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Abstract In the framework of toroidal Pseudodifferential operators on the flat torus
T

n := (R/2πZ)n we begin by proving the closure under composition for the class of
Weyl operators Opwh̄ (b) with symbols b ∈ Sm(Tn × R

n). Subsequently, we consider

Opwh̄ (H) when H = 1
2 |η|2 + V (x) where V ∈ C∞(Tn) and we exhibit the toroidal

version of the equation for the Wigner transform of the solution of the Schrödinger
equation. Moreover, we prove the convergence (in a weak sense) of the Wigner trans-
form of the solution of the Schrödinger equation to the solution of the Liouville
equation on T

n × R
n written in the measure sense. These results are applied to the

study of some WKB type wave functions in the Sobolev space H1(Tn;C) with phase
functions in the class of Lipschitz continuous weak KAM solutions (positive and neg-
ative type) of the Hamilton–Jacobi equation 1

2 |P +∇xv(P, x)|2 + V (x) = H̄(P) for
P ∈ �Zn with � > 0, and to the study of the backward and forward time propagation
of the related Wigner measures supported on the graph of P + ∇xv.
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1 Introduction

In this paper we study WKB type wave functions on flat torus T
n := (R/2πZ)n ,

namely functions of the form

ψh̄(x) = a(x)ei S(x)/h̄, x ∈ T
n, n ≥ 1 (1.1)

where a = ah̄,P is a family of functions in L2(Tn;R) and S(x) = P · x + v(x), P ∈
�Zn, � > 0, h̄−1 ∈ �−1

N, the phase v(x) = v(P, x) is a Lipschitz continuous weak
KAM solution (of positive or negative type) of the stationary Hamilton–Jacobi equa-
tion

H(x, P +∇xv(P, x)) = H̄(P) (1.2)

for Hamiltonian H(x, η) := 1
2 |η|2 + V (x), V ∈ C∞(Tn), see Sect. 2.2.1 for precise

definitions.
It is well known that in the case where v is a smooth function (i.e. at least C2), the

wave function ψh̄ is, under general conditions on the family a = ah̄,P , a Lagrangian
distribution associated to the Lagrangian manifold �P := {(x, η) ∈ T

n × R
n, η =

P +∇xv(P, x)}. Therefore, it has an associated monokinetic Wigner measure taking
the form

dw(x, η) = δ(η − (P + ∇xv(P, x)))|a0(x)|2dx . (1.3)

Moreover, it remains of the same type under time propagation associated with the
Schrödinger equation whose quantum Hamiltonian is the quantization of the function
H(x, η) (see Sect. 2.1 for details on the toroidal quantization) leading to a Wigner
measure

dwt (x, η) = δ(η − (P + ∇xv(P, x)))|at
0(x)|2dx (1.4)

where the density |at
0(x)|2 satisfies a transport equation in such a way that dwt is the

pushforward of dw by the Hamiltonian flow of H .
The goal of this paper is to show what remains of this construction in the case where

v is a solution of (1.2) with only a Lipschitz continuity property, a regularity which is
far from being used in the framework of standard microlocal Analysis on this type of
wave functions.

Note that propagation of monokinetic Wigner measures with low regularity momen-
tum profiles and application to the classical limit of propagation of WKB type wave
functions have been recently studied in [5]. The regularity assumption in [5] is much
stronger than ours, but at the contrary the construction in [5] works for any profile with
a given regularity as we need our phase function to be a solution of the Hamilton–Jacobi
equation. Therefore, the two papers are complementary.

The precise definition of our WKB states, especially of the amplitude in (1.1), is
given in Sect. 4.2, Definition 4.3 where a family of examples are given in the Remark
4.4 following the definition. We underline that these WKB states are different from
the usual Bloch wave functions, as used for example in [32] where for h̄ = 1, the wave
functions take the form ψ(x) = e2π i P·xφ(x) with P ∈ R

n and φ is Z
n-periodic. The
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similarity with our setting is for the 2πZ
n—periodic term a(x)eiv(x)/h̄ whereas the

difference is for our assumption on P ∈ �Zn which makes our functions ψh̄ periodic.
For the more general approach called Bloch decomposition of wave functions we
address the reader to [17] and the references therein.

Note moreover that WKB states on the torus with phase functions issued from
weak KAM theory have been used in [10,11] where it has been studied L2—energy
quasimode estimates. In [27] a class of WKB states on the torus with regularized
phase function have been defined in such a way that the associated Wigner measures
are coinciding with the Legendre transform of the so-called Mather measures.

In the present paper we will work with true solutions of Hamilton–Jacobi equation
for the phase and will use a kind of regularization for the amplitude, as no canonical
function choice is linked to the latter out weak KAM theory.

Our first main result concerns the Wigner measure dw, as defined in Sect. 2.1.3,
Definition 2.6, associated with our family of WKB states. It claims, Theorem 4.9, that
dw is as expected monokinetic in the sense that it has the form

dw(x, η) = δ(η − (P +∇xv(P, x)))dm P (x) (1.5)

where the limit in the measure sense dmP (x) = limh̄→0 |ah̄,P (x)|2dx exists thanks to
Definition 4.3. In fact, we also assume that

dmP � dσP := π
(dwP ) (1.6)

where dwP is the Legendre transform of a Mather P—minimal measure (see
Sect. 2.2.2). This setting implies that any measure dw(x, η) as in (1.5) is absolutely
continuous to dwP itself, as shown in Lemma 4.8. We underline that dσP solves the
continuity equation

0 =
∫

Tn
∇x f (x) · (P + ∇xv(P, x)) dσP (x) ∀ f ∈ C∞(Tn), (1.7)

and this can be interpreted as the consequence of an asymptotic free current density
condition for wave functionsψh̄ of type (1.1), as we show in Proposition 4.11. We recall
that the usual construction of WKB wave functions works within the assumption of
smoothness for the map x 	−→ v(P, x). In this case, the determination of an amplitude
function aP (x) is related to the solution of the continuity equation (1.7) written in the
strong sense for σP (x) = a2

P (x), namely divx [(P + ∇xv(P, x))σP (x)] = 0.
The assumption (1.6) on dm P together with the monokinetic form of dwP with

support contained in the graph of a weak KAM solution of the Hamilton–Jacobi
equation allow to study very much easily the time propagation of such measures,
which remains of monokinetic type. This is in fact our second main result, which
deals with the classical limit of the Wigner transform of the evolved WKB state. It is
contained within Theorem 5.1 and Proposition 5.3 where the propagation

dwt (x, η) = δ(η − (P + ∇xv(P, x)))g(t, P, x)dσP (x) (1.8)

both forward and backward (they are different in our situation) in time is exhibited.
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The paper is organized as follows: Sect. 2 is devoted to some preliminaries con-
cerning the Weyl quantization on the torus (Sect. 2.1), as well as the weak KAM
theory and Aubry–Mather theory (Sect. 2.2). Section 3 concerns the dynamics of the
Wigner transform on the torus and Sect. 4 the classical limit of the Wigner transform,
including the Sect. 4.2 where the monokinetic property of the Wigner measures of our
WKB state is established. Its time propagation is studied in the final Sect. 5.

2 Preliminaries

2.1 The Weyl Quantization on the Torus

2.1.1 Settings

Let us consider the flat torus T
n := (R/2πZ)n . The class of symbols b ∈ Sm

ρ,δ(T
n ×

R
n),m ∈ R, 0 ≤ δ, ρ ≤ 1, consisting of those functions in C∞(Tn × R

n;R) which
are 2π -periodic in x (that is, in each variable x j , 1 ≤ j ≤ n) and for which for all
α, β ∈ Z

n+ there exists Cαβ > 0 such that ∀(x, η) ∈ T
n × R

n

|∂βx ∂αη b(x, η)| ≤ Cαβm〈η〉m−ρ|α|+δ|β| (2.1)

where 〈η〉 := (1+|η|2)1/2. In particular, the set Sm
1,0(T

n×R
n) is denoted by Sm(Tn×

R
n).
The toroidal Pseudodifferential Operator associated to b ∈ Sm(Tn × R

n) reads

b(X, D)ψ(x) := (2π)−n
∑
κ∈Zn

∫
Tn

ei〈x−y,κ〉b(x, κ)ψ(y)dy, ψ ∈ C∞(Tn;C),
(2.2)

see [29]. Here we have used Euclidean symbols, but we address the reader to Remark
2.1 about the link with so-called the toroidal symbols. In particular, notice that it
is given a map b(X, D) : C∞(Tn) −→ D′(Tn). We recall that u ∈ D′(Tn) are
the linear maps u : C∞(Tn) −→ C such that ∃C > 0 and k ∈ N, for which
|u(φ)| ≤ C

∑
|α|≤k ‖∂αx φ‖∞∀φ ∈ C∞(Tn), see for example Definition 2.1.1 of [19].

Given a symbol b ∈ Sm(Tn × R
n), the (toroidal) Weyl quantization reads

Opwh̄ (b)ψ(x) := (2π)−n
∑
κ∈Zn

∫
Tn

ei〈x−y,κ〉b(y, h̄κ/2)ψ(2y − x)dy, ψ ∈ C∞(Tn).

(2.3)
In particular, it holds that

Opwh̄ (b)ψ(x) = (σ (X, D) ◦ Tx ψ)(x) (2.4)

where Tx : C∞(Tn) → C∞(Tn) defined as (Txψ)(y) := ψ(2y − x) is linear,
invertible and L2-norm preserving, and σ is a suitable toroidal symbol related to b,
i.e. σ ∼ ∑

α≥0
1
α!�αηD(α)

y b(y, h̄η/2)
∣∣
y=x (see Theorem 4.2 in [29] or also Theorem

2.1 in [27]).
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Starting from quantization in (2.3), we now introduce the Wigner transform Wh̄ψ

by

Wh̄ψ(x, η) := (2π)−n
∫

Tn
e2 i

h̄ 〈z,η〉ψ(x − z)ψ
(x + z)dz, η ∈ h̄

2
Z

n, (2.5)

which is well defined also for ψ ∈ L2(Tn). For b ∈ Sm(Tn × R
n) the Wigner

distribution reads

〈ψ,Opwh̄ (b)ψ〉 =
∑
η∈ h̄

2 Zn

∫
Tn

b(x, η)Wh̄ψ(x, η)dx, ψ ∈ C∞(Tn). (2.6)

For b ∈ S0(Tn × R
n) and ψ ∈ L2(Tn), the mean value 〈ψ,Opwh̄ (b)ψ〉L2(Tn) is well

defined thanks to the L2 - boundedness estimate of Opwh̄ (b), see Theorem 2.3.

Remark 2.1 Before recalling the notion of toroidal symbols and toroidal amplitudes,
we need first to recall the notion of partial difference operator�. Given f : Z

n
κ −→ C,

it is defined the
�κ j f (κ) := f (κ + e j )− f (κ) (2.7)

where e j ∈ N
n, (e j ) j = 1 and (e j )i = 1 if i �= j . The composition provide

�ακ f (κ) := �α1
κ1 f (κ)...�αn

κn f (κ) for any α ∈ N
n
0. We recall now that toroidal symbols

b̃ ∈ Sm
ρ,δ(T

n × Z
n),m ∈ R, 0 ≤ δ, ρ ≤ 1, are those functions which are smooth in x

for all κ ∈ Z
n, 2π -periodic in x and for which for all α, β ∈ Z

n+ there exists Cαβm > 0
such that ∀(x, κ) ∈ T

n × Z
n

|∂βx �ακ b̃(x, κ)| ≤ Cαβm〈κ〉m−ρ|α|+δ|β| (2.8)

where 〈κ〉 := (1+|κ|2)1/2. As usually, Sm(Tn ×Z
n) stands for Sm

1,0(T
n ×Z

n). In the
same way, it is defined the set of toroidal amplitudes Sm

ρ,δ(T
n × T

n × Z
n).

The link between this class of symbols and the Euclidean ones Sm
ρ,δ(T

n × R
n) is

shown within Theorem 5.2 in [29]. Namely, for any b̃ ∈ Sm
ρ,δ(T

n × Z
n) there exists

b ∈ Sm
ρ,δ(T

n × R
n) such that b̃ = b|Tn×Zn , and conversely for any b there exists b̃

such that this restriction holds true. Moreover, the extended symbol is unique modulo
a function in S−∞(Tn × R

n).

