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Abstract We develop a theory of non-uniform sampling in the context of the theory
of frames for the settings of the short time fourier transform and pseudo-differential
operators. Our theory is based on profound historical precedents including Beurling’s
theory of balayage, emanating from the nineteenth century work of Christoffel and
Poincaré, the theory and results from spectral synthesis due to Wiener and Beurling
and a host of the major harmonic analysts of the twentieth century, and the theory
of sets of multiplicity, going back to Riemann and emerging fundamentally from
the Russian school of harmonic analysis in the early twentieth century. Our results
are meant to serve as the underpinnings for both theoretical and practical results in
the realm of non-uniform sampling. They can also be compared with several other
distinct forays into non-uniform sampling, including the settings of quasi-crystals
and modulation spaces, where proofs for the latter setting require the analysis of
convolution operators on the Heisenberg group. Our theory herein is the first step in
which the ultimate goal is computational implementation for non-uniform sampling
and itsmyriad applications, where balayage, spectral synthesis, and sets ofmultiplicity
are computationally quantified. A critical component is to resurrect the formulation
of balayage in terms of covering criteria.
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1 Introduction

1.1 Background and Theme

There has been a great deal of work during the past quarter century in analyzing,
formulating, validating, and extending sampling formulas,

f (x) =
∑

f (xn)sn, (1)

for non-uniformly spaced sequences {xn}, for specific sequences of sampling func-
tions sn depending on xn , and for classes of functions f for which such formulas are
true. For glimpses into the literature, see the Journal of Sampling Theory in Signal and
Image Processing, the influential book by Young [82], edited volumes such as [9], and
specific papers such as those by Jaffard [47] and Seip [74]. This surge of activity is inti-
mately related to the emergence of wavelet andGabor theories andmore general frame
theory. Further, it is firmly buttressed by the profound results of Paley–Wiener [70],
Levinson [59], Duffin–Schaeffer [27], Beurling–Malliavin [18,19], Beurling (unpub-
lished 1959–1960 lectures), and Landau [56], that themselves have explicit origins by
Dini [26], as well as Birkhoff (1917), Walsh (1921), and Wiener (1927), see [70], p.
86, for explicit references. This is our background.

The setting will be in terms of classical spectral criteria to prove non-uniform
sampling formulas such as (1). Our theme is to generalize non-uniform sampling in
this setting to the Gabor theory [33,38,54], as well as to the setting of time-varying
signals and pseudo-differential operators. The techniques are based on Beurling’s
methods from1959–1960, [15,17], pp. 299–315, [17], pp. 341–350,which incorporate
balayage, spectral synthesis, and strict multiplicity. Our formulation is in terms of the
theory of frames.

1.2 Motivation

With an eye towards Eq. (1) and with a decidedly mathematical point of view, we note
that there are extensions and analogues of the classical result that the set {e−2π inω : n ∈
Z}of exponentials forms anorthonormal basis for the space L2(�)of square-integrable
functions on� = [0, 1]. As such, we ask if there is a unifying theory that ties together
these analogues and extensions? Further, are there general theoretical justifications for
the often intricate relations that occur between the sequences of sampling points and
the support sets of the spectra of functions in equations such as (1)? Such questions
are the basis for our motivation.

To be more precise with regard to these questions, and to illustrate specific cases
of such intricate relations, we give the following example.

Example 1.1 a. This part of the example is a result of Olevskii and Ulanovskii [68]
concerning universal sets of stable sampling for band-limited functions.
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Consider an analogue of the aforementioned classical result, where the interval
[0, 1] is now replaced by a set � (possibly unbounded), in which � has Lebesgue
measure |�| strictly less than 1 and, speaking intuitively, for which � is not too
spread-out.

Let E = {n + 2−|n| : n ∈ Z} and let E(E) = {e−x : x ∈ E}, where ex (γ ) = e2πxγ .

Then E(E) is complete in L2(�) for every measurable set � ⊆ R satisfying |�| < 1
and for which |� ∩ {γ : k − 1 < |γ | < k}| ≤ C 2−k, where C is independent of k.

This means that for any F ∈ L2(�), that is orthogonal to each function in E(E), we
can conclude that F = 0 a.e. This is equivalent to saying that for any f ∈ L2(R),
for which f (x) = ∫

�
F(γ )e2π i xγ dγ, for some F ∈ L2(�) (and so f is continuous

on R since |�| < ∞), the condition that f = 0 on E implies that f = 0 a.e. The
hypothesis, |� ∩ {γ : k − 1 < |γ | < k}| ≤ C 2−k, where C is independent of k, can
be weakened but not eliminated. Thus, although � can be an unbounded set, there is
a restriction that � cannot be too thin or too spread-out over R. This illustrates that
there is an intricate relation between the set E of sampling points and the support set
� of the spectrum F of a function f.

b. This part is a result of Han and Wang [42].
Let L = AZ

d and K = BZ
d , where A and B are real d × d nonsingular matrices.

Let g ∈ L2(Rd) and define the Gabor family,

G(L,K, g) = {e2π i�·x g(x − k) : � ∈ L, k ∈ K} ⊆ L2(Rd).

Then there exists g ∈ L2(Rd) such that G(L,K, g) is a frame for L2(Rd) if and
only if | det(AB)| ≤ 1. Frames are defined in Sect. 2.1, and they can be thought
of as sequences of harmonics or sampling functions to provide decompositions of
functions. Of course, bases have the same property and are a particular subset of
frames giving unique decompositions. The value of a general frame is that it can be
an overcomplete system so as to compensate for naturally occurring noises as well as
erasures of information in applications.

1.3 Goal

Our goal in this paper is to establish a substantive, fundamental theory with which
to understand and analyze a wide class of sampling phenomena in terms of basic,
quantitative components of such phenomena. From our point of view, and following
Beurling, three such components are the notions of balayage, spectral synthesis, and
strict multiplicity. These notions will be defined and given context in Sect. 2.1. They
are integrated in our theory in terms of the theory of frames. For now, and intuitively
speaking, balayage is a means of spectrally identifying measures with their restric-
tions, spectral synthesis establishes spectral criteria to determine if a functional will
or will not annihilate a given function, and strict multiplicity quantifies the required
girth of the underlying spectral sets that arise. Our ultimate goal is the computational
implementation of this theory for a variety of important applications.
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1.4 Outline

Section 2 has three subsections. In Sect. 2.1we give the definitions of frames, balayage,
spectral synthesis, and strict multiplicity, that we have already described intuitively.
Each of these notions is a major and deep topic in its own right, and so we have
provided some context, history, and references. Beurling was the first to combine
them in a profound and creative way, and an outline of some of his results in this area
is the subject of Sect. 2.2. In Sect. 2.3, we extricate and reformulate one of these results,
that we call A fundamental identity of balayage. This identity is a major technique that
we use in establishing our theory.

In Sect. 3, we prove two theorems, that are the basis for our frame theoretic non-
uniform sampling theory for the Short Time Fourier Transform (STFT). Both of these
theorems are stated in terms of frame inequalities from which non-uniform sampling
formulas can be deduced. The first of these theorems, Theorem3.2, formally resembles
an assertion in terms of Fourier frame inequalities (Definition 2.1), but in a significantly
more general way. The generality is best understood in terms of so-called (X, μ) or
continuous frames, and so we have also included a slight digression on such frames.
The second of these theorems, Theorem 3.4, is compared with an earlier result of
Gröchenig, that itself goes back towork of Feichtinger andGröchenig. In the necessary
give and take between various STFT non-uniform sampling formulas, we see that there
is larger class of functions for which Gröchenig’s theorem is valid than for the case
of Theorem 3.4, but the sampling set E depends on the given window function in the
case of Gröchenig’s theorem but not so in the case of Theorem 3.4.

Section 4 is devoted to examples that we formulated as avenues for further devel-
opment integrating balayage with other theoretical notions.

In Sect. 5 we prove the frame inequalities necessary to provide a non-uniform
sampling formula for pseudo-differential operators defined by a specific class ofKohn-
Nirenberg symbols. We view this as the basis for a much broader theory.

Our last mathematical section, Sect. 6, is a brief recollection of Beurling’s balayage
results, but formulated in terms of covering criteria and due to a collaboration of one
of the authors in 1990s with Dr. Hui-Chuan Wu. Such coverings in terms of polar sets
of given band width are a natural vehicle for extending the theory developed herein.
Finally, in the Epilogue, we note the important related contemporary research being
conducted in terms of quasicrystals, as well as other applications.

2 Definitions and the Beurling Theory

2.1 Definitions

Let S(Rd) be the Schwartz space of rapidly decreasing smooth functions on d-
dimensional Euclidean space R

d . We define the Fourier transform and inverse Fourier
transform of f ∈ S(Rd) by the formulas,

f̂ (γ ) =
∫

Rd
f (x)e−2π i x ·γ dx and ( f̂ )∨(x) = f (x) =

∫

R̂d
f̂ (γ )e2π i x ·γ dγ,
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respectively. R̂
d denotes R

d considered as the spectral domain. If F ∈ S(R̂d), then
we write F∨(x) = ∫

R̂d F(γ )e2π i x ·γ dγ . The notation “
∫
” designates integration over

R
d or R̂

d . The Fourier transform extends to tempered distributions. If X ⊆ R
d , where

X is closed, then Mb(X) is the space of bounded Radon measures μ with support,
supp (μ), contained in X . Cb(R

d) denotes the space of complex valued bounded
continuous functions on R

d .

Definition 2.1 (Frame) Let H be a separable Hilbert space. A sequence {xn}n∈Z ⊆ H
is a frame for H if there are positive constants A and B such that

∀ f ∈ H, A‖ f ‖2 ≤
∑

n∈Z
|〈 f, xn〉|2 ≤ B‖ f ‖2.

