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Abstract Lie groups with two different root lengths allow two ‘mixed sign’ homo-
morphisms on their corresponding Weyl groups, which in turn give rise to two families
of hybrid Weyl group orbit functions and characters. In this paper we extend the ideas
leading to the Gaussian cubature formulas for families of polynomials arising from
the characters of irreducible representations of any simple Lie group, to new cuba-
ture formulas based on the corresponding hybrid characters. These formulas are new
forms of Gaussian cubature in the short root length case and new forms of Radau
cubature in the long root case. The nodes for the cubature arise quite naturally from
the (computationally efficient) elements of finite order of the Lie group.
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1 Introduction

It has long been known that the Chebyshev polynomials are related to the representa-
tion theory of SU (2), and of course to efficient methods of numerical quadrature. The
extension of Chebyshev polynomials and associated numerical methods into multivari-
ate situations has been significantly impacted by group theory and harmonic analysis
on groups, see for instance [19]. This is particularly true of the Lie groups, where the
accoutrements of the theory of simple Lie groups, notably connections with finite root
systems and Weyl symmetric and anti-symmetric trigonometric polynomials, have
frequently been brought to attention. These ideas go back at least as far as [3,11–13]
and have been motivated, at least in part, by the existence of simplicial fundamental
domains capable of tiling space and combining both lattice-translational and finite
point symmetries [5,20]. A nice survey of the history of cubature can be found in [2].

A notable advance in the Lie theoretical direction was the paper of Li and Xu
[15] in which it was shown in the An cases how to choose families of polynomials and
appropriate nodes to obtain Gaussian cubature formulae. This generalization depended
deeply on the Weyl groups of these lattices and beautifully generalized the original
theory of Chebyshev polynomials, which now became the special case of A1. The
functions of interest arise as quotients of anti-symmetric trigonometric polynomials,
but, although they have been realized by various authors to be precisely those arising
in Weyl’s famous character formula, e.g. [19], it was not until [17] that they were
exploited for what they really are, namely actual group characters.

It was [15] that led us to the idea, developed in [17], that there is a genuine Lie
theoretical connection here that could be extended to create a theory that works for
every simple compact Lie group G. The theory is again based on the root lattices
but now also incorporates the representation theory of these groups in a deeper way.
Notably, the irreducible characters of a simple Lie group generate a polynomial ring,
and this is the essential origin of the polynomials that appear. More importantly it uses
the elements of finite order in the corresponding Lie group to define the nodes at which
the cubature formulae are evaluated. The irreducible representations of the group and
the elements of finite order are in a sort of duality, and this duality underlies the discrete
Fourier analysis that plays the central role in the cubature formulas that emerge. With a
slight Lie-theoretical twist in the definition of the degrees of multivariate polynomials,
the crucial polynomials, their nodes and the cubature formulas all appear completely
naturally out of the theory and in fact are optimal (called Gaussian) in their efficiency.
One virtue of this unified approach to the subject was to be able to take advantage of
the extensive theory that exists for root systems and Weyl groups, and their magical
relationship to fundamental regions.

The Weyl group W , which appears as a group generated by reflections in this theory,
is of primary importance, notably its sign homomorphism W −→ {±1} which takes
the sign −1 for each of the reflections in the roots. It has long been known in the theory
of orthogonal polynomials based on these reflection groups that in the cases where the
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simple Lie group has roots of two different lengths (namely for types Bn, Cn, F4, G2)
there are, in addition, two hybrid sign functions which distinguish between reflections
in long roots and reflections in short roots; that is, the sign function takes the value
−1 for each reflection in a long root (respectively short root) and takes the value +1
on the reflections in the short (respectively long) roots.

In this paper we extend the ideas of Chebyshev polynomials, nodes, and cubature
formulas to these hybrid situations. In principle the path should be straightforward,
particularly since orthogonal polynomials and q-series based on this type of hybrid
symmetry have been well studied, e.g. [4]. However, our theory depends on both the
representations and the elements of finite order of the Lie group, and this somewhat
intricate process requires making a number of correct decisions in how to define things
to fit the new setting. In the end things work out as smoothly and as naturally as in
[17], although for the long root case the cubature is slightly less efficient than in the
Gaussian cubature of the standard and short root cases, being instead what is called
Radau cubature.

We conclude with an example taken from the Lie group G2, which in spite of the
strange looking domain that appears, has the advantages of being easily visualizable,
having two root lengths, and having maximal symmetry in rank 2.

The orientation of [17] was towards the approximation theory community since
Gaussian formulas are rather rare and the Lie theoretical connections offer new and
unexpected techniques for constructing them. In this paper, in addition to presenting the
new results based on hybrid Weyl symmetry and simplifying the overall presentation
of the ideas, the emphasis is more the other way around, aiming to introduce the Lie
theoretical community to some new applications of simple Lie groups to approximation
theory and cubature. It seems to us that there is much more to be explored here,
particularly the duality between elements of finite order and character theory, and this
is a good moment for workers from the two fields share their knowledge.

2 Overview

We begin with a summary of the results of [17] and then introduce the ideas which
lead to the new cubature formulas arising from the two new families of orbit functions.

Start with the polynomial ring C[X1, . . . , Xn]. This is given the structure of a
graded ring by assigning a degree d j ∈ Z

>0 (called the m−degree, for reasons to be

explained later) to each of the variables X j . The degree of a monomial Xk1
1 . . . Xkn

n
is thus k1d1 + · · · + kndn . Unlike the usual gradation, d j need not be equal to 1. The
value of n will ultimately be the rank of a compact simple Lie group G (or its complex
simple Lie algebra g) and the degree structure will be given by the coefficients of its
highest co-root.

The main result can be stated as a quadrature formula, called in this subject a
cubature formula because it is not restricted to one dimension. Fix any non-negative
integer M . Then for all f ∈ C[X1, . . . Xn] of m−degree not exceeding 2M + 1,

(2π)−n
∫

�

f (X)K 1/2(X)d X = C
∑

X∈FM+h

f (X)K (X). (1)



1260 J Fourier Anal Appl (2014) 20:1257–1290

The main point is that integration is replaced by finite summing, and the elements
of FM+h over which the summation takes place are very easy to compute. Here
X = (X1, . . . , Xn) ∈ C

n and FM+h is a finite subset of C
n , C is a constant, K is

a special polynomial in C[X1, . . . , Xn] which is positive valued on � ⊂ C
n . All of

these objects depend on the choice of G. In the hybrid situation that we shall develop
here, the variables Xs = (Xs

1, . . . , Xs
n) and similarly Xl = (Xl

1, . . . , Xl
n) are real

valued.
The elements of FM+h actually arise from elements of G finite order, but in this

context they are called the nodes, and they have a number of special properties. Their
number is exactly the dimension of the space of polynomials of m−degree at most
M . Furthermore, an important part of the construction of this result is the introduction
of special polynomials (related to characters and other G-invariant functions on G)
Xλ = X(λ1,...,λn) of m−degree |λ|m := λ1d1 + · · · + λndn , which form an orthogonal
basis of C[X1, . . . , Xn] with respect to the inner product

〈 f, g〉K := (2π)−n
∫

�

f gK 1/2, (2)

which in view of (1) is
∑

X∈FM+h
f (X)g(X)K (X) if the m−degrees of f, g do not

exceed M . Now, the minimum number of nodes that could achieve such an orthogonal
decomposition of these functions is the dimension of the space of polynomials of
m−degree at most M , and that is exactly the number of elements in FM+h . This
optimal situation is called Gaussian cubature [15].

The nodes are actually zeros of certain of these polynomials of degree M + 1. The
region � is the image of the interior of the fundamental region (or some modified
version of it in the hybrid cases) under a certain polynomial map. In particular it is an
open set with compact closure and boundary of measure 0.

If we move to the Hilbert space L2
K (�) of square integrable functions on � with

respect to the inner product 〈·, ·〉K then every function f ∈ L2
K (�) has a Fourier

expansion
f =

∑
λ

〈 f, Xλ〉K Xλ, (3)

equality here being in the usual L2 sense. If the sum is truncated to
∑

|λ|m≤M 〈 f, Xλ〉Xλ

then this is the best approximation to f in the L2
K -norm using only polynomials of

m−degree at most M .
In essence what we have been describing arises from a duality that exists between

the characters of the representations of G and the conjugacy classes of elements of
finite order of G. Let T be a maximal torus of G. Since all the maximal tori are
conjugate and every conjugacy class of G meets every one of them, every character of
G is defined entirely by its restriction to T and every conjugacy class of elements of
finite order has elements in T. The relationship between G and its Lie algebra restricts
to the relationship between T and its Lie algebra:

exp 2π i(·) : t → T. (4)
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Here it is more convenient to let it be the Lie algebra of T because the Killing
form is then positive definite on t � R

n , where n is the rank of G. The kernel of this
exponential mapping is the co-root lattice Q∨ of G, so T � R

n/Q∨. The Z-dual of
Q∨ in t∗ is the weight lattice P .

The normalizer N of T in G is always larger than T itself, and the Weyl group
W := N/T is the group that represents this excess. W acts on T via conjugation
and then as linear transformations on t. The affine Weyl group is then the semi-direct
product of Waff = W � Q∨, which acts on t with Q∨ acting as translations.