Remark 2.2 In [18] it is considered the phase space Fourier representation,

b(x, η) = F (̂b) := (2π)−n
∫

Rn

∑
q∈Zn

b̂(q, p)ei(〈p,η〉+〈q,x〉)dp, (q, p) ∈ Z
n × R

n,

(x, η) ∈ T
n × R

n, (2.9)

(in the sense of distributions) and the operator Uh̄(q, p)ψ(x) := ei(q·x+h̄ p·q/2)ψ(x +
h̄ p)which is well defined on L2(Tn) for any fixed (q, p) ∈ Z

n×R
n . In this framework,

the Weyl quantization of a symbol b ∈ Sm(Tn × R
n) is given by
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Opwh̄ (b)ψ(x) := (2π)−n
∫

Rn

∑
q∈Zn

b̂(q, p)Uh̄(q, p)ψ(x)dp. (2.10)

Consequently, the corresponding Wigner transform and Wigner distribution are

Ŵh̄ψ(q, p) := 〈ψ,Uh̄(q, p)ψ〉L2 , (2.11)

〈ψ,Opwh̄ (b)ψ〉 :=
∫

Rn

∑
q∈Zn

b̂(q, p)Ŵh̄ψ(q, p)dp. (2.12)

In fact, as shown by Proposition 2.3 in [27], the Weyl quantizations as in (2.3) and
(2.10) coincide.

2.1.2 Composition and Boundedness for Weyl Operators

In the following we recall a result on L2(Tn)-boundedness for a class of Weyl operators
involved in our paper.

Theorem 2.3 (see [18]) Let Opwh̄ (b) as in (2.10) with b ∈ S0
0,0(T

n × R
n). Let N =

n/2+ 1 when n is even, N = (n + 1)/2+ 1 when n is odd. Then, for ψ ∈ C∞(Tn)

‖Opwh̄ (b)ψ‖L2(Tn) ≤
2n+1

n + 2

π(3n−1)/2

�((n + 1)/2)

∑
|α|≤2N

‖∂αx b‖L∞(Tn×Rn) ‖ψ‖L2(Tn).

(2.13)

By using standard arguments (such as Hahn–Banach Theorem, see for example
[28]) the above class of operators can be extended as bounded linear operators on
L2(Tn).This is the toroidal counterpart of the well known Calderon–Vaillancourt The-
orem for PDO on R

n (see for example [25]).
By applying some results in [29], we now prove the main composition properties

of the toroidal Weyl operators (see also [18], for a similar result involving a smaller
class of symbols).

Theorem 2.4 Let �,m ∈ R, a ∈ S�(Tn × R
n) and b ∈ Sm(Tn × R

n). Then,

Opwh̄ (a) ◦ Opwh̄ (b) = Opwh̄ (a�b) (2.14)

where a�b = a · b + O(h̄) in S�+m(Tn × R
n). Moreover,

[Opwh̄ (a),Opwh̄ (b)] = Opwh̄ (a�b − b�a) (2.15)

where the Moyal bracket reads {a, b}M := a�b − b�a = −i h̄{a, b} + O(h̄2) in
S�+m−1(Tn × R

n) and the Poisson bracket {a, b} := ∇ηa · ∇x b −∇x a · ∇ηb.

Proof To begin, we observe that Tωψ(y) := ψ(2y − ω) can be written as

Tωψ(y) = (2π)−n
∑
κ∈Zn

∫
Tn

ei〈(2y−ω)−z,κ〉ψ(z)dz, ∀ ψ ∈ C∞(Tn;C), (2.16)



J Fourier Anal Appl (2014) 20:1291–1327 1297

and hence Opwh̄ (b)ψ(x) = (σ (X, D) ◦ Tω=x ψ)(x) with σ ∼ ∑
α≥0

1
α!�αηD(α)

y

b(y, h̄η/2)
∣∣
y=x .

By recalling (2.4) together with Theorem 8.4 of [29], it follows

Opwh̄ (b)ψ(x) = (2π)−n
∑
κ∈Zn

∫
Tn

ei〈x−z,κ〉c(h̄, x, z, κ)ψ(z)dz (2.17)

with amplitude c(h̄, ·) ∈ C∞(Tn × T
n × R

n) such that |∂αx ∂γz c(h̄, x, z, κ)| ≤
Cαγ 〈κ〉�+m . Thus, c(h̄, ·) ∈ S�+m(Tn × T

n × R
n) and its restriction on the integer

frequencies fulfills c(h̄, ·) ∈ S�+m(Tn×T
n×Z

n) as recalled in Remark 2.1. In partic-
ular, a direct look at the asymptotics gives c = b(z, h̄κ)+O(h̄) in Sm(Tn×T

n×Z
n).

Now, apply Theorem 4.2 of [29], so that there exists a unique toroidal symbol
σ(h̄, ·) ∈ Sm(Tn × Z

n) such that

Opwh̄ (b)ψ(x) = (2π)−n
∑
κ∈Zn

∫
Tn

ei〈x−y,κ〉σ(h̄, y, κ)ψ(y)dy (2.18)

where moreover it turns out that σ(h̄, y, κ) = b(y, h̄κ)+ O(h̄) in Sm(Tn × Z
n). By

Theorem 4.3 of [29], it follows the existence of â�b(h̄, ·) ∈ S�+m(Tn ×Z
n) such that

Opwh̄ (a) ◦ Opwh̄ (b)ψ(x) = (2π)−n
∑
κ∈Zn

∫
Tn

ei〈x−y,κ〉â�b(h̄, y, κ)ψ(y)dy (2.19)

and â�b(h̄, y, κ) = a · b(y, h̄κ)+ O(h̄) in S�+m(Tn × Z
n). Now apply this operator

on T−1
x ◦ Txψ , use again Theorems 8.4 and 4.2 of [29], in order to get

Opwh̄ (a) ◦ Opwh̄ (b) = Opwh̄ (ã�b) (2.20)

and in addition ã�b(h̄, y, κ) = a · b(y, κ) + O(h̄) in S�+m(Tn × Z
n). By Theorem

5.2 of [29] we get an Euclidean symbol a�b ∈ S�+m(Tn ×R
n) which is an extension

of ã�b modulo S−∞(Tn × R
n), and thus such that

Opwh̄ (a) ◦ Opwh̄ (b) = Opwh̄ (a�b) (2.21)

where a�b(h̄, y, κ) = a · b(y, κ) + O(h̄) but now in S�+m(Tn × R
n). By looking

at the second order expansion of the symbols a�b and b�a, it follows a�b − b�a =
−i h̄{a, b} + O(h̄2) in S�+m−1(Tn × R

n). ��

2.1.3 Wigner Measures

To begin, let us recall that in the framework of the usual Weyl quantization on R
n it

can be considered the following space of test functions (see for example [3,22])

A := {ϕ ∈ C0(R
n
x × R

n
ξ ) | ‖ϕ‖A :=

∫
Rn

sup
x∈Rn

|Fξ ϕ(x, z)| dz < +∞} (2.22)
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where C0(R
n
x ×R

n
ξ ) denotes the set of continuous functions tending to zero at infinity,

and Fξ is the usual Fourier transform in the frequency variables, i.e. Fξ ϕ(x, z) :=∫
Rn e−iξ ·zϕ(x, ξ)dξ . In particular, A is a Banach space and it is a dense subset of

C0(R
n
x × R

n
ξ ). Hence, its dual space A′ contains C ′

0(R
n
x × R

n
ξ ) = M(Rn

x × R
n
ξ ) the

space of not necessarily nonnegative Radon measures on R
2n of finite mass. As shown

in Proposition III.1 of [22], it holds the inequality

∣∣∣
∫

Rn

∫
Rn

Wh̄ψh̄(x, ξ)ϕ(x, ξ)dxdξ
∣∣∣ ≤ (2π)−n‖ϕ‖A · ‖ψh̄‖2

L2 , (2.23)

and hence for any family of wave functions such that ‖ψh̄‖L2(Rn) ≤ C there exists
a sequence h̄ j −→ 0+ as j −→ +∞ such that Wh̄ jψh̄ j is converging in A′ to
some W ∈ A′ (thanks to Banach–Alaoglu Theorem). Moreover, through the use of
Husimi transform, it can be proved that in fact any such limit W ∈ A′ fulfills also
W ∈ M+(Rn

x × R
n
ξ ), i.e. positive Radon measure of finite mass.

We underline that there is an estimate analogous to (2.23) for our toroidal framework
which takes the form

∣∣∣ ∑
η∈ h̄

2 Zn

∫
Tn

Wh̄ψh̄(x, η)g(x, η)dx
∣∣∣ ≤ (2π)−n sup

(x,η)∈Tn×Rn
|g(x, η)| · ‖ψh̄‖2

L2

(2.24)

for all continuous bounded functions g : R
2n −→ R. Indeed, we observe that for

states ψh̄ ∈ L2(Tn), by writing the Fourier series ψh̄(x) = ∑
α∈Zn ψ̂h̄,α ei〈x,α〉 we

have

(i)
∑
η∈ h̄

2 Zn Wh̄ψh̄(x, η) = |ψh̄(x)|2,

(ii) (2π)−n
∫
Tn Wh̄ψh̄(x, η)dx =

{ |ψ̂h̄,α|2 when η = h̄α, α ∈ Z
n,

0 otherwise.

Hence, by property (ii) it follows the estimate (2.24).
In view of the above observations, we can now introduce the following

Definition 2.5 (Test functions) Let C0(T
n
x ×R

n
η) be the set of real valued continuous

functions on T
n
x ×R

n
η tending to zero at infinity in η-variables. We consider the subset

of those φ ∈ C0(T
n
x×R

n
η) admitting the phase space Fourier representation φ = F(φ̂)

as in (2.9) for some compactly supported φ̂ : Z
n × R

n −→ C. We define the set

A :=
{
φ ∈ C0(Tn

x × Rn
η) | supp(φ̂) is compact

} L∞
. (2.25)

Notice that A is a closed linear subset of L∞(Tn
x × R

n
η) hence it becomes a Banach

space when equipped with the L∞ - norm. We also underline that for any fixed φ ∈
C0(T

n
x×R

n
η) such that supp(φ̂) is compact,φ is also a C∞ - function rapidly decreasing

in η-variables. Hence, we can directly deal with the set of C∞—functions vanishing
at infinity in the η-variables C∞

0 (T
n
x × R

n
η). Thus, we can write



J Fourier Anal Appl (2014) 20:1291–1327 1299

A =
{
φ ∈ C∞

0 (T
n
x × Rn

η) | supp(φ̂) is compact
} L∞

. (2.26)

Moreover, it can be easily seen that A ⊂ Cb(T
n × R

n).

We are now in the position to provide the

Definition 2.6 (Wigner measures) Let us fix {ψh̄}0<h̄≤1 ∈ L2(Tn) with ‖ψh̄‖L2 ≤
C∀0 < h̄ ≤ 1. We say that dw ∈ M(Rn

x ×R
n
η) is the Wigner measure of the sequence

{ψh̄}0<h̄≤1 if ∀φ ∈ A

∑
η∈ h̄

2 Zn

∫
Tn
φ(x, η)Wh̄ψh̄(x, η)dx −→

∫
Tn×Rn

φ(x, η)dw(x, η) (2.27)

for some sequence h̄ = h̄ j −→ 0+ as j −→ +∞.

