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1 Introduction

Limiting problems in analysis require much more refined scales of function spaces
than the classical Lebesgue spaces. For example, significant improvements of classi-
cal inequalities, like the Hausdorff—Young inequality for the Fourier transform, has
been obtained by using Lorentz L?-"-spaces (see, e.g., [24]). These are interpolation
spaces constructed via Peetre’s K-functional (see [4]) and represent a refinement of
the Lebesgue LP-scale. A different extension of the L”-scale, given by the Zygmund
spaces LP(log L)*, has come into play, e.g., in [17] in order to obtain estimates of
the eigenvalues of certain degenerate elliptic differential operators. It is also well
known that the Sobolev space W,f (R™) in the limiting situation when p = 7 > 1
is not embedded into the space L°°(R") but into the space L*>?(log L)~ Y R") as
shown by Brézis and Wainger [5] and Hansen [22]. Thus, Lorentz—Zygmund spaces
LP"(log L)* appear naturally even in the context of classical Sobolev spaces.

A different approach deriving embedding theorems for L?(T)-functions with a
certain smoothness was used by Ul’yanov [42,43]. The essential tool has been the
inequality

1/p*

5
« dt 1 1
e L ) B
t *
0 p p
O<o<l1/p, keN, (1.1)

for functions f € L?(T), 1 < p < 0o, nowadays known as Ulyanov’s inequality.
Here the k-th order modulus of smoothness wy (f, §)p is defined in the standard way
by

e (f,8)p == sup IAK Fllps Anf(x) = fx+h)— f(x), A% =A,aF"

Throughout the paper we use the notation A < B, with A, B > 0, for the estimate
A < ¢ B, where c is a positive constant, independent of the appropriate variables in
Aand B.If A < Band B < A, we write A ~ B (and say that A is equivalent to
B). For two normed spaces X and Y, we will use the notation ¥ — X if ¥ C X and
1£lx S 11 flly forall f e VY.

On the one hand, Ulyanov’s approach gives sharp embedding results for certain
degrees of smoothness, e.g., if wx(f, ), = 0(8%), 0 < a < k—cf. Remark 1.3 (d)
below. On the other hand, (1.1) has the obvious shortcoming that its left-hand side
cannot decrease faster than O(8¥=7) even for f € C*(T); however, for any f €
C°°(T) one has wi(f, 8), = 0", 1 <r<oco. A replacement of wy (f, §)p in (1.1)
by wit1(f, 8)p leads to the contradiction wy(f,8),» = 08 19),0 <o < 1/p,
for smooth f € C*°(T).

Thus one has to use moduli of smoothness w, (f, §), of fractional order k > 0 of
a function f € LP(R") (or f € LP(T")), 1 < p < oo, given by (cf. [7, p. 788])

o (f.8)p = sup (ESTEC) IS Zf(X)=Z(—1)”(:)f(x+vh)- (1.2)
= v=0
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Then a typical sharp Ulyanov-type inequality for f € L?(R"), 1 < p < oo, reads
as follows ([32], [39])

5 1/p*
0e(f, ) < /[r o (fp” ) L2l T ey
t p p n
’ (1.3)

The importance of Ulyanov-type inequalities results from its relation to problems
in the theory of function spaces, approximation theory, and interpolation theory—
see, e.g., [10], [21], [23], [25], [32], [39]. The interplay of Ulyanov inequalities and
embedding theorems shows that it is quite natural to consider the moduli of smoothness
in the framework of the Lorentz—Zygmund spaces.

To define the Lorentz—Zygmund spaces L”"(log L)*(R"), 1 < p,r < 00, o €
R, we introduce the logarithmic function £(t) = (1 + |logt]|), t > 0. A measurable
function f belongs to the space L?"*% = LP"(log L)*(R") if

%) 1/r
”f”p ria c= [ (f() [tl/pea(t)f*(t)]r%) <0, r<oo

Sup,~o t1P e (t) £5(1) < o0 , =00,

where f* denotes the non-increasing rearrangement of f. Thus L? = L7 and
£l = Il fllp,p;0- In the case of the torus, the integration extends over the interval
(0, 1)—see [3, p. 253]; the Lorentz—Zygmund spaces are rearrangement invariant
Banach function spaces if p > 1. For all these concepts see, e.g., [2], [3, Chap.
4, p. 253]. Likewise (1.2), the fractional modulus of smoothness of a function f €
LP"(log L)*(X), X = R" or X = T", is defined by

o (fs 8 pria = s | ARSI Lo og 1y -

The main goal of the paper is to prove sharp Ulyanov inequalities for the Lorentz—
Zygmund spaces LP"(log L)* over R" or T". Let us first formulate and comment
our two main results on the Euclidean space R" (Theorem 1.1) and on the torus
T" (Theorem 1.2).