Let F be a standard simplicial fundamental region for Waff in t, so that Waff is
generated by the reflections in the faces of F and W is generated by the reflections in
the faces of F that pass through the origin, see [1]. The virtue of F is that it perfectly
parametrizes the conjugacy classes of G: for each such class there is a unique element
of x ∈ F for which exp(2π i x) lies in that class.

The characters on G restrict faithfully to W -invariant functions on T, and the ring of
all W -invariant functions on T is a polynomial ring in n-variables generated by the char-
acters of a set of so-called fundamental representations. This is the ring C[X1, . . . Xn]
and the X j can be viewed either abstractly as variables or as actual characters corre-
sponding to a system of fundamental weights. One particularly important W -invariant
function on T is K := |Sρ |2 where Sρ is the basic anti-symmetric function that appears
as the denominator of Weyl’s character formula. This is the K of the cubature formula.

Via the exponential mapping the characters can be viewed as Waff -invariant func-
tions on t. In this way we have the important mapping

� : t −→ C
n x �→ (X1(exp(2π i x), . . . , Xn(exp(2π i x)) (5)

The region � is the image of the interior F◦ of F under �.

Remark 1 There are several points of possible confusion regarding the many functions
that appear in the paper. First of all there are many functions, like Sρ , which have
interpretations as functions both on T and on t. This is not particularly troublesome
since T � R

n/Q∨ and all these functions are clearly periodic on t with respect to Q∨.
Thus interpreting Sρ Sρ as a function on t or T is rather obvious.

The second is the transition from exponential sums to new coordinates in C
n using

characters (or hybrid characters) as new variables. This is the way in which the Lie
theory translates over into a theory about polynomials where the cubature formulas
are relevant. Rather than introduce new function names when we transition variables,
we use different notation for the variables. Thus for functions on t or T the generic
variable name is x = (x1, . . . , xn) ∈ R

n , whereas for the new polynomial variables
the generic variable name is X = (X1, . . . , Xn) ∈ C

n . When we deal with short and
long root scenarios, as we mostly do in what follows, we use Xs = (Xs

1, . . . , Xs
n) in

the short root case, and similarly for the long case.

There remains to briefly introduce the elements of finite order of T. Each conjugacy
class of an element of finite order has a unique representative in F . The set FM+h ⊂ �

is the image under � of the set of elements in F that have adjoint order M + h. Here h
is the Coxeter number of G and by adjoint order we mean that the order of the element
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is M + h in the adjoint representation of G on itself (i.e. by conjugation). The full
order of an element is a finite multiple of the adjoint order.

This finishes our brief tour of the constituents of the basic cubature formula.
The Weyl group is a subgroup of the orthogonal group of t with respect to its

canonical Euclidean structure arising from the Killing form, and in particular there is
the sign homomorphism

σ : W −→ {±1} w �→ σ(w) = det(w),

with σ(r) = −1 for all reflections. The fact that W is generated by the reflections
in the roots of the Lie algebra plays an essential role in elucidating the structure of
simple Lie groups and their representations. Throughout, W -anti- invariant functions
and polynomials play a key role, Weyl’s character formula being a typical example
which expresses the characters (W -invariant exponential sums) as ratios of W -anti-
invariant exponential sums. In the case when the roots of the Lie algebra have two
distinct lengths (called the short and long roots), there are two alternative hybrid sign
homomorphisms: σ s which is defined by taking the value −1 on the reflections in
short roots and the value +1 on the reflections in long roots, and σ l which does it the
other way around. This gives rise to new hybrid invariants, anti-invariant with respect
to short reflections while being invariant with respect to long, or vice-versa. This leads
to two new versions of each cubature formula, see (6.2) which say very much the same
thing except that �, K ,FM+h, C and a new function κ , all appear in short and long
forms according to which hybrid symmetry is used. The effect is somewhat subtle: �

is only altered along its boundary, the set FM+h changes only by certain elements of
finite order along the boundary of the fundamental region F , and the polynomial ring
is still the space of W -invariant functions. However the interpretations of the variables
X j in terms of characters and the function K are significantly altered.

3 Basics

We establish the notation that we are using and recall some basic facts about simple
Lie algebras. For more details, see for example [8].

3.1 Simple Lie Algebras

Let g be a simple complex Lie algebra of rank n with corresponding simple and simply
connected compact Lie group G. Let T be a maximal torus of G and let it be its Lie
algebra, so that we have the exponential map (4). Let (· | ·) on the dual space t∗ of t
be defined from the Killing form by duality. The natural pairing of t∗ and t is denoted
by 〈 ·, · 〉.

Let 	 denote the set of roots of g and let 
 := {α1, . . . , αn} ⊂ t∗ be a set of simple
roots, hence also a basis of t∗ � R

n . We denote by C the corresponding Cartan matrix
with entries

Ci j = 2(αi | α j )

(α j | α j )
.
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Its determinant, denoted by cg, is the order of the centre of G and is also the index of
the root (co-root) lattice inside the weight (co-weight) lattice, see below.

We introduce the usual partial ordering on t∗: μ  λ if and only if λ−μ is a sum of
simple roots or λ = μ. The highest root in 	 with respect to this ordering is denoted
ξ . Its coordinates in the α-basis are called the marks:

ξ = m1α1 + · · · + mnαn . (6)

Let Q, P ⊂ t∗ be the root lattice and weight lattice respectively. Then

P =
{
λ ∈ t∗ | 〈λ, α∨

j 〉 ∈ Z for ∀α∨
j , j = 1, . . . , n

}
,

where 
∨ := {α∨
1 , . . . , α∨

n } is the system of simple co-roots (which forms a basis in
t) defined by

〈αi , α
∨
j 〉 = Ci j for i, j = 1, . . . , n.

To these simple co-roots corresponds the system of co-roots 	∨, which is in fact
the system of roots for the simple Lie algebra with Cartan matrix CT (although this
algebra never makes any real appearance in what follows). We have the highest co-root
in η ∈ 	∨ and giving the co-marks m∨

j :

η = m∨
1 α∨

1 + · · · + m∨
n α∨

n .

It is these co-marks that define the degree function on C[X1, . . . , Xn] later.
The lattice P has as a basis the set of fundamental weights ωi which is dual to the

co-root basis in the sense that

〈ωi , α
∨
j 〉 = δi j for i, j = 1, . . . , n.

This is so called ω−basis of t∗ that we will use.
We also have two lattices in t denoted Q∨ and P∨. The co-root lattice Q∨ is kernel

of the exponential map (4) with Z-basis consisting of the α∨
i . The co-weight lattice

P∨ is the Z-dual of Q in t and has as a basis the set of fundamental co-weights ω∨
j

defined by
〈αi , ω

∨
j 〉 = δi j for i, j = 1, . . . , n.

The relationships between the lattices and between the various root and weight
bases and their co-equivalents described below are summarized in:

{α1, . . . , αn} ⊂ Q Q∨ ⊃ {α∨
1 , . . . , α∨

n }
∩ × ∩

{ω1, . . . , ωn} ⊂ P P∨ ⊃ {ω∨
1 , . . . , ω∨

n }
∩ ∩
t∗ t

Here the times symbol is meant to indicate that Q and P∨, as well as P and Q∨,
are in Z-duality with each other.
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Finally we have the cone P+ ⊂ P of dominant weights:

P+ = Z
≥0ω1 + · · · + Z

≥0ωn .

3.2 Affine Weyl Group and its Dual

The Weyl group acting on t is generated by simple reflections r1, . . . , rn in the
hyperplanes

Hi := {x ∈ t | 〈αi , x〉 = 0} , i = 1, . . . , n

by
ri (x) := x − 〈αi , x〉α∨

i .

By duality, we have the action of W on t∗ where the simple reflections on co-root side
are given by

ri (λ) := λ − 〈λ, α∨
i 〉αi .

The affine Weyl group is the semi-direct product of W and the translation group
Q∨: Waff = W � Q∨. Equivalently, Waff can be defined as the group generated by
the simple reflections ri and the affine reflection r0 given by

r0(x) = rξ (x) + ξ∨, rξ (x) = x − 〈ξ, x〉ξ∨

where ξ is the highest root of 	.
The standard simplex F in R

n defined by

F = {x | 〈α j , x〉 ≥ 0 for all j = 1, . . . , n, 〈ξ, x〉 ≤ 1},
serves as a fundamental domain for the affine Weyl group. Its vertices are

F =
{

0, 1
m1

ω∨
1 , . . . , 1

mn
ω∨

n

}
, (7)

where mi , i = 1, 2, . . . , n, are the marks (6). Note that r0 is the reflection in the
hyperplane H0

H0 := {x ∈ t | 〈ξ, x〉 = 1} . (8)

3.3 Long and Short Roots

In dealing with the hybrid cases, we are only interested in the simple Lie algebras with
two different lengths of roots:

Bn (n ≥ 3), Cn (n ≥ 2), F4, G2.

The root system 	 of such algebras consists of short roots 	s and long roots 	l , so

	 = 	l ∪ 	s . (9)
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Similarly, we decompose the set of simple roots
 as 
 = 
l∪
s where 
l := 
∩	l

and 
s := 
 ∩ 	s . Our indexing of the simple roots is such that

	l(Bn) � α1, . . . , αn−1 	l(Cn) � αn,

	l(F4) � α1, α2 	l(G2) � α1.