Remark 2.7 The Wigner transform of ψh̄ ∈ C∞(Tn)

Wh̄ψh̄(x, η) := (2π)−n
∫

Tn
e2 i

h̄ 〈z,η〉ψh̄(x − z)ψ
h̄ (x + z)dz, η ∈ h̄

2
Z

n, (2.28)

works on test functions as

∑
η∈ h̄

2 Zn

∫
Tn
φ(x, η)Wh̄ψh̄(x, η)dx =

∑
κ∈Zn

∫
Tn
φ
(

x,
2

h̄
κ
)

Wh̄ψh̄

(
x,

2

h̄
κ
)

dx, (2.29)

Wh̄ψh̄

(
x,

2

h̄
κ
)
= (2π)−n

∫
Tn

ei〈z,κ〉ψh̄(x − z)ψ
h̄ (x + z)dz, κ ∈ Z
n . (2.30)

Thus, we notice the 2πZ
n-periodicity properties

Wh̄ψh̄

(
x,

2

h̄
(κ + 2πα)

)
= Wh̄ψh̄

(
x,

2

h̄
κ
)
∀α ∈ Z

n, (2.31)

Wh̄ψh̄

(
x + 2πα,

2

h̄
κ
)
= Wh̄ψh̄

(
x,

2

h̄
κ
)
∀α ∈ Z

n . (2.32)

From (2.28) we also easily obtain the estimate

sup
η∈ h̄

2 Zn

sup
x∈Tn

|Wh̄ψh̄(x, η)| ≤ (2π)−n‖ψh̄‖2
L2 . (2.33)

Notice that if η /∈ h̄
2 Z

n then (2.28) is not defined, since we are computing the integral
over the torus and thus we need the 2πZ

n periodicity with respect to x-variables of
the function within the integral. For this reason, we cannot regard Wh̄ψh̄(x, η) as
a wellposed function belonging to L∞(Tn

x × R
n
η) even if we exhibited the estimate

(2.33). This is one of the main differences with the Weyl quantization on R
n where

the Wigner transform Wh̄ψh̄(x, ξ), when ψh̄ ∈ L2(Rn), is a well defined function in
L∞(Rn

x × R
n
ξ ) for any h̄ > 0.
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In the toroidal framework of this paper, under the general assumption ‖ψh̄‖L2 ≤ C
with C > 0 independent of h̄, we obtain semiclassical limits in A′ (see Lemma 2.8)
and for suitably defined wave functions (as for example the WKB ones shown in
Sect. 4.2) we recover semiclassical limits by probability measures on T

n × R
n .

Lemma 2.8 Let {ψh̄(t)}0<h̄≤1 a sequence in C([−T, T ]; L2(Tn)) such that‖ψh̄(t)‖L2

≤ CT for all t ∈ [−T, T ] and 0 < h̄ ≤ 1. Then, there is a sequence h̄ j −→ 0+ as
j −→ +∞ such that Wh̄ jψh̄ j ⇀ W in L∞([−T,+T ]; A′) with A as in Def 2.5.

Proof Since we are assuming ψh̄ ∈ C([−T, T ]; L2(Tn)) with ‖ψh̄(t)‖L2 ≤ CT then
the estimate (2.24) implies that for 0 < h̄ ≤ 1, the family Wh̄ψh̄ is bounded in
L∞([−T,+T ]; A′). However, L∞([−T,+T ]; A′) is the dual of the separable space
L1([−T,+T ]; A) and hence the application of the Banach–Alaoglu Theorem provides
the existence of a converging sequence Wh̄ jψh̄ j ⇀ W in L∞([−T,+T ]; A′). ��

We devote now our attention on the following (locally finite) Borel complex measure
on T

n × R
n . Let X� be the characteristic function of a Borel set � ⊆ T

n × R
n , we

define

Ph̄(�) :=
∑
η∈ h̄

2 Zn

∫
Tn

X�(x, η)Wh̄ψh̄(x, η)dx . (2.34)

which is a (complex valued) countably additive set function on the Borel sigma algebra
of T

n × R
n . In particular, we notice that if ‖ψh̄‖L2 = 1 then |Ph̄(�)| ≤ 1 for all

� ⊆ T
n ×R

n and |Ph̄(T
n ×R

n)| = 1. As usual, we say that Ph̄ is weak (i.e. narrow)
convergent to a Borel complex measure P if ∀ f ∈ Cb(T

n × R
n) it holds

∫
Tn×Rn

f (x, η)dPh̄(x, η) −→
∫

Tn×Rn
f (x, η)dP(x, η) (2.35)

as h̄ −→ 0+. In fact, since f ∈ Cb(T
n × R

n), it holds

∫
Tn×Rn

f (x, η)dPh̄(x, η) =
∑
η∈ h̄

2 Zn

∫
Tn

f (x, η)Wh̄ψh̄(x, η)dx . (2.36)

Definition 2.9 The family of (complex Borel) measures {Ph̄}0<h̄≤1 on the probability
space T

n × R
n (equipped with the Borel sigma algebra) is called tight if

lim
R→+∞ sup

0<h̄≤1

∫
Tn×{Rn\BR}

dPh̄(x, η) = 0. (2.37)

Thanks to a well-known Prokhorov’s theorem, the set of measures {Ph̄}0<h̄≤1 is rela-
tively compact with respect to the weak topology if and only if is tight. Notice that the
condition (2.37) reads equivalently as limR→+∞ sup0<h̄≤1 Ph̄(T

n × {Rn\BR}) = 0.

Remark 2.10 When Ph̄ = P
±
h̄ is associated to the class of WKB wave functions ϕ±h̄

described in Sect. 4.2, we will directly prove the weak convergence (with test functions
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in A) to some meaningful probability measures of monokinetic type (see Theorem
4.9). On the other hand, within Lemma 4.6 we will also prove that such measures P

±
h̄

fulfill the tightness condition (2.37), and in this way we can apply the next result on
time propagation of tightness. This ensures the existence of the Wigner probability
measure associated to the solution of the Schrödinger equation, and its coincidence
with the solution of the underlying classical continuity equation, see Theorem 5.1 and
Proposition 5.3.

Proposition 2.11 (Propagation of tightness) Let H = 1
2 |η|2 + V (x) with V ∈

C∞(Tn), ψh̄ ∈ L2(Tn) be such that ‖ψh̄‖L2 ≤ C for all 0 < h̄ ≤ 1. Assume

that Ph̄ as in (2.34) is tight. Define ψh̄(t) := e−
i
h̄ Oph̄(H)tψh̄ . Then, Ph̄(t) is tight for

any t ∈ R.

Proof Let Y ∈ C∞(Rn
η; [0, 1]) be such that Y (η) = 1 on |η| > 1 and Y (η) = 0 on

|η| < 1/2; for R > 0 define YR(η) := Y (η/R). Then, |∇ηY | ≤ C/R and |∇2
ηY | ≤

C/R2 for some C > 0. In fact, we can regard Y ∈ C∞
b (T

n
x ×R

n
η; [0, 1]). We now use

the equation

d

ds
〈ψh̄(s),Oph̄(YR)ψh̄(s)〉L2 = i

h̄
〈ψh̄(s), [Oph̄(YR),Oph̄(H)]ψh̄(s)〉L2 . (2.38)

Recalling Theorem 2.4, the commutator reads [Oph̄(YR),Oph̄(H)] = Oph̄({YR, H}M )

where the Moyal bracket has the asymptotics {YR, H}M = −i h̄{YR, H} + Dh̄ in
S2(Tn × R

n) and furthermore the remainder Dh̄ � O(h̄2) involves the second
order derivatives of YR and H . But |∂αx ∂βη H(z)| ≤ c1 and |∂αx ∂βη YR(z)| ≤ c2/R2

for |α + β| = 2; hence |Dh̄ | � R−2 as R −→ +∞ (uniformly on h̄). Moreover
{YR, H}(z) = ∂x YR∂ηH − ∂ηYR∂x H = −∂ηYR∂x H hence |{YR, H}(z)| ≤ c3/R. By
recalling the L2—boundedness of the Weyl operators with symbols in S0

0,0(T
n ×R

n)

as shown in Theorem 2.3 and using the assumption ‖ψh̄‖L2 ≤ C , we deduce

∣∣∣ d

ds
〈ψh̄(s),Oph̄(YR)ψh̄(s)〉L2

∣∣∣ ≤ K · R−1 (2.39)

for some K > 0 independent on h̄ and t . Thus

〈ψh̄(t),Oph̄(YR)ψh̄(t)〉L2 = 〈ψh̄(0),Oph̄(YR)ψh̄(0)〉L2

+
∫ t

0

d

ds
〈ψh̄(s),Oph̄(YR)ψh̄(s)〉L2 ds (2.40)

and

|〈ψh̄(t),Oph̄(YR)ψh̄(t)〉L2 | ≤ |〈ψh̄(0),Oph̄(YR)ψh̄(0)〉L2 |
+

∣∣∣
∫ t

0

d

ds
〈ψh̄(s),Oph̄(YR)ψh̄(s)〉L2 ds

∣∣∣
≤ |〈ψh̄(0),Oph̄(YR)ψh̄(0)〉L2 | + t K · R−1 (2.41)
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Notice that, from the property (ii) of Wh̄ψh̄ , it follows

〈ψh̄,Oph̄(YR)ψh̄〉L2 =
∑
η∈ h̄

2 Zn

∫
Tn

Wh̄ψh̄(x, η)YR(η)dx (2.42)

=
∑
η∈ h̄

2 Zn

YR(η)

∫
Tn

Wh̄ψh̄(x, η)dx =
∑
α∈Zn

YR(h̄α)|ψ̂h̄,α|2,

(2.43)

thus any term of the series is non negative. The same holds true for

Ph̄(T
n ×U ) =

∑
η∈ h̄

2 Zn

∫
Tn

Wh̄ψh̄(x, η)XU (η)dx (2.44)

=
∑
η∈ h̄

2 Zn

XU (η)

∫
Tn

Wh̄ψh̄(x, η)dx =
∑
α∈Zn

XU (h̄α)|ψ̂h̄,α|2, (2.45)

where U is any Borel set in R
n .

By defining MR := T
n × {Rn\BR}, and recalling that YR(η) = 0 for |η| < R/2

whereas YR(η) = 1 for |η| > R, we can write

Ph̄(t)(MR) ≤ 〈ψh̄(t),Oph̄(YR)ψh̄(t)〉L2 (2.46)

≤ 〈ψh̄(0),Oph̄(YR)ψh̄(0)〉L2 + t K · R−1 (2.47)

≤ Ph̄(MR/2)+ t K · R−1 (2.48)

and hence (recalling the tightness assumption on Ph̄)

lim
R→+∞ sup

0<h̄≤1
Ph̄(t)(MR) = 0. (2.49)

��

2.2 A Quick Review of Weak KAM Theory and Aubry–Mather theory

2.2.1 Weak Solutions of Hamilton–Jacobi Equation

As it is well known, the KAM theory investigates the persistence, under small pertur-
bations, of some invariant tori of unperturbed integrable Hamiltonian systems. In the
case where the unperturbed Hamiltonian depend only on the fiber variable of T ∗

T
n ,

these tori are, for a perturbation small enough, the graphs of the gradients of functions
that reduce in the unperturbed case to x 	→ P · x, P ∈ R

n . It is therefore natural to
look at unperturbed tori as gradients of functions of the form x 	→ P · x + v(P, x).
In the case where C2 such functions exist the system is integrable and the weak KAM
solutions fulfil this picture in the case of (much) less regularity.
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More precisely the weak KAM theory deals with a class of Lipschitz continuous
solutions of the Hamilton–Jacobi equation

H(x, P +∇xv(P, x)) = H̄(P), P ∈ R
n, (2.50)

in the general assumption of Tonelli Hamiltonians H ∈ C∞(Tn×R
n;R), that is to say,

for functions H such that η 	→ H(x, η) is strictly convex and uniformly superlinear
in the fibers of the canonical projection π : T

n × R
n −→ T

n . The function H̄(P)
is called the effective Hamiltonian and, as shown in [7] (see also [13]), it can be
expressed by the inf-sup formula

H̄(P) = inf
v∈C∞(Tn;R)

sup
x∈Tn

H(x, P +∇xv(x)) (2.51)

which is a convex function of P ∈ R
n (hence continuous). The Lax-Oleinik semigroup

of negative and positive type is defined as

T∓
t u(x) := inf

γ

{
u(γ (0))±

∫ t

0
L(γ (s), γ̇ (s))− P · γ̇ (s) ds

}
,

where the infimum is taken over all absolutely continuous curves γ : [0, t] −→ T
n

such that γ (t) = x . A function v− ∈ C0,1(Tn;R) is said to be a weak KAM solution
of negative type for (2.50) if ∀t ≥ 0

T−
t v− = v− − t H̄(P), (2.52)

whereas it is said to be a weak KAM solution of positive type if ∀t ≥ 0

T+
t v+ = v+ + t H̄(P), (2.53)

see Definition 4.7.6 in [14]. For any weak KAM solution it holds

Graph(P +∇xv±(P, ·)) ⊂ {(x, η) ∈ T
n × R

n | H(x, η) = H̄(P)}. (2.54)

Furthermore, the graphs are invariant under the backward (resp. forward) Hamiltonian
flow, namely

ϕt
H

(
Graph(P + ∇xv−(P, ·))

)
⊆ Graph(P +∇xv−(P, ·)) ∀t ≤ 0 (2.55)

and

ϕt
H

(
Graph(P + ∇xv+(P, ·))

)
⊆ Graph(P +∇xv+(P, ·)) ∀t ≥ 0 (2.56)

see Theorems 4.9.2 and 4.9.3 in [14]. Moreover, it is proved that the maps x 	−→
(x, P + ∇xv±(P, x)) are continuous on dom(∇xv±) := {x ∈ T

n | ∃ ∇xv±(x)}.
As showed within Theorem 7.6.2 of [14], all the Lipschitz continuous weak KAM
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solutions of negative type coincide with the so-called viscosity solutions in the sense
of [8,20,21].