Theorem 1.1 Let k >0, 1 < p <o00,0 <0 <n/p,and o € R.

(i) If y >0and 1 <r <s < o0, then

8
oy diy1/s
0. )psia S ([ U770 O 0o (fiDprary =)
0
1 1 o
504, —=——2, (1.4)
p p n

forall f e LP"(log L)~ (R").
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(ii) If y <0and 1 <r <s < 00, then inequality (1.4) holds only if f = 0.

(iii) If y > 0and 1 < s < r < oo, then inequality (1.4) is not true for all f €
LP"(log L)*~7 (R").

Theorem 1.1 (i) shows how the logarithmic component in smoothness on the right-
hand side of (1.4) leads to an additional logarithmic integrability on its left-hand side.

In the next theorem, concerning results on the torus T”, we consider not only the
sublimiting case 0 < o < n/p, or equivalently, p < p* < oo (part (a)) but also the
limiting case o = 0, or equivalently, p = p* (part (b)).

Theorem 1.2 (a) Let «k >0, 1 < p<o00,0<o <n/p,1 <r<s<oo, aelR,
and y > 0. Then

8

_ dt\1/s
a)K(fv 5)17*,s;<x S (/[t azy(t)wk+o(f, t)p,r;a—y]sT) s
0
1 1 o
504, —=——2 (15)
p p n

forall f € LP"(log L)*™Y(T"). Inequality (1.5) holds for y < 0 only if f is
constant.
(b) Let «k >0, 1 < p <o0,and x € R.

(i) If 1 <r <s <oothen, forall f e LP"(logL)*"V(T") when § — 0+,

s
dit\1/s
Of 8 psa S ( / L= @) (1, t),,,r;a,yr{)
0

+£y(8) we (f, 8)]),}’;&!—]/7 y > 0. (1.6)

(ii) If 1 <s <r < oothen, forall f e LP"(logL)*~7(T") when § — 0+,

Sdt)l/s

8
i (f, (S)p,s;a § (/[Ey_l/r(t) i (f, t)p,r;otfy] T
0

+Ey+1/s—1/r(3) oc(f,)pria—y, v >1/r—1/s. (1.7)

Remark 1.3 (a) Inthecase 1 < p <00, |l <s <r <oo,n =1,k =1,and
o = y = 0 Theorem 1.2 (b) (ii) is contained in [31, p. 336].

(b) The two terms on the right-hand side of (1.7) are independent of each other:
Consider the case p =r, k > 0, « = y > 0. There exists a sufficiently regular
f such that o (f, 1), ~ e—l/Hl/’—V(r)(@(e(t)))‘ﬁ, where B > 1/s (see [30,
Thm. 2] for « € N and [34, Thm. 2.5] for « > 0). Then the first integral term is
equivalent to (E 04 (8))) Vs=p , while the second behaves like (6(6 (8)))_/3 . Next,
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()

(@

if w,(f, 1), ~ t*, then the first term leads to ¢v=1r(8) 8%, while the second
one to £'/5=1/7+7 () <. Analogously, the independence of the two terms on the
right-hand side of (1.6) can be shown: Consider w, (f, 1), ~ £77(t) (E (E(t)))_ﬁ,
B> 1/s,and w,(f, 1), ~ t*.