Since 	s and 	l are stabilized by W and span t∗, they both form root systems in
t∗. Although we do not use the facts here, it is known that 	l is the root system of
a semisimple subalgebra of the simple Lie algebra g belonging to 	 and 	s is the
root system of a subjoined semisimple Lie algebra [18,21], which is usually not a
subalgebra of g.

	s is of type

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n A1 in Bn

Dn in Cn

D4 in F4

A2 in G2

, 	l is of type

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Dn in Bn

n A1 in Cn

D4 in F4

A2 in G2

, (10)

where n A1 denotes the semisimple Lie algebra, n A1 = A1 × · · · × A1, (n factors). In
(10) we use the isomorphisms D2 � A1 × A1 and D3 � A3.

Define the set of positive short and positive long roots by 	s+ := 	s ∩	+, 	l+ :=
	l ∩ 	+ respectively.

Proposition 3.1 	t+ is a system of positive roots for 	t where t ∈ {s, l}.
Proof All systems of positive roots in any root system � arise as �+ =
{α ∈ � | (ν | α) > 0} for some ν in the span of � [22]. Now with ρ being half
the sum of the positive roots of 	, we have 	+ = {α ∈ 	 | (ρ | α) > 0}. Then
	t+ = {

α ∈ 	t | α ∈ 	+
} = {

α ∈ 	t | (ρ | α) > 0
}
. So 	t+ is a positive root sys-

tem. ��
The highest long root γ l of 	l coincides with the highest root ξ of 	. So, the

coefficients of γ l written in α−basis are the marks mi , γ l = ξ = m1α1 +· · ·+mnαn ,
see Table 1. The highest short root of 	s denoted γ s is given by its coefficients ms

i in
α−basis, γ s = ms

1α1 + · · · + ms
nαn , see Table 1.

The dual root system 	∨ decomposes also as disjoint union of short co-roots 	∨s

and long co-roots 	∨l . The dual of γ l is the highest short co-root γ l∨ = ml∨
1 α∨

1 +
· · · + ml∨

n α∨
n . Note: we label the highest short root with ‘l’ to express the duality with

the highest long root. Similarly, the dual of γ s is the highest long co-root γ s∨ = η =
m∨

1 α∨
1 + · · · + m∨

n α∨
n . The values of m∨

i and ml∨
i are written in Table 1.

A function
k : α ∈ 	 �→ kα ∈ R (11)

for which kα = kw(α) for w ∈ W is called a multiplicity function [4]. The trivial
example is kα = 1 for all α ∈ 	 which we denote simply by k0. Relevant for us are

kl : kl
α := 1 for α ∈ 	l and kl

α := 0 for α ∈ 	s, and

ks : ks
α := 0 for α ∈ 	l and ks

α := 1 for α ∈ 	s .
(12)
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Defining

ρ(k) := 1

2

∑
α∈	+

kαα, (13)

we see that in addition to the usual half-sum of the positive roots ρ = ρ(k0) =
1
2

∑
α∈	+ α = ∑n

i=1 ωi we have

ρs := ρ(ks) = 1

2

∑
α∈	s+

α =
∑

αi ∈
s

ωi , ρl := ρ(kl) = 1

2

∑
α∈	l+

α =
∑

αi ∈
l

ωi . (14)

To ρs and ρl correspond the important short and long Coxeter numbers hs and hl

defined by
hs := 〈ρs, γ s∨〉 + 1, hl := 〈ρl , γ l∨〉 + 1. (15)

The explicit calculations using the values in Table 1 imply that

hs = 1 +
∑

αi ∈
s

m∨
i =

∑
αi ∈
s

mi , hl =
∑

αi ∈
l

m∨
i = 1 +

∑
αi ∈
l

mi . (16)

4 W -Invariant and W -Anti-invariant Functions on T

4.1 Sign Homomorphisms

In addition to the usual sign homomorphisms on the Weyl group W there are two
others. This is well known, but since it is short we prove it. An abstract presentation
determining W is

〈r1, . . . , rn | r2
i = 1, (rir j )

ai j = 1, i, j = 1, . . . , n, i �= j〉,
where ai j = 2, 3, 4, 6 according as nodes i and j in the Coxeter–Dynkin diagram are
not joined, joined by a single bond, a double bond, or a triple bond. Any homo-
morphism σ : W −→ {±1} is determined by the values on the generators ri ,
i = 1, . . . , n. The necessary and sufficient condition for σ to be a homomorphism is
that (σ (ri )σ (r j ))

ai j = 1 for all i �= j . This is automatically satisfied if ai j is even.
When ai j is odd, i.e. ai j = 3, we need σ(ri ) = σ(r j ). Looking at the Coxeter–Dynkin
diagrams we see that this allows precisely one choice of sign for all the short reflec-
tions and one for all the long reflections, and no other. Note that it does not matter
whether or not we have a reflection in simple root or in any root since for any two roots
α, β of the same length there exists w ∈ W such that rα = wrβw−1 which implies
σ(rα) = σ(rβ). Thus there are four homomorphisms σ :

id : all signs equal to 1 (the trivial homomorphism);
det : all signs equal to − 1 (the determinant);
σ l : all long signs equal to − 1, all short signs equal to 1;
σ s : all short signs equal to − 1, all long signs equal to 1.

(17)
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We shall use all four homomorphisms to introduce various classes of W−orbit func-
tions.

4.2 C, S, Sl - and Ss-Functions

Let us fix the notation for the functions of the four families of W -orbit functions given
by the homomorphisms (17). At first recall the definition of C− and S−functions
which were studied in [9,10].

Cλ(x) =
∑

μ∈O(λ)

e2π i〈μ,x〉, Sλ+ρ(x) =
∑
w∈W

det(w)e2π i〈w(λ+ρ),x〉

=
∑

μ∈O(λ+ρ)

σ (μ)e2π i〈μ,x〉.
(18)

Here the parameter λ ∈ P+ is a dominant weight, the variable x ∈ R
n , O(λ) is the W

orbit of λ, and σ(μ) := σ(w) where μ = w(λ + ρ). Then |O(λ)| = |W |
|stabW λ| is the

number of points in O(λ) where |W | denotes the order of the Weyl group and |stabW λ|
is the number of points in the stabilizer in W of λ. For S−functions, the summation
is in fact over the whole of W since λ + ρ has a trivial stabilizer.

When there are two different root lengths there are two other orbit functions, arising
from the homomorphisms σ s and σ l :

Ss
λ+ρs (x) =

∑
μ∈O(λ+ρs )

σ s(μ)e2π i〈μ,x〉, Sl
λ+ρl (x) =

∑
μ∈O(λ+ρl )

σ l(μ)e2π i〈μ,x〉,

(19)

where ρs, ρl are given by (14). Here again we are defining σ s(μ) := σ s(w) for w ∈ W
such that μ = w(λ + ρs) and σ l(μ) := σ l(w) for w ∈ W such that μ = w(λ + ρl).
This makes sense because the stabilizer in W of ρs is generated by long reflections ri ,
so σ s takes the constant value 1 on the stabilizer. Similarly, σ(μ) in (18) and σ l(μ)

are well defined.
Evidently the C-functions are W-invariant while the S (respectively Ss , Sl )-

functions are det (respectively σ s , σ l )-anti-invariant.
All of these functions can be viewed as functional forms of formal exponential sums

from C[P] of all linear combinations of formal exponentials eμ with μ ∈ P . In fact
they are in Z[P] since all the coefficients are integers. We write C[P]W (respectively
C[P]s , C[P]l ) for the W-invariant (respectively σ s , σ l -anti-invariant) exponential
sums, and similarly for the corresponding integral forms. More about the relationship
between the formal exponentials and their use as functions may be found in [17].

The functions of C[P], as we have defined them are functions on R
n . However, since

they are periodic modulo Q∨, they may be considered as functions on T � R
n/Q∨.

This is the way in which we shall normally think of them. For integration purposes, an
integral over T rewrites to an integral over a fundamental domain for the lattice Q∨,
for instance {∑n

j=1 x jα
∨
j : 0 ≤ x j < 1 for all j}.
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For notational convenience we use

φμ : x �→ e2π i〈μ,x〉, (20)

which for each weight μ ∈ P combines the exponential mapping x �→ exp(2π i x) of
t to T and the C-mapping exp(2π i x) �→ e2π i〈μ,x〉 on T. As we have just said, we may
think of φμ as a function on T.

We note specially that the Ss- and Sl -functions are sums over orbits rather than
sums over the entire Weyl group. Obviously they can be rewritten as Weyl group
sums, but in general these are redundant and for what follows the orbit sums are what
we need. They also may be interpreted as functions on T since they are invariant by
Q∨-translations.

Proposition 4.1

Ss
ρs (x) = 
α∈	s+

(
eπ i〈α,x〉 − e−π i〈α,x〉) , Sl

ρl (x) = 
α∈	l+

(
eπ i〈α,x〉 − e−π i〈α,x〉) .

Proof We show the result for Ss
ρs , the proof for Sl

ρl is similar. Let W s denote the

Weyl group generated by short reflections and W l the Weyl group generated by long
reflections. Then W can be written as a semi-direct product W � V l

� W s where V l

is a subgroup of W l . We know that the stabilizer of ρs is generated by long reflections,
so O(ρs) = W s(ρs) and

Ss
ρs (x) =

∑
w∈W s

σ s(w)e2π i〈w(ρs ),x〉.