2.2.2 Mather Measures

The Aubry–Mather theory proves the existence of invariant and Action-minimizing
measures as well as invariant and Action-minimizing sets in the phase space. Here
we recall only those results which we are going to use in what follows, and for an
exhaustive treatment we refer the reader to [23,26,30].

Recall that a compactly supported Borel probability measure dμ on the tangent
bundle T (Tn) = T

n × R
n is called invariant with respect to the Lagrangian flow

φt : T
n × R

n −→ T
n × R

n related to a Lagrangian function L(x, ξ) which is
Legendre-related to a Tonelli Hamiltonian H(x, η), if

∫
Tn×Rn

f (φt (x, ξ))dμ(x, ξ) =
∫

Tn×Rn
f (x, ξ)dμ(x, ξ)

for all t ∈ R and all f ∈ C∞
0 (T

n × R
n;R). A Borel probability measure dμ is said

to be closed if for every g ∈ C∞(Tn;R) one has

∫
Tn×Rn

∇x g(x) · ξ dμ(x, ξ) = 0.

One says that an invariant compactly supported Borel probability measure dμP is a
Mather P-minimal measure if for all P ∈ R

n

∫
Tn×Rn

(
L(x, ξ)− P · ξ )

dμP (x, ξ) = inf
dμ

∫
Tn×Rn

(
L(x, ξ)− P · ξ )

dμ(x, ξ),

where the infimum is taken over all invariant compactly supported Borel probability
measures dμ. Moreover, the minimizing value of the Action is related to the effective
Hamiltonian as

−H̄(P) =
∫

Tn×Rn

(
L(x, ξ)− P · ξ )

dμP (x, ξ).

It has been also proved that the Mather measures of a Tonelli-Lagrangian are those
which minimize the action in the class of all (compactly supported) closed measures
(see for example [6]). As for the Mather set, it involves the supports of all Mather’s
measures, and is defined to be

M̃P :=
⋃
dμP

supp dμP . (2.57)

We recall that Mather proved in [26] that the set M̃P is not empty, compact and
Lipschitz graphs above T

n , namely the restriction of π : T
n ×R

n → T
n to M̃P is an
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injective map and π−1 : π(M̃P )→ M̃P is Lipschitz. For any fixed Mather measure
dμP , we denote by

dwP := L
(dμP ), dσP := π
(dwP ) = π
(dμP ), (2.58)

the push forward by the Legendre transform L(x, ξ) = (x,∇ξ L(x, ξ)) and by the
canonical projection π(x, η) = x on T

n .

2.2.3 Aubry Set

About the definition of the Aubry set ÃP (in the tangent bundle of T
n) involving

regular P-minimizers we refer to [14]; we recall here that its Legendre transform can
be given by

A∗
P =

⋂
v∈S∓P

{(x, P +∇xv(P, x)) | x ∈ T
n s.t. ∃ ∇xv(P, x)} (2.59)

where the intersection is taken over all Lipschitz continuous weak KAM solutions S∓P
of negative (resp. positive) type of the Hamilton–Jacobi equation (2.50). This set is
invariant under the Hamiltonian flow and

M

P := L(M̃P ) ⊆ A∗

P . (2.60)

The set A

P is compact, the restriction of π : T

n × R
n −→ T

n to A

P is an injective

map and moreover π−1 : π(A

P ) −→ A


P is a Lipschitz map (see [14,30]).

3 The Dynamics of the Wigner Transform on the Torus

3.1 The Schrödinger Equation on the Torus

Let us consider the classical Hamiltonian H = 1
2 |η|2 + V (x), with V ∈ C∞(Tn;R).

Thus we have H ∈ S2(Tn × R
n), namely the symbol class described in (2.1) with

m = 2. We now consider the Schrödinger equation:

i h̄∂tψh̄(t, x) = Opwh̄ (H)ψh̄(t, x) (3.1)

ψh̄(0, x) = ϕh̄(x)

where Opwh̄ (H) is the Weyl quantization of H as in (2.3). As for the initial datum,
we can require ϕh̄ ∈ W 2,2(Tn;C) and ‖ϕh̄‖L2 ≤ C∀0 < h̄ ≤ 1. The one parameter

group of unitary operators e−
i
h̄ Opwh̄ (H)t can be defined on the whole L2(Tn;C). In fact,

this is because the Schrödinger operator Ĥh̄ := − 1
2 h̄2�x + V (x) is coinciding with

Opwh̄ (H). This is the content of the Lemma 6.1 shown in the Appendix.
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3.2 The Equation for the Wigner Transform

In this section we provide a result on the equation for the Wigner transform of the
solution of the Schrödinger equation written on the torus. The well known arguments
within the framework of the Weyl quantization on R

n (see for example [3,4,17,22])
must be adapted for the Weyl quantization on T

n .
The first result reads as follows

Proposition 3.1 Let ψh̄ be the solution of (3.1), t > 0 and f ∈ C∞
c ((0, t) × T

n ×
R

n;R) such that ∀s ∈ (0, t) it holds f (s, · ) ∈ A as in Definition 2.5. Then,

∫ t

0

∑
η∈ h̄

2 Zn

∫
Tn

[(
∂s f + η · ∇x f

)
(s, x, η)Wh̄ψh̄(s, x, η)+ f (s, x, η)Eh̄ψh̄(s, x, η)

]

dxds = 0 (3.2)

where

Eh̄ψh̄(s, x, η) := i

(2π)nh̄

∫
Tn

e2 i
h̄ 〈z,η〉{V (x + z)− V (x − z)}

×ψh̄(s, x − z)ψ h̄(s, x + z)dz. (3.3)

Proof We interpret all the subsequent partial derivatives in the distributional sense of
A′. To begin,

∂t Wh̄ψ = (2π)−n
∫

Tn
e2 i

h̄ 〈z,η〉∂tψh̄(t, x − z)ψ h̄(t, x + z)dz

+ (2π)−n
∫

Tn
e2 i

h̄ 〈z,η〉ψh̄(t, x − z)∂tψ h̄(t, x + z)dz. (3.4)

Since ψh̄ solves the Schrödinger equation, it follows

∂tψh̄(t, x − z)ψ h̄(t, x + z)+ ψh̄(t, x − z)∂tψ h̄(t, x + z) (3.5)

= i h̄

2
[(�xψh̄(t, x − z))ψ h̄(t, x + z)− ψh̄(t, x − z)�xψ h̄(t, x + z)] (3.6)

+ i h̄−1[V (x + z)− V (x − z)]ψh̄(t, x − z)ψ h̄(t, x + z).

Now recall the simple equality (�x f )g − f�x g = divx [(∇x f )g − f∇x g], so that

(�xψh̄(t, x − z))ψ h̄(t, x + z)− ψh̄(t, x − z)�xψ h̄(t, x + z)

= − divx∇z[ψh̄(t, x − z)ψ h̄(t, x + z)]. (3.7)

Then, insert (3.7) in (3.6), so that

∂tψh̄(t, x − z)ψ h̄(t, x + z)+ ψh̄(t, x − z)∂tψ h̄(t, x + z) (3.8)
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= − i h̄

2
divx∇z[ψh̄(t, x − z)ψ h̄(t, x + z)] (3.9)

+ i

h̄
[V (x + z)− V (x − z)]ψh̄(t, x − z)ψ h̄(t, x + z).

Moreover, an easy computation involving integration by parts shows

η · ∇x Wh̄ψh̄ = i h̄

2
(2π)−n

∫
Tn

e2 i
h̄ 〈z,η〉divz∇x [ψh̄(t, x − z)ψ h̄(t, x + z)]dz.

(3.10)

Thanks to the equality divz∇x [ψh̄(t, x − z)ψ h̄(t, x + z)] = divx∇z[ψh̄(t, x −
z)ψ h̄(t, x + z)] and by (3.9)–(3.10) we directly obtain the statement. ��
Lemma 3.2 Let ε > 0 and g(ε, · ) : T

n −→ R
+ defined as

g(ε, y) := 1

(2π)n
∑
κ0∈Zn

e−ε|κ0|2 e−i〈y,κ0〉 = 1

(2π)n
∑
ξ∈Zn

(π
ε

) n
2
e−|ξ−y|2(4ε)−1

.

(3.11)

Then, ∀ψ ∈ C∞(Tn;C)

lim
ε→0+

∫
Tn

g(ε, y − y0)ψ(y0)dy0 = ψ(y). (3.12)

Proof Let G(κ0, ε, y) := e−ε|κ0|2 e−i〈y,κ0〉, then Ĝ(ξ, ε, y) := ∫
Rn e−i〈ξ,κ0〉G(κ0, ε,

y)dκ0 reads

Ĝ(ξ, ε, y) =
(π
ε

) n
2
e−|ξ−y|2(4ε)−1

By applying the Poisson’s summation formula (see for example [9]),

g(ε, y) = 1

(2π)n
∑
ξ∈Zn

(π
ε

) n
2
e−|ξ−y|2(4ε)−1 = 1

(2π)n
∑
ξ∈Zn

(π
ε

) n
2
e−|2πξ−2πy|2(16π2ε)−1

.

(3.13)
Now recall the identification T

n = (R/2πZ)n , fix the periodicity domain y0 ∈ Qn :=
[0, 2π ]n , so that

lim
ε→0+

∫
Qn

g(ε, y − y0)ψ(y0)dy0 (3.14)

= lim
ε→0+

( 1

4πε

) n
2

∑
ξ∈Zn

∫
Rn

e−|2πξ−2π(y−y0)|2(16π2ε)−1
ψ(y0)XQn (y0)dy0 (3.15)

= lim
ε→0+

( 1

4πε

) n
2
∫

Rn
e−|y−y0|2(4ε)−1

ψ(y0)XQn (y0)dy0 = ψ(y). (3.16)

��
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In the following, we provide the evolution equation for the Wigner transform Wh̄ψh̄

of the solution of the Schrödinger’s equation on the torus,

∂t Wh̄ψh̄ + η · ∇x Wh̄ψh̄ +Kh̄ 
η Wh̄ψh̄ = 0 (3.17)

written in the distributional sense. More precisely, ∀ f ∈ C∞
c ((0, t) × T

n × R
n;R)

such that f (s, ·) ∈ A∀s ∈ (0, t) as in Def 2.5 it holds

∫ t

0

∑
η∈ h̄

2 Zn

∫
Tn

[(
∂s f + η · ∇x f

)
(s, x, η)Wh̄ψh̄(s, x, η)

+ f (s, x, η) Kh̄ 
η Wh̄ψh̄(s, x, η)
]
dxds = 0 (3.18)

where for η ∈ h̄
2 Z

n

Kh̄(s, x, η) := i

(2π)nh̄

∫
Tn

e2 i
h̄ 〈z,η〉{V (x + z)− V (x − z)}dz, (3.19)

Kh̄ 
η Wh̄ψh̄(s, x, η) :=
∑
κ0∈Zn

Kh̄

(
s, x, η − h̄

2
κ0

)
Wh̄ψh̄

(
s, x,

h̄

2
κ0

)
. (3.20)

Theorem 3.3 Let ψh̄ be the solution of (3.1). Then, it holds

∂t Wh̄ψh̄ + η · ∇x Wh̄ψh̄ +Kh̄ 
η Wh̄ψh̄ = 0 (3.21)

in the distributional sense as in (3.18).