The constants A and B are lower and upper frame bounds, respectively. We choose A
to be the supremum over all lower frame bounds, and we choose B to be the infimum
over all upper frame bounds. As such A and B are uniquely defined, and are called
the lower and upper frame bounds, respectively, of the frame {xn}n∈Z. If A = B, we
say that the frame is a tight frame or an A-tight frame for H .

Definition 2.2 (Fourier frame) Let E ⊆ R
d be a sequence and let � ⊆ R̂

d be a
compact set. Notationally, let ex (γ ) = e2π i x ·γ . The sequence E(E) = {e−x : x ∈ E}
is a Fourier frame for L2(�) if there are positive constants A and B such that

∀ F ∈ L2(�), A‖F‖2L2(�)
≤
∑

x∈E

|〈F, e−x 〉|2 ≤ B‖F‖2L2(�)
.

Define the Paley–Wiener space,

PW� = { f ∈ L2(Rd) : supp ( f̂ ) ⊆ �}.

Clearly, E(E) is a Fourier frame for L2(�) if and only if the sequence,

{(e−x1�)∨ : x ∈ E} ⊆ PW�,

is a frame for PW�, in which case it is called a Fourier frame for PW�. Note that
〈F, e−x 〉 = f (x) for f ∈ PW�, where f̂ = F ∈ L2(R̂d) can be considered an
element of L2(�).

Remark 2.3 Frames were first defined by Duffin and Schaeffer [27], but appeared
explicitly earlier in Paley and Wiener’s book [70], p. 115. See Christensen’s book
[21] and Kovačević and Chebira’s articles [52], [53] for recent expositions of theory
and applications. If {xn}n∈Z ⊆ H is a frame, then there is a topological isomorphism
S : H −→ �2(Z) such that

∀x ∈ H, x =
∑

n∈Z

〈
x, S−1(xn)

〉
xn =

∑

n∈Z
〈x, xn〉 S−1(xn). (2)
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Equation (2) illustrates the natural role that frames play in studying non-uniform
sampling formulas (1), see Example 2.16.

Beurling introduced the following definition in his 1959-1960 lectures.

Definition 2.4 (Balayage) Let E ⊆ R
d and � ⊆ R̂

d be closed sets. Balayage is
possible for (E,�) ⊆ R

d × R̂
d if

∀μ ∈ Mb(R
d), ∃ν ∈ Mb(E) such that μ̂ = ν̂ on �.

Remark 2.5 a. The set � is a collection of group characters in analogy to the New-
tonian potential theoretic setting, e.g., [17], pp. 341–350, [56].

b. The notion of balayage in potential theory is due to Christoffel (1871), e.g., see
the remarkable book [20], edited by Butzer and Fehér, and the article therein by Brelot.
Then, Poincaré (1890 and 1899) used the idea of balayage as a method of solving the
Dirichlet problem for the Laplace equation. Letting D ⊆ R

d , d ≥ 3, be a bounded
domain, a balayage or sweeping of the measure μ = δy , y ∈ D, to ∂ D is a measure
νy ∈ Mb(∂ D) whose Newtonian potential coincides outside of D with the Newtonian
potential of δy . In fact, νy is unique and is the harmonic measure on ∂ D for y ∈ D,
e.g., [24,51].

One then formulates amore general balayage problem: for a givenmass distribution
μ inside a closed bounded domain D ⊆ R

d , find a mass distribution ν on ∂ D such
that the potentials are equal outside D [58], cf. [1].

c. Given the general formulation of Definition 2.4, it is important to note that
substantial families of pairs of sets can be constructed for which balayage is possible,
see, e.g., [15].

Let � ⊆ R̂
d be a closed set. Define

C(�) = { f ∈ Cb(R
d) : supp ( f̂ ) ⊆ �},

cf. the role of C(�) in [77].

Definition 2.6 (Spectral synthesis) A closed set � ⊆ R̂
d is a set of spectral synthesis

(S-set) if

∀ f ∈ C(�) and ∀μ ∈ Mb(R
d), μ̂ = 0 on � ⇒

∫
f dμ = 0, (3)

see [5].

Remark 2.7 a. The problem of characterizing S-sets emanated from Wiener’s
Tauberian theorem ideas, and was developed by Beurling in the 1940s. It is “syn-
thesis” in that one wishes to approximate f ∈ L∞(Rd) in the σ(L∞(Rd), L1(Rd))

(weak-∗) topology by finite sums of characters γ : L∞(Rd) → C, where γ can be
considered an element of R̂

d and where supp (δγ ) ⊆ supp ( f̂ ), which is the so-called
spectrum of f . Such an approximation is elementary to achieve by convolutions of
the measures δγ , but in this case we lose the essential property that the spectra of the
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approximants be contained in the spectrumof f . It is a fascinating problemwhose com-
plete resolution is equivalent to the characterization of the ideal structure of L1(Rd),
a veritable Nullstellensatz of harmonic analysis.

b. We obtain the annihilation property of (3) in the case that f andμ have balancing
smoothness and irregularity. For example, if f̂ ∈ D′(R̂d), μ̂ = φ ∈ C∞

c (R̂d), and
φ = 0 on supp ( f̂ ), then f̂ (φ) = 0, where f̂ (φ) is sometimes written

〈
f̂ , φ

〉
. The

sphere S2 ⊆ R̂
3 is not an S-set (Laurent Schwartz, 1947), and every non-discrete

locally compact abelian group Ĝ, e.g., R̂d , contains non-S-sets (Paul Malliavin 1959).
On the other hand, polyhedra are S-sets, whereas the 1/3-Cantor set is an S-set with
non-S-subsets. We refer to [5] for an exposition of the theory.

Definition 2.8 (Strict multiplicity) A closed set � ⊆ R̂
d is a set of strict multiplicity

if

∃μ ∈ Mb(�) \ {0} such that lim‖x‖→∞ |μ∨(x)| = 0.

Remark 2.9 The study of sets of strict multiplicity has its origins in Riemann’s theory
of sets of uniqueness for trigonometric series, see [4,83]. An early, important, and
difficult result is due to Menchov (1916):

∃� ⊆ R̂/Z and ∃μ ∈ Mb(�) \ {0} such that |�| = 0 and μ∨(n)

= O((log |n|)−1/2), |n| → ∞.

(|�| is the Lebesgue measure of �.) There are refinements of Menchov’s result, aimed
at increasing the rate of decrease, due to Bary (1927), Littlewood (1936), Salem (1942,
1950), and Ivašev-Mucatov (1952, 1956).

2.2 Results of Beurling

The results in this subsection stem from 1959 to 1960, and the proofs are sometimes
sophisticated, see [17], pp. 341–350. Throughout, E ⊆ R

d is closed and � ⊆ R̂
d is

compact. The following is a consequence of the open mapping theorem.

Proposition 2.10 Assume balayage is possible for (E,�). Then

∃K > 0 such that ∀μ ∈ Mb(R
d), inf{‖ν‖1 : ν ∈ Mb(E) and ν̂ = μ̂ on �} ≤ K ‖μ‖1 .

(‖. . .‖1 designates the total variation norm.)

The smallest such K is denoted by K (E,�), and we say that balayage is not
possible if K (E,�) = ∞. In fact, if � is a set of strict multiplicity, then balayage
is possible for (E,�) if and only if K (E,�) < ∞, e.g., see Lemma 1 of [17], pp.
341–350. Let J (E,�) be the smallest J ≥ 0 such that

∀ f ∈ C(�), sup
x∈Rd

| f (x)| ≤ J sup
x∈E

| f (x)|.
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J (E,�) could be ∞.
The Riesz representation theorem is used to prove the following result. Part c is a

consequence of parts a and b.

Proposition 2.11 a. If � is a set of strict multiplicity, then K (E,�) ≤ J (E,�).
b. If � is an S-set, then J (E,�) ≤ K (E,�).
c. Assume that � is an S-set of strict multiplicity and that balayage is possible for

(E,�). If f ∈ C(�) and f = 0 on E, then f is identically 0.

Proposition 2.12 Assume that � is an S-set of strict multiplicity. Then, balayage is
possible for (E,�) ⇔

∃K (E,�) > 0 such that ∀ f ∈ C(�), ‖ f ‖∞ ≤ K (E,�) sup
x∈E

| f (x)|.

The previous results are used in the intricate proof of Theorem 2.13.

Theorem 2.13 Assume that � is an S-set of strict multiplicity, and that balayage is
possible for (E,�) and therefore K (E,�) < ∞. Let �ε = {γ ∈ R̂

d : dist (γ,�) ≤
ε}. Then,

∃ ε0 > 0 such that ∀ 0 < ε < ε0, K (E,�ε) < ∞,

i.e., balayage is possible for (E,�ε).

The following result for R
d is not explicitly stated in [17], pp. 341–350, but it goes

back to his 1959–1960 lectures, see [81], Theorem E in [56], Landau’s comment on
its origins [57], and Example 2.20. In fact, using Theorem 2.13 and Ingham’s theorem
(Theorem 2.18), Beurling obtained Theorem 2.15. We have chosen to state Ingham’s
theorem (Theorem 2.18) in Sect. 2.3 as a basic step in the proof of Theorem 2.19,
which supposes Theorem 2.13 and which we chose to highlight as A fundamental
identity of balayage and in terms of its quantitative conclusion, (6) and (7). In fact,
Theorem 2.19 essentially yields Theorem 2.15, see Example 2.20.

Definition 2.14 A sequence E ⊆ R
d is separated if

∃ r > 0 such that inf{‖x − y‖ : x, y ∈ E and x �= y} ≥ r.

Theorem 2.15 Assume that � ⊆ R̂
d is an S-set of strict multiplicity and that E ⊆ R

d

is a separated sequence. If balayage is possible for (E,�), then E(E) is a Fourier
frame for L2(�), i.e., {(e−x1�)∨ : x ∈ E} is a Fourier frame for PW�.