Thus the result is simply the usual formula that holds for all root systems. ��
We are especially interested in the hybrid-characters:

χ l
λ(x) =

Sl
λ+ρl (x)

Sl
ρl (x)

, χ s
λ(x) = Ss

λ+ρs (x)

Ss
ρs (x)

. (21)

They are clearly W -invariant and we shall see that their linear span is C[P]W . In
particular they are well defined functions on all of t (and, of course, they can be
considered as functions on T). The hybrid characters for the fundamental weights
ω1, . . . ωn also generate C[P]W as a ring, and the main point is that they will become
the new variables Xs

1, . . . , Xs
n and Xl

1, . . . , Xl
n . In fact these hybrid characters are in

Z[P]s and Z[P]l and what we just said applies at the level of these rings. These facts
are well known, but because of their central importance here we sketch out the proofs
in what follows.

Proposition 4.2 Z[P]s = Z[P]W Ss
ρs , Z[P]l = Z[P]W Sl

ρl .
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Proof Inclusions in one direction are obvious. We show the reverse inclusion in the
short case. Let f ∈ Z[P]s and write f = ∑

μ∈P cμeμ. Let α ∈ 	s+. Then − f =
rα f = ∑

cμerαμ and so, − f = ∑ −crαμerαμ = ∑−cμeμ = ∑
cμerαμ.

Thus we can divide
{
μ | cμ �= 0

}
into pairs {μ1, μ2} where μ2 = rαμ1, cμ2 =

−cμ1 , and μ1  μ2 (if μ1 = μ2 then cμ = −cμ, so cμ = 0). Thus f =∑
μ∈S cμ

(
eμ − eμ−zαα

)
for some finite subset S ⊂ P .

Since eμ − eμ−zαα = eμ
(
1 − e−zαα

)
and

(
1 − e−α

)
is always a factor of(

1 − e−zαα
)
, we obtain f = (

1 − e−α
)

fα for some fα ∈ Z[P]; and this state-
ment is true for every α ∈ 	s+. Now using [1] §6, we have that

{
1 − e−α | α ∈ 	+

}
are all relatively prime, and hence from

(
1 − e−α

) | f for each α ∈ 	s+ we obtain

α∈	s+

(
eα/2 − e−α/2

) | f . The result now follows. ��

4.3 Domains Fs and Fl

The Ss-functions are σ s-anti-invariant and are also translationally invariant with
respect to Q∨. As such they are determined entirely by their restriction to the funda-
mental region F . Because of Propositions 4.1 and 4.2, the Ss-functions vanish on the
root hyperplanes of F that correspond to the short roots, namely on Hs := ⋃

α j ∈
s H j .
Define Fs := F \ Hs . We shall be interested in the Ss-functions and their correspond-
ing hybrid characters on this new domain.

All this can be done for the Sl -functions too, and we define Hl := H0 ∪⋃
α j ∈
l H j

and Fl := F \ Hl . Note that the hyperplane H0 appears in this case, since it is always
associated with reflection in a long root.

Using (7), the domains Fs and Fl can be described by

Fs =
{

ys
1ω

∨
1 + · · · + ys

nω∨
n

∣∣∣ ys
0 +

n∑
i=1

mi ys
i = 1 and ys

i ∈ R
>0

if αi ∈ 
s otherwise ys
i ∈ R

≥0

}
;

Fl =
{

yl
1ω

∨
1 + · · · + yl

nω∨
n

∣∣∣ yl
0 +

n∑
i=1

mi yl
i = 1 and yl

0, yl
i ∈ R

>0

if αi ∈ 
l otherwise yl
i ∈ R

≥0

}
.

(22)

Although Fs and Fl are proper subsets of F , it is more relevant that each of them
is a proper superset of F◦. The original domain � ⊂ C

n arises as a continuous image
of F◦ via the mapping � (5). The corresponding domains in the hybrid cases arise in
a similar way from these two supersets:

�s := �s(Fs) ⊃ � �l := �l(Fl) ⊃ �. (23)
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These will appear when we switch from variables x to variables X .

4.4 Jacobi Polynomials

All the characters χλ, the hybrid characters χ s
λ , χ l

λ, and the C-functions Cλ, λ ∈ P+ lie
in Z[P]W . Furthermore each set forms a Z-basis for it and in each case the characters
or hybrid characters indexed by the fundamental weights ω j , j = 1, . . . , n, generate
Z[P]W as a polynomial ring. Of course these facts apply to C[P]W as well. This is
quite easy to see because it is obvious that the C-functions Cλ, λ ∈ P+, are a Z -basis
for Z[P]W and the others can be written as sums of the form

Cλ +
∑

μ∈P+
μ≺λ

aλ,μCμ

where the aλ,μ ∈ Z. This triangular form with unit diagonal coefficients can be
inverted in Z[P]W , showing that each of the other sets is a basis too. Similarly each
Cλ = Ck1ω1+···+knωn can be written in the form

Ck1
ω1

· · · Ckn
ωn

+
∑

μ∈P+
μ≺λ

aλ,μCμ

with integer coefficients, and this provides the recursive step to write any element of
Z[P]W as a polynomial in the Cω j . The same thing can be done with the fundamental
characters or hybrid characters.

Although we have no need for the specific values of the coefficients in these expres-
sions, there are ways to compute them. As a specific example there are the Jacobi
polynomials P(λ, k), defined for any multiplicity function k, see [4], and any λ ∈ P+
by

P(λ, k) =
∑

μ∈P+
μλ

cλμ(k)Cμ, (24)

where the coefficients cλμ(k) are defined recursively by:

{(λ + ρ(k) | λ + ρ(k)) − (μ + ρ(k) | μ + ρ(k))}cλμ(k)

= 2
∑

α∈	+
kα

∞∑
j=1

(μ + jα | α)cλ,μ+ jα
(25)

along with the initial value cλλ = 1 and the assumption cλμ = cλ,w(μ) for all w ∈ W .
Recall that ρ(k) is given by (13).

For k = k0 this relation (25) is the Freudenthal recurrence relation used to find the
coefficients of decomposition of characters χλ = Sλ+ρ

Sρ
of irreducible representations



1272 J Fourier Anal Appl (2014) 20:1257–1290

of simple Lie algebras into C−functions. In other words,

χλ = P(λ, k0) =
∑

μ∈P+
μλ

cλμ(k0)Cμ. (26)

Furthermore (24), for ks and kl be given by (12) and λ ∈ P+, we have

χ s
λ = P(λ, ks) and χ l

λ = P(λ, kl).

4.5 An Inner Product on C[P]W

The standard inner product on C[P] is defined by

〈 f, g〉T =
∫

T

f gdθT, (27)

where dθT is the normalized Haar measure on the torus T. Relative to this, the
functions φλ (20) form an orthogonal basis of C[P]. Its completion is the Hilbert
space L2(T, θT). We let L2(T, θT)W be the subspace of all W-invariant elements of
L2(T, θT), which is in fact the closure of C[P]W in L2(T, θT).

We now modify this inner product in a natural way so that the hybrid-characters χ s
λ

(or χ l
λ) form an orthogonal basis for L2(T, θT)W . Notice here that we are interpreting

functions as functions on T.
For any element f ∈ L2(T, θT)W , we have f Ss

ρs ∈ L2(T, θT). One can form its
Fourier expansion

f Ss
ρs =

∑
μ∈P

〈 f Ss
ρs , φμ〉Tφμ,

and since f Ss
ρs is σ s-anti-invariant with respect to W , this can be rewritten as

f Ss
ρs =

∑
λ∈P+

〈 f Ss
ρs , φλ+ρs 〉T

∑
μ′∈O(λ+ρs )

σ s(μ′)φμ′ =
∑

λ∈P+
〈 f Ss

ρs , φλ+ρs 〉TSs
λ+ρs .

Dividing by Ss
ρs we have

f =
∑

λ∈P+
〈 f Ss

ρs , φλ+ρs 〉T χ s
λ,

and then by the W−invariance of θT and σ s-anti-invariance of f Ss
ρs , we obtain

〈 f Ss
ρs , φλ+ρs 〉T =

∫
T

f Ss
ρs φλ+ρs dθT = 1

|W |
∫

T

∑
w∈W

σ s(w) f Ss
ρs φw(λ+ρs )dθT
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= |stabW (λ + ρs)|
|W |

∫
T

f Ss
ρs Ss

λ+ρs dθT

= |stabW (λ + ρs)|
∫

Fs
f χ s

λSs
ρs Ss

ρs dθT.

This suggests the new inner product on L2(T, θT)W as

( f, g)s =
∫

Fs
f gSs

ρs Ss
ρs dθT.

Then, we can write
f =

∑
λ∈P+

|stabW (λ + ρs)|( f, χ s
λ)sχ

s
λ. (28)

In particular, with f = χ s
μ we have

χ s
μ =

∑
λ∈P+

|stabW (λ + ρs)|(χ s
μ, χ s

λ)sχ
s
λ, (29)

from which we have the orthogonality relations

(χ s
μ, χ s

λ)s = 1

|stabW (μ + ρs)|δμλ (30)

Writing this out, we have

Proposition 4.3 For λ,μ ∈ P+,

∫
Fs

Ss
λ+ρs (x)Ss

μ+ρs (x) dθT(x) = (χ s
λ, χ s

μ)s = 1

|stabW (λ + ρs)|δλμ;

where |stabW (λ + ρs)| denotes the number of elements in stabilizer of λ + ρs in W .
The parallel result holds for the long root case.