Proof We exhibit a short proof based on the previous result, namely we sim-
ply show that convolution (3.20) is well defined and coincides with the remain-
der term (3.3). Since V ∈ C∞(Tn;R), the related Fourier components Vω :=
(2π)−n

∫
Tn eiωz V (z)dz, ω ∈ Z

n , fulfill |Vω| ≤ c j 〈ω〉 j∀ j ∈ N and some c j > 0.
An easy computation shows that

Kh̄

(
s, x,

h̄

2
κ
)
= i

(2π)nh̄
(e−iκ·x Vκ − e+iκ·x V 


κ ), κ ∈ Z
n . (3.22)

Moreover, ‖Wh̄ψh̄(s, ·)‖∞ ≤ (2π)−nC2∀s ∈ R. Thus, the series in (3.20) is
absolutely convergent, and we can write down the regularization (useful in the subse-
quent computations):

Kh̄ 
η Wh̄ψh̄ = lim
ε→0+

∑
κ0∈Zn

e−ε|κ0|2Kh̄

(
s, x, η − h̄

2
κ0

)
Wh̄ψh̄

(
s, x,

h̄

2
κ0

)
.

(3.23)
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We look at the regularization:

∑
κ0∈Zn

e−ε|κ0|2Kh̄

(
s, x, η − h̄

2
κ0

)
Wh̄ψh̄

(
s, x,

h̄

2
κ0

)
(3.24)

=
∑
κ0∈Zn

e−ε|κ0|2 i

(2π)nh̄

∫
Tn

e2 i
h̄ 〈z,η− h̄

2 κ0〉{V (x + z)− V (x − z)}dz (3.25)

× 1

(2π)n

∫
Tn

e2 i
h̄ 〈z̃, h̄

2 κ0〉ψh̄(s, x − z̃)ψ
h̄ (s, x + z̃)dz̃

= i

(2π)nh̄

∫
Tn

∫
Tn

e2 i
h̄ 〈z,η〉

[ 1

(2π)n
∑
κ0∈Zn

e−ε|κ0|2 e−i〈z−z̃,κ0〉
]

(3.26)

×{V (x + z)− V (x − z)}ψh̄(s, x − z̃)ψ
h̄ (s, x + z̃)dzdz̃

However, for any fixed ε > 0, the function

g(ε, z − z̃) := 1

(2π)n
∑
κ0∈Zn

e−ε|κ0|2 e−i〈z−z̃,κ0〉 (3.27)

defines a tempered distribution on C∞(Tn;C) converging to δ(z− z̃) as ε → 0+ (see
Lemma 3.2).

To conclude,

Kh̄ 
η Wh̄ψh̄ = lim
ε→0+

i

(2π)nh̄

∫
Tn

∫
Tn

e2 i
h̄ 〈z,η〉g(ε, z − z̃){V (x + z)− V (x − z)}

ψh̄(s, x − z̃)ψ
h̄ (s, x + z̃)dzdz̃

= i

(2π)nh̄

∫
Tn

lim
ε→0+

∫
Tn

e2 i
h̄ 〈z,η〉g(ε, z − z̃){V (x + z)− V (x − z)}

ψh̄(s, x − z̃)ψ
h̄ (s, x + z̃)dzdz̃

= i

(2π)nh̄

∫
Tn

e2 i
h̄ 〈z̃,η〉{V (x+ z̃)−V (x− z̃)}ψh̄(s, x− z̃)ψ
h̄ (s, x + z̃)dz̃ =: Eh̄ψh̄ .

(3.28)

��

4 Semiclassical Limits of Wigner Transforms on the Torus

4.1 The Liouville Equation

This section is devoted to the Liouville equation written in the measure sense on
T

n × R
n solved by the semiclassical asymptotics of the toroidal Wigner transform.

Theorem 4.1 Let ψh̄(t) := e−
i
h̄ Opwh̄ (H)tϕh̄ where ϕh̄ ∈ L2(Tn;C) and ‖ϕh̄‖L2 ≤ C.

Let {dwt }t∈[−T,T ] be a limit of Wh̄ψh̄(t) in L∞([−T,+T ]; A′) along a sequence of
values of h̄ → 0. Then,
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∂twt + η · ∇xwt − ∇x V (x) · ∇ηwt = 0 (4.1)

in the distributional sense.

Proof To begin, we prove that

d

dt

∫
Tn×Rn

φ(x, η)dwt (x, η) =
∫

Tn×Rn
{H, φ}(x, η)dwt (x, η) (4.2)

for any φ ∈ A, see (2.26). To this aim, we observe that the Schrödinger equation
implies

d

dt
〈ψh̄(t),Opwh̄ (φ)ψh̄(t)〉L2 = −(i h̄)−1〈ψh̄(t), [Opwh̄ (H),Opwh̄ (φ)]ψh̄(t)〉L2 (4.3)

where H := 1
2 |η|2 + V (x). Hence, for t ≥ 0,

〈ψh̄(t),Opwh̄ (φ)ψh̄(t)〉L2 − 〈ϕh̄,Opwh̄ (φ)ϕh̄〉L2

= −
∫ t

0
(i h̄)−1〈ψh̄(s), [Opwh̄ (H),Opwh̄ (φ)]ψh̄(s)〉L2 ds (4.4)

where ψh̄(t = 0) =: ϕh̄ ∈ L2(Tn;C) with ‖ϕh̄‖L2 ≤ C∀0 < h̄ ≤ 1. Moreover,
thanks to Theorem 2.4, the Weyl symbol of the commutator (namely the Moyal bracket
of symbols H and φ) reads

{H, φ}M = −i h̄{H, φ} + r (4.5)

where r has order O(h̄2) when estimated in S2+m(Tn ×R
n) for any m ∈ R, and thus

also in S0(Tn × R
n),

|∂βx ∂αη r(x, η)| ≤ Cαβ h̄2〈η〉−|α|. (4.6)

The related remainder operator Opwh̄ (r) is thus L2-bounded, with (time independent)
norm estimate thanks to Theorem 2.3 with order O(h̄2). This directly gives

lim
h̄→0+

h̄−1
∣∣∣
∫ t

0
〈ψh̄(s),Opwh̄ (r)ψh̄(s)〉L2 ds

∣∣∣ ≤ lim
h̄→0+

t h̄−1‖Opwh̄ (r)‖L2→L2 = 0,

(4.7)
since ‖ψh̄(s)‖L2 = ‖ψh̄(s = 0)‖L2 = ‖ϕh̄‖L2 ≤ C . The first term in (4.4) reads

〈ψh̄(t),Opwh̄ (φ)ψh̄(t)〉L2 =
∑
η∈ h̄

2 Zn

∫
Tn
φ(x, η)Wh̄ψh̄(t, x, η)dx . (4.8)

Let wt (x, η) be a family of Radon measures of finite mass on T
n × R

n for any
t ∈ [−T, T ] which is a limit of Wh̄ψh̄ in L∞([−T,+T ]; A′) along a sequence of
values of h̄ j → 0. The related semiclassical limit of (4.8) reads
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∫
Tn×Rn

φ(x, η)dwt (x, η). (4.9)

If we now look at ∑
η∈ h̄

2 Zn

∫
Tn
{H, φ}(x, η)Wh̄ψh̄(t, x, η)dx (4.10)

we recall that φ is rapidly decreasing in η-variables and the phase space transform
φ̂ has compact support, hence also {H, φ} ∈ A. As a consequence, we can extract a
subsequence h̄ j (α) → 0 so that the semiclassical limit of the righthand side of (4.4)
reads ∫ t

0

∫
Tn×Rn

{H, φ}(x, η)dws(x, η)ds. (4.11)

We therefore deduce
∫

Tn×Rn
φ(x, η)dwt (x, η)−

∫
Tn×Rn

φ(x, η)dw0(x, η)

=
∫ t

0

∫
Tn×Rn

{H, φ}(x, η)dws(x, η)ds (4.12)

and observe that the righthand side is differentiable for any t ∈ R (and thanks to
the equivalence, the lefthand side too). We now take the time derivative of both sides
and get equation (4.2). On the other hand, since H is smooth, it is easily seen that
equation (4.2) has a unique solution in Cweak([−T,+T ];M+(Tn × R

n)), i.e. the
topology on M+(Tn × R

n) is given by the Lévy-Prokhorov metric which metrizes
the weak convergence w.r.t. continuous and bounded test functions, and this solution
is given by the push forward of the initial data (ϕt

H )
(dw0) involving the Hamiltonian
flow. However, this is also the unique solution of the Liouville equation written in the
following weak sense

∫ t

0

∫
Tn×Rn

[∂s f (s, x, η)+ {H, f }(s, x, η)] dws(x, η)ds = 0

∀ f ∈ C∞
c ((0, t)× T

n × R
n;R), (4.13)

as shown within Sect. 8.1 in [1]. In view of Remark 4.2, our limits {dwt }t∈[−T,T ] are
in fact continuous path of nonnegative Radon measures, and hence coinciding with
the continuous solution (ϕt

H )
(dw0) of the Liouville equation. ��
Remark 4.2 About the above result, we recall Lemma 3.2 of [3], and we focus the atten-
tion on the additional continuous regularity of the limits {dwt }t∈[−T,T ] of Wh̄ψh̄(t)
in L∞([−T,+T ]; A′) passing through sequences as h̄ → 0. In fact, it can be easily
proved that for our test functions φ ∈ A, the related functions

�h̄,φ(t) :=
∑
η∈ h̄

2 Zn

∫
Tn
φ(x, η)Wh̄ψh̄(t, x, η)dx (4.14)
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are differentiable and fulfill

sup
−T≤t≤T

∣∣∣∣ d

dt
�h̄,φ(t)

∣∣∣∣ ≤ Cφ,T . (4.15)

This can be proved thanks to the phase space representation (2.12) for (4.14), recall-
ing that the phase space transform φ̂ is supposed to be compactly supported and by
the equation for the Wigner transform (3.18) with test functions f = X (t)φ(x).
Then, by following the same arguments in Lemma 3.2 of [3], it follows that dw ∈
Cweak([−T,+T ];M+(Tn × R

n)) and that for any −T ≤ t ≤ T it holds the weak
limit Wh̄ψh̄(t) ⇀ dwt with test functions φ ∈ A ⊂ Cb(T

n × R
n), namely as in

Definition 2.6.

4.2 WKB Wave Functions of Positive and Negative Type

We begin this section introducing a class of WKB-type wave functions in H1(Tn;C)
associated with weak KAM solutions of the stationary Hamilton–Jacobi equation.

Definition 4.3 Let P ∈ �Z
n for some � > 0 and h̄−1 ∈ �−1

N. Let v±(P, ·) ∈
C0,1(Tn;R) be weak KAM solutions of the H–J equation (2.50) (in the sense of [14],
see subsection 2.2.1). Select a±h̄,P ∈ H1(Tn;R+) such that

dom(a±h̄,P ) ⊆ dom(∇xv±(P, · )) := {x ∈ T
n | ∃ ∇xv±(P, x)} (4.16)

‖a±h̄,P‖L2 = 1 and h̄ ‖a±h̄,P‖H1 −→ 0 as h̄ −→ 0+. We suppose that the following
weak limit upon passing through a subsequence h̄ j −→ 0+

dm±
P (x) := lim

h̄ j−→0+
|a±h̄ j ,P

(x)|2dx (4.17)

fulfills dm±
P � dσP := π
(dwP ) where dwP is the Legendre transform of a Mather

P-minimal measure. The WKB wave functions of negative type are defined by

ϕ−h̄ (x) := a−h̄,P (x) e
i
h̄ [P·x+v−(P,x)] (4.18)

and the WKB wave functions of positive type

ϕ+h̄ (x) := a+h̄,P (x) e
i
h̄ [P·x+v+(P,x)]. (4.19)

Let us point out that though the definitions (4.18), (4.19) seems to recall Bloch wave
expansions, the parameter P is reduced to values belonging to h̄Z

n and therefore ϕ±h̄
are truly periodic functions.
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Remark 4.4 (Example) About the previous definition, we exhibit an explicit construc-
tion for a±h̄,P . In fact, considerρ ∈ C∞

0 (R
n) such that 0 ≤ ρ, supp ρ ⊂ Qn := [0, 2π ]n

and
∫
ρ(x)dx = 1. For a fixed α > 0 let

�α,h̄(x) := h̄−nα
∑
k∈Zn

ρ
( x − 2πk

h̄α

)
. (4.20)

Then
∫
Tn�α,h̄(x)dx = 1, and if f ∈ L1(Tn) we have, by the periodicity,

�α,h̄ 
 f (x) =
∫

Tn
�α,h̄(x − y) f (y)dy =

∫
Qn

ρ(z) f (x − h̄αz)dz

For a fixed (P-dependent) Borel positive measure dm±
P on T

n with supp(dm±
P ) ⊆

dom(∇xv±(P, ·)), an amplitude function can be given by

a±h̄,P (x) :=
{ ∫

Tn

1

c0

(
h̄ε +�γ,h̄(x − y)

)
dm±

P (y)
}1/2∣∣∣

dom(∇v±)
, (4.21)

where ε, γ > 0 with 0 < ε+γ (n+1) < 1, c0 = c0(h̄) = ||h̄ε+ρ||L1(Qn)
= 1+O(h̄ε).