Example 2.16 The conclusion of Theorem 2.15 is the assertion

∀ f ∈ PW�, f =
∑

x∈E

f (x)S−1( fx ) =
∑

x∈E

〈
f, S−1( fx )

〉
fx ,

where

fx (y) = (e−x1�)∨(γ )
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and

S( f ) =
∑

x∈E

f (x)(e−x1�)∨,

cf. (1) and (2). Clearly, fx is a type of sinc function. Smooth sampling functions can
be introduced into this setup, e.g., Theorem 7.45 of [10], Chapter 7.

Remark 2.17 Theorem 2.15 and results in [15] led to the Beurling covering theorem,
see Sect. 6.

2.3 A Fundamental Identity of Balayage

By construction, and slightly paraphrased, Ingham [46] proved the following result
for the case d = 1, see [15], p. 115 for a modification which gives the d > 1 case. In
fact, Beurling gave a version for d > 1 in 1953; it is unpublished. In 1962, Kahane
[49] went into depth about the d > 1 case.

Theorem 2.18 Let ε > 0 and let � : [0,∞) → (0,∞) be a continuous function,
increasing to infinity. Assume the following conditions:

∫ ∞

1
�(r)

dr

r2
< ∞, (4)

∫
exp(−�(‖x‖)) dx < ∞, (5)

and �(r) > ra on some interval [r0,∞) and for some a < 1. Then, there is h ∈
L1(Rd) for which h(0) = 1, supp (̂h) ⊆ B(0, ε), and

|h(x)| = O(e−�‖x‖), ‖x‖ → ∞.

Ingham also proved the converse, which, in fact, requries the Denjoy–Carleman the-
orem for quasi-analytic functions.

If balayage is possible for (E,�) and E ⊆ R
d is a closed sequence, e.g., if E is

separated, then Proposition 2.10 allows us to write μ̂ = ∑
x∈E ax (μ)δ̂x on �, where∑

x∈E |ax (μ)| ≤ K (E,�) ‖μ‖1. In the case μ = δy , we write ax (μ) = ax (y).
We refer to the following result as A fundamental identity of balayage.

Theorem 2.19 Let � satisfy the conditions of Ingham’s Theorem 2.18. Assume that
� is a compact S-set of strict multiplicity, that E is a separated sequence, and that
balayage is possible for (E,�). Choose ε > 0 from Beurling’s Theorem 2.13 so that
K (E,�ε) < ∞. For this ε > 0, take h from Ingham’s Theorem 2.18. Then, we have

∀y ∈ R
dand ∀ f ∈ C(�), f (y) =

∑

x∈E

f (x)ax (y)h(x − y), (6)
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where
sup

y∈Rd

∑

x∈E

|ax (y)| ≤ K (E,�ε) < ∞. (7)

In particular, we have

∀y ∈ R
dand ∀γ ∈ �, e2π iy·γ =

∑

x∈E

ax (y)h(x − y)e2π i x ·γ .

Proof Since balayage is possible for (E,�ε), we have that (δy)
∧ = (

∑
x∈E ax (y)δx )

∧
on �ε and that

∑

x∈E

|ax (y)| ≤ K (E,�ε)
∥∥δy
∥∥
1

for each y ∈ R
d . Thus, (7) is obtained. Next, for each fixed y ∈ R

d , define the
measure,

ηy(w) = hy(w)

(
δy −

∑

x∈E

ax (y)δx

)
(w) ∈ Mb(R

d),

where hy(w) = h(w − y). Then, we have

(ηy)
∧(γ ) =

[
(hy)

∧ ∗
(

δy −
∑

x∈E

ax (y)δx

)∧]
(γ )

=
∫

ĥ(γ − λ)e−2π iy·(γ−λ)

(
δy −

∑

x∈E

ax (y)δx

)∧
(λ) dλ

=
∫

(�ε)c
ĥ(γ − λ)e−2π iy·(γ−λ)

(
δy −

∑

x∈E

ax (y)δx

)∧
(λ) dλ

on R̂
d . If γ ∈ � and λ ∈ (�ε)

c, then ĥ(γ − λ) = 0. Consequently, we obtain

∀y ∈ R
d and ∀γ ∈ �, (ηy)

∧(γ ) = 0.

Thus, since � is an S-set and h(0) = 1, we obtain (6) from the definition of ηy . ��
Example 2.20 Theorem 2.19 can be used to prove Beurling’s sufficient condition for
a Fourier frame in terms of balayage (Theorem 2.15), see part b. For convenience, let
� be symmetric about 0 ∈ R̂

d , i.e., −� = �. a. Using the notation of Theorem 2.19,
we have the following estimate.

∑

x∈E

∣∣∣∣
∫

ax (y)h(x−y) f (y) dy

∣∣∣∣
2

≤
∑

x∈E

∫
|ax (y)||h(x−y)|2 dy

∫
|ax (y)|| f (y)|2 dy
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≤ C ‖h‖22
∫ (

∑

x∈E

|ax (y)|
)

| f (y)|2 dy

≤ C ‖h‖22 K (E,�ε) ‖ f ‖22 ,

where C is a uniform bound of {|ax (y)| : x ∈ E, y ∈ R
d}.

b. It is sufficient to prove the lower frame bound. Let F ∈ L2(�) be considered
as an element of (PW�)∧, i.e., f̂ = F vanishes off of � and f ∈ L2(Rd). We shall
show that

A ‖F‖L2(�) ≤
(
∑

x∈E

| f (x)|2
)1/2

, (8)

where A is independent of F ∈ L2(�).

‖F‖2L2(�)
=
∫

�

F(λ)

(∫
f (y)e−2π iy·λ dy

)
dλ

=
∫

�

F(λ)

(∫
f (y)

(
∑

x∈E

ax (y)h(x − y)e−2π i x ·λ
)

dy

)
dλ

=
∑

x∈E

f (x)

(∫
ax (y)h(x − y) f (y) dy

)

≤
(
∑

x∈E

| f (x)|2
)1/2 (∑

x∈E

∣∣∣∣
∫

ax (y)h(x − y) f (y) dy

∣∣∣∣
2
)1/2

≤
[
C ‖h‖22 K (E,�ε)

]1/2
(
∑

x∈E

| f (x)|2
)1/2

‖ f ‖2 ,

and so we set A = 1/[C ‖h‖22 K (E,�ε)]1/2 to obtain (8).

3 Short Time Fourier Transform (STFT) Frame Inequalities

Definition 3.1 a. Let f, g ∈ L2(Rd). The short-time Fourier transform (STFT) of f
with respect to g is the function Vg f on R

2d defined as

Vg f (x, ω) =
∫

f (t)g(t − x) e−2π i t ·ω dt,

see [40,41].
b. The STFT is uniformly continuous on R

2d . Further, for a fixed “window” g ∈
L2(Rd) with ‖g‖2 = 1, we can recover the original function f ∈ L2(Rd) from its
STFT Vg f by means of the vector-valued integral inversion formula,

f =
∫ ∫

Vg f (x, ω) eωτx g dω dx, (9)
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where modulation eω was defined earlier and translation τx is defined as τx g(t) =
g(t − x). Explicitly, Equation (9) signifies that we have the vector-valued mapping,
(x, ω) �→ eωτx g ∈ L2(Rd), and

∀ h ∈ L2(Rd), 〈 f, h〉 =
∫ ∫ [∫

Vg f (x, ω)(eωτx g(t))h(t) dt

]
dωdx .

Also, if f̂ = F and ĝ = G, where f, g ∈ L2(Rd), then one obtains the fundamental
identity of time frequency analysis,

Vg f (x, ω) = e−2π i x ·ωVG F(ω,−x). (10)

c. Let g0(x) = 2d/4e−π‖x‖2 . Then G0(γ ) = ĝ0(γ ) = 2d/4e−π‖γ ‖2 and ‖g0‖2 = 1,
see [8] for properties of g0. The Feichtinger algebra, S0(R

d), is

S0(R
d) = { f ∈ L2(Rd) : ‖ f ‖S0 = ‖Vg0 f ‖1 < ∞}.

For now it is useful to note that the Fourier transform of S0(R
d) is an isometric

isomorphism onto itself, and, in particular, f ∈ S0(R
d) if and only if F ∈ S0(R̂

d).

Theorem 3.2 Let E = {xn} ⊆ R
d be a separated sequence, that is symmetric about

0 ∈ R
d ; and let � ⊆ R̂

d be an S-set of strict multiplicity, that is compact, convex,
and symmetric about 0 ∈ R̂

d . Assume balayage is possible for (E,�). Further, let
g ∈ L2(Rd), ĝ = G, have the property that ‖g‖2 = 1.

a. We have that

∃ A > 0, such that ∀ f ∈ PW�\{0}, f̂ = F,

A‖ f ‖22 = A‖F‖22 ≤
∑

x∈E

∫
|VG F(ω, x)|2 dω =

∑

x∈E

∫
|Vg f (x, ω)|2 dω. (11)

b. Let g ∈ S0(R
d). We have that

∃ B > 0, such that ∀ f ∈ PW�\{0}, f̂ = F,

∑

x∈E

∫
|Vg f (x, ω)|2 dω =

∑

x∈E

∫
|VG F(ω,−x)|2 dω ≤ B‖F‖22 = B‖ f ‖22, (12)

where B can be taken as 2d/2 C‖Vg0g‖21 and where

C = supu∈Rd

∑

x∈E

e−‖x−u‖2 .

see the technique in [35], Lemma 3.2.15, cf. [34], Lemma 3.2.
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Proof a.i. We first combine the ST FT and balayage to compute

‖ f ‖22 =
∫

�

F(γ ) F(γ ) dγ

=
∫

�

F(γ )

(∫ ∫
VG F(y, ω) eω(γ ) G(γ − y) dω dy

)
dγ

=
∫

�

F(γ )

(∫ ∫
VG F(y, ω) G(γ − y)

(
∑

x∈E

ax (ω) h(x − ω) e−2π i x ·γ
)

dω dy

)
dγ

=
∫ ∫

VG F(y, ω)

(
∑

x∈E

ax (ω) h(x − ω)

∫
F(γ ) G(γ − y) e−2π i x ·γ dγ

)
dω dy

=
∫ ∫

VG F(y, ω)

(
∑

x∈E

ax (ω) h(x − ω) VG F(y, x)

)
dω dy

=
∫ [

∑

x∈E

(∫
VG F(y, ω) ax (ω) h(x − ω) dω

)
VG F(y, x)

]
dy

≤
∫ (

∑

x∈E

∣∣∣∣
∫

ax (ω) h(x − ω) VG F(y, ω) dω

∣∣∣∣
2
)1/2 (∑

x∈E

|VG F(y, x)|2
)1/2

dy. (13)

a.ii. We shall show that there is a constant C > 0, independent of f ∈ PW�, such
that

∀ y ∈ R
d ,
∑

x∈E

∣∣∣∣
∫

ax (ω) h(x − ω)VG F(y, ω) dω

∣∣∣∣
2

≤ C2
∫

|VG F(y, ω)|2 dω.