5 Polynomial Variables and Elements of Finite Order

The cubature formulas rely on being able to identify the ring C[x1, . . . , xn]W as
a polynomial ring and then forming the connection between the variables X j and
characters on G (treated as functions on t). In the usual case, the characters are the
characters of the fundamental representations with highest weight ω j . In the hybrid
cases we use hybrid characters instead. As we shall see, they all generate essentially
the same ring, but the explicit mappings between the natural variables of t and the
variables X j are different. We shall work specifically with the short case, the long case
being in every way parallel to it.

As in [17] a crucial feature of the polynomial ring of characters is the way in which
it is graded. The familiar and conventional total grading in which each variable gets
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degree 1 is not particularly useful here. Rather the Lie theory suggests a grading which
is based on the coefficients appearing in the highest co-root. These coefficients are
familiar objects in the theory of root systems and they work perfectly along with the
elements of finite order to produce the cubature formulas. The m−degrees and total
degrees agree only in the A-series of Lie groups.

5.1 Polynomial Variables for the Hybrid Cases

Let Xs
1, . . . , Xs

n denote the polynomial variables defined by

Xs
1 := χ s

ω1
(x), . . . , Xs

n := χ s
ωn

(x), x ∈ Fs,

where χ s
ω j

are the fundamental hybrid-characters (21).
As in [17] , we define the m−degree of the variables Xs

1, . . . , Xs
n by assigning degree

m∨
i to Xs

i . Thus the monomial (Xs
1)

λ1 . . . (Xs
n)λn has m−degree λ1m∨

1 +· · ·+λnm∨
n and

the dimension of the space of polynomials of m−degree at most M is the cardinality
of the set {

(λ1, . . . , λn) |
n∑

i=1

m∨
i λi ≤ M, λi ∈ Z

≥0

}
. (31)

The explicit formulas for the cardinality of the set (31) can be found in [6] for all M .
In addition, we say that λ = (λ1, . . . , λn) = λ1ω1 + · · · + λnωn has m−degree

equal to
〈λ, η〉 = λ1m∨

1 + · · · + λnm∨
n . (32)

The new variables give rise to the mapping

�s : x �→ (Xs
1(x), . . . , Xs

n(x)) ∈ C
n, x ∈ Fs

and similarly �l . These mappings are injective since the values of these fundamental
hybrid characters determine the values of all the characters (hybrid or otherwise),
hence a specific conjugacy class in G, and finally, then, a unique point in F . Then we
have the domain

�s := �s(Fs) = {
(Xs

1(x), . . . , Xs
n(x)) | x ∈ Fs} .

Evidently this is a subset of C
n , but in fact �s ⊂ R

n . By §4.4, we see that each
variable Xs

i can be written as a polynomial in fundamental characters χωk with integer
coefficients. As discussed in [17], we know that χωk = χωk for algebras with two root
lengths. Therefore, we also have Xs

i = Xs
i and thus �s ⊂ R

n .
We define

K s := Ss
ρs Ss

ρs

Sl
ρl Sl

ρl

. (33)

This function arises as a kernel in the integral of the cubature formulas for the short
root case. The denominator of K s does not vanish anywhere on the interior F◦ of
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the fundamental domain F , so K s is defined on this region. K s is a W -invariant
rational function and can be rewritten as a function in terms of the fundamental hybrid-
characters χ s

ωi
. We can regard K s as a strictly positive function on F◦ or as a function

in the variables Xs
i on the interior of �s ,

K s = K s(Xs
1, . . . , Xs

n) = Ss
ρs (x)Ss

ρs (x)

Sl
ρl (x)Sl

ρl (x)
, x ∈ F◦,

see Remark 1.
Along with K s we define κs on �s by

κs(Xs) = |W x |
|W | Ss

ρs (x)Ss
ρs (x). (34)

Note that |W x | is just a number of points in W -orbit of x in t/Q∨ and its value is
uniquely associated with Xs since �s is injective.

The Sl -functions are handled in the same way. Just interchange s and l in the
discussion above. In particular notice that the m−degrees are still m∨

i and that K l =
(K s)−1 on F◦.

5.2 The Jacobian

Although the cubature formulas that we are aiming to prove are set within the context
of the polynomial ring C[X1, . . . , Xn], what underlies them is the realization of the
variables X j as functions, actually characters χω j (or hybrid characters χ s

ω j
, χ l

ω j
), on

T. These characters are first of all functions on T, but are treated also as functions
on t via the exponential map—indeed they are exponential sums. As functions on t
they become functions of n variables in terms of the standard basis {α∨

1 , . . . , α∨
n }. In

order to make transitions from the α∨-variables to the X j -variables we require the
Jacobian J with matrix entries J jk = Dα∨

j
χωk , see definition below. This is written

for the case of the characters, and in this case the Jacobian was determined in [17].
Since the transition from characters to hybrid characters is made through a unipotent
transformation, the determinant of the Jacobian is not altered for the hybrid characters.

Proposition 5.1

det(J ) = det(J s) = det(J l) = Sρ = Ss
ρs Sl

ρl . (35)

Note that from this we have

(K s)1/2| det(J )| = |Ss
ρs

|2. (36)
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With x = (x1, . . . , xn) = x1α
∨
1 + · · · + xnα∨

n as variables on t and the derivation
mapping Dα∨

i
defined by

Dα∨
j
e〈λ,2π i x〉 = 〈λ, α∨

j 〉e〈λ,2π i
∑n

k=1 xkα
∨
k 〉 = 1

2π i

d

dx j
e〈λ,2π i x〉,

we compute

Dα∨
j
χ s

ωk
= 1

2π i

d

dx j
χ s

ωk
.

Then Proposition 5.1 implies that the Jacobian of the transformation from the variables
x to variables Xs or Xl is

|(2π i)n Sρ(x)| = (2π)n|Sρ(x)|.

So, by (36), we have

∫
�s

f g(K s)1/2 d Xs

=
∫

�s
f (Xs

1, . . . , Xs
n)g(Xs

1, . . . , Xs
n)(K s)1/2(Xs

1, . . . , Xs
n) d Xs

1 . . . d Xs
n

= (2π)n
∫

Fs
f (Xs

1(x), . . . , Xs
n(x))g(Xs

1(x), . . . , Xs
n(x))Ss

ρs (x)Ss
ρs (x) dx .

(37)

Particularly note the special case of this when f = χ s
λ and g = χ s

μ when, along with
Proposition 4.3, it becomes

(2π)−n
∫

�s
χ s

λχ s
μ(K s)1/2 d X =

∫
Fs

Ss
λ+ρs (x)Ss

μ+ρs (x) dx = (χλ, χμ)s . (38)

Note that the integrals over �s are well defined since (K s)1/2 d Xs is defined over
the interior of �s and is zero on its boundary.

5.3 Cones of Elements of Finite Order

Every conjugacy class of elements of G meets the fundamental chamber in T and so
is represented by exp 2π i x for a unique x ∈ F . The elements of finite order (EFO) are
particularly interesting because they provide a way of discretization that is intuitive,
natural, and computationally efficient. The conjugacy classes of elements of finite
order N (this includes all elements whose order divides N ) are precisely given by
1
N Q∨ ∩ F and those of adjoint order N , i.e. of order N in the adjoint representation
of G on itself, are given by 1

N P∨ ∩ F [16]. It is these latter elements that will define
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the nodes for the cubature formula. More particularly, having chosen some positive
integer M , we wish to use

Fs
M+hs := 1

M + hs
P∨ ∩ Fs, Fl

M+hl := 1

M + hl
P∨ ∩ Fl ,

where hs, hl are defined by (15). Using (22), the elements of the fragments can be
represented as follows.

x ∈ Fs
M+hs ⇐⇒

x = 1

M+hs
(ss

1ω
∨
1 + · · · + ss

nω
∨
n ) with the coordinates (ss

1, . . . , ss
n) satisfying

ss
0 +

n∑
i=1

mi s
s
i = M + hs, where ss

i ∈ N if αi ∈ 
s otherwise ss
i ∈ Z

≥0;
(39)

x ∈ Fl
M+hl ⇐⇒

x = 1

M+hl
(sl

1ω
∨
1 + · · · + sl

nω
∨
n ) with the coordinates (sl

1, . . . , sl
n) satisfying

sl
0 +

n∑
i=1

mi s
l
i = M + hl , where sl

0, sl
i ∈ N if αi ∈ 
l otherwise sl

i ∈ Z
≥0;

(40)

The coordinates [ss
0, ss

1, . . . , ss
n] and [sl

0, sl
1, . . . , sl

n] are called the Kac coordinates of
x , [16].

Since hs = ∑
αi ∈
s mi and hl = 1 + ∑

αi ∈
l mi , each of the sets FM+hs and
FM+hl has the same cardinality as the set:

{
(t1, . . . , tn) |

n∑
i=1

mi ti ≤ M, ti ∈ Z
≥0

}
. (41)

The explicit formulas for the cardinality of Fs
M+hs and Fl

M+hl have been calculated
for all M and for all simple Lie algebras in [7].

