1, α ± β + 1 ≥ 0. Then for
every g ∈ C∞

0,R(R) we have

g(r) = 1

2π

∫ +∞

0
(Jα,βg)(λt) ϕ(α,β)λt (r) |cα,β(λt)|−2 t dλ, (88)

where cα,β(λt) is the Harish-Chandra c-function associated to Jα,β(λt) given by

cα,β(λt) = 2α+β+1−iλt
(α + 1)
(iλt)



(
α+β+1+iλt

2

)


(
α−β+1+iλt

2

) . (89)
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This theorem provides a generalisation of Theorem 2.3 in [15] for arbitrary t ∈ R
+.

From [15] and considering t ∈ R
+ arbitrary we have the following asymptotic behavior

of φα,βλt for Im(λ) < 0 :

lim
r→+∞ϕ

(α,β)
λt (r)e(−iλt+α+β+1)r = cα,β(λt). (90)
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