(14)
The left side of (14) is bounded above by

∑

x∈E

(∫
|ax (ω)| |h(x − ω)|2 dω

)(∫
|ax (ω)| |VG F(y, ω)|2 dω

)

≤
∑

x∈E

(
K1

∫
|h(x − ω)|2 dω

)(∫
|ax (ω)| |VG F(y, ω)|2 dω

)

= K1 ‖h‖22
∑

x∈E

∫
|ax (ω)| |VG F(y, ω)|2 dω

= K1 ‖h‖22
∫ (

∑

x∈E

|ax (ω)|
)

|VG F(y, ω)|2 dω

≤ K1 K2 ‖h‖22
∫

|VG F(y, ω)|2 dω,

where we began by using Hölder’s inequality and where K1 and K2 exist because of
(7) in Theorem 2.19. Let C2 = K1K2 ‖h‖22.
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a.iii. Combining parts a.i and a.ii, we have from (13) and (14) that

‖ f ‖22 =
∫

�

F(γ ) F(γ ) dγ

≤
∫

C

(∫
|VG F(y, ω)|2 dω

)1/2
(
∑

x∈E

|VG F(y, x)|2
)1/2

dy

≤ C

(∫ ∫
|VG F(y, ω)|2 dω dy

)1/2
(∫ ∑

x∈E

|VG F(y, x)|2 dy

)1/2

= C

(∫

�

|F(γ )|2 dγ

)1/2
(∫ ∑

x∈E

|VG F(y, x)|2 dy

)1/2

,

where we have used Hölder’s inequality and the fact that the STFT is an isometry from
L2(Rd) into L2(R2d). Consequently, by the symmetry of E , we have

1

C2 ‖ f ‖22 = 1

C2

∫

�

|F(γ )|2 dγ

≤
∫ ∑

x∈E

|VG F(ω,−x)|2 dω =
∫ ∑

x∈E

|Vg f (x, ω)|2dω,

where we have used (10). Part a is completed by setting A = 1/C2.

b.i. The proof of (12) will require the reproducing formula [34], p. 412:

Vg f (y, γ ) = 〈Vg0 f, Vg0(eγ τy g)〉, (15)

where ĝ0 = G0. Equation (15) is a consequence of the inversion formula,

f =
∫ ∫

Vg0 f (x, ω)eωτx g0 dω dx,

and substituting the right side into the definition 〈 f, eγ τy g〉 of Vg f (y, γ ). Equation
(15) is valid for all f, g ∈ L2(Rd).

b.ii. Using Eq. (15) from part b.i we compute

∑

x∈E

∫
|Vg f (x, ω)|2dω

=
∫ ∑

x∈E

|〈Vg0 f, Vg0(eωτx g)〉|2dω

=
∫ ∑

x∈E

|
∫ ∫

Vg0 f (y, γ ) Vg0(eωτx g)(y, γ ) dy dγ |2dω

≤
∫ ∑

x∈E

((∫ ∫
|Vg0 f (y, γ )|2|Vg0(eωτx g)(y, γ )| dy dγ

)
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(∫ ∫
|Vg0(eωτx g)(y, γ )| dy dγ

))
dω.

b.iii. Since

Vg0(eωτx )g)(y, γ ) =
∫

g(t − x) g0(t − y) e−2π i t ·(γ−ω)dt

= e−2π i x ·(γ−ω)

∫
g(u) g0(u + (x − y)) e−2π iu·(γ−ω)du,

we have

|Vg0(eωτx )g)(y, γ )| ≤ |Vg0g(y − x, γ − ω).

Inserting this inequality into the last term of part b.ii, the inequality of part b.ii becomes

∑

x∈E

∫
|Vg f (x, ω)|2 dω

≤
∫ ∑

x∈E

((∫ ∫
|Vg0 f (y, γ )|2|Vg0g(y − x, γ − ω)| dy dγ

)

(∫ ∫
|Vg0g)(y − x, γ − ω)| dy dγ

))
dω

= ‖Vg0g‖1
∫ ∑

x∈E

(∫ ∫
|Vg0 f (y, γ )|2|Vg0g(y − x, γ − ω)| dy dγ

)
dω

≤ ‖Vg0g‖1
∫ ∫

|Vg0 f (y, γ )|2
(∫ ∑

x∈E

|Vg0g(y − x, γ − ω)| dω

)
dy dγ.

b.iv. By the reproducing formula, Eq. (15), the integral-sum factor in the last term of
part b.iii is

∫ ∑

x∈E

|Vg0 g(y − x, γ − ω)| dω

=
∫ ∑

x∈E

|
∫ ∫

Vg0 g(z, ζ ) Vg0 (eγ−ωτy−x g0)(z, ζ ) dz dζ |dω

=
∫ ∑

x∈E

|
∫ ∫

Vg0 g(z, ζ )

(∫
g0(u)g0(u − (z + x − y)) e−2π iu·(ζ−γ+ω) du

)
dz dζ | dω

=
∫ ∑

x∈E

|
∫ ∫

Vg0 g(z, ζ ) Vg0 g0(z + (x − y), ζ + (ω − γ )) dz dζ |dω

≤
∫ ∫

|Vg0 g(z, ζ )|
(∫ ∑

x∈E

|Vg0 g0(z + (x − y), ζ + (ω − γ ))|dω

)
dz dζ.
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b.v. Substituting the last term of part b.iv in the last term of part b.iii, the inequality
of part b.ii becomes

∑

x∈E

∫
|Vg f (x, ω)|2 dω ≤ ‖Vg0 g‖1

∫ ∫
|Vg0 f (y, γ )|2

×
(∫ ∫

|Vg0 g(z, ζ )|
(
∑

x∈E

(∫
|Vg0 g0(z + (x − y)), ζ + (ω − γ ))|dω

))
dz dζ

)
dy dγ

= ‖Vg0 g‖1
∫ ∫

|Vg0 f (y, γ )|2
(∫ ∫

|Vg0 g(z, ζ )|
(
∑

x∈E

K (x, y, z, γ, ζ )

)
dz dζ

)
dy dγ,

where

K (x, y, z, γ, ζ ) = e− π
2 ‖z+(x−y)‖2

∫
e− π

2 ‖ζ+(ω−γ ‖2dω.

Hence,
∑

x∈E

∫
|Vg f (x, ω)|2 dω ≤ 2

d
2 C ‖Vg0g‖21 ‖Vg0 f ‖2,

where

C = supu∈Rd

∑

x∈E

e−‖x−u‖2 .

The fact, C < ∞, is straightforward to verify, but see [67] and [66], Lemma 2.1,
for an insightful, refined estimate of C. The proof of part b is completed by a simple
application of Eq. (22). ��

We now recall a special case of a fundamental theorem of Gröchenig for non-
uniform Gabor frames, see [38], Theorem S, and [40], Theorem 13.1.1, cf. [30] and
[31] for a precursor of this result, presented in an almost perfectly disguised way for
the senior author to understand. The general case of Gröchenig’s theorem is true for
the class of modulation spaces, M1

v (Rd), where the Feichtinger algebra, S0(R
d), is

the case that the weight v is identically 1 on R
d . The author’s proof at all levels of

generalization involves a significant analysis of convolution operators on the Heisen-
berg group. See [40] for an authoritative exposition of modulation spaces as well as
their history.

Theorem 3.3 Given any g ∈ S0(R
d). There is r = r(g) > 0 such that if E =

{(sn, σn)} ⊆ R
d × R̂

d is a separated sequence with the property that

∞⋃

n=1

B((sn, σn), r(g)) = R
d × R̂

d ,

then the frame operator, S = Sg,E , defined by

Sg,E f =
∑∞

n=1
〈 f, τsn eσn g〉 τsn eσn g,

is invertible on S0(R
d).
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Moreover, every f ∈ S0(R
d) has a non-uniform Gabor expansion,

f =
∑∞

n=1
〈 f, τsn eσn g〉S−1

g,E (τsn eσn g),

where the series converges unconditionally in S0(R
d).

(E depends on g.)

The following result can be compared with Theorem 3.3. It is also a theorem about
Gabor expansions of certain band-limited functions with respect to a band-limited
window, and as such can also be compared to results aboutGabor frames for subspaces,
see Example 3.5 as well as earlier work of Gröchenig [39] relating sampling theorems
for band-limited functions with Gabor frames.

Theorem 3.4 Let E = {(sn, σn)} ⊆ R
d × R̂

d be a separated sequence; and let � ⊆
R̂

d ×R
d be an S-set of strict multiplicity that is compact, convex, and symmetric about

0 ∈ R̂
d × R

d . Assume balayage is possible for (E,�). Further, let g ∈ L2(Rd), ĝ =
G, have the property that ‖g‖2 = 1. We have that

∃ A, B > 0, such that ∀ f ∈ S0(R
d), for which supp(V̂g f ) ⊆ �,

A ‖ f ‖22 ≤
∑∞

n=1
|Vg f (sn, σn)|2 ≤ B ‖ f ‖22 . (16)

Consequently, the frame operator, S = Sg,E , is invertible in L2(Rd)–norm on the

subspace of S0(Rd), whose elements f have the property, supp (V̂g f ) ⊆ �.