Comparing (31) and (41), and using the the fact that the marks and co-marks are
just permutations of each other (see Table 1), we see the important fact:

Theorem 5.2 The number of monomials in C[Xs
1, . . . , Xs

n] of m−degree at most M
is equal to the number of points in Fs

M+hs . The parallel result holds for long root case.

5.4 Points of Fs
M+hs as zeros of Ss-functions

It is very interesting that the points that will be the nodes for the cubature formulas are
also distinguished by being zeros of certain Ss-functions. For notation see Sect. 3.3.

Proposition 5.3 Let M ∈ Z
≥0.
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(i) The functions Ss
λ+ρs and the hybrid-characters χ s

λ with λ of m−degree = M + 1
vanish at all points of Fs

M+hs .

(ii) The functions Sl
λ+ρl and the hybrid-characters χ l

λ with λ satisfying λ1ml∨
1 +· · ·+

λnml∨
n = M + 1 vanish at all points of Fl

M+hl .

Proof We denote by r the reflection in the highest short root γ s , on the root and co-root
side, given respectively by

r(λ) := rλ = λ − 〈λ, γ s∨〉γ s,

r(x) := r x = x − 〈γ s, x〉γ s∨.

Let λ = λ1ω1 +· · ·+λnωn ∈ P+. Divide the orbit O = O(λ+ρs) into O+ on which
σ s takes the value 1, and O− on which it takes value −1, and note that O− = r O+.
Then we can write

Ss
λ+ρs (x) =

∑
μ∈O+

(e2π i〈μ,x〉 − e2π i〈rμ,x〉) =
∑

μ∈O+
(e2π i〈μ,x〉 − e2π i〈μ,r x〉).

Now, Ss
λ+ρs (x) will vanish for all x ∈ Fs

M+hs if each term

e2π i〈μ,x〉 − e2π i〈μ,r x〉 = 0,

or equivalently

〈μ, x〉 − 〈μ, r x〉 ∈ Z

for all x ∈ 1
M+hs P∨. Since x ∈ 1

M+hs P∨ is W -invariant, this amounts to

〈λ + ρs, x〉 − 〈λ + ρs, r x〉 ∈ Z for all x ∈ 1

M + hs
P∨, (42)

or equivalently

〈γ s, x〉〈λ + ρs, γ s∨〉 ∈ Z for all x ∈ 1

M + hs
P∨.

Since 〈γ s, P∨〉 ⊂ Z, we have 〈γ s, x〉 ∈ 1
M+hs Z, and it is sufficient that 〈λ+ρs, γ s∨〉 ∈

(M + hs)Z. Requiring 〈λ + ρs, γ s∨〉 = M + hs leads to the condition

〈λ, γ s∨〉 = M + 1.

by definition of hs (15). This is the condition of the hypothesis of the proposition and
proves the result for the Ss-functions.

To get to the characters χ s we have to divide by Ss
ρs . The latter vanishes only on

the walls of Hs and these are not part of Fs , and so this division does not affect the
outcome.
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The proof for the long root case is parallel. ��

Recall that | 1
M+hs P∨/Q∨| = cg(M+hs)n , where cg is the determinant of C (which

is the value of the index [P∨ : Q∨]). Of course there is a parallel formula for the long
root case.

5.5 Discrete Orthogonality of Ss- and Sl -Functions

Proposition 5.4 Let M ∈ Z
≥0 and λ,μ ∈ P+ and suppose that

for all w,w′ ∈ W, w(λ + ρs) − w′(μ + ρs) /∈ (M + hs)Q

unless λ = μ and w(λ + ρs) = w′(λ + ρs). Then

1

cg|W |(M + hs)n

∑
x∈Fs

M+hs

|W x |Ss
λ+ρs (x)Ss

μ+ρs (x) = 1

|stabW (λ + ρs)|δλμ. (43)

The parallel result holds for the long root case. We recall that W x is the W -orbit of x
in t/Q∨.

Proof The summands appearing in (43) are dependent only on the values of x
mod Q∨, so we can reduce mod Q∨ (see Remark 1). The set Fs

M+hs is mapped
faithfully by the Ss-functions in this process.

We begin by replacing the sum over Fs
M+hs by a sum over the group 1

M+hs P∨/Q∨.
For each representative element x ∈ Fs

M+hs we can form its W -orbit W x . If we had

all of 1
M+hs P∨ ∩ F we would get all of 1

M+hs P∨/Q∨. As it is, we are missing the
orbits of points F \ Fs and these are all in Hs on which the Ss-functions vanish. So
we can add them without changing anything. Thus

∑
x∈Fs

M+hs

|W x | Ss
λ+ρs (x)Ss

μ+ρs (x) =
∑

x∈ 1
M+hs P∨/Q∨

Ss
λ+ρs (x)Ss

μ+ρs (x).

The two Ss terms when expanded are sums of exponential functions exp(2π i〈ν, x〉)
(which are well defined as functions on 1

M+hs P∨/Q∨), where each ν is of the form
ν = w(λ + ρs) − w′(μ + ρs). Fixing ν and and summing over x , we get their sum
over the group is zero as long as 〈ν, x〉 /∈ Z for at least one x . This requirement is just
the same as saying ν /∈ (M + hs)Q. In view of our hypothesis this fails only if λ = μ

and w(λ+ρs) = w′(λ+ρs). In that case the sum is cg(M + hs)n . This happens once
for each element in O(λ + ρs). Since |O(λ + ρs)| = |W |/|stabW (λ + ρs)|, we are
done. ��

For a slight different point of view on discrete orthogonality, as well as an algorithm
for calculation of |W x |, see [7].
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6 Integration Formulas

Our aim is to create cubature formulas for the integrals of the form

∫
�s

f s gs(K s)1/2d Xs
1 . . . d Xs

n,

∫
�l

f l gl(K l)1/2d Xl
1 . . . d Xl

n .

where f s, gs are functions in the variables Xs
1, . . . , Xs

n defined on �s and f l , gl are
functions in the variables Xl

1, . . . , Xl
n defined on �l . These cubature formulas depend

on the two orthogonality results that we have shown, namely Propositions 4.3 and 5.4,
the first involving an integral over �s and the second a finite sum over Fs

M+hs , which
yield identical results. The discrete orthogonality relations require specific separation
hypotheses on the weights, so to make use of the equalities we need only to guarantee
that these hold. The same applies to the long root case too. The image of Fs

M+hs in �s

under �s is written as F s
M+hs , and similarly for the long root case.

6.1 The Key Integration Formulas

Theorem 6.1 (i) Let M ∈ Z
≥0 and f, g be any polynomials in C[Xs

1, . . . , Xs
n] with

m − deg( f ) ≤ M + 1 and m − deg(g) ≤ M. Then

∫
�s

f gK 1/2d Xs

=
∫

�s
f gK 1/2d Xs

1 . . . d Xs
n

= (2π)n
∫

Fs
f (χ s

ω1
(x), . . . , χ s

ωn
(x))g(χ s

ω1
(x), . . . , χ s

ωn
(x))Ss

ρs (x)

× Ss
ρs (x)dx1 . . . dxn

= 1

cg|W |
(

2π

M + hs

)n

×
∑

x∈Fs
M+hs

f (χ s
ω1

(x), . . . , χ s
ωn

(x))g(χ s
ω1

(x), . . . , χ s
ωn

(x))|W x |Ss
ρs (x)Ss

ρs (x)

= 1

cg

(
2π

M + hs

)n

×
∑

(Xs
1,...,Xs

n)∈F s
M+hs

f (Xs
1, . . . , Xs

n)g(Xs
1, . . . , Xs

n)κs(Xs
1, . . . , Xs

n)

= 1

cg

(
2π

M + hs

)n ∑
Xs∈F s

M+hs

f (Xs)g(Xs)κs(Xs).

(44)



J Fourier Anal Appl (2014) 20:1257–1290 1281

(ii) Let M ∈ N and f, g be any polynomials in C[Xl
1, . . . , Xl

n] with m−deg( f ) ≤ M
and m − deg(g) ≤ M − 1. Then

∫
�l

f g(K l)1/2d Xl = 1

cg

(
2π

M + hl

)n ∑
Xl∈F l

M+hl

f (Xl)g(Xl)κ l(Xl). (45)

Proof By linearity of (44), we can only consider the monomials

(χ s
ω1

)ν1 , . . . , (χ s
ωn

)νn , where ν1m∨
1 + · · · + νnm∨

n ≤ N

with N = M + 1 for f and N = M for g.
By Sect. 4.4, we see that such monomial decomposes as a linear combination of

χ s
λ with λ  ν (see Sect. 3.1) and the coefficient of χ s

ν is equal to 1.
Thus it is sufficient to prove that

∫
Fs

χ s
λ(x)χ s

μ(x)Ss
ρs (x)Ss

ρs (x)dx = 1

cg|W |(M + hs)n

×
∑

x∈Fs
M+hs

χ s
λ(x)χ s

μ(x)|W x |Ss
ρs (x)Ss

ρs (x)

for λ,μ ∈ P+ such that m −deg(λ) ≤ M +1 and m −deg(μ) ≤ M . This is true from
Propositions 4.3 and 5.4, provided the weight separation conditions of Proposition 5.4
apply, that is, whenever λ �= μ, it never happens that w(λ + ρs) − w′(μ + ρs) ∈
(M + hs)Q for any w,w′ ∈ W . This follows line for line the proof of Theorem 7.1
of [17] since it does not change anything if we consider hs instead of h.

