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Abstract The purpose of the paper is to prove a sharp form of Hardy-type inequality,
conjectured by Kanjin, for Hermite expansions of functions in the Hardy space H1(R),

that is,
∑∞

n=1 n− 3
4 |an( f )| ≤ A‖ f ‖H1(R) for all f ∈ H1(R), where A is a constant

independent of f .

Keywords Hardy inequality · Hermite expansion · Hardy space
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1 Introduction and Result

The Hermite polynomials Hn(x) (n ≥ 0) are defined by the orthogonal relation (cf.
[15,16])

∫ ∞

−∞
e−x2

Hn(x)Hm(x)dx = π
1
2 2nn!δnm,

and the Hermite functions are given by
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Hn(x) =
(
π

1
2 2nn!

)− 1
2

e− x2
2 Hn(x), n = 0, 1, 2, . . . ,

which are orthonormal over (−∞,∞) associated with the Lebesgue measure.
For f ∈ L(R), its Hermite expansion is

f (x) ∼
∞∑

n=0

an( f )Hn(x), an( f ) =
∫ ∞

−∞
f (x)Hn(x)dx .

The Hardy type inequality for Hermite expansions of functions in the Hardy space
H1(R) has been studied in several works. The first step was done by Kanjin [5] who
proved the inequality

∞∑

n=1

n− 29
36 |an( f )| ≤ A‖ f ‖H1(R), f ∈ H1(R), (1)

where A > 0 is a constant independent of f . Balasubramanian and Radha [2] extended
Kanjin’s result to H p(R), 0 < p ≤ 1. Radha and Thangavelu [10] (cf [17] also)
obtained inequalities of Hardy type for d-dimensional Hermite and special Hermite
expansions for d ≥ 2, where the constant they determined, in place of 29

36 , is

σ =
(

d

2
+ 1

) (
2 − p

2

)

for H p(Rd), 0 < p ≤ 1. In comparison with the case of d-dimension (d ≥ 2), the
Hardy inequality for one-dimensional Hermite expansions should be the one as (1)
but with 3

4 instead of 29
36 . However the method in [10] does not work for d = 1. An

improved form of (1) with 3
4 + ε for ε > 0 in place of 29

36 was obtained by Kanjin [6].
Moreover Kanjin [6] proved his inequality for all f ∈ L1(R), that is,

∞∑

n=1

n− 3
4 −ε |an( f )| ≤ A‖ f ‖L1(R). (2)

This again leads Kanjin to conjecture that the possible form of the Hardy inequality
for Hermite expansions would be

∞∑

n=1

n− 3
4 |an( f )| ≤ A‖ f ‖H1(R). (3)

We shall give a positive answer to this conjecture in the present paper. Kanjin [6] also
showed that there exists a function f0 ∈ L1(R) such that

∞∑

n=1

n− 3
4 |an( f0)| = ∞,
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so the Hardy space norm is required in (3).
The proofs of (1) and (2) in [5,6] were based on the pointwise estimate of the

Hermite functions as follows: for given τ > 0, there exist positive constants A, η and
ξ such that

|Hn(x)| ≤ A
(|x | + √

n
)− 1

4
(
||x | − √

2n| + n− 1
6

)− 1
4
	n(x) (4)

holds for all x ∈ R and n ≥ 1, where

	n(x) =

⎧
⎪⎨

⎪⎩

1, for 0 ≤ |x | ≤ √
2n;

exp
(
−ηn

1
4 ||x | − √

2n|3/2
)
, for

√
2n ≤ |x | ≤ (1 + τ)

√
2n;

e−ξ x2
, for (1 + τ)

√
2n ≤ |x |.

(5)

A separate description of (4) is given in [1] due to Skovgaard. The unified and simplified
form as (4) is stated in [7], in virtue of the relation [16, (1.1.52), (1.1.53)] of Hermite
polynomials and Laguerre polynomials and a unified description [9, (2.2)] of Laguerre
polynomials based on [8] and the table in [1, p. 699].