Moreover, every f ∈ S0(R
d) satisfying the support condition, supp(V̂g f ) ⊆ �,

has a non-uniform Gabor expansion,

f =
∑∞

n=1
〈 f, τsn eσn g〉S−1

g,E (τsn eσn g),

where the series converges unconditionally in L2(Rd).
(E does not depend on g.)

Proof a. Using Theorem 2.19 for the setting R
d × R̂

d , where h ∈ L1(Rd × R̂
d) from

Ingham’s theorem has the property that supp(̂h) ⊆ B(0, ε) ⊆ R̂
d × R

d , we compute

∫
| f (x)|2 dx =

∫ ∫
|Vg f (y, ω)|2 dy dω (17)

=
∫ ∫

Vg f (y, ω)
∑∞

n=1
asn ,σn (y, ω)h(sn − y, σn − ω)Vg f (sn, σn) dy dω,

where

Vg f (y, ω) =
∑∞

n=1
asn ,σn (y, ω)h(sn − y, σn − ω)Vg f (sn, σn)
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and

sup(y,ω)∈Rd×R̂d

∞∑

n=1

|asn ,σn (y, ω)| ≤ K (E,�ε) < ∞.

Interchanging summation and integration on the right side of Equation (17), we use
Hölder’s inequality to obtain

∫
| f (x)|2 dx ≤
( ∞∑

n=1

|Vg f (sn, σn)|2
)1/2

( ∞∑

n=1

|
∫ ∫

asn ,σn (y, ω)h(sn − y, σn − ω) Vg f (y, ω) dy dω|2
)1/2

(18)

≤ S1
1/2 S2

1/2.

We bound the second sum S2 using Hölder’s inequality for the integrand,

[(asn ,σn (y, ω))1/2h(sn − y, σn − ω)][(asn ,σn (y, ω))1/2Vg f (y, ω)],
as follows:

S2 ≤
∞∑

n=1

(∫ ∫
|asn ,σn (y, ω)||h(sn − y, σn − ω)|2 dy dω

∫ ∫
|asn ,σn (y, ω)||Vg f (y, ω)|2 dy dω

)

≤ K1

∞∑

n=1

(∫ ∫
|h(sn − y, σn − ω)|2 dy dω

∫ ∫
|asn ,σn (y, ω)||Vg f (y, ω)|2 dy dω

)
(19)

= K1 ‖h‖22
∫ ∫ ( ∞∑

n=1

|asn ,σn (y, ω)||Vg f (y, ω)|2
)

dy dω ≤ K1K2 ‖h‖22 ‖ f ‖22 ,

where K1 is a uniform bound on {asn ,σn (y, ω)}, K2 invokes the full power of Theorem

2.19, and ‖ f ‖22 = ∥∥Vg f
∥∥2
2 .

Combining (18) and (19), we obtain

‖ f ‖22 ≤ (S1K1K2)
1/2 ‖h‖2 ‖ f ‖2 ,

and so the left hand inequality of (16) is valid for 1/(K1K2 ‖h‖22).
b. The right hand inequality of (16) follows directly from the Pólya-Plancherel

theorem, cf. Theorem 3.2b. ��
Example 3.5 a. In comparing Theorem 3.3 with Theorem 3.4, a possible weakness of
the former is the dependence of E on g, whereas a possible weakness of the latter is
the hypothesis that supp(V̂g f ) ⊆ �. Let us look at this latter possibility more closely.
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a.i. Let f, g ∈ L1(Rd) ∩ L2(Rd). We know that Vg f ∈ L2(Rd × R̂
d), and

V̂g f (ζ, z) =
∫ ∫ (∫

f (t) g(t − x) e−2π i t ·ω dt

)
e−2π i(x ·ζ+z·ω) dx dω.

The right side is

∫ ∫
f (t)

(∫
g(t − x) e−2π i x ·ζ dx

)
e−2π i t ·ω e−2π i z·ω dt dω,

where the interchange in integration follows from the Fubini-Tonelli theorem and the
hypothesis that f, g ∈ L1(Rd). This, in turn, is

ĝ(−ζ )

∫ (∫
f (t) e−2π i t ·ζ e−2π i t ·ω dt

)
e−2π i z·ω dω

= ĝ(−ζ )

∫
f̂ (ζ + ω) e−2π i z·ω dω = e−2π i z·ζ f (−z) ĝ(−ζ ).

Consequently, we have shown that if f, g ∈ L1(Rd) ∩ L2(Rd), then

f, g ∈ L1(Rd) ∩ L2(Rd), V̂g f (ζ, z) = e−2π i z·ζ f (−z) ĝ(−ζ ). (20)

The Rihaczek distribution of f, g ∈ L2(Rd) is the function R( f, g) defined on
R

d × R̂
d as

R( f, g)(x, ω) = e−2π i x ·ω f (x) ĝ(ω),

see [41], pp. 142–148.
a.ii. Let � ⊆ R

d × R̂
d be compact, convex, and symmetric, and suppose that

supp(V̂g f ) ⊆ � as in Theorem 3.4. From this assumption we can conclude that f and
g have compact support. In fact, if� ⊆ [�,�]d ×[�,�]d , then supp( f ) ⊆ [�,�]d

and supp(ĝ) ⊆ [�,�]d .

This claim, that f and g have compact support, is a consequence of the fact,

V̂g f (x, ω) = R( f, g)(x, ω), (21)

since Equation (21) implies that

supp(V̂g f ) = supp( f ) × supp(ĝ).

In particular, if � = R
d × R̂

d , then supp( f ) ⊆ [�,�]d and supp(ĝ) ⊆ [�,�]d ;
and if � ⊂ R

d × R̂
d properly, then the supports of f and ĝ must be even smaller to

ensure that supp( f ) × supp(ĝ) is contained in �.
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a.iii Thus, Theorem 3.4 provides the construction of a Gabor frame for subspaces
of L2(Rd). In this context, the coorbit theory of Feichtinger and Gröchenig yields
Gabor expansions for all of L2(Rd), e.g., see [32].

b. Theorems 3.3 and 3.4 give non-uniform Gabor frame expansions. Generally, for
g ∈ L2(R), if {eσn τsn g} is a frame for L2(R), then E = {sn, σn} ⊆ R × R̂ is a finite
union of separated sequences and D−(E) ≥ 1, where D− denotes the lower Beurling
density, [22]. (Beurling density has been analyzed deeply in terms of Fourier frames,
e.g., [17,47,56,74], and it is defined as

D−(E) = limr→∞
n−(r)

r2
,

where n−(r) is the minimal number of points from E ⊆ R × R̂ in a ball of radius
r/2.) For perspective, in the case of {embτnag : m, n ∈ Z}, this necessary condition
is equivalent to the condition ab ≤ 1. It is also well-known that if ab > 1, then
{embτnag : m, n ∈ Z} is not complete in L2(R). As such, it is not unexpected that
{eσn τsn g} is incomplete if D−(E) < 1; however, this is not the case as has been shown
by explicit construction, see [11], Theorem 2.6. Other sparse complete Gabor systems
have been constructed in [72] and [80].

Example 3.6 a. Let (X,A, μ) be a measure space, i.e., X is a set,A is a σ−algebra in
the power set P(X), and μ is a measure onA, see [8]. Let H be a complex, separable
Hilbert space. Assume

F : X → H

is a weakly measurable function in the sense that for each f ∈ H, the complex-valued
mapping x �→ 〈 f,F(x)〉 is measurable. F is a (X,A, μ)–frame for H if

∃ A, B > 0 such that ∀ f ∈ H, A‖ f ‖2 ≤
∫

X
|〈 f,F(x)〉|2 dμ(x) ≤ B‖ f ‖2.

Typically, A is the Borel algebra B(Rd) for X = R
d and A = P(Z) for X = Z. In

these cases we use the terminology, (X, μ)-frame.
b.Continuous and discretewavelet andGabor frames are special cases of (X,A, μ)-

frames and could have been formulated as such from the time of [23,43]. Inmathemati-
cal physics the idea was introduced in [2,3,50]. Recent mathematical contributions are
found in [36,37]. (X,A, μ)-frames are sometimes referred to as continuous frames.
Also, in a slightly more concrete way we could have let X be a locally compact space
and μ a positive Radon measure on X .

c. Let X = Z,A = P(Z), and μ = c, where c is counting measure, c(Y ) =
card(Y ). Define F(n) = xn ∈ H, n ∈ Z, for a given complex, separable Hilbert
space, H. We have

∀ f ∈ H,

∫

Z

|〈 f, xn〉|2 d c(n) =
∑

n∈Z

∫

{n}
|〈 f, xn〉|2 d c(n) =

∑

n∈Z
|〈 f, xn〉|2.
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Thus, frames {xn} for H, as defined in Definition 2.1, are (Z,P(Z), c)–frames. For
the present discussion we also refer to them as discrete frames.

d. Let X = R
d ,A = B(Rd), and μ = p a probability measure, i.e. p(Rd) = 1;

and let H = R
d . The measure p is a probabilistic frame for H = R

d if

∃ A, B > 0 such that ∀ x ∈ R
d (= H), A‖x‖2 ≤

∫

X
|〈x, y〉|2 d p(y) ≤ B‖x‖2,

see [28,29]. Define

F : X = R
d → H = R

d

by F(x) = x ∈ R
d . Suppose F is a (Rd ,B(Rd), p)-frame for H = R

d . Then

∀ x ∈ H, A‖x‖2 ≤
∫

X
|〈x, y〉|2 d p(y) ≤ B‖x‖2,

and this is precisely the same as saying that p is a probabilistic frame for H = R
d .