In the case s =r = p and n = 1 estimate (1.6) is an improvement of

8

y du
wk(fa S)P’PQV rs 14 (u)a)k(fv u)[? 7 > d— 0+7 ke Na Yy > 07
0
feLp(T)a 1<p<00,

(see [41]) which follows as a specification of an abstract Ulyanov-type inequality
for semigroups in Banach spaces. Indeed,

) 1/p 0 2i8 1/p
y—1/r pdu - y L du
W we(fwplP— ) S| 20 [ W @erfwp)”

0 J==%%15

0 1/p 0 278

. . . . du

< yp(nJi—1 p J < v (i—1 J -

S| 20T el 20, 5 2 e e 8>p/ —
J=—00 J=— 2j—1g

by the monotonicity properties of the modulus of smoothness. Here the last term

is approximately f(f Y (u) we(f, u)p d;”. Moreover,

) )

O B or(f.8), MV@W / W du S / o wax(f, u),,%”

0 0

since £ (§) is decreasing and wy (f, 8)p/8k is almost decreasing on (0, 1).

As mentioned above, Ulyanov-type inequalities are closely related to embedding
theorems for smooth function spaces (Lipschitz, Nikolskii—Besov, etc.). In particu-
lar, sharp Ulyanov inequalities imply the following embedding for the generalized
Lipschitz spaces (Nikolskii spaces). Define

Lip (0(), 1, X) = [f €X: ai(f,8)x < Cao(s), §— 0+},

where w (+) is a is non-decreasing function on [0, 1] suchthatw(§) — 0 as § —
0+ and 8w () is non-increasing (see [34]). Then Theorem 1.1 implies that

Lip (@(-), k + o, LP" (log L)*7Y (R™)) C Lip (&(-), k, LP"* (log L)* (R"))

(1.8)
provided that
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S
. sdiyls
/[r 0 (1) ()] T) —0<a)(t) . (1.9)
0

Moreover, as it was shown in [32], this estimate is sharp for the Lebesgue spaces,
that is, in order that embedding (1.8) holds it is necessary that condition (1.9) is
valid. This result and similar ones that can be obtained from Theorems 1.1-1.2
extend several known embedding theorems (see [14], [21], [31], [42,43]). For the
case p = | or g = oo see also [15, Rem. 3.7], [35], [36].

(e) We mention one simple consequence of Theorems 1.1-1.2 for embeddings
of the Besov spaces Bc(;{);}r;ﬂ) . To this end, we define the Besov-type space

Bc(,ﬁ}r;ﬂ)‘S(X), X=R'or X=T"8,y eR,s >0, by

BYrPs .= 1 f e LP" (log L)’ : g s

1 1/s
5 sdu
= ™" (wywy (f, u)p gl — <ooyt, (1.10)
0
equipped with the norm
||f||3(5py-r:ﬂ).x = ||f||Lp»r(1ogL)/3 + |f|3§{f}}r:ﬂ)m

where n > 0 > 0. Inthe case « = y = 0, p* = s = r, Theorem 1.1 (i) and
Theorem 1.2 (a) immediately imply

(p,p*;0),p* (p*,p*;0),p*
BU,/L+1/p* > Bo’u .

The corresponding result in [10, Cor. 5.3] gives only B((Tf’ll{t?)‘p* — B(()f’;’p*;o)’p*.

The general case with proofs are considered in Sect. 2.4 below.

In what follows a modification of the K-functional plays an essential role since
they can be identified with the occurring moduli of smoothness. To make this more
precise, introduce the Riesz potential space

HY TR = (g € LM (log L) RY) : 18l e = I(=A)gllp r:a < 00),
A >0,

where (—A)*?2 is to be understood in the standard way (cf. [4, p. 147]). As K-

functional of the couple (LP"(log L)*(R™), H""*(R")), we will mainly use the
expression

K(f,t; LP" (log L)*, H'"") :=  inf_ (||f — glpra + z|g|H,,_,.;a).
geHP T i

Birkhauser
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The following lemma contains some characterizations of this K-functional; here we
use the notation F for the Fourier transformation and F—! for its inverse.

Lemmald Let 1 < p < 00,1 <r < o0,a € R, and » > 0. Define on
LP"(log L)*(R"™) the generalized Weierstrass means W,A and de la Vallée-Poussin
means V; by

Whf=F e U 1 £, Vif = F x@lED]* £, >0,

where x € C*[0, 00) is suchthat x(u) = 1for 0 <u < land x(u) = 0for u > 2.
Then '
K(f, 1% LPTQog L)*, H ") % 1 f = W Fllpria» (1.11)

K(f, 5 LP" (log L)%, HY" ) ~ I f = Vi fllp.ria + t’\Ithle,r;a . (112)

r(f, D pria = K (f, 1% LP" (log L), HY™). (1.13)

On LP(R"), 1 < p < o0, the first two characterizations are folklore and (1.13)
for I < p < oo has been proved by Wilmes [45]. For the sake of completeness, we
give a proof of (1.11), (1.12), (1.13) in Sect. 2.1.

