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Abstract Let F f be an abolutely convergent Fourier transform on the real line. We
extend the following result of K. Karlander to Rn for n ≥ 1: Any closed reflexive
subspace {F f } of the space of continuous functions vanishing at infinity is of finite
dimension.
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1 Introduction

1.1. The notation used in this note is explained in Sect. 2. The space of absolutely
convergent Fourier transforms

[F L1
]
(�) is dense in the space C0(�) of continuous

functions which vanish at infinity. Here � is the dual group of a locally compact abelian
group X . See Segal [17, Lemma 2, p. 158]. Hence we may claim that sufficiently many
functions are absolutely convergent Fourier transforms. On the other hand,

[F L1
]
(�)

either coincides with C0(�) or is of the first category in that space. This follows from a
theorem on bounded linear mappings (cf. Banach [2, Théorème 3, p. 38], [3, Theorem
3, p. 24]) applied to the Fourier transformation.

[F L1
]
(�) being of the first category

manifests that few functions are absolutely convergent Fourier tranforms. A further
indication that there are few such functions is the following result:
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Theorem 1.1.1 (K. Karlander [10]) Let Y be a closed subspace of the space of con-
tinuous functions on the real line which vanish at infinity. Assume that all elements in
Y are absolutely convergent Fourier transforms and that Y is reflexive. Then Y is of
finite dimension.

1.2. The purpose of this note is to extend Theorem 1.1.1 in as much as we replace
L1 (R) by L1 (Rn) for n ≥ 1. See Theorem 3.1. To prove this theorem we extract two
lemmata. See Sects. 4.1 and 4.4. The proof follows the ideas in [10] closely.

1.3. The space C0 (Rn) has closed reflexive subspaces of infinite dimension. (Cf. the
theorem of Banach and Mazur [2, Théorème 9, p. 185], [3, Theorem 9, p. 112].) Hence
it is meaningful to consider the problem discussed in Theorem 1.1.1.

Let Y be a closed subspace of c0 (Zn) of infinite dimension. Then Y is not reflexive.
Cf. Sect. 2.3. Hence the problem discussed in Theorem 1.1.1 is not meaningful if
L1 (R) is replaced by L1 (Tn).

2 Notation and Preparation

2.1. Function Spaces. c0 (M) is the set of all functions a on any set M such that a
vanishes except at finitely many points. For the function em , an element in the canonical
basis, the only exception is em(m) = 1. By c0 (M) we denote the completion of c0 (M)

under the uniform norm.
By C0 (Rn) we denote the completion of C0 (Rn), the space of functions F contin-

uous on Rn such that supp F is compact, under the uniform norm. By X we denote
a locally compact abelian group with dual group �. To obtain C0(�) we apply the
previous definition regarding completion. Spaces of continuous functions on certain
compact sets will occur and their definitions and norms are obvious.

In most cases when the space L1(S, �,μ) occurs S will be either Rn or Tn endowed
with Lebesgue measure. We will then write L1 (Rn) and L1 (Tn) respectively. If μ is
the counting measure then L1(S, �,μ) = �1 (S).

2.2. The Fourier Transformation. By eixξ we denote the action of ξ ∈ � on x ∈ X .
For f ∈ L1(X) the integral

[F f ] (ξ) =
∫

X
eixξ f (x) dx

with respect to the Haar measure is absolutely convergent for all ξ ∈ �. The function
F f is the Fourier transform of f . The mapping F , the Fourier transformation, is
bounded, linear and injective L1(X) −→ C0(�) with range

[F L1
]
(�).

2.3. Let μ be a positive measure. The space L1(S, �,μ) is weakly sequentially com-
plete. For S = [a, b] endowed with Lebesgue measure this result is a theorem of
Steinhaus Cf. [18]. For the general case see e.g. Dunford and Schwartz [5, Theorem
IV.8.6, p. 290]. In c0 (Z+) the sequence (e1 + e2 + · · · + em)m∈Z+ is weakly Cauchy
but does not converge weakly. Hence c0 (Z+) is not weakly sequentially complete.