Suppose we try to generalize probabilistic frames to the setting that X is locally
compact, as well as being a vector space because of probabilistic applications. This
simple extension can not be effected since Hausdorff, locally compact vector spaces
are, in fact, finite dimensional (F. Riesz).

e.Let (X,A, μ) be ameasure space and let H be a complex, separableHilbert space.
A positive operator-valued measure (P OV M) is a function π : A → L(H), where
L(H) is the space of the bounded linear operators on H , such thatπ(∅) = 0, π(X) = I
(Identity), π(A) is a positive, and therefore self-adjoint (since H is a complex vector
space), operator on H for each A ∈ A, and

∀ disjoint {A j }∞j=1 ⊆ A, x, y ∈ H �⇒ 〈π
(
∪∞

j=1A j

)
x, y〉 =

∞∑

j=1

〈π(A j )x, y〉.

P OV Ms are a staple in quantum mechanics, see [3,12] for rationale and references.
If {xn} ⊆ H is a 1-tight discrete frame for H , then it is elementary to see that the
formula,

∀ x ∈ H and ∀ A ∈ P(Z), π(A)x =
∑

n∈A

〈x, xn〉xn,

defines a P OV M.Conversely, if H = C
d andπ is a P OV M for X countable, then by

the spectral theorem there is a corresponding 1-tight discrete frame. This relationship
between tight frames and P OV Ms extends to more general (X,A, μ)-frames, e.g.,
[3], Chapter 3.

In this setting, and related to probability of quantum detection error, Pe, which is
defined in terms of P OV Ms, Kebo and one of the authors have proved the following
for H = C

d , {y j }N
j=1 ⊆ H, and {ρ j > 0}N

j=1,
∑N

j=1 ρ j = 1 : there is a 1-tight

discrete frame {xn}N
n=1 ⊆ H for H that minimizes Pe, [12], Theorem A.2.
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f. Let X = R
2d and let H = L2(Rd). Given g ∈ L2(Rd) and define the function

F : R
2d → L2(Rd)

(x, ω) �→ e2π i t ·ω g(t − x).

F is a (Rd ,B(R2d), m)-frame for L2(R2d), where m is Lebesgue measure on R
2d ;

and, in fact, it is a tight frame for L2(Rd) with frame constant A = B = ‖g‖22. To see
this we need only note the following consequence of the orthogonality relations for
the ST FT :

‖Vg f ‖2 = ‖g‖L2(Rd )‖ f ‖L2(Rd ). (22)

Equation (22) is also used in the proof of (9).
g. Clearly, Theorems 3.2, 3.3, and 3.4 can be formulated in terms of (X, μ)–frames.

4 Examples and Modifications of Beurling’s Method

4.1 Generalizations of Beurling’s Fourier Frame Theorem

Using more than one measure, we can extend Theorem 2.15 to more general types of
Fourier frames. For clarity we give the result for three simple measures.

Lemma 4.1 Given the notation and hypotheses of Theorems 2.18 and 2.19. Then,

∀ f ∈ PW� \ {0}, f̂ = F,

∑

x∈E

∣∣∣∣
∫

ax (y)h(x − y) f (y) dy

∣∣∣∣
2

≤ [K (E,�ε) ‖h‖2]2
∫

�

|F(γ )|2 dγ.

Proof We compute:

∑

x∈E

∣∣∣∣
∫

ax (y)h(x − y) f (y) dy

∣∣∣∣
2

≤
∑

x∈E

∣∣∣∣∣

(∫
|ax (y)1/2h(x − y)|2 dy

)1/2 (∫
|ax (y)1/2 f (y)|2 dy

)1/2
∣∣∣∣∣

2

≤ sup
x∈E

(∫
|ax (y)||h(x − y)|2 dy

)(∑

x∈E

∫
|ax (y)|| f (y)|2 dy

)

≤ K (E,�ε) sup
x∈E

(∫
|ax (y)||h(x − y)|2 dy

)∫

�

|F(γ )|2 dγ

≤ K (E,�ε)
2 ‖h‖22

∫

�

|F(γ )|2 dγ,

where we have used the Plancherel theorem to obtain the third inequality. ��
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Theorem 4.2 Let E = {xn} ⊆ R
d be a separated sequence, and let � ⊆ R̂

d be a
compact S-set of strict multiplicity. Assume that � is a compact, convex set, that is
symmetric about 0 ∈ R̂

d . If balayage is possible for (E,�), then

∃ A, B > 0 such that∀ f ∈ PW� \ {0}, F = f̂ ,

A1/2

∫
�

|F(γ ) + F(2γ ) + F(3γ )|2 dγ
(∫

�
|F(γ )|2 dγ

)1/2

≤
(
∑

x∈E

| f (x)|2
)1/2

+ 1

2

(
∑

x∈E

| f (
1

2
x)|2

)1/2

+ 1

3

(
∑

x∈E

| f (
1

3
x)|2

)1/2

≤ B1/2
(∫

�

|F(γ )|2 dγ

)1/2

. (23)

Proof By hypothesis, we can invoke Theorem 2.13 to choose ε > 0 so that balayage
is possible for (E,�ε), i.e., K (E,�ε) < ∞. For this ε > 0 and appropriate �, we
use Theorem 2.18 to choose h ∈ L1(Rd) for which h(0) = 1, supp (̂h) ⊆ B(0, ε),
and |h(x)| = O(e−�(‖x‖)), ‖x‖ → ∞.

Therefore, for a fixed y ∈ R
d and g ∈ C(�), Theorem 2.19 allows us to assert that

g(y) + g(2y) + g(3y)

=
∑

x∈E

g(x) (ax (y)h(x − y) + ax (2y)h(x − 2y) + ax (3y)h(x − 3y))

and

∑

x∈E

|ax ( j y)| ≤ K (E,�ε), j = 1, 2, 3.

Hence, if γ ∈ � is fixed and g(w) = e−2π iw·γ , then

e−2π iy·γ + e−2π i(2y)·γ + e−2π i(3y)·γ

=
∑

x∈E

(ax (y)h(x − y) + ax (2y)h(x − 2y) + ax (3y)h(x − 3y)) e−2π i x ·γ ,

which we write as

∑

x∈E

bx (y)e−2π i x ·γ .
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Since L1(Rd) ∩ PW� is dense in PW�, we take f ∈ L1(Rd) ∩ PW� in the
following argument without loss of generality. We compute

∑

x∈E

e−2π i x ·γ
∫

bx (y) f (y) dy

=
∫

f (y)

(
∑

x∈E

bx (y)e−2π i x ·γ
)

dy

=
∫

f (y)
(

e−2π iy·γ + e−2π i(2y)·γ + e−2π i(3y)·γ ) dy

= F(γ ) + F(2γ ) + F(3γ ) = JF (γ ).

As such, we have

JF (γ ) =
∑

x∈E

f̃ (x)e−2π i x ·γ , where f̃ (x) =
∫

bx (y) f (y) dy.

Next, we compute the following inequality for the inner product 〈JF , JF 〉�:
∫

�

JF (γ )JF (γ ) dγ =
∫

�

JF (γ )

(
∑

x∈E

f̃ (x)e2π i x ·γ
)

dγ

=
∑

x∈E

f̃ (x)

(∫

�

JF (γ )e2π i x ·γ dγ

)
=
∑

x∈E

f̃ (x)

(
f (x) + 1

2
f (

x

2
) + 1

3
f (

x

3
)

)
(24)

≤
(
∑

x∈E

| f̃ (x)|2
)1/2 (∑

x∈E

∣∣∣∣ f (x) + 1

2
f (

x

2
) + 1

3
f (

x

3
)

∣∣∣∣
2
)1/2

≤
(
∑

x∈E

| f̃ (x)|2
)1/2

⎡

⎣
(
∑

x∈E

| f (x)|2
)1/2

+ 1

2

(
∑

x∈E

| f (
x

2
)|2
)1/2

+ 1

3

(
∑

x∈E

| f (
x

3
)|2
)1/2

⎤

⎦

by Hölder’s and Minkowski’s inequalities. Further, there is A > 0 such that

∑

x∈E

| f̃ (x)|2 ≤ 1

A

∫

�

|F(γ )|2 dγ. (25)

This is a consequence of Lemma 4.1. Combining the definition of JF with the inequal-
ities (24) and (25) yield the first inequality of (23).

The second inequality of (23) only requires the assumption that E be separated,
and, as such, it is a consequence of the Plancherel-Pólya theorem, which asserts that
if E is separated, then

∃ B j such that ∀ f ∈ PW�,
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∑

x∈E

∣∣∣∣ f

(
x

j

)∣∣∣∣
2

≤ B j ‖ f ‖22, j = 1, 2, 3,

see [6], pp. 474–475, [56,79], pp. 109–113. ��
Theorem 4.2 can be generalized extensively.

Example 4.3 Given the setting of Theorem 4.2.
a. Define the set {e∨

j,x : j = 1, 2, 3 and x ∈ E} of functions on R
d by

e j,x (γ ) = 1

j
1�(γ )e−2π i(1/j)x ·γ ,

and define the mapping S : PW� → PW� by

S f =
3∑

j=1

∑

x∈E

〈
f, e∨

j,x

〉
e∨

j,x .

We compute

∀ f ∈ PW�, 〈S f, f 〉 =
3∑

j=1

1

j2
∑

x∈E

∣∣∣∣ f

(
x

j

)∣∣∣∣
2

.

b. Let f ∈ PW�, f̂ = F , and define JF (γ ) = F(γ ) + F(2γ ) + F(3γ ). Since
(a + b + c)2 ≤ 3(a2 + b2 + c2) for a, b, c ∈ R, Theorem 4.2 and part a allow us to
write the frame-type inequality,

A

3

〈JF , JF 〉2
‖F‖2 ≤ 〈S f, f 〉 = ‖L f ‖2

�2
≤ B ‖ f ‖22 , (26)

where L f = {
〈

f, e∨
j,x

〉
: j = 1, 2, 3 and x ∈ E} so that S = L∗L . The inequalities

(26) do not a priori define a frame for PW�. However, {e j,x : j = 1, 2, 3 and x ∈ E}
is a frame for PW� with frame operator S. This is a consequence of Theorem 2.15.