A direct consequence of (4) and (5) is

|Hn(x)| ≤ An− 1
12 ,

and Hn(x) attains this bound near the point x = √
2n. But for most x it has a much

smaller bound as a multiple of n− 1
4 . It is a very hard work to apply such a non-

proportional property of the Hermite functions as Kanjin did in [5,6], and certainly, it
is also difficult to achieve the best result for related problems. However, if for d ≥ 2,
we denote by 
α , α ∈ N

d , the d-dimensional Hermite functions, namely,


α(x1, . . . , xd) = Hα1(x1) · · · Hαd (xd), α = (α1, . . . , αd),

then there exists a constant A > 0 independent of n and (x1, . . . , xd) such that (see
[16, Lemma 3.2.2])

∑

|α|=n

|
α(x1, . . . , xd)|2 ≤ A(n + 1)
d
2 −1. (6)

Obviously this is not true for d = 1. The bound in (6) has been used in research of
various problems for d ≥ 2, as in [16] for example; it is also the key in the proof of the
inequalities of Hardy type in [10] for d-dimensional Hermite expansions for d ≥ 2.

In order to prove the Hardy inequality (3), we shall follow a different approach,
by evaluating the square integration of the Poisson integral associated to Hermite
expansions of functions in H1(R).

Indeed, we shall work with the generalized Hermite expansions of functions in
H1(R). If λ > −1/2, the generalized Hermite polynomials H (λ)

n (x) (n ≥ 0) are
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defined by (see [3])

H (λ)
2k (x) =

(
k!


(k + λ+ 1/2)

)1/2

L(λ−1/2)
k (x2), (7)

H (λ)
2k−1(x) =

(
(k − 1)!


(k + λ+ 1/2)

)1/2

x L(λ+1/2)
k−1 (x2), (8)

where L(α)n (x) (α > −1, n ≥ 0) are the Laguerre polynomials determined by the
orthogonal relation (see [15,16])

∫ ∞

0
e−x xαL(α)n (x)L(α)m (x)dx = 
(n + α + 1)

n! δmn .

The system
{

H (λ)
n (x)

}
is orthonormal over (−∞,+∞) with respect to the weight

|x |2λe−x2
, and Hn(x) = H (0)

n (x) (n ≥ 0) are the usual Hermite polynomials (up to
constants).

The generalized Hermite functions H(λ)
n (x) (n ≥ 0) are given by

H(λ)
n (x) = e− x2

2 |x |λH (λ)
n (x),

which are orthonormal over (−∞,∞) associated with Lebesgue measure. For a func-
tion f ∈ L(R), its generalized Hermite expansion is

f ∼
∞∑

n=0

a(λ)n ( f )H(λ)
n (x), a(λ)n ( f ) =

∫ ∞

−∞
f (t)H(λ)

n (t)dt. (9)

In what follows we assume that λ ≥ 0. Our main result is stated as follows.

Theorem 1.1 Let λ ≥ 0. Then there exists a constant A > 0 such that for all f ∈
H1(R),

∞∑

n=1

n− 3
4 |a(λ)n ( f )| ≤ A‖ f ‖H1(R). (10)

The generalized Hermite polynomials H (λ)
n (x) (n ≥ 0) were used in a Bose-like

oscillator calculus in [11]; their further generalizations to the Dunkl setting in several
variables can be found in [13] and those in the Ad−1 case are eigenfunctions of the
Hamiltonian of the linear quantum Calogero-Moser-Sutherland model (with some
modification) in R

d (see [13] and references therein). It would be interesting to extend
various results on the usual Hermite expansions such as in [10] and others to orthogonal
expansions associated to these generalizations. We remark that in [4], the Hermite
functions were used in a description of Feichtinger’s space S0.
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Throughout the paper, U � V means that U ≤ cV for some positive constant c
independent of variables, functions, n, k, etc., but possibly dependent of the parameter
λ.

2 Some Facts on the Poisson kernel

The Poisson kernel of the generalized Hermite polynomials H (λ)
n (x) (n ≥ 0) is, for

0 ≤ r < 1,

P(λ)(r; x, y) =
∞∑

n=0

rn H (λ)
n (x)H (λ)

n (y).

If we write P(λ)(r; x, y) into two parts, one being the summation for even n and the
other for odd n, then from (7), (8), and by [15] or [16, (1.1.47)], we have

P(λ)(r; x, y) = (1 − r2)−λ−1/2


(λ+ 1/2)
exp

(

− r2

1 − r2 (x
2 + y2)

)

Eλ

(
2r xy

1 − r2

)

,

where Eλ(z) is the one-dimensional Dunkl kernel

Eλ(z) = jλ−1/2(i z)+ z

2λ+ 1
jλ+1/2(i z),

and jα(z) is the normalized Bessel function

jα(z) = 2α
(α + 1)
Jα(z)

zα
= 
(α + 1)

∞∑

n=0

(−1)n(z/2)2n

n!
(n + α + 1)
.