We will use the following result whose proof is straightforward: A closed subspace
of a weakly sequentially complete Banach space is weakly sequentially complete.
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The proof of the following standard result may be found e.g. in Lax [12, Theorem
15, p. 82]: A closed subspace of a reflexive Banach space is reflexive. In conjuction
with Lindenstrauss and Tzafriri [14, Proposition 2.a.2, p. 53] this gives the following
useful result: Neither �1 (Zn) nor c0 (Z+) has reflexive subspaces of infinite dimension.

3 Main Theorem and Earlier Results

Theorem 3.1 Let Y be a closed subspace of C0 (Rn) such that Y is a subset of[F L1
]
(Rn). If Y is reflexive then it is of finite dimension.

3.2. The result on density mentioned in Sect. 1.1 extends to the transformation of
Fourier and Stieltjes. See Hewitt [9, Theorem 1.3, p. 664].

In addition to the category result in Sect. 1.1 we have the following: If
[F L1

]
(�)

coincides with the codomain, then X is finite. See Segal [17, p. 157]. Cf. also Edwards
[6], Rajagopalan [15], Friedberg [7], Graham [8] and Basit [4]. A similar result is valid
for the transformation of Fourier and Stieltjes. See Hewitt [9, Theorem 1.2, p. 664].
Cf. also Edwards [6].

The result in [10] extended in Theorem 3.1 is of the following nature: On Y , a closed
subspace of the codomain of F , we impose additional conditions. The conclusion is
that Y is of finite dimension. It is hence relevant to relate our result to earlier results
which are of a similar pattern.

Theorem 3.2.1 (Rajagopalan [15, Theorem 2, p. 87] and Sakai [16, Proposition 2,
p. 661].) Let Y be a weakly sequentially complete C∗-algebra. Then Y is of finite
dimension.

Theorem 3.2.2 (Cf. Albiac and Kalton [1, Corollary 2.3.8, p. 38].) Let Y be a Banach
space such that every weakly convergent sequence is convergent. If Y is reflexive then
it is of finite dimension.

3.3. In the survey paper by Liflyand et al. [13] necessary conditions and sufficient
conditions are given for a function to be an absolutely convergent Fourier transform.
It contains an extensive list of references and also a table of functions which are
absolutely convergent Fourier transforms.

4 Two Lemmata for the Proof of the Main Result

Lemma 4.1 Assume that Y is a closed subspace of C0 (Rn) such that Y is a subset of[F L1
]
(Rn). If Bn denotes the closed unit ball of Rn, then there are positive numbers

α and C4.1 independent of F f ∈ Y such that

‖F f ‖C0(Rn)
≤ C4.1 ‖F f ‖C(

αBn
) . (4.1)

Proof To simplify notation we write C0, L1 and c0 instead of C0 (Rn), L1 (Rn) and
c0 (Z+) respectively. �	
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4.1.1. Let X = F−1Y . For all f ∈ X we have

‖F f ‖C0
≤ ‖ f ‖L1 (4.2)

and X is a closed subspace of L1. According to the open mapping theorem there is a
number C4.3 independent of f ∈ X such that

‖ f ‖L1 ≤ C4.3 ‖F f ‖C0
. (4.3)

4.1.2. Let εm be a positive number for each m ∈ Z+ such that ε = ∑∞
1 εm < 1.

For the purpose of deriving a contradiction we assume that for each choice of positive
numbers α and C4.4 there is an F f ∈ Y such that

C4.4 ‖F f ‖C(
αBn

) < ‖F f ‖C0
. (4.4)

As basis for a recursion we choose for α = α1 > 0 and C4.4 = 1/ε1 a function
F f1 ∈ X with ‖F f1‖C0

= 1 such that

‖F f1‖C(
α1 Bn

) < ε1.

If F fl ∈ Y with ‖F fl‖C0
= 1 for l ∈ {1, . . . , m} as well as αm > 0 have been

chosen we choose αm+1 so that

sup {|[F fl ] (ξ)| : l ∈ {1, . . . , m}, |ξ | ≥ αm+1} ≤ εm+1 and αm+1 > αm .