Theorem 4.4 Let E = {xn} ⊆ R
d be a separated sequence, and let � ⊆ R̂

d be an
S-set of strict multiplicity. Assume that � is a compact, convex set, that is symmetric
about 0 ∈ R̂

d . Further, let G ∈ L∞(Rd) be non-negative on R̂
d . If balayage is possible

for (E,�), then

∃ A, B > 0, such that ∀ f ∈ PW� \ {0}, F = f̂ ,
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A

(∫
�

|F(γ )|2 G(γ ) dγ
)2

∫
�

|F(γ )|2 dγ
≤
∑

x∈E

| (F G)∨ (x)|2

≤ B
∫

�

|F(γ )|2 dγ. (27)

We can take A = 1/
(
K (E,�ε) ‖h‖22

)
and B = B1 ‖G‖2∞, where B1 is the Bessel

bound in the Plancherel-Pólya theorem for PW�.

Proof By hypothesis, we can invoke Theorem 2.13 to choose ε > 0 so that balayage
is possible for (E,�ε), i.e., K (E,�ε) < ∞. For this ε > 0 and appropriate �, we
use Theorem 2.18 to choose h ∈ L1(Rd) for which h(0) = 1, supp ĥ ⊆ B(0, ε), and
|h(x)| = O(e−�(‖x‖)), ‖x‖ → ∞. Consequently, we have

∀ y ∈ R
d and ∀ γ ∈ �,

e−2π iy·γ =
∑

x∈E

ax (y)h(x − y)e−2π i x ·γ , where
∑

x∈E

|ax (y)| ≤ K (E,�ε).

If f ∈ PW�, f̂ = F , and noting that F ∈ L1(R̂d), we have the following computa-
tion:

∫

�

|F(γ )|2G(γ ) dγ

=
∫

�

F(γ )G(γ )

(∫
f (w)

(
∑

x∈E

ax (w)h(x − w)e2π i x ·γ
)

dw

)
dγ

=
∑

x∈E

(∫

�

F(γ )G(γ )e2π i x ·γ dγ

)(∫
f (w)ax (w)h(x − w) dw

)

≤
(
∑

x∈E

|(FG)∨(x)|2
)1/2 (∑

x∈E

∣∣∣∣
∫

f (w)ax (w)h(x − w) dw

∣∣∣∣
2
)1/2

≤ K (E,�ε) ‖h‖2
(∫

�

|F(γ )|2 dγ

)1/2
(
∑

x∈E

∣∣(FG)∨(x)
∣∣2
)1/2

, (28)

where the last step is a consequence of Lemma 4.1. Clearly, (28) gives the first inequal-
ity of (27). As in Theorem 4.2, the second inequality of (27) only requires the assump-
tion that E be separated, and, as such, it is a consequence of the Plancherel-Pólya
theorem for PW�. ��

Theorem 4.4 is an elementary generalization of the classical result for the case
G = 1 on R, and itself has significant generalizations to other weights G. We have
not written (FG)∨ as a convolution since for such generalizations there are inherent
subtleties in defining the convolution of distributions, e.g., [73], Chapitre VI, [63], see
[7], pp. 99–102, for contributions of Hirata and Ogata, Colombeau, et al. Even in the
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case of Theorem 4.4, G∨ = g is in the class of pseudo-measures, which themselves
play a basic role in spectral synthesis [5].

4.2 A Bounded Operator B : L p(Rd) → l p(E), p > 1

a. In Example 2.20b we proved the lower frame bound assertion of Theorem 2.15.
This can also be achieved using Beurling’s generalization of balayage to so-called
linear balayage operators B, see [17], pp. 348–350.

In fact, with this notion and assuming the hypotheses of Theorem 2.19, Beurling
proved that the mapping,

L p(Rd) −→ l p(E), p > 1,

k �→ {kx }x∈E ,

where

∀ x ∈ E, kx =
∫

Rd
ax (y)h(x − y)k(y) dy,

has the property that

∃ C p > 0 such that ∀ k ∈ L p(Rd),

∑

x∈E

|kx |p ≤ C p

∫
|k(y)|pdy. (29)

Let p = 2 and fix f ∈ PW�.We shall use (29) and the definition of norm to obtain
the desired lower frame bound. This is Landau’s idea. Set

Ik =
∫

�

F(γ )K (γ )dγ, f̂ = F,

where K ∨ = k ∈ L2(Rd). By balayage, we have

K (γ ) =
∑

x∈E

kx e−2π i x ·γ on �;

and so,

Ik =
∑

x∈E

f (x)kx ,

allowing us to use (29) to make the estimate,

|Ik |2 ≤ C‖K‖22
∑

x∈E

| f (x)|2.
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By definition of ‖ f ‖2, we have

‖ f ‖2 = sup
K

|IK |
‖K‖2 ≤ C

(
∑

x∈E

| f (x)|2
)1/2

,

and this is the lower frame bound inequality with bound A = 1/C2.

Because of this approach we can think of balayage as “l2 − L2 balayage”.
b. Motivated by part a, we shall say that l1 − L2 balayage is possible for (E,�),

where E is separated and � is a compact set of positive measure |�|, if

∃ C > 0 such that ∀ k ∈ L2(Rd), k̂ = K ,

∑

x∈E

|kx | ≤ C
∫

�

|K (γ )|2dγ

and

K (γ ) =
∑

x∈E

kx e−2π i x ·γ on �.

For fixed f ∈ PW� and using the notation of part a, we have

|Ik |2 ≤
∑

x∈E

|kx |2
∑

x∈E

| f (x)|2. (30)

An elementary calculation gives

∑

x∈E

|kx |2 ≤ C2|�|
∫

�

|K (γ )|2dγ,

which, when substituted into (30), gives

1

C2|�|
( |IK |2∫

�
|K (γ )|2dγ

)
≤
∑

x∈E

| f (x)|2.

We obtain the desired lower frame inequality with bound A = 1/(C2|�|).

5 Pseudo-differential Operator Frame Inequalities

Let σ ∈ S ′(Rd × R̂
d). The operator, Kσ , formally defined as

(Kσ f )(x) =
∫

σ(x, γ ) f̂ (γ )e2π i x ·γ dγ,



500 J Fourier Anal Appl (2015) 21:472–508

is the pseudo-differential operator with Kohn-Nirenberg symbol, σ , see [40] Chapter
14, [41] Chapter 8, [45], and [78], Chapter VI. For consistency with the notation of the
previous sections, we shall define pseudo-differential operators, Ks, with tempered
distributional Kohn-Nirenberg symbols, s ∈ S ′(Rd × R̂

d), as

(Ks f̂ )(γ ) =
∫

s(y, γ ) f (y)e−2π iy·γ dy.

Further, we shall actually deal with Hilbert–Schmidt operators, K : L2(R̂d) →
L2(R̂d); and these, in turn, can be represented as K = Ks, where s ∈ L2(Rd × R̂

d).
Recall that K : L2(R̂d) → L2(R̂d) is a Hilbert–Schmidt operator if

∑∞
n=1

‖K en‖22 < ∞

for some orthonormal basis, {en}∞n=1, for L2(R̂d), in which case the Hilbert–Schmidt
norm of K is defined as

‖K‖H S =
( ∞∑

n=1

‖K en‖22
)1/2

,

and ‖K‖H S is independent of the choice of orthonormal basis. The first theorem about
Hilbert-Schmidt operators is the following [71]:

Theorem 5.1 If K : L2(R̂d) → L2(R̂d) is a bounded linear mapping and (K f̂ )(γ ) =∫
m(γ, λ) f̂ (λ) dλ, for some measurable function m, then K is a Hilbert-Schmidt

operator if and only if m ∈ L2(R̂2d) and, in this case, ‖K‖H S = ‖m‖L2(R2d ).

The following is our result about pseudo-differential operator frame inequalities.

Theorem 5.2 Let E = {xn} ⊆ R
d be a separated sequence, that is symmetric about

0 ∈ R
d ; and let � ⊆ R̂

d be an S-set of strict multiplicity, that is compact, convex, and
symmetric about 0 ∈ R̂

d . Assume balayage is possible for (E,�). Further, let K be
a Hilbert-Schmidt operator on L2(R̂d) with pseudo-differential operator representa-
tion,

(K f̂ )(γ ) = (Ks f̂ )(γ ) =
∫

s(y, γ ) f (y)e−2π iy·γ dy,

where sγ (y) = s(y, γ ) ∈ L2(Rd × R̂
d) is the Kohn-Nirenberg symbol and where we

make the further assumption that

∀γ ∈ R̂
d , sγ ∈ Cb(R

d) and supp (sγ e−γ )̂ ⊆ �. (31)

Then,

∃A, B > 0 such that ∀ f ∈ L2(Rd)\{0},
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A
‖Ks f̂ ‖42
‖ f ‖22

≤
∑

x∈E

|〈(Ks f̂ )(·), s(x, ·) ex (·)〉|2 ≤ B ‖s‖2
L2(Rd×R̂d )

‖Ks f̂ ‖22. (32)

Proof a. In order to prove the assertion for the lower frame bound, we first combine
the pseudo-differential operator Ks , with Kohn-Nirenberg symbol s, and balayage to
compute

∫
|(Ks f̂ )(γ )|2 dγ =

∫
(Ks f̂ )(γ )(Ks f̂ )(γ ) dγ

=
∫

(Ks f̂ )(γ )

(∫
s(y, γ ) f (y)e−2π iy·γ dy

)
dγ

=
∫

(Ks f̂ )(γ )

(∫
f (y)k(y, γ ) dy

)
dγ

=
∫

(Ks f̂ )(γ )

(∫
f (y)

(
∑

x∈E

k(x, γ )ax (y, γ )h(x − y)

)
dy

)
dγ, (33)

where kγ (y) = k(y, γ ) = s(y, γ )e−2π iy·γ on R
d and kγ ∈ C(�) for each fixed

γ ∈ R̂
d , and where

sup
γ∈R̂d

sup
y∈Rd

∑

x∈E

|ax (y, γ )| ≤ K (E,�ε) = C < ∞. (34)

Because of Theorems 2.18 and 2.19, we do not need to have the function h depend
on γ ∈ R̂

d . Further, because of (34) and estimates we shall make, we can write
ax (y, γ ) = ax (y).