If λ = 0, E0(z) = ez , and for λ > 0, a Laplace-type representation of Eλ(z) is (cf.
[12, Lemma 2.1])

Eλ(z) = c′
λ

∫ 1

−1
ezt (1 + t)(1 − t2)λ−1dt, c′

λ = 
(λ+ 1/2)


(λ)
(1/2)
. (11)

By (9), the Poisson kernel P(λ)(r; x, y) = ∑∞
n=0 rnH(λ)

n (x)H(λ)
n (y) of the gener-

alized Hermite functions H(λ)
n (n ≥ 0) can be written as

P(λ)(r; x, y) = |xy|λ (1 − r2)−λ−1/2


(λ+ 1/2)
exp

(

−1 + r2

1 − r2 · x2 + y2

2

)

Eλ

(
2r xy

1 − r2

)

.

The Poisson integral of the generalized Hermite expansion of a function f ∈ L1(R)

is defined by

fλ(r; x) =
∫ ∞

−∞
P(λ)(r; x, y) f (y)dy. (12)
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For λ = 0, P(0)(r; x, y) is consistent with the Poisson kernel of the usual Hermite
functions Hn (n ≥ 0) (see [16])

P(r; x, y) = (1 − r2)− 1
2√

π
exp

(

−2r(x − y)2 + (1 − r)2(x2 + y2)

2(1 − r2)

)

.

In order to give some necessary estimates of the Poisson kernel P(λ)(r; x, y) we
rewrite it into

P(λ)(r; x, y) = (1 − r2)−λ−1/2


(λ+ 1/2)
|xy|λψr,x (y)e

−|ξ y|Eλ(ξ y), ξ = 2r x

1 − r2 , (13)

where

ψr,x (y) = exp

(

−1 + r2

1 − r2

x2 + y2

2
+ 2r |xy|

1 − r2

)

.

We shall need several preliminary lemmas.

Lemma 2.1 For y 
= 0,

(i)
∣
∣e−|ξ y|Eλ(ξ y)

∣
∣ � (1 + |ξ y|)−λ;

(ii)
∣
∣
∣ ∂∂y

(
e−|ξ y|Eλ(ξ y)

)∣∣
∣ � |ξ |(1 + |ξ y|)−λ−1.

Proof If λ = 0, both (i) and (ii) are trivial. In what follows we assume that λ > 0.
From (11) we have

∣
∣
∣e−|ξ y|Eλ(ξ y)

∣
∣
∣ ≤ 2c′

λ

∫ 1

−1
e−|ξ y|(1−|t |)(1 − t2)λ−1dt �

∫ 1

0
e−|ξ y|(1−t)(1 − t)λ−1dt

= |ξ y|−λ
∫ |ξ y|

0
e−ssλ−1ds,

which is bounded by a multiple of (1+|ξ y|)−λ, since
∫ A

0 e−ssλ−1ds � (A/(A + 1))λ.
Furthermore, from (11) we have

∂

∂y

(
e−|ξ y|Eλ(ξ y)

)
= −c′

λξ

∫ 1

−1
e−ξ y(1−t)(1 + t)λ(1 − t)λdt for ξ y > 0;

= c′
λξ

∫ 1

−1
eξ y(1−t)(1 + t)λ−1(1 − t)λ+1dt for ξ y < 0.

In the both cases we split the integral into two parts as
∫ 1
−1 = ∫ 0

−1 + ∫ 1
0 , to get

∣
∣
∣
∣
∂

∂y

(
e−|ξ y|Eλ(ξ y)

)∣
∣
∣
∣ � |ξ |

[

e−|ξ y| +
∫ 1

0
e−|ξ y|(1−t)(1 − t)λdt

]

= |ξ |
[

e−|ξ y| + |ξ y|−λ−1
∫ |ξ y|

0
e−ssλds

]
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which implies the desired estimate in part (ii), since
∫ A

0 e−ssλds � (A/(A + 1))λ+1.
�


Lemma 2.2 (i) For 0 ≤ r < 1,

ψr,x (y) = exp

(

−r(|x | − |y|)2
1 − r2

)

exp

(

−1 − r

1 + r

x2 + y2

2

)

; (14)

(ii) for 0 ≤ r ≤ 1
2 , ψr,x (y) � exp

(−c1(x2 + y2)
)
, and for 1

2 ≤ r < 1, ψr,x (y) �
exp

(
−c2

(|x |−|y|)2
1−r

)
, where c1, c2 > 0 are independent of x, y and r.