The paper is organized as follows. Section 2 is devoted to the proof of Theorem
1.1. Since the Fourier multipliers with respect to R" have periodic counterparts (cf.
[33, Chap. VII]), the abstract arguments are independent of the underlying measure
space, and the Wilmes’ characterization also holds in the periodic situation [46], we
obtain the sublimiting case 0 < o < n/p of Theorem 1.2 as that of Theorem 1.1 (i);
details are left to the reader. Finally, in Sect. 3 we treat the limiting case o = 0 for
Lorentz—Zygmund spaces over T".

2 The Sublimiting Case p < p* for Lorentz—Zygmund Spaces Over R"

The proof of Theorem 1.1 (i) essentially runs as follows: Replace the modulus of
smoothness on the left-hand side of (1.4) by an appropriate (modified) K -functional,
estimate the latter by a K -functional with respect to L?>"(log L)*~7 -spaces, apply a
Holmstedt-type formula (cf. [19, Thm. 3.1 (c)]) and go back to the associated modulus
of smoothness on L?"(log L)*~Y. For this purpose, we have to prove a series of
results, e.g., an embedding of a homogeneous Besov-type space into some Lorentz—
Zygmund space, etc. Throughout the proof of Theorem 1.1, it will be convenient to
work with the norm

g . g
”f”B((’p),/r;ﬂ),S = ”f“var(lOgL)ﬂ + |f|B‘(7p},/r;ﬁ),s’
where
0 1/s
_ du
FE s = | [0 Wy (frw)p sl — |

Ba,y u

0

being equivalent to || f 1| yp.rip.s—see (1.10).
o,y
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2.1 Auxiliary Means
We start with the proof of (1.11), (1.12), and (1.13).

Proof of Lemma 1.4. First we analyze the proofs in L?(R"). We start with (1.11).
By [38, Cor. 2.3]),

[Fautai el Hf_l[%”‘l * ”Fl[%]nl ="

t> 0. 2.1)

Therefore, using Minkowski’s inequality and the boundedness of the first two terms
in (2.1), we get for any g € H/,

Lf = WLy < I =) = WHS = @llp +lg = Wiglp S I —gllp + 1718l

since g — Wrg = F1[(1 — e~ D) (¢]g]) =] % t*(— A)*/2g. Taking the infimum
over all g, we arrive at the part ” =" of the estimate in (1.11). Similarly, using the
boundedness of the third term in (2.1), we obtain the converse estimate

K" L2 HY) <L =W flp + W flge S =W Tl

completing the proof of (1.11).
Now consider (1.12). Since V;f € C® N LP for any f € LP, the part 7 <" is
trivial. To verify the converse inequality, we note that, by [38, Cor. 2.3],

- A
ol (SR L e

The first two estimates show that || f — V, fll, < K(f, th LP, Hf). Together
with (1.11), the estimate of the third term in (2.2) finally implies that t*|V; f] HY <
K(f,t*; LP, H)).

Concerning the proof of (1.13) in L?(R"), in the proof given by Wilmes [45]
there are only used pointwise identities, L”-norm triangle inequalities, and the L”-
boundedness of linear operators generated by Fourier multipliers.

To extend (1.11)—(1.13) from LP(R") to LP7"(log L)*(R"), we note that the
Lorentz—Zygmund spaces are interpolation spaces thus normable and triangle inequal-
ities hold. Further, Corollary 3.15 from [16] states that any quasilinear bounded
operator T : L? — LP, 1 < p < oo, is also bounded on the interpolation
spaces LP"(logL)*, « € R, 1 < r < oo. Thus, the LP-norm estimates men-
tioned above are also valid for the L?-" (log L)*-norms. This concludes the proofs of
(1.11)-(1.13). O

Next we consider a theorem on fractional integration, a slight variant of [29, Thm.
2.1], which is based on a modified Bessel potential operator. We define the Riesz
potential operator with logarithmic component by

1 T+ |7

Birkhauser
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177 fi=kgy* f

where k; ) is the function satisfying

Flhkoy 1) = |E] ™ log ¥ (e + |E]*), 0 <o <n, y>0.