Notice that a > h̄ε/2c−1/2
0 and x 	→ a±h̄,P (x) is 2π -periodic (in each variable). This

means that it is a well-defined positive function on the torus. The function (4.21) fulfills
(see Proposition 4.6 in [27])

(i)
∫
Tn |a±h̄,P (x)|2dx = 1

(ii) h̄2
∫
Tn |∇x a±h̄,P (x)|2dx ≤ ||∇xρ||2L∞ h̄2(1−ε−(n+1)γ )

(iii) limh̄→0+
∫
Tn f (x)|a±h̄,P (x)|2dx = ∫

Tn f (x)dm±
P (x),∀ bounded Borel measur-

able f : T
n −→ R whose discontinuity set has zero dm±

P -measure.

Before to conclude this construction, we need to remind (2.58)–(2.60) which ensure
that the supports of the projected (on T

n) Mather measures dσP are all contained in
the domains dom(∇xv±(P, · )).

In the following, we provide two useful Lemma involving our class of WKB func-
tions.

Lemma 4.5 Let ϕ±h̄ be as in Definition 4.3. Then, ϕ±h̄ ∈ H1(Tn;C).
Proof The L2-norm simply reads ‖ϕ±h̄ ‖L2 = ‖a±h̄,P‖L2 < +∞, whereas

‖∇xϕ
±
h̄ ‖L2 ≤ 1

h̄
‖(P + ∇xv±)a±h̄,P‖L2 + ‖∇x a±h̄,P‖L2

Recalling (2.54) and the setting of ah̄,P , for any fixed 0 < h̄ ≤ 1 it follows that

‖∇xϕ
±
h̄ ‖L2 ≤ 1

h̄
‖P + ∇xv±‖L∞ + ‖∇x a±h̄,P‖L2 < +∞.

��
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Lemma 4.6 Let ϕ±h̄ be as in Definition 4.3. Let P
±
h̄ be as in (2.34) associated to ϕ±h̄ .

Then, the family of measures {P±h̄ }0≤h̄≤1 is tight.

Proof Let MR := T
n × {Rn\BR} and UR := R

n\BR . Thanks to (2.45)

P
±
h̄ (T

n ×UR) =
∑
α∈Zn

XUR (h̄α)|φ̂±h̄,α|2 (4.22)

where the Fourier components read

φ̂±h̄,α := (2π)−n
∫

Tn
e−iα·xϕ±h̄ (x)dx = (2π)−n

∫
Tn

e−iα·x a±h̄,P (x) e
i
h̄ [P·x+v±(P,x)]dx

(4.23)

= (2π)−n
∫

Tn
a±h̄,P (x) e

i
h̄ v±(P,x)e

i
h̄ (−h̄α+P)·x dx (4.24)

and P ∈ �Zn for some fixed � > 0; moreover we underline that the series (4.22) is
computed over |h̄α| > R (or equivalently |α| > Rh̄−1). In the case R > |P|, it holds
the equality

φ̂±h̄,α =
(−i h̄)

| − h̄α + P|2 (−h̄α + P) · (2π)−n
∫

Tn
a±h̄,P (x) e

i
h̄ v±(P,x)∇x e

i
h̄ (−h̄α+P)·x dx .

(4.25)

The integration by parts gives

φ̂±h̄,α =
(i h̄)

| − h̄α + P|2 (−h̄α + P) · (2π)−n
∫

Tn
∇x a±h̄,P (x) e

i
h̄ v±(P,x)e

i
h̄ (−h̄α+P)·x dx

− 1

| − h̄α + P|2 (−h̄α + P) · (2π)−n

∫
Tn

a±h̄,P (x)(∇xv±(P, x))e
i
h̄ v±(P,x)e

i
h̄ (−h̄α+P)·x dx (4.26)

We are now in the position to provide an estimate for |φ̂±h̄,α|, indeed some easy com-
putations together with the application of Cauchy–Schwarz inequality give

|φ̂±h̄,α| ≤
(2π)−n/2

| − h̄α + P|
(
‖h̄∇x a±h̄,P‖L2 + (2π)−n/2‖∇xv±(P, · )‖L∞

)
(4.27)

Recalling (2.54) we have ‖∇xv±(P, · )‖L∞ < +∞ for any fixed P ∈ �Zn . We also
remind that ‖h̄∇x a±h̄,P‖L2 → 0 as h̄ → 0+. To conclude, by defining

Cn,P := (2π)−n
(

sup
0<h̄≤1

(‖h̄∇x a±h̄,P‖L2)+ (2π)−n/2‖∇xv±(P, ·)‖L∞
)2

(4.28)
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it follows (when R > |P|)

|P±h̄ (Tn ×UR)| ≤
∑

α∈Zn ,|h̄α|>R

Cn,P

| − h̄α + P|2 ≤
∫

Rn/BR(0)

Cn,P

| − y + P|2 dy (4.29)

The last (h̄-independent) upper bound implies that

lim
R→+∞ sup

0<h̄≤1
|P±h̄ (Tn ×UR)| = 0. (4.30)

We next exhibit a property of the involved monokinetic measures.

Proposition 4.7 Let dm±
P as in (4.17) and v−(P, ·) ∈ C0,1(Tn;R) be a weak KAM

solution of negative type for the H–J equation (2.50). Define the lifted Borel measure
on T

n × R
n by

∫
Tn×Rn

φ(x, η)dm̃±
P (x, η) :=

∫
Tn×Rn

φ(x, P + ∇xv−(P, x))dm±
P (x), ∀ φ ∈ A.

(4.31)
Then, dm̃±

P does not depend on the choice of v−(P, ·), namely

∫
Tn×Rn

φ(x, η)dm̃±
P (x, η) =

∫
Tn
φ(x, P + ∇xv

′−(P, x))dm±
P (x) (4.32)

for any other weak KAM of negative type v′−(P, x). Moreover, for any weak KAM of
positive type v+(P, x) it holds

∫
Tn×Rn

φ(x, η)dm̃±
P (x, η) =

∫
Tn
φ(x, P +∇xv+(P, x))dm±

P (x) (4.33)

Finally, there exists a Borel measurable function g±(P, ·) : T
n → R

+ such that

∫
Tn×Rn

φ(x)dm±
P (x) =

∫
Tn
φ(x) g±(P, x)dσP (x). (4.34)

Proof For any v±(P, ·) ∈ C0,1(Tn;R) which is a weak KAM solution of Hamilton–
Jacobi equation (2.50), the map x 	→ ∇xv±(P, x) is continuous and uniformly
bounded on its domain of definition dom(∇xv±(P, ·)) ⊆ T

n . Moreover, since
we assumed dm±

P � dσP then supp(dm±
P ) ⊆ supp(dσP ). By recalling that

supp(dσP ) ⊆ π(M

P ) ⊆ π(A


P ) and thanks to the localization the Aubry set A

P

shown in Sect. 2.2.3, it follows

∫
Tn×Rn

φ(x, η)dm̃±
P (x, η) =

∫
Tn
φ(x, P +∇xv±(P, x))dm±

P (x) (4.35)

for any v±(P, ·) ∈ C0,1(Tn;R) weak KAM solutions of Hamilton–Jacobi equation.
Finally, the assumption on the absolute continuity of dm±

P with respect to dσP together
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with the well known Radon-Nikodym derivative provides the existence of a Borel
measurable g±(P, x) satisfying (4.34). ��
Lemma 4.8 Let

dm̃±
P (x, η) := δ(η − P −∇xv±(P, x))dm±

P (x) (4.36)

be as in Proposition 4.7. Then, dm̃±
P is absolutely continuous to dwP , i.e. the Legen-

dre transform of a Mather P-minimal measure. In particular, there exists a Borel
measurable function g±(P, ·) : T

n → R
+ such that

dm̃±
P (x, η) = g±(P, x)dwP (x, η) (4.37)

where dwP (x, η) = δ(η − P −∇xv±(P, x))dσP (x).

Proof By the assumption within Definition 4.3, it holds dm P � π
(dwP ) =: dσP

where dwP is Legendre transform of a Mather P-minimal measure dμP as in (2.58).
Equivalently, we can take dσP := π
(dμP ). Thus, there exists a Borel measurable
function g±(P, ·) : T

n → R
+ such that

dm̃±
P (x, η) = g±(P, x)δ(η − P − ∇xv±(P, x))dσP (x). (4.38)

In fact, it holds the equality δ(η − P − ∇xv±(P, x))dσP (x) = dwP (x, η) thanks to
the inclusion

supp(dwP ) ⊆ A

P ⊆ Graph(P +∇xv±(P, · )),

see Lemma 3.1 shown in [15]. The (4.37) follows directly.

We are now ready to provide the result involving the semiclassical limits of the
Wigner transform for the above class of WKB-type wave functions.

Theorem 4.9 Let P ∈ �Z
n for some � > 0, h̄−1 ∈ �−1

N, v± be weak KAM solutions
of H–J equation (2.50) and ϕ±h̄ be the associated WKB wave functions as in Definition
4.3, dm±

P as in Definition 4.3. Then,

lim
h̄→0+

Wh̄ϕ
±
h̄ (x, η) = δ(η − P −∇xv±(P, x))dm±

P (x) =: dm̃±
P (x, η) (4.39)

in A′ for test functions A as in Definition 2.5, and passing through a subsequence.

Proof The Wigner transform in the variables (q, p) ∈ Z
n × R

n :

Ŵh̄ϕ
±
h̄ (q, p) :=

∫
Tn
ϕ±h̄ (y)


ei(q·y+h̄ p·q/2)ϕ±h̄ (y+h̄ p)dy

=
∫

Tn
ei[h̄ p·q/2+P·p] eiq·ye

i
h̄ [v±(P,y+h̄ p)−v±(P,y)]a±h̄,P (y)a

±
h̄,P (y+h̄ p)dy.

(4.40)



J Fourier Anal Appl (2014) 20:1291–1327 1317

By the H1-regularity of a±h̄,P , it holds a±h̄,P (y+ h̄ p) = a±h̄,P (y)+ h̄
∫ 1

0 p ·∇x a±h̄,P (y+
λh̄ p)dλ and

‖a±h̄,P (� + h̄ p)− a±h̄,P (�)‖L2 ≤ |p| h̄ ‖a±h̄,P‖H1 (4.41)

Thus,

Ŵh̄ϕ
±
h̄ (q, p) =

∫
Tn

ei[h̄ p·q/2+P·p] eiq·ye
i
h̄ [v±(P,y+h̄ p)−v±(P,y)]a±h̄,P (y)

2dy

+Rh̄(q, p) (4.42)

where

Rh̄(q, p) :=
∫

Tn
ei[h̄ p·q/2+P·p] eiq·ye

i
h̄ [v±(P,y+h̄ p)−v±(P,y)]a±h̄,P (y)

×[a±h̄,P (y + h̄ p)− a±h̄,P (y)]dy

and ∀(q, p) ∈ Z
n × R

n

|Rh̄(q, p)| ≤ vol(Tn)‖ah̄,P‖L2‖a±h̄,P (� + h̄ p)− a±h̄,P (�)‖L2

≤ (2π)n |p| h̄ ‖a±h̄,P‖H1 . (4.43)

For any φ ∈ A the related supp(φ) is compact, and hence

∑
q∈Zn

∫
Rn
φ̂(q, p)Ŵh̄ϕ

±
h̄ (q, p)(q, p)dp (4.44)

=
∑

q∈Zn

∫
Rn
φ̂(q, p)

∫
Tn

ei[h̄ p·q/2+P·p] eiq·ye
i
h̄ [v±(P,y+h̄ p)−v±(P,y)]a±h̄,P (y)

2dydp

+
∑

q∈Zn

∫
Rn
φ̂(q, p)Rh̄(q, p)dp. (4.45)

An easy computation shows that

∣∣∣ ∑
q∈Zn

∫
Rn
φ̂(q, p)Rh̄(q, p)dp

∣∣∣ ≤ ∑
q∈Zn

∫
Rn
|φ̂(q, p)|(2π)n |p| h̄ ‖a±h̄,P‖H1 dp

and hence, since supp(φ̂) is compact and h̄‖a±h̄,P‖H1 −→ 0 as h̄ −→ 0+ (see Remark
4.4) it follows

(2π)n
∑

q∈Zn

∫
Rn
|φ̂(q, p)| |p|dp h̄ ‖a±h̄,P‖H1 −→ 0+ as h̄ −→ 0+. (4.46)



1318 J Fourier Anal Appl (2014) 20:1291–1327

In view of (4.46) and the compactness of supp(φ̂), the (4.44) reads

∑
q∈Zn

∫
Rn
φ̂(q, p) lim

h̄→0+

∫
Tn

ei[h̄ p·q/2+P·p] eiq·ye
i
h̄ [v±(P,y+h̄ p)−v±(P,y)]|a±h̄,P (y)|2dydp.