Part (i) is obvious and implies part (ii) immediately.

Lemma 2.3 For x, y ∈ (−∞,∞) and r ∈ [0, 1),

(1 − r)1/2|x |
1 − r + |xy| � 1 + ||x | − |y||

(1 − r)1/2
.

Indeed, for |y| ≤ |x |/2 the left hand side is bounded by |x |/(1 − r)1/2 ≤
2 ||x | − |y|| /(1 − r)1/2, and for |y| ≥ |x |/2, by |x |/ (

2|xy|1/2) ≤ 1.

Proposition 2.4 (i) If 0 ≤ r ≤ 1
2 , then for y 
= 0,

∣
∣
∣
∣
∂

∂y
P(λ)(r; x, y)

∣
∣
∣
∣ � |x |λ|y|λ−1

(
λ+ |xy| + |y|2

)
exp

(
−c1(x

2 + y2)
)

;
(15)

(ii) if 1
2 ≤ r < 1, then for y 
= 0,

∣
∣
∣
∣
∂

∂y
P(λ)(r; x, y)

∣
∣
∣
∣ � λ

(1 − r)−1/2|x |λ|y|λ−1

(1 − r + |xy|)λ ψr,x (y)+ (1 − r)−1ψr,x (y)
1
2 .

(16)

Proof For y 
= 0, from (13) we have

∂

∂y
P(λ)(r; x, y) = (1 − r2)−λ−1/2


(λ+ 1/2)
(U1(x, y)+ U2(x, y)) ,

where

U1(x, y) = λ|x |λ|y|λ−2 y
(
ψr,x (y)e

−|ξ y|Eλ(ξ y)
)
,

U2(x, y) = |xy|λ
(
ψr,x (y)e

−|ξ y|Eλ(ξ y)
)′

y
.
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For 0 ≤ r ≤ 1
2 , it follows from Lemmas 2.1(i) and 2.2(ii) that (1 −

r2)−λ−1/2U1(x, y) is bounded by a multiple of λ|x |λ|y|λ−1 exp
(−c1(x2 + y2)

)
, and

for 1
2 ≤ r < 1, by a multiple of

λ
(1 − r)−λ−1/2|x |λ|y|λ−1

(1 + |ξ y|)λ ψr,x (y) � λ
(1 − r)−1/2|x |λ|y|λ−1

(1 − r + |xy|)λ ψr,x (y).

In order to verify that (1 − r2)−λ−1/2U2(x, y) has the desired estimates as in (15)
and (16), we shall show that for 0 ≤ r ≤ 1

2 ,

∣
∣
∣
∣

(
ψr,x (y)e

−|ξ y|Eλ(ξ y)
)′

y

∣
∣
∣
∣ � (|x | + |y|) exp

(
−c1(x

2 + y2)
)

; (17)

and for 1
2 ≤ r < 1,

∣
∣
∣
∣

(
ψr,x (y)e

−|ξ y|Eλ(ξ y)
)′

y

∣
∣
∣
∣

� ψr,x (y)

(1 − r)1−λ

[ ||x | − |y|| + (1 − r)2|y|
(1 − r + |xy|)λ + (1 − r)|x |

(1 − r + |xy|)λ+1

]

. (18)

Indeed, since from (14),

(
ψr,x (y)e

−|ξ y|Eλ(ξ y)
)′

y

=
[

2r(|x | − |y|)(sgn y)−(1−r)2 y

1−r2

(
e−|ξ y|Eλ(ξ y)

)
+

(
e−|ξ y|Eλ(ξ y)

)′
y

]

ψr,x (y),

by Lemma 2.1 we have

∣
∣
∣
∣

(
ψr,x (y)e

−|ξ y|Eλ(ξ y)
)′

y

∣
∣
∣
∣ �

[ ||x | − |y|| + (1 − r)2|y|
(1 − r)(1 + |ξ y|)λ + |ξ |

(1 + |ξ y|)λ+1

]

ψr,x (y).