Thus, the right side of (33) is

∫
f (y)

[
∑

x∈E

ax (y)h(x − y)

(∫
(Ks f̂ )(γ )k(x, γ ) dγ

)]
dy

=
∑

x∈E

(∫
f (y)ax (y)h(x − y) dy

∫
(Ks f̂ )(γ )k(x, γ ) dγ

)

≤
(
∑

x∈E

∣∣∣∣
∫

f (y)ax (y)h(x − y) dy

∣∣∣∣
2
)1/2 (∑

x∈E

∣∣∣(Ks f̂ )(γ )k(x, γ )

∣∣∣
2
)1/2

. (35)

Note that, by Hölder’s inequality applied to the integral, we have

∑

x∈E

∣∣∣∣
∫

f (y)ax (y)h(x − y) dy

∣∣∣∣
2

≤
∑

x∈E

∣∣∣∣∣

(∫
|ax (y)||h(x − y)|2 dy

)1/2 (∫
| f (y)|2|ax (y)| dy

)1/2
∣∣∣∣∣

2
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≤
∑

x∈E

(
C
∫

|h(x − y)|2 dy

)(∫
| f (y)|2|ax (y)| dy

)

≤ C‖h‖22
∫ ((

∑

x∈E

|ax (y)|
)

| f (y)|2 dy

)

≤ C2‖h‖22‖ f ‖22. (36)

Combining (33), (35), and (36), we obtain

‖Ks f̂ ‖22 ≤ C‖h‖2‖ f ‖2
(
∑

x∈E

∣∣∣∣
∫

(Ks f̂ )(γ )k(x, γ ) dγ

∣∣∣∣
2
)1/2

.

Consequently, setting A = 1/(C‖h‖2)2, we have

∀ f ∈ L2(Rd)\{0}, A
‖Ks f̂ ‖42
‖ f ‖22

≤
∑

x∈E

∣∣∣∣
∫

(Ks f̂ )(γ )s(x, γ )e−2π i x ·γ dγ

∣∣∣∣
2

=
∑

x∈E

|〈(Ks f̂ )(·), s(x, ·)ex (·)〉|2

and the assertion for the lower frame bound is proved.
b.i. In order to prove the assertion for the upper frame bound, we begin by formally

defining

∀ f ∈ L2(Rd), (Is f̂ )(x) =
∫

s(x, γ )(Ks f̂ )(γ )e−2π i x ·γ dγ,

which is the inner product in (32).
Note that Is f̂ ∈ L2(Rd). In fact, we know Ks f̂ ∈ L2(R̂d) and s ∈ L2(Rd × R̂

d)

so that

|Is f̂ (x)|2 ≤
∫

|s(x, γ )|2 dγ

∫
|Ks f̂ (γ )|2 dγ

by Hölder’s inequality, and, hence,

‖Is f̂ ‖22 ≤ ‖s‖2
L2(Rd×R̂d )

‖Ks f̂ ‖22. (37)

b.ii. We shall now show that supp((Is f̂ )̂ ) ⊆ �, and to this end we use (31). We begin
by computing
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(Is f̂ )̂ (ω) =
∫ (∫

s(y, γ )(Ks f̂ )(γ ) e−2π iy·γ dγ

)
e−2π iy·ω dy

=
∫

(Ks f̂ )(γ )

(∫
kγ (y)e−2π iy·ω dy

)
dγ

=
∫

(Ks f̂ )(γ )(kγ )̂(ω) dγ,

where

kγ (y) = k(y, γ ) = s(y, γ )e−2π iy·γ = (sγ e−γ )(y),

as in part a. Also, supp(kγ )̂ ⊆ � by our assumption, (31); that is, for each γ ∈
R̂

d , (kγ )̂ = 0 a.e. on R̂
d\�.

Since supp(Is f̂ )̂ is the smallest closed set outside of which (Is f̂ )̂ is 0 a.e., we
need only show that if supp(L) ⊆ R̂

d\� then

∫
L(ω)(Is f̂ )̂ (ω) dω = 0.

This follows because

∫
L(ω)(Is f̂ )̂ (ω) dω =

∫
(Ks f̂ )(γ )

(∫
L(ω)(kγ )̂(ω) dω

)
dγ

and (kγ )̂ = 0 on R̂
d\�.

b.iii. Because of parts b.i and b.ii, we can invoke the Pólya-Plancherel theorem to
assert the existence of B > 0 such that

∀ f ∈ L2(Rd),
∑

x∈E

|(Is f̂ )(x)| ≤ B‖Is f̂ ‖22,

and the upper frame inequality of (32) follows from (37). ��
Example 5.3 Weshall define aKohn–Nirenberg symbol classwhose elements s satisfy
the hypotheses of Theorem 5.2, cf. the discrete symbol calculus of Demanet and Ying
[25].

Choose {λ j } ⊆ int(�), a j ∈ Cb(R
d) ∩ L2(Rd), and b j ∈ Cb(R̂

d) ∩ L2(R̂d) with
the following properties:

i.
∑∞

j=1 |a j (y)b j (γ )| is uniformly bounded and converges uniformly onR
d × R̂

d ;

ii.
∑∞

j=1 ‖a j‖2‖b j‖2 < ∞;

iii. ∀ j = 1, . . . , ∃ε j > 0 such that B(λ j , ε j ) ⊆ � and supp(̂a j ) ⊆ B(0, ε j ).

These conditions are satisfied for a large class of functions a j and b j .
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The Kohn-Nirenberg symbol class consisting of functions, s, defined as

s(y, γ ) =
∞∑

j=1

a j (y)b j (γ )e−2π iy·λ j

satisfy the hypotheses of Theorem 5.2. To see this, first note that condition i tells us
that, if we set sγ (y) = s(y, γ ), then

∀γ ∈ R̂
d , sγ ∈ Cb(R

d).

Condition ii allows us to assert that s ∈ L2(Rd × R̂
d) since we can use Minkowski’s

inequality to make the estimate,

‖s‖L2(Rd×R̂d )
≤

∞∑

j=1

(∫ ∫ ∣∣∣b j (γ )a j (y)e−2π iy·(λ j −γ )
∣∣∣
2

dy dγ

)1/2
=

∞∑

j=1

‖a j ‖2‖b j ‖2.

Finally, using condition iii, we obtain the support hypothesis, supp(sγ e−γ )̂ ⊆ �, of
Theorem 5.2 for each γ ∈ R̂

d , because of the following calculations:

(sγ e−γ )̂(ω) =
∞∑

j=1

b j (γ )(̂a j ∗ δ−λ j )(ω)

and, for each j ,

supp(̂a j ∗ δ−λ j ) ⊆ B(0, ε j ) + {λ j } ⊆ B(λ j , ε j ) ⊆ �.

6 The Beurling Covering Theorem

Let � ⊆ R̂
d be a convex, compact set which is symmetric about the origin and has

non-empty interior. Then ‖·‖�, defined by

∀γ ∈ R̂
d , ‖γ ‖� = inf{ρ > 0 : γ ∈ ρ�},

is a norm on R̂
d equivalent to the Euclidean norm. The polar set �∗ ⊆ R

d of � is
defined as

�∗ = {x ∈ R
d : x · γ ≤ 1, for all γ ∈ �}.

It is elementary to check that �∗ is a convex, compact set which is symmetric about
the origin, and that it has non-empty interior.

Example 6.1 Let � = [−1, 1] × [−1, 1]. Then, for (γ1, γ2) ∈ R̂
2,

‖(γ1, γ2)‖� = inf{ρ > 0 : |γ1| ≤ ρ, |γ2| ≤ ρ} = ‖(γ1, γ2)‖∞ .
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The polar set of � is

�∗ = {(x1, x2) : |x1| + |x2| ≤ 1} = {(x1, x2) : ‖(x1, x2)‖1 ≤ 1}.

Theorem 6.2 (Beurling covering theorem) Let � ⊆ R̂
d be a convex, compact set

which is symmetric about the origin and has non-empty interior, and let E ⊆ R
d be

a separated set satisfying the covering property,

⋃

y∈E

τy�
∗ = R

d .

If ρ < 1/4, then {(e−x1�)∨ : x ∈ E} is a Fourier frame for PWρ�.

Theorem 6.2 [13,14] involves the Paley–Wiener theorem and properties of bal-
ayage, and it depends on the theory developed in [17], pp. 341–350, [15], and [56].
For a recent development, see [69].

7 Epilogue

This paper is rooted inBeurling’s deep ideas and techniques dealingwith balayage, that
themselves have spawned wondrous results in a host of areas ranging from Kahane’s
creative formulation and theory exposited in [48] to the setting of various locally
compact abelian groups with surprising twists and turns and many open problems,
e.g., [75,76], to the new original chapter on quasi-crystals led by by Yves Meyer, e.g.,
[44,55,60–62,64,65] as well as the revisiting by Beurling [16].

Even with the focused theme of this paper, there is the important issue, as empha-
sized in the Abstract and Introduction, of completing our program of implementation
and computation vis a vis balayage for explicit and genuine applications of non-
uniform sampling.
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