(4.47)

By looking at the integral

∫
Tn

ei[h̄ p·q/2+P·p] eiq·ye
i
h̄ [v±(P,y+h̄ p)−v±(P,y)]|a±h̄,P (y)|2dy (4.48)

we observe that ei(h̄ p·q/2)e
i
h̄ [v±(P,y+h̄ p)−v±(P,y)] is a family of uniformly bounded

continuous functions on T
n such that

lim
h̄→0+

ei(h̄ p·q/2)e
i
h̄ [v±(P,y+h̄ p)−v±(P,y)] = eip·∇xv±(P,y) (4.49)

∀(q, p) ∈ supp(φ̂) and ∀y ∈ dom(∇xv±(P, ·)), since any map x 	−→ ∇xv±(P, x) is
continuous on dom(∇xv±(P, ·)) (as we recall in Sect. 2.2.1). By the inclusions

supp(dm±
P ) ⊆ supp(dσP ) ⊆ dom(∇xv±(P, ·)) (4.50)

we deduce that (4.49) is (possibly) not fulfilled only for a set of zero dm±
P measure.

Hence, we can apply Lemma 6.3 for the classical limit of the integral (4.48) to
obtain ∫

Tn
ei P·p eiq·yeip·∇xv±(P,y)dm±

P (y). (4.51)

We deduce that (4.47) reads

∑
q∈Zn

∫
Rn
φ̂(q, p)

( ∫
Tn

ei P·p eiq·yeip·∇xv±(P,y)dm±
P (y)

)
dp. (4.52)

=
∫

Tn

∑
q∈Zn

∫
Rn
φ̂(q, p)ei P·p eiq·yeip·∇xv±(P,y)dp dm±

P (y) (4.53)

where we used again the compactness of supp(φ̂). Through the inverse phase-space
Fourier transform the above expression becomes

∫
Tn
φ(y, P +∇xv±(P, y)) dm±

P (y). (4.54)

��
Remark 4.10 Let P ∈ �Z

n for some � > 0 and ϕ±h̄ as in Definition 4.3. Define the
current

J±h̄ (x) := h̄ Im((ϕ±h̄ )

∇xϕ

±
h̄ (x)) = (P +∇xv±(P, x))|a±h̄,P (x)|2 (4.55)



J Fourier Anal Appl (2014) 20:1291–1327 1319

The (formal) free current equation divx J±h̄ (x) = 0 becomes well-posed in the weak
sense:

∫
Tn
∇x f (x) · J±h̄ (x) dx = 0 ∀ f ∈ C∞(Tn;R). (4.56)

In particular, we recall the inclusion (2.54) which implies, together with the assump-
tions on a±h̄,P , the estimate sup0<h̄≤1 ‖J±h̄ ‖L1 ≤ ‖P +∇xv±(P, ·)‖L∞ < +∞. How-

ever, the low regularity v±(P, ·) ∈ C0,1(Tn;Rn) does not guarantee the existence of
some amplitude function satisfying this equation, hence we have to write the asymp-
totic condition

∣∣∣
∫

Tn
∇x f (x) · J±h̄ j

(x) dx
∣∣∣ −→ 0, ∀ f ∈ C∞(Tn;R) (4.57)

for a sequence {h̄−1
j } j∈N ∈ �−1

N with h̄ j −→ 0+ as j −→ +∞.

The above observations become meaningful in view of the following result.

Proposition 4.11 Let P ∈ �Z
n for some � > 0, v±(P, ·) ∈ C0,1(Tn;R) be a weak

KAM solution for (2.50). Then, there exist a±h̄,P as in Remark 4.4 such that the (unique)

weak-
 limit dm P (x) := lim j→+∞ |a±h̄ j ,P
(x)|2dx equal dσP := π
(dwP ) where

dwP is the Legendre transform of a Mather P-minimal measure and

∣∣∣
∫

Tn
∇x f (x) · J±h̄ j

(x)dx
∣∣∣ −→ 0 as j −→ +∞ ∀ f ∈ C∞(Tn;R). (4.58)

Proof Let dσP := π
(dwP ) = dμP with dwP as in (2.58). Then, dσP is a Borel
probability measure T

n with

supp(dσP ) ⊆ π
(M

P ) ⊆ π
(A


P ) ⊆ dom(∇xv±(P, · )). (4.59)

Moreover, it holds

∫
Tn
∇x f (x) · (P + ∇xv±(P, x)) dσP (x) = 0 ∀ f ∈ C∞(Tn;R). (4.60)

Indeed, dwP := L
(dμP ) and dμP is invariant under Lagrangian flow, hence closed,
which means that

∫
Tn×Rn

∇x f (x) · ξ dμP (x, ξ) = 0 ∀ f ∈ C∞(Tn;R).

Here the Lagrangian reads L(x, ξ) = 1
2 |ξ |2 + V (x) and thus the Legendre transform

L(x, ξ) = (x, ξ), which gives

∫
Tn×Rn

∇x f (x) · η dwP (x, η) = 0 ∀ f ∈ C∞(Tn;R).
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By Lemma 3.1 in [15], we have necessary supp(dwP ) ⊆ A

P ⊆ Graph(P +

∇xv±(P, ·)). Thus, we can restrict dwP |Graph(P+∇xv±(P,·)) since Graph(P + ∇xv±
(P, ·)) are Borel measurable subsets of T

n × R
n containing the support of this mea-

sure. Hence
∫

Graph(P+∇xv±(P,·))
∇x f (x) · η dwP (x, η) = 0 ∀ f ∈ C∞(Tn;R).

The canonical projection π : Graph(P + ∇xv±(P, ·)) → T
n is a Borel measurable

map, because of Graph(P +∇xv±(P, ·)) = T
n . We can apply the change of variables

and get (4.60).
Now, define the Borel probability measure dm P (x) := dσP (x) on T

n . Recalling
Remark 4.4, there exists a±h̄,P ∈ H1(Tn;R+) such that limh̄ j→0+ |a±h̄ j ,P

|2dx = dm P

in the weak-
 convergence of Borel measures on T
n . Notice that now we do not write

dm P as dm±
P since in fact the inclusion (4.59) holds.

Thus, we look at

∫
Tn
∇x f (x) · J±h̄ (x)dx =

∫
Tn
∇x f (x) · (P +∇xv±(P, x)) |a±h̄,P (x)|2dx . (4.61)

and observe that the function

x 	−→ ∇x f (x) · (P +∇xv±(P, x))

is a bounded Borel measurable function, and x 	→ ∇xv±(P, x) is continuous
on its domain of definition. Hence, the set of x ∈ T

n such that ∃{xk}k∈N ⊂
T

n, limk→+∞ xk = x and

lim
k→+∞∇x f (xk) · (P +∇xv±(P, xk)) �= ∇x f (x) · (P + ∇xv±(P, x))

is a set of zero dm P -measure. We now apply Lemma 6.3 to get

lim
j→+∞

∫
Tn
∇x f (x) · (P +∇xv±(P, x)) |a±h̄ j ,P

(x)|2dx (4.62)

=
∫

Tn
∇x f (x) · (P +∇xv±(P, x)) dm P (x) = 0 (4.63)

where the last equality is given by the above setting dm P (x) := dσP (x) and thanks
to (4.60). ��

5 Propagation of Wigner Measures on Weak KAM Tori

5.1 The Forward and Backward Propagation

The main result of the section reads as
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Theorem 5.1 Let ϕ±h̄ be as in Definition 4.3 andψh̄(t) := e−
i
h̄ Opwh̄ (H)tϕh̄ . Let dm̃±

P (t)
be a limit of Wh̄ψh̄(t) in L∞([−T,+T ]; A′), and dm̃±

P , g±(P, x) be as in Proposition
4.7. Then, dm̃±

P (t) = (ϕt
H )
(dm̃±

P ) ∈ M1+(Tn×R
n). Moreover, ∀φ ∈ A and ∀t ≥ 0

∫
Tn×Rn

φ(x, η) dm̃+
P (t, x, η) =

∫
Tn
φ(x, P +∇xv+(P, x)) g+(t, P, x)dσP (x)

(5.1)

g+(t, P, x) := g+(P, π ◦ ϕ−t
H (x, P +∇xv−(P, x))) (5.2)

Whereas ∀t ≤ 0

∫
Tn×Rn

φ(x, η) dm̃−
P (t, x, η) =

∫
Tn
φ(x, P +∇xv−(P, x)) g−(t, P, x)dσP (x)

(5.3)

g−(t, P, x) := g−(P, π ◦ ϕ−t
H (x, P +∇xv+(P, x))) (5.4)

Proof By Theorem 4.1 and Remark 4.2, any distributional limit dw of the Wigner
transform Wh̄ψh̄(t) in L∞([−T,+T ]; A′) solves the Liouville equation and dw ∈
Cweak([−T,+T ];M+(Tn×R

n)). Hence, thanks to the uniqueness for the continuous
solutions of this continuity equation, it holds dwt = (ϕt

H )
(dw(0)). On the other hand,
for our initial data ϕ±h̄ we proved, within Theorem 4.9, that the Wigner transform
Wh̄ϕ

±
h̄ is weak converging (for test functions in A) to the monokinetic probability

measures dm̃±
P ∈ M1+(Tn × R

n). Moreover, recalling Lemma 4.6, the complex
measures P

±
h̄ are tight and hence their time evolution P

±
h̄ (t) is tight as well (see

Proposition 2.11). This implies that there exist semiclassical limits of P
±
h̄ (t) in the sense

of (2.35), namely there exist weak limits of Wh̄ψh̄(t) with respect to test functions
in Cb(T

n × R
n) ⊃ A to some Borel measures for any fixed t . In fact, this means

that it must be that dwt = (ϕt
H )
(dm̃±

P ) ∈ M1+(Tn × R
n). From now on, we write

dm̃±
P (t) := (ϕt

H )
(dm̃±
P ).

Next, we underline that ∀φ,ψ ∈ A

∫
Tn×Rn

φ(x, η) dm̃±
P (t, x, η) =

∫
Tn×Rn

φ ◦ ϕt
H (x, η) dm̃±

P (x, η) (5.5)
∫

Tn×Rn
ψ(x, η) dm̃±

P (x, η) =
∫

Tn
ψ(x, P +∇xv±(P, x)) g±(P, x)dσP (x).

(5.6)

Hence

∫
Tn×Rn

φ(x, η) dm̃±
P (t, x, η) =

∫
Tn
φ ◦ ϕt

H (x, P +∇xv±(P, x)) g±(P, x)dσP (x).

(5.7)
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We now recall that dσP := π
(dwP ) where dwP is the Legendre transform of a
Mather P-minimal measure, which takes the monokinetic form

∫
Tn×Rn

φ(x, η) dwP (x, η) =
∫

Tn
φ(x, P +∇xv±(P, x)) dσP (x) (5.8)

and dwP is invariant under the Hamiltonian flow. This is a consequence of Lemma 3.1
in [15], which gives supp(dwP ) ⊆ A


P and thanks to the inclusion A

P ⊆ Graph(P +

∇xv±(P, ·)).
Hence, we can rewrite

∫
Tn×Rn

φ(x, η) dm̃±
P (t, x, η) =

∫
Tn×Rn

φ ◦ ϕt
H (x, η) g±(P, π(x, η))dwP (x, η).