Thus (17) and (18) follow immediately.
For 0 ≤ r ≤ 1

2 , from (17) it is obvious that

∣
∣
∣(1 − r2)−λ−1/2U2(x, y)

∣
∣
∣ � |xy|λ(|x | + |y|) exp

(
−c1(x

2 + y2)
)

;

and for 1
2 ≤ r < 1, from (18) we have

∣
∣
∣(1 − r2)−λ−1/2U2(x, y)

∣
∣
∣ � ψr,x (y)

1 − r

[ ||x | − |y||
(1−r)1/2

+(1 − r)3/2|y| + (1 − r)1/2|x |
1 − r + |xy|

]

.

By Lemma 2.3, it is easy to see that the expression in the brackets above is bounded
by a multiple of ψr,x (y)−1/2, and so

∣
∣(1 − r2)−λ−1/2U2(x, y)

∣
∣ � ψr,x (y)1/2/(1 − r).

The proof of the proposition is finished. �




J Fourier Anal Appl (2015) 21:267–280 275

3 Proof of the Main Result

The following theorem is crucial in the proof of Theorem 1.1.

Theorem 3.1 Assume that λ ≥ 0. There is a positive constant A such that for all
f ∈ H1(R),

∫ 1

0
(1 − r)−

3
4

(∫ ∞

−∞
| fλ(r; y)|2dy

) 1
2

dr ≤ A‖ f ‖H1(R), (19)

where fλ(r; y) is the Poisson integral (12) associated to the generalized Hermite
expansion of f .

The proof of Theorem 3.1 is based upon some norm estimates stated below.

Lemma 3.2 (i) If λ = 0 or λ > 1, then for y, ȳ ∈ (−∞,∞),

(∫ ∞

−∞

∣
∣
∣P(λ)(r; x, y)− P(λ)(r; x, ȳ)

∣
∣
∣
2

dx

) 1
2

� |y − ȳ|
(1 − r)3/4

; (20)

(ii) If 0 < λ ≤ 1, then for y, ȳ ∈ (−∞,∞),

(∫ ∞

−∞

∣
∣
∣P(λ)(r; x, y)− P(λ)(r; x, ȳ)

∣
∣
∣
2

dx

) 1
2

� |y−ȳ|λ
(1−r)(2λ+1)/4

(

1+ |y−ȳ|
(1−r)1/2

)

.

Proof For λ > 1 and y > ȳ we have

∥
∥
∥P(λ)(r; ·, y)− P(λ)(r; ·, ȳ)

∥
∥
∥

L2(R)
=

∥
∥
∥
∥

∫ y

ȳ

∂

∂z
P(λ)(r; ·, z)dz

∥
∥
∥
∥

L2(R)

≤
∫ y

ȳ

∥
∥
∥
∥
∂

∂z
P(λ)(r; ·, z)

∥
∥
∥
∥

L2(R)

dz.

If 0 ≤ r ≤ 1
2 , then by Proposition 2.4(i),

∥
∥
∥ ∂
∂z P(λ)(r; ·, z)

∥
∥
∥

L2(R)
� 1, so that

∥
∥
∥P(λ)(r; ·, y)− P(λ)(r; ·, ȳ)

∥
∥
∥

L2(R)
� |y − ȳ| � |y − ȳ|

(1 − r)3/4
.

Since for λ > 1 and 1
2 ≤ r < 1, by Lemma 2.3 we have

(1 − r)−1/2|x |λ|y|λ−1

(1 − r + |xy|)λ ≤ (1 − r)−1/2|x |
1 − r + |xy| � 1

1 − r

(

1 + ||x | − |y||
(1 − r)1/2

)

� ψr,x (y)−
1
2

1 − r
,
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inserting this into (16) yields that
∣
∣
∣ ∂∂y P(λ)(r; x, y)

∣
∣
∣ � (1 − r)−1ψr,x (y)

1
2 and hence

∥
∥
∥P(λ)(r; ·, y)− P(λ)(r; ·, ȳ)

∥
∥
∥

L2(R)
≤ 1

1 − r

∫ y

ȳ

∥
∥
∥ψr,x (z)

1
2

∥
∥
∥

L2(R)
dz � |y − ȳ|

(1 − r)3/4
.

This proves part (i) for λ > 1.

If λ = 0, by Proposition 2.4
∣
∣
∣ ∂∂y P(0)(r; x, y)

∣
∣
∣ is bounded by a multiple of (|x | +

|y|)e−c1(x2+y2) for 0 ≤ r ≤ 1
2 , and (1 − r)−1ψr,x (y)

1
2 for 1

2 ≤ r < 1. Hence the
above process still works for λ = 0. This completes the proof of part (i).