By our assumption we can find for α = αm+1 and C4.4 = 1/εm+1 a function
F fm+1 ∈ Y with ‖F fm+1‖C0

= 1 such that

‖F fm+1‖C(
αm+1 Bn

) < εm+1.

We have thus constructed the set � = { fm ∈ X : m ∈ Z+} ⊂ L1 such that

sup {|[F fl ] (ξ)| : l ∈ {1, . . . , m}, |ξ | ≥ αm+1} ≤ εm+1, (4.5)

‖F fm‖C0
= 1 (4.6)

and

‖F fm+1‖C(
αm+1 Bn

) < εm+1 (4.7)

for each m ∈ Z+ as well as the increasing sequence (αm)m∈Z+ of positive numbers.

4.1.3. For each m ∈ Z+ we choose bm ∈ Rn such that |[F fm] (bm)| = ‖F fm‖C0
= 1.

Then αm < |bm | < αm+1. Given any a ∈ c0 let N ∈ Z+ and k ∈ Z+ be such that
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a(N + r) = 0 for all r ∈ Z+ and |a(k) [F fk] (bk)| = ‖a‖c0
. Write

‖a‖c0
=

∣∣
∣∣∣∣

N∑

m=1

a(m) [F fm] (bk) −
N∑′

m=1

a(m) [F fm] (bk)

∣∣
∣∣∣∣
,

where we have omitted the term a(k) [F fk] (bk) from the second sum. We apply the
triangle inequality to get

‖a‖c0
≤

∥
∥∥∥∥

N∑

1

a(m)F fm

∥
∥∥∥∥

C0

+ |a(k)|
(

k−1∑

1

|[F fm] (bk)| +
N∑

k+1

|[F fm] (bk)|
)

.

In the parenthesis we use (4.5) and (4.7) respectively for the first and second group
of terms respectively. (If k = 1 or k = N then there is only one group of terms.) We
get

‖a‖c0
<

∥∥∥∥
∥

N∑

1

a(m)F fm

∥∥∥∥
∥

C0

+ ‖a‖c0
ε.

We have proved that there is a number C4.8 independent of a ∈ c0 such that

‖a‖c0
≤ C4.8

∥∥∥
∥∥∥

∑

m∈Z+
a(m)F fm

∥∥∥
∥∥∥C0

. (4.8)

4.1.4. There is a vector b ∈ Rn such that

∥∥
∥∥∥

N∑

1

a(m)F fm

∥∥
∥∥∥

C0

=
∣∣
∣∣∣

N∑

1

a(m) [F fm] (b)

∣∣
∣∣∣

≤ ‖a‖c0

N∑

1

|[F fm] (b)| .

Furthermore, there is a unique positive integer k such that αk ≤ |b| < αk+1. Hence
we write

∥∥
∥∥∥

N∑

1

a(m)F fm

∥∥
∥∥∥

C0

≤ ‖a‖c0

[(
k−1∑

1

+
N∑

k+1

)

|[F fm] (b)| + |[F fk] (b)|
]

.

In the parenthesis we again use (4.5) and (4.7) respectively for the first and second
group of terms respectively. We get

∥∥∥∥∥

N∑

1

a(m)F fm

∥∥∥∥∥
C0

< ‖a‖c0
(ε + 1) .
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We have proved that there is a number C4.9 independent of a ∈ c0 such that

∥∥∥∥∥
∥

∑

m∈Z+
a(m)F fm

∥∥∥∥∥
∥C0

≤ C4.9 ‖a‖c0
. (4.9)

4.1.5. For all a ∈ c0 we have

‖a‖c0
≤ C4.8

∥∥∥∥∥∥

∑

m∈Z+
a(m) fm

∥∥∥∥∥∥
L1

(4.10)

according to (4.8) and (4.2) respectively. On the other hand, for all a ∈ c0 we have

∥∥∥
∥∥∥

∑

m∈Z+
a(m) fm

∥∥∥
∥∥∥

L1

≤ C4.3C4.9 ‖a‖c0
(4.11)

according to (4.3) and (4.9) respectively.