For the last line of the statement use the definition (34) of κs .
We can prove the result for the long root case similarly. However, there is one

difference which arises because hs = 1 + ∑
αi ∈
s m∨

i whereas hl = ∑
αi ∈
l m∨

i .
This difference appears in the validation of the separation conditions, which hold only
for m − deg(λ) ≤ M and m − deg(μ) ≤ M − 1 in the long case. The key to this
is the difference between 〈ρl , η〉 and 〈ρl , γ l∨〉, which remarkably is always equal to
1. Indeed, notice that ρl is a sum of fundamental weights that “sees” only the short
co-roots of the standard co-root basis of simple co-roots. However, looking at Table
1, we see that η − γ l∨ is a sum of

∑
j∈J α∨

j where exactly one co-root in the sum is a

short co-root. So there is only one co-root seen by ρl , and this produces the result. ��

6.2 The Cubature Formulas

The following theorem can be proved in the same way as Theorem 6.1 since μ = 0 and
λ with m − deg(λ) ≤ 2M + 1 (2M − 1 respectively) satisfy the separation condition
of Proposition 5.4.
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Theorem 6.2 (i) Let M ∈ Z
≥0 and f be any polynomial in C[Xs

1, . . . , Xs
n] with

m − deg( f ) ≤ 2M + 1, then

∫
�s

f (K s)1/2d Xs
1 . . . d Xs

n = 1

cg

(
2π

M + hs

)n ∑
Xs∈F s

M+hs

f (Xs)κs(Xs),

where κs is defined by (34).
(ii) Let M ∈ N and f be any polynomial in C[Xl

1, . . . , Xl
n] with m − deg( f ) ≤

2M − 1, then

∫
�l

f (K l)1/2d Xl
1 . . . d Xl

n = 1

cg

(
2π

M + hl

)n ∑
Xl∈F l

M+hl

f (Xl)κ l(Xl).

Remark 2 One notes here that the short root case (i) is Gaussian cubature, with max-
imal efficiency in terms of the number of nodal points required, while the long root
case (ii) fits into the Radau cubature class and is slightly less efficient.

Remark 3 The largest degree K of the polynomial space of standard total degree K ,
on which the cubature formula of m−degree 2M + 1 holds exactly, is equal to the
greatest integer less than or equal to (2M + 1)/max{m∨

i }.

7 Approximating Functions on �s and �l

In this section we just point out a few things that are direct consequences of the Fourier
analysis that has been developed here. As usual, we write this down for the short root
length case, the long root case being entirely parallel.

7.1 Polynomial Expansion in Terms of χ s
λ

Let L2
K s (�

s) denote the space of all complex valued functions f on �s such that∫
�s | f |2 (K s)1/2d Xs < ∞. We recall the inner product of (38) on L2

K s (�
s)

( f, g)s := (2π)−n
∫

�s
f (Xs)g(Xs)(K s(Xs))1/2d Xs

=
∫

Fs
f (Xs(x))g(Xs(x))Ss

ρs (x)Ss
ρs (x)dθT(x).

We write f � g if f = g almost everywhere in �s . Since (K s)1/2 is continuous
and strictly positive on interior of �s , we have for any f that ( f, f )s ≥ 0 with equality
if and only if f � 0. Thus, we can regard L2

K s (�
s) as a Hilbert space with L2

K s −norm

of f equal to ( f, f )
1/2
s .
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By Proposition 4.3, the polynomials Xs
λ := χ s

λ(x), x ∈ Fs with λ ∈ P+ form an
orthogonal set in L2

K s (�
s):

(Xs
λ, Xs

μ)s = |stabW (λ + ρs)|−1δλμ,

and, in fact, they form a Hilbert basis in L2
K s (�

s). We can see this by relating f (Xs)

on �s with f (x) on Fs and using the discussion in Sect. 4.5 to make its Fourier
expansion. Rewriting this back in �s we obtain the basic expansion formulas

f �
∑

λ∈P+
aλ Xs

λ, where aλ = |stabW (λ + ρs)|( f, Xs
λ)s .

7.2 Optimality

If |λ|m := ∑
i m∨

i λi , then the sums

∑
|λ|m≤M

|stabW (λ + ρs)|( f, Xs
λ)s Xs

λ

are the polynomials of m−degree at most M in the variables Xs
1, . . . , Xs

n .

Proposition 7.1 Let f ∈ L2
K s (�

s). Amongst all polynomials p(Xs
1, . . . , Xs

n) of
m−degree less than or equal to M, the polynomial q = ∑

|λ|m≤M |stabW (λ +
ρs)|( f, Xs

λ)s Xs
λ is the best approximation to f relative to the L2

K s −norm.

Proof Let p = ∑
|λ|m≤M bλ Xs

λ be any polynomial of m−degree at most M and
aλ = |stabW (λ + ρs)|( f, Xs

λ)s , then

( f − p, f − p)s = ( f, f )s −
∑

|λ|m≤M

|stabW (λ + ρs)|−1aλbλ

−
∑

|λ|m≤M

|stabW (λ + ρs)|−1bλaλ

+
∑

|λ|m≤M

|stabW (λ + ρs)|−1|bλ|2

= ( f − q, f − q)s +
∑

|λ|m≤M

|stabW (λ + ρs)|−1|bλ − aλ|2

≥ ( f − q, f − q)s

with equality if and only if bλ = aλ. ��

8 Example: Cubature Formulas for G2

In this section we illustrate briefly how the main constituents of the paper look in the
case of the Lie group G2 when M = 15. Note that cubature formulas connected to G2
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can be found in [14] where the polynomial variables x, y are viewed as C-functions
labelled by fundamental weights. The relations between our polynomial variables
Xs

1, Xs
2 and Xl

1, Xl
2 and the polynomial variables x, y from [14] are given by

Xs
1 = 12x + 6y + 2, Xl

1 = 6y + 2,

Xs
2 = 6x + 2, Xl

2 = 6x .

8.1 Ss- and Sl -Functions of G2

Let us recall some basic facts about Lie group G2. The simple roots α1, α2 and co-roots
α∨

1 , α∨
2 are determined by the Cartan matrices C and CT ;

C =
(

2 −3
−1 2

)
, CT =

(
2 −1

−3 2

)
.

We also have the following relations between the bases (Fig. 1):

α1 = 2ω1 − 3ω2, α2 = −ω1 + 2ω2, ω1 = 2α1 + 3α2, ω2 = α1 + 2α2;
α∨

1 = 2ω∨
1 − ω∨

2 , α∨
2 = −3ω∨

1 + 2ω∨
2 , ω∨

1 = 2α∨
1 + α∨

2 , ω∨
2 = 3α∨

1 + 2α∨
2 .

Using (16), ρs = ω2, ρl = ω1, hs = hl = 3.
The defining relations for the Weyl group are r2

1 = r2
2 = (r1r2)

6 = 1.
Defining ropp := r1r2r1r2r1r2 = r2r1r2r1r2r1, the Weyl group consists of
1, r1, r2, r1r2, r2r1, r1r2r1, together with the product of ropp with each of these ele-
ments. The corresponding values of σ s are 1, 1,−1,−1,−1,−1 and σ s(ropp) = −1;
and for σ l they are 1,−1, 1,−1,−1, 1 and σ l(ropp) = −1.

Fig. 1 A schematic view of the
co-root system of G2. The
shaded triangle is the
fundamental region F . The
dotted lines are the mirrors
which define its boundaries, the
reflections in which generate the
affine Weyl group. The action of
the affine Weyl group on F tiles
the plane. A few tiles of this
tiling are shown. Filled (resp,
open) squares are the short (resp.
long) co-roots of G2
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Let λ = (λ1, λ2) = λ1ω1 + λ2ω2 and x = (x1, x2) = x1α
∨
1 + x2α

∨
2 . Any Weyl

group orbit of a generic point λ consists of

{±(λ1, λ2),±(−λ1, 3λ1 + λ2),±(λ1 + λ2,−λ2),±(2λ1 + λ2,−3λ1 − λ2),

±(−λ1 − λ2, 3λ1 + 2λ2),±(−2λ1 − λ2, 3λ1 + 2λ2)}.

Therefore the explicit formulas for the Ss- and Sl -functions are:

Ss
λ+ω2

(x) = 2i

|stabW (λ + ω2)|
× (sin 2π(λ1x1 + (λ2 + 1)x2) + sin 2π(−λ1x1 + (3λ1 + λ2 + 1)x2)

− sin 2π((λ1 + λ2 + 1)x1 − (λ2 + 1)x2)

− sin 2π((2λ1 + λ2 + 1)x1 + (−3λ1 − λ2 − 1)x2)

− sin 2π((−λ1 − λ2 − 1)x1 + (3λ1 + 2λ2 + 2)x2)

− sin 2π((−2λ1 − λ2 − 1)x1 + (3λ1 + 2λ2 + 2)x2)),

Sl
λ+ω1

(x) = 2i

|stabW (λ + ω1)| (sin 2π((λ1 + 1)x1 + λ2x2)

− sin 2π(−(λ1 + 1)x1 + (3λ1 + λ2 + 3)x2)

+ sin 2π((λ1 + λ2 + 1)x1 − λ2x2)

− sin 2π((2λ1 + λ2 + 2)x1 + (−3λ1 − λ2 − 3)x2)

− sin 2π((−λ1 − λ2 − 1)x1 + (3λ1 + 2λ2 + 3)x2)

+ sin 2π((−2λ1 − λ2 − 2)x1 + (3λ1 + 2λ2 + 3)x2)).