Now we turn to the proof of part (ii). For 0 < λ ≤ 1 and y > ȳ, we write

P(λ)(r; x, y)− P(λ)(r; x, ȳ)

= (1 − r2)−λ−1/2


(λ+ 1/2)

[∫ y

ȳ
U2(x, z)dz + |x |λ(|y|λ − |ȳ|λ)ψr,x (y)e

−|ξ y|Eλ(ξ y)

+
∫ y

ȳ
|x |λ(|ȳ|λ − |z|λ)

(
ψr,x (z)e

−|ξ z|Eλ(ξ z)
)′

z
dz

]

,

where U2(x, z) is defined as the same as in the proof of Proposition 2.4. There we
have shown that (for all λ ≥ 0) (1 − r2)−λ−1/2U2(x, z) is bounded by a multiple of
|xz|λ(|x | + |z|) exp

(−c1(x2 + z2)
)

for 0 ≤ r ≤ 1/2, and of ψr,x (z)1/2/(1 − r) for
1/2 ≤ r < 1. From the proof of part (i) above it follows that

∥
∥
∥P(λ)(r; ·, y)− P(λ)(r; ·, ȳ)

∥
∥
∥

L2(R)
� |y − ȳ|
(1 − r)3/4

+ V1 + V2, (21)

where

V1 = |y − ȳ|λ
(1 − r)λ+1/2

(∫ ∞

−∞

∣
∣
∣|x |λψr,x (y)e

−|ξ y|Eλ(ξ y)
∣
∣
∣
2

dx

)1/2

,

V2 = |y − ȳ|λ
(1 − r)λ+1/2

∫ y

ȳ

(∫ ∞

−∞

∣
∣
∣
∣|x |λ

(
ψr,x (z)e

−|ξ z|Eλ(ξ z)
)′

z

∣
∣
∣
∣

2

dx

)1/2

dz.

If 0 ≤ r ≤ 1
2 , then by Lemmas 2.1(i) and 2.2(ii),

V1 � |y − ȳ|λ
(∫ ∞

−∞
|x |2λ exp

(
−2c1(x

2 + y2)
)

dx

)1/2

� |y − ȳ|λ � |y − ȳ|λ
(1 − r)(2λ+1)/4

; (22)
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and from (17),

V2 � |y − ȳ|λ
∫ y

ȳ

(∫ ∞

−∞
|x |2λ(|x | + |z|)2 exp

(
−2c1(x

2 + z2)
)

dx

)1/2

dz

� |y − ȳ|λ+1 � |y − ȳ|λ+1

(1 − r)(2λ+3)/4
. (23)

If 1
2 ≤ r < 1, then by Lemmas 2.1(i), 2.2(ii) and 2.3,

V1 � |y − ȳ|λ
(1 − r)1/2

(∫ ∞

−∞

∣
∣
∣
∣ψr,x (y)

|x |λ
(1 − r + |xy|)λ

∣
∣
∣
∣

2

dx

)1/2

� |y − ȳ|λ
(1 − r)(λ+1)/2

(∫ ∞

−∞

(

1 + ||x | − |y||
(1 − r)1/2

)2λ

exp

(

−2c2
(|x | − |y|)2

1 − r

)

dx

)1/2

� |y − ȳ|λ
(1 − r)(2λ+1)/4

; (24)

and by (18), Lemmas 2.2(ii) and 2.3,

V2 � |y − ȳ|λ
(1 − r)(λ+2)/2

∫ y

ȳ

(∫ ∞

−∞

[(
(1 − r)1/2|x |
1 − r + |xz|

)λ ( ||x | − |z||
(1 − r)1/2

+ (1 − r)
3
2 |z|

)

+
(
(1 − r)1/2|x |
1 − r + |xz|

)λ+1
]2

ψr,x (z)
2dx

⎞

⎠

1/2

dz

� |y − ȳ|λ
(1 − r)(λ+2)/2

∫ y

ȳ

(∫ ∞

−∞

[(

1 + ||x | − |z||
(1 − r)1/2

)λ ( ||x | − |z||
(1 − r)1/2

+ (1 − r)
3
2 |z|

)

+
(

1 + ||x | − |z||
(1 − r)1/2

)λ+1
]2

ψr,x (z)
2dx

⎞

⎠

1/2

dz

� |y − ȳ|λ
(1 − r)(λ+2)/2

∫ y

ȳ

(∫ ∞

−∞
ψr,x (z)dx

)1/2

dz

� |y − ȳ|λ+1

(1 − r)(2λ+3)/4
. (25)

Collecting the estimates of (22), (23), (24) and (25) into (21), we finish the proof of
part (ii) of the lemma. �


Now we come to the proof of Theorem 3.1.
Let us first recall the atom characterization of the Hardy space H1(R) (cf. [14,18]).