4.1.6. Let X1 be the closed linear span of � in L1. According to (4.10) and (4.11)
respectively the mapping em → fm can be extended to an isomorphism c0 −→ X1.
But X1 is as a closed subspace of a weakly sequentially complete space itself weakly
sequentially complete. This contradicts the aforementioned isomorphy. (Cf. Sect. 2.3.)

4.2. In the preceding proof we use only boundedness and linearity properties of the
Fourier transformation F . Symmetry properties of that linear mapping are not needed
for the argument.

Proposition 4.2.1 Let W be a weakly sequentially complete Banach space and let
the mapping T: W −→ C0 (Rn) be bounded, linear and injective. Assume that Y is a
closed subspace of C0 (Rn) such that Y is a subset of T (W). Then there are positive
numbers α and C independent of F ∈ Y such that

‖F‖C0(Rn)
≤ C ‖F‖C(

αBn
) .

4.3. Notation. For each c = (c1, . . . , cn) ∈ Zn let

Qc = {x ∈ Rn : ck ≤ xk ≤ ck + 1, k ∈ {1, 2, . . . , n}}.

As c ranges over Zn we obtain the collection Q of sets Qc whose union is Rn . The
intersection of a pair of terms in this union has Lebesgue measure 0. If β is a positive
number we replace ck and ck + 1 by βck and β(ck + 1) respectively so as to obtain
βQc. For β �= 1 the union of βQc has the same disjointness property as for β = 1. It
is clear that

sup
{∣∣x − x ′∣∣ : x, x ′ ∈ βQ, Q ∈ Q} ≤ β

√
n. (4.12)
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Lemma 4.4 Let X be a reflexive subspace of L1 (Rn) of infinite dimension. Then for
each choice of positive numbers β and C4.14 there is an f ∈ X such that

∑

Q∈Q

∣∣∣∣

∫

βQ
f

∣∣∣∣ < C4.14 ‖ f ‖L1(Rn)
. (4.13)

Proof Assume that there is a choice of positive numbers β and C4.14 independent of
f ∈ X such that the opposite of (4.13) holds. Since we also have

∑

Q∈Q

∣∣
∣∣

∫

βQ
f

∣∣
∣∣ ≤ ‖ f ‖L1(Rn)

the mapping T : X −→ �1 (Zn) given by

[T f ](c) =
∫

βQc

f , c ∈ Zn

is an isomorphism between the reflexive space X and a subspace of �1 (Zn). This is
impossible. (Cf. Sect. 2.3.)

5 Proof of Theorem 3.1

5.1. For each f ∈ L1 = L1 (Rn), for each c ∈ Zn and for each β > 0 we have with
the notation from Sect. 4.3

∣∣∣∣

∫

βQc

e−i xξ f (x) dx

∣∣∣∣ ≤
∫

βQc

∣∣∣e−i xξ − e−iqcξ
∣∣∣ | f (x)| dx +

+
∣∣
∣∣e

−iqcξ

∫

βQc

f

∣∣
∣∣ ≤

∫

βQc

|x − qc| |ξ | | f (x)| dx +
∣∣
∣∣

∫

βQc

f

∣∣
∣∣

for any qc ∈ Qc. Summing with respect to c, taking supremum with respect to ξ and
invoking (4.12) gives

‖F f ‖C(
αBn

) ≤ sup
|ξ |≤α

∑

c∈Zn

∣∣
∣∣

∫

βQc

e−i xξ f (x) dx

∣∣
∣∣ ≤ αβ

√
n ‖ f ‖L1 +

∑

c∈Zn

∣∣
∣∣

∫

βQc

f

∣∣
∣∣ .