By definition the polynomial variables Xs
1, Xs

2 and Xl
1, Xl

2 are given by

Xs
1 = Ss

(1,1)(x)

Ss
(0,1)(x)

= 2(1 + cos 2πx1 + cos 2π(x1 − 3x2) + 2 cos 2π(x1 − 2x2)

+ 2 cos 2π(x1 − x2) + 2 cos 2πx2 + cos 2π(2x1 − 3x2)),

Xs
2 = Ss

(0,2)(x)

Ss
(0,1)(x)

= 2(1 + cos 2πx2 + cos 2π(x1 − 2x2) + cos 2π(x1 − x2));

Xl
1 = Sl

(2,0)(x)

Sl
(1,0)(x)

= 2(1 + cos 2πx1 + cos 2π(x1 − 3x2) + cos 2π(2x1 − 3x2)),

Xl
2 = Sl

(1,1)(x)

Sl
(1,0)(x)

= 2(cos 2πx2 + cos 2π(x1 − 2x2) + cos 2π(x1 − x2)). (46)
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8.2 Integration Regions �s,�l and Grids F s
M+3,F l

M+3

Using the explicit formulas (46) for polynomial variables as functions of x1, x2, one
can determine the integration regions �s,�l (see Figs. 2, 3), namely:

�s =
{

(Xs
1, Xs

2)

∣∣∣ Xs
1 >

(Xs
2)

2

4
+ Xs

2 − 4,

− 2 − 4Xs
2 − 2(Xs

2 + 1)
3
2 ≤ Xs

1 ≤ −2 − 4Xs
2 + 2(Xs

2 + 1)
3
2

}
;

�l =
{

(Xl
1, Xl

2)

∣∣∣ Xl
1 ≥ (Xl

2)
2

4
− 1,

− 10 − 6Xl
2 − 2(Xl

2 + 3)
3
2 < Xl

1 < −10 − 6Xl
2 + 2(Xl

2 + 3)
3
2

}
.

The grids F s
M+3,F l

M+3 are the following finite sets of points in �s and �l respec-
tively.

F s
M+3 =

{(
Xs

1

(
2s1 + 3s2

M + 3
,

s1 + 2s2

M + 3

)
, Xs

2

(
2s1 + 3s2

M + 3
,

s1 + 2s2

M + 3

))}
,

where s1 = 0, . . . ,

⌊
M + 3

2

⌋
, s2 = 1, . . . ,

⌊
M + 3 − 2s1

3

⌋
;

F l
M+3 =

{(
Xl

1

(
2s1 + 3s2

M + 3
,

s1 + 2s2

M + 3

)
, Xl

2

(
2s1 + 3s2

M + 3
,

s1 + 2s2

M + 3

))}
,

where s1 = 1, . . . ,

⌊
M + 2

2

⌋
, s2 = 0, . . . ,

⌊
M + 2 − 2s1

3

⌋
.

Fig. 2 The region �s along with the equations of its boundaries. Inside we see the points of F s
18. The

dashed boundary is not included in �s
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Fig. 3 The region �l along with
the equations of its boundaries.
Inside we see the points of F l

18.
The dashed boundaries are not
included in �l

The list of EFOs for M = 15 is given in Table 2.

8.3 Cubature Formulas

The functions K s and K l are given by the expressions:

K s(Xs
1, Xs

2) = Ss
ω2

Ss
ω2

Sl
ω1

Sl
ω1

= −(Xs
2)

2 − 4Xs
2 + 4Xs

1 + 16

4(Xs
2)

3 − (Xs
1)

2 − 4(Xs
2)

2 − 8Xs
1 Xs

2 − 4Xs
1 − 4Xs

2
;

K l(Xl
1, Xl

2) = Sl
ω1

Sl
ω1

Ss
ω2

Ss
ω2

= 4(Xl
2)

3 − (Xl
1)

2 − 12Xl
1 Xl

2 − 20Xl
1 − 12Xl

2 + 8

−(Xl
2)

2 + 4Xl
1 + 4

.

Thus, the explicit cubature formulas of G2 are

∫
�s

f (Xs
1, Xs

2)

√
−(Xs

2)
2 − 4Xs

2 + 4Xs
1 + 16

4(Xs
2)

3 − (Xs
1)

2 − 4(Xs
2)

2 − 8Xs
1 Xs

2 − 4Xs
1 − 4Xs

2
d Xs

1 d Xs
2

= 1

12

(
2π

M + 3

)2 ∑
(Xs

1,Xs
2)∈F s

M+3

f (Xs
1, Xs

2)|W x |(−(Xs
2)

2 − 4Xs
2 + 4Xs

1 + 16);

∫
�l

f (Xl
1, Xl

2)

√
4(Xl

2)
3 − (Xl

1)
2 − 12Xl

1 Xl
2 − 20Xl

1 − 12Xl
2 + 8

−(Xl
2)

2 + 4Xl
1 + 4

= 1

12

(
2π

M + 3

)2

×
∑

(Xl
1,Xl

2)∈F l
M+3

f (Xl
1, Xl

2)|W x |(4(Xl
2)

3 − (Xl
1)

2 − 12Xl
1 Xl

2 − 20Xl
1 − 12Xl

2 + 8).
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Table 2 A list of the EFOs for M + 3 = 18, along with their coordinates in the domains �s and �l

(s0, s1, s2) Fs
18 Fl

18 (Xs
1, Xs

2) (Xl
1, Xl

2)

(0, 0, 6) � × (2, −1) ×
(0, 3, 4) � × (0.5662,−0.7169) ×
(0, 6, 2) � × (−2.4534,−0.2267) ×
(0, 9, 0) × × × ×
(1, 1, 5) � � (1.5321,−0.8794) (7.2909,−2.8794)

(1, 4, 3) � � (−0.9436,−0.4115) (3.8794,−2.4115)

(1,7, 1) � � (−3.5321, 0) (0.4679,−2)

(2, 2, 4) � � (0.3473,−0.5321) (5.4115,−2.5321)

(2, 5, 2) � � (−2.3473, 0) (1.6527,−2)

(2, 8, 0) × � × (−0.2267,−1.7588)

(3, 0, 5) � × (0.852, −0.574) ×
(3, 3, 3) � � (−1, 0) (3,−2)

(3, 6,1) � � (−3.0642, 0.4679) (0, −1.5321)

(4, 1, 4) � � (−0.1206, 0) (3.8794,−2)

(4, 4, 2) � � (−1.8794, 0.6527) (0.8152,−1.3473)

(4, 7, 0) × � × (−0.7169,−1.0642)

(5, 2, 3) � � (−0.8007, 0.7733) (1.6527,−1.2267)

(5, 5, 1) � � (−1.8794, 1.3473) (−0.574,−0.6527)

(6, 0, 4) � × (−0.3696, 0.8152) ×
(6, 3, 2) � � (−0.6946, 1.6527) (0, −0.3473)

(6, 6, 0) × � × (−1, 0)

(7, 1, 3) � � (0.0983, 1.8152) (0.4679,−0.1848)

(7, 4, 1) � � (0.3473, 2.5321) (−0.7169, 0.5321)

(8, 2, 2) � � (1.5321, 2.8794) (−0.2267, 0.8794)

(8, 5, 0) × � × (−0.574, 1.3054)

(9, 0, 3) � × (2, 3) ×
(9, 3, 1) � � (3.7588, 3.8794) (0, 1.8794)

(10, 1, 2) � � (4.8375, 4.1848) (0.4679, 2.1848)

(10, 4, 0) × � × (0.8152, 2.6946)

(11, 2, 1) � � (8.1061, 5.2267) (1.6527, 3.2267)

(12, 0, 2) � × (8.823, 5.4115) ×
(12, 3, 0) × � × (3, 4)

(13, 1, 1) � � (12.7023, 6.4115) (3.8794, 4.4115)

(14, 2, 0) × � × (5.4115, 5.0642)

(15, 0, 1) � × (16.5817, 7.2909) ×
(16, 1, 0) × � × (7.2909, 5.7588)

(18, 0, 0) × × × ×
Since Fs is missing the boundary defined by the fixed hyperplane for the short reflection r2, EFOs falling
on this boundary are not part of the short root scenario. For Fl it is EFOs on the hyperplanes for r1 and r0
that are not included
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Table 3 A table of values of |W x | for the group G2 based on the form of the coordinates of x ∈ F

(s0, s1, s2) |W x |
(�, 0, 0) 1

(0, 0, �) 2

(0, �, 0) 3

(0, �, �) 6

(�, 0, �) 6

(�, �, 0) 6

(�, �, �) 12

Recall that this is a count of the W orbit of x taken modulo Q∨. The values can be worked out using Fig. 1.
The cases (�, 0, 0), (0, �, 0) do not appear in this context, but we include them to complete the table

The values |W x | are written in Table 3.
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