An H1 atom is a measurable function a on R satisfying

(i) supp a ⊆ I for some interval I ⊂ R;
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(ii) ‖a‖L∞ ≤ |I |−1, |I | denoting the length of I ;
(iii)

∫ ∞
−∞ a(x)dx = 0.

For a function f ∈ H1(R), there are a sequence {ak} of H1 atoms and a sequence
{λk} of complex numbers satisfying

∑ |λk | < ∞, such that f = ∑∞
k=1 λkak and

A1‖ f ‖H1(R) ≤
∑

|λk | ≤ A2‖ f ‖H1(R),

where A1, A2 are positive constants independent of f .
In order to prove Theorem 3.1, it suffices to verify the inequality (19) for each H1

atom f = a, namely, there exists a absolute constant A > 0, such that

∫ 1

0
(1 − r)−

3
4 ‖aλ(r; ·)‖L2(R)dr ≤ A (26)

holds for all H1 atoms a satisfying (i), (ii) and (iii) above, where aλ(r; y) is the Poisson
integral (12) of a associated to its generalized Hermite expansion.

By Parseval’s inequality, from (i) and (ii) we have

‖aλ(r; ·)‖L2(R) ≤ ‖a‖L2(R) ≤ |I |− 1
2 . (27)

(27) is useful for atoms with larger supports, but we also need a more accurate estimate
for atoms with smaller supports.

For an atom a satisfying (i), (ii) and (iii), let ȳ be the left endpoint of the interval
I . Applying the cancelation property (iii) and Minkowski’s inequality, we have

‖aλ(r; ·)‖L2(R) =
(∫ ∞

−∞

[∫

I

(
P(λ)(r; x, y)− P(λ)(r; x, ȳ)

)
a(y)dy

]2

dx

) 1
2

≤
∫

I
|a(y)|

(∫ ∞

−∞

∣
∣
∣P(λ)(r; x, y)− P(λ)(r; x, ȳ)

∣
∣
∣
2

dx

)1/2

dy.

By means of Lemma 3.2 we obtain

‖aλ(r; ·)‖L2(R) � |I |
(1 − r)3/4

+ |I |λ
(1 − r)(2λ+1)/4

+ |I |λ+1

(1 − r)(2λ+3)/4
. (28)

If λ = 0 or λ > 1, the first term on the right hand side appears only.
If |I | ≥ 1, from (27) it is trivial that

∫ 1

0
(1 − r)−

3
4 ‖aλ(r; ·)‖L2(R)dr ≤ 4|I |− 1

2 ≤ 4;
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and if |I | < 1, we split the integral into two parts, over [1 − |I |2, 1) and [0, 1 − |I |2]
respectively, and apply (27) and (28) to obtain

∫ 1

0
(1 − r)−

3
4 ‖aλ(r; ·)‖L2(R)dr �

∫ 1

1−|I |2
|I |−1/2(1 − r)−3/4dr

+
∫ 1−|I |2

0

( |I |
(1 − r)3/2

+ |I |λ
(1 − r)(λ+2)/2

+ |I |λ+1

(1 − r)(λ+3)/2

)

dr.

It is easy to see that the values of the two integrals above are independent of |I | < 1.
This proves (26), and hence Theorem 3.1.

Proof of Theorem 1.1 By Hölder’s inequality one has

∞∑

n=0

r2n|a(λ)n ( f )| ≤
( ∞∑

n=0

r2n

)1/2 ( ∞∑

n=0

r2n|a(λ)n ( f )|2
)1/2

≤ (1 − r)−1/2‖ fλ(r; ·)‖L2 .

Multiplying (1 − r)−1/4 on both sides and taking integration over [0, 1) respectively,
then by Theorem 3.1 we get

∞∑

n=0

B(2n + 1, 3/4)|a(λ)n ( f )| ≤ A‖ f ‖H1 ,

where B(α, β) denotes the beta function. Finally, the Hardy inequality (10) follows
from the fact that B(2n + 1, 3/4) ∼ (n + 1)−3/4. The proof of Theorem 1.1 is
completed. �
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