(5.1)
5.2. Assume that Y fulfills the assumptions of the theorem. As in the proof of Lemma
4.1 (cf. Sect. 4.1.1) the space X = F−1Y is according to the open mapping theorem
isomorphic to Y . We have

‖ f ‖L1 ≤ C4.3 ‖F f ‖C0(Rn)
≤ C4.3C4.1 ‖F f ‖C(

αBn
) (5.2)
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where we have used Lemma 4.1 in the second inequality. Collecting the estimates
(5.1) and (5.2) gives that there is a number C5.3 independent of f such that

‖ f ‖L1 ≤ C5.3

[

αβ
√

n ‖ f ‖L1 +
∑

c∈Zn

∣∣
∣∣

∫

βQc

f

∣∣
∣∣

]

. (5.3)

5.3. By assumption, Y is reflexive. Hence X is reflexive. Assume that X is of infinite
dimension. Then the assumptions of Lemma 4.4 are fulfilled, and hence for

β <
1

2 C5.3 α
√

n
and C4.14 = 1

2C5.3

there is an f ∈ X such that

‖ f ‖L1 ≤ C5.3

[

αβ
√

n ‖ f ‖L1 +
∑

c∈Zn

∣∣∣∣

∫

βQc

f

∣∣∣∣

]

<
1

2
‖ f ‖L1 + 1

2
‖ f ‖L1 = ‖ f ‖L1 .

6 A Closed Non-Reflexive Subspace

6.1. The following theorem is a corollary of Katznelson [11, Sect. 1.4, p. 137]. (Cf.
also Zygmund [19, Vol. I, Theorem VI.6.1, p. 247].)

Theorem 6.1.1 Let a ∈ c0 (Z) and consider for a fixed number q > 1

g(x) =
∑

m∈Z

a(m)eixξm , x ∈ T = [−π, π [ (6.1)

with ξ−m = −ξm, ξ1 > 0, ξm+1 > qξm and ξm ∈ Z for all m ∈ Z+. Let G be the set
of all functions g appearing in (6.1) and let T be the linear mapping from G to �1 (Z)

given by T g = a. Then T has a unique extension, which we also denote by T , to the
closure of G in C (T) such that

‖T g‖
�1(Z)

≤ C ‖g‖C(T)

where is C independent of g.

6.2. Within the class of spaces which are closed subspaces Y of C0 (Rn) and subsets of[F L1
]
(Rn) we have proved that reflexivity implies finite dimensionality. The opposite

implication is trivial. Following Karlander’s idea in [10, p. 312] we will now for Rn

provide an example of a closed non-reflexive subspace Y .

6.3. Let H be any positive function in
[
L1 ∩ C0

]
(Rn) with ‖H‖C0(Rn)

= 1. For

a ∈ �1 (Z) we define

[T a] (ξ) = H(ξ)
∑

k∈Z

a(k)ei2|k|ξ1 , ξ = (ξ1, . . . , ξn) ∈ Rn
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and we let Y be the image of �1 (Z) under the mapping T . Then T a is the Fourier
transform of an L1 (Rn)-function. Furthermore we have ‖T a‖C0(Rn)

≤ ‖a‖
�1(Z)

and

so T : �1 (Z) −→ Y is a bounded linear bijection. If we can show that Y is closed
then Y and �1 (Z) are isomorphic by the open mapping theorem. In particular, Y is
not reflexive.
6.4. To show that Y is closed we assume that Fm is in Y for each m ∈ Z+ and that
Fm converges to F in C0 (Rn) as m → ∞. If Gm = Fm/H then Gm converges to a
continuos function G uniformly on each compact set as m → ∞. But

Gm(ξ) =
∑

k∈Z

am(k)ei2|k|ξ1

for some am ∈ �1 (Z). We now invoke Theorem 6.1.1 to conclude that there is a
function a ∈ �1 (Z) such that am converges to a in �1 (Z) as m → ∞. For fixed
ξ ∈ Rn we have

F(ξ) = lim
m→∞ H(ξ)

∑

k∈Z

am(k)ei2|k|ξ1 = H(ξ)
∑

k∈Z

a(k)ei2|k|ξ1 .

We have proved that F ∈ Y and hence Y is closed.
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