(5.9)
By the generalized change of variables,

∫
Tn×Rn

φ(x, η) dm̃±
P (t, x, η)

=
∫

Tn×Rn
φ(x, η) g±(P, π ◦ ϕ−t

H (x, η))(ϕ
−t
H )
dwP (x, η) (5.10)

and thanks to the invariance of dwP ,

∫
Tn×Rn

φ(x, η) dm̃±
P (t, x, η) =

∫
Tn×Rn

φ(x, η) g±(P, π ◦ ϕ−t
H (x, η))dwP (x, η).

(5.11)
By (5.8)

∫
Tn×Rn

φ(x, η) dm̃±
P (t, x, η)

=
∫

Tn
φ(x, P +∇xv±(P, x)) g(P, π ◦ ϕ−t

H (x, P +∇xv±(P, x))) dσP (x).

(5.12)

Thus, we can define

g+(t, P, x) := g+(P, π ◦ ϕ−t
H (x, P + ∇xv−(P, x))) for t ≥ 0 (5.13)

and

g−(t, P, x) := g−(P, π ◦ ϕ−t
H (x, P + ∇xv+(P, x))) for t ≤ 0. (5.14)

��
Remark 5.2 We notice that the supports of the measures dm̃±

P (t) are contained, for
any t ∈ R, in the Mather set M


P ⊆ A

P in the phase space which is invariant
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under the Hamiltonian flow as well as A

P . Hence, these are also contained in any set

Graph(P+∇xv±(P, ·)) and this means that we could write several possible equivalent
Borel measurable density functions g±(t, P, x). However, within the next result we
underline that the functions g+ (linked to the vector field P + ∇xv+) solve a time-
forward continuity equation whereas g− (linked to the vector field P + ∇xv−) solve
a time-backward equation.

Proposition 5.3 Let g± and dσP as in Theorem 5.1. Then, for t ≥ 0 and ∀ f ∈
C∞

c ((0, t)× T
n;R)

∫ t

0

∫
Tn
[∂s f (s, x)+ ∇x f (s, x) · (P + ∇xv+(P, x))] g+(s, P, x)dσP (x)ds = 0

(5.15)
whereas for t ≤ 0 and ∀ f ∈ C∞

c ((t, 0)× T
n;R)

∫ 0

t

∫
Tn
[∂s f (s, x)+ ∇x f (s, x) · (P + ∇xv−(P, x))] g−(s, P, x)dσP (x)ds = 0

(5.16)

Proof We recall ϕt
H |A


P
: A


P → A

P is a one parameter group of homeomorphisms

on the closed invariant graph A

P on T

n , hence

g+ dσP = π
dm̃ P (t) = π
(ϕ
t
H )
dm̃ P (0) = π


(
ϕt

H |A

P

)


dm̃ P (0)

=
(
π(ϕt

H |A

P
)
)


dm̃ P (0) (5.17)

The map π(ϕt
H |A


P
) : π(A


P ) → π(A

P ) is a one parameter group of homeomor-

phisms associated with the vector field

b±(x) := d

dt
π(ϕt

H (x, P+∇xv±(P, x)))
∣∣∣
t=0

= ∇ηH(x, P+∇xv±(P, x)) (5.18)

defined for any x ∈ π(A

P ) but also in the bigger sets dom(∇xv±(P, ·)) defined a.e.

x ∈ T
n . Here H(x, η) = 1

2 |η|2+V (x) and thus∇ηH(x, η) = η. About the regularity,
we have b± ∈ L∞(Tn;Rn). Write down the ODE

γ̇ = b±(γ ) (5.19)

with γ (0) = x ∈ dom(∇xv±(P, ·)) but remind the inclusions (see Sect. 2.2.3)

ϕt
H

(
Graph(P +∇xv+(P, ·))

)
⊆ Graph(P +∇xv+(P, ·)) ∀t ≥ 0 (5.20)

ϕt
H

(
Graph(P +∇xv−(P, ·))

)
⊆ Graph(P +∇xv−(P, ·)) ∀t ≤ 0. (5.21)

Thus, even if we have the low regularity b± ∈ L∞(Tn;Rn) and not (in general) in
the larger W 1,∞(Tn;Rn), the equation (5.19) is well posed and solved for t ≥ 0
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and γ (0) = x ∈ dom(∇xv+(P, ·)), or in the case t ≤ 0 and γ (0) = x ∈
dom(∇xv−(P, ·)). We are now in the position to apply the same proof of Proposi-
tion 2.1 in [2] and get the statement.

About the explicit representation of the density g+ for t ≥ 0, which can be seen as
the Radon-Nikodym derivative of π
dm̃ P (t) with respect to dσP ,

∫
Tn
φ(x)g+(t, P, x)dσP (x) =

∫
Tn
φ(π(ϕt

H |A

P
)(x))g+(P, x)dσP (x) (5.22)

=
∫

Tn
φ(x)g+(P, π(ϕ−t

H |A

P
)(x))dσP (x) (5.23)

since dσP is invariant under π(ϕ−t
H |A


P
). We are now looking at the Hamiltonian

flow for negative times, and we recall the inclusions supp(dσP ) ⊆ M

P ⊆ A


P ⊆
Graph(P + ∇xv±(P, ·)), thus we can choose

g+(t, P, x) = g+(P, π ◦ ϕ−t
H (x, P + ∇xv−(P, x))) for t ≥ 0 (5.24)

as we have chosen in (5.14). The same arguments for negative times provide

g−(t, P, x) = g−(P, π ◦ ϕ−t
H (x, P + ∇xv+(P, x))) for t ≤ 0. (5.25)

as in (5.14). ��
Remark 5.4 Let ψ±h̄ (s, x) := e−

i
h̄ Opwh̄ (H)sϕ±h̄ (x), define the position density ρ±h̄ (s, x)

:= |ψ±h̄ (s, x)|2 and the current density J±h̄ (s, x) := h̄ Im((ψ±h̄ )
∇xψ
±
h̄ (s, x)). The

(formal) conservation law reads

∂tρ
±
h̄ (t, x)+ divx J±h̄ (t, x) = 0. (5.26)

In the next result we exhibit the well-posed setting.

Proposition 5.5 Let ψ±h̄ (s, x) := e−
i
h̄ Opwh̄ (H)sϕ±h̄ (x), ρ

±
h̄ (s, x) := |ψ±h̄ (s, x)|2. Let

ϕ±h̄,ε ∈ C∞(Tn;C) such that ‖ϕ±h̄,ε − ϕ±h̄ ‖H1 → 0 as ε → 0+. Define J±h̄,ε(s, x) :=
h̄ Im((ψ±h̄,ε)
∇xψ

±
h̄,ε(s, x)) and take a distributional limit J±h̄ := limε→0+ J±h̄,ε in

D′((0, T )× T
n). Then,

∫ t

0

∫
Tn
∂s f (s, x)ρ±h̄ (s, x)+∇x f (s, x)·J±h̄ (s, x) dxds=0 ∀ f ∈C∞

c ((0, t)×T
n;R).
(5.27)

Proof This equation is well posed. Indeed,

E[ψ±h̄,ε(s)] :=
∫

Tn

h̄2

2
|∇xψ

±
h̄,ε(s, x)|2 + V (x)|ψh̄,ε(s, x)|2dx (5.28)

=
∫

Tn

h̄2

2
|∇xψ

±
h̄,ε(0, x)|2 + V (x)|ψh̄,0(s, x)|2dx (5.29)
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→
∫

Tn

h̄2

2
|∇xϕ

±
h̄ (x)|2 + V (x)|ϕ±h̄ (x)|2dx as ε→ 0+ (5.30)

=
∫

Tn

(1

2
|P + ∇xv±(P, x)|2 + V (x)

)
|a±h̄,P (x)|2dx

+
∫

Tn

h̄2

2
|∇x a±h̄,P (x)|2dx

= H̄(P)+
∫

Tn

h̄2

2
|∇x a±h̄,P (x)|2dx < +∞ ∀ 0 < h̄ < 1 (5.31)

since h̄‖∇x a±h̄,P‖L2 → 0 thanks to the setting of a±h̄,P .

Hence ‖J±h̄,ε(s, ·)‖L1 ≤ ‖ψh̄,ε(s, ·)‖L2‖h̄∇xψh̄,ε(s, ·)‖L2 ≤ c ‖h̄∇xψ
±
h̄,ε(s, ·)‖L2<

+∞ uniformly in (ε, s) ∈ (0, 1] × [0, t]. We can take a distributional limit J±h̄ :=
limε→0+ J±h̄,ε in D′((0, T )× T

n) and this gives

lim
ε→0+

∫
Tn
∇x f (s, x) · J±h̄,ε(s, x) dx =

∫
Tn
∇x f (s, x) · J±h̄ (s, x) dx ∀s ∈ (0, t)

Since ρ±h̄,ε is weak-
 converging to the unique ρ±h̄ ∈ L1((0, T )×T
n;R+), we deduce

that Eq. (5.27) is solved by (ρ±h̄,ε, J±h̄,ε) in the distributional and in the strong sense, as

well as being fulfilled by (ρ±h̄ , J±h̄ ) in the distributional sense. ��
The last result of the section reads

Corollary 5.6 Fix P ∈ R
n. Suppose that v+(P, ·) = v−(P, · ) ∈ C2(Tn;R)

and g(P, ·) ∈ W 1,∞(Tn;R+). Then, g± as in Theorem 5.1 fulfill g+ = g− ∈
L1((0, T );W 1,∞(Tn;R+)) and solves the transport equation

∂t g±(t, P, x)+ (P +∇xv±(P, x)) · ∇x g±(t, P, x) = 0 for t ∈ R (5.32)

with initial datum g±(0, P, x) := g(P, x).

Proof The regularity v±(P, ·) ∈ C2(Tn;R) implies the C1-regularity of the vector
field P + ∇xv±(P, ·) on T

n . By standard transport PDE arguments (see for example
[1]) it follows the statement. ��

Appendix

Lemma 6.1 Let Ĥh̄ := − 1
2 h̄2�x + V (x), H := 1

2 |η|2 + V (x) and Opwh̄ (H) as in
(2.3). Then,

Opwh̄ (H)ψ = Ĥh̄ψ, ∀ψ ∈ C∞(Tn;C). (6.1)

Proof To begin, we recall that for b ∈ S2(Tn × R
n)

Opwh̄ (b)ψ(x) = (σ (X, D) ◦ Tx ψ)(x). (6.2)
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where (Txψ)(y) := ψ(2y − x) and σ ∼ ∑
α≥0

1
α!�αηD(α)

y b(y, h̄η/2)
∣∣
y=x see

Sect. 2.1. Moreover, it is easily proved that when b = 1
2 |η|2 + V (x)

σ (X, D)ψ = Ĥh̄ψ (6.3)

for ψ ∈ C∞(Tn;C) and that (σ (X, D) ◦ Txψ)(x) = Ĥh̄ψ(x). ��
Remark 6.2 The operator Ĥh̄ : H2(Tn;C) → L2(Tn;C) is linear, selfadjoint and
continuous. Hence, by standard results of evolution equations in Banach spaces,
the solution of the Schrödinger equation (3.1) fulfills ψh̄ ∈ C0(R; H2(Tn;C)) ∩
C1(R; L2(Tn;C)). The one parameter group of unitary operators e−

i
h̄ Opwh̄ (H)t can be

defined on L2(Tn;C) and e−
i
h̄ Opwh̄ (H)tϕ ∈ C0(R; L2(Tn;C)) (see for example [28]).

The following result is shown in [31].

Lemma 6.3 Let X be a metric space. Let dμ j j ∈ N and dμ Borel probability mea-

sures on X such that dμ j
w−
−→ dμ as j → +∞. Let fk, f : X −→ R (k ∈ N) be

Borel measurable functions such that

lim
λ→+∞ sup

k∈N

∫
{x∈X; | fk (x)|>λ}

| fk(x)| dμk(x) = 0. (6.4)

Let

E :=
{

x ∈ X; ∃{xk}k∈N ⊂ X, lim
k→+∞ xk = x, lim

k→+∞ fk(xk) �= f (x)
}
. (6.5)

If μ(E) = 0 then

lim
j→+∞

∫
X

f j (x)dμ j (x) =
∫

X
f (x)dμ(x).
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