Analogously to [29], we obtain that

Kooy (0) S IXITT €7 (), kS, (1) < KE5, (0 SO @), (23)

= Roy

where k(’ij“y (t) ;=11 fé k;y(u) du is the maximal function of k* (cf. [3, p. 52]).

Lemma2l Let l <p<oo,1<r<s<oo,ac€R,y>0,0<o0 <n/p, and
1/p*=1/p —o/n. Then

177 fllpesia SN pria—y forall f € LP"(log L)*7.

The proof is analogous to that of [29, Thm. 2.1] since in [29] only estimates (2.3)
were used to get the corresponding result for the Bessel-type potential operator.

The next lemma deals with a Bernstein inequality for logarithmic derivatives.
Throughout the paper we put

Br(0) :={§ e R" : |§] < R}.

Lemma22 Let 1 <p<oo, 1 <r<oo,a€R,and y > 0. Then

- - V(R) lIgllp,ria—y » 1 = R,
1 % 2 ) < 14 ( 8 p.ria—y
||.7: [10g (6 + |%—| )g] ”p,r,a—y ~ ”g”p,r;a—yv 0<R< 1’

forall g € S" with suppg C Bg(0).

Proof Let x € C*[0, co) be as in Lemma 1.4. Again, in view of [16, Cor. 3.15], we
only need to show that

17~ Tlog” (e + 1§ x (EP/RH I S €V (R),  R=1,
which immediately follows by [38, Cor. 2.3]. O
A combination of these two lemmas gives the following embedding.

Lemma23 Let l < p<oo,1<r<s<oo,aeR,y>00<o0 <n/p,and
1/p*=1/p —o/n. Then

(R lIgllp.ria—y. 1=R
IG’O . < p.rioa—y, = 9
I 8llp ;0 S lgllpria—y 0<R<1,

for all entire functions g € LP" (log L)*~" with suppg C Bg(0).

Birkhduser



J Fourier Anal Appl (2014) 20:1020-1049 1029

Proof Note that 190g = [9V~V g = [%Y F~!{log” (¢ + |£|?) g ] and, therefore, by
Lemmas 2.1 and 2.2,

1170y s S IFlog” (e + 1EPV 8 pria—y SR gl pria—y, R>1.

m}

The following variant of Nikolskii’s inequality will turn out to be useful.
Lemma24 Let l < p<p*<oo,1<r<s<oo,aeR andy >0.Then

lgllp si S R VP70 (R gl poric—y

forall g € LP"(log L)*~" with suppg C Br(0), R > 0.
Proof Take y from Lemma 1.4 and define vg(x) := f‘l[x(|§|/R)](x). Then

n n

R %
R S ————> vr() 3 (1 + Rel/myn”

1
*%x t < H {Rn’_}.
(1 + R[x|)" R () ~ min p

By the assumption on the support of the Fourier transform of g, we have vg x g = g.
Therefore, by O’Neil’s inequality,
o
g1 = (r*" () Stvg' (g™ (1) + / vr(W)g* () du.

t

Hence,
00 t 1/s
1 sdt
lell o S ([ [177" ¢4 min (" t}/g*(u)du] =
0
00 ) J /s
*(u sdt
R" 1/1’13‘%/ i d]— — Ny + No.
o ([[reo [t a] 'S L+ N
0

Observing that €% (¢), ¢ > 0, is almost increasing and ¢ ~¥£” (¢) is almost decreas-
ing, elementary estimates lead to

—n ' 1/5‘

[{II/P*+1—1/17£7(0}tl/l’—lga—y(t)/g*(u)du]s?

=

Ni < R"

o

00 ' 1/s
. d
+ / [{tl/l’ _1/pﬂy(t)}tl/p_1€a_y(t)/g*(u)du]sTt

00 t 1/s

< ROO/p=1/9") gy (R) /[tl/p—lga—y(t)/g*(u)du]s?
0 0
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Now apply a Hardy-type inequality [16, Lemma 3.1 (i)] to obtain (cf. the estimate [29,
(2.50D

Ny < RPYPD 0 (RY gl poriay -

Similarly, handle the term N; , use [16, Lemma 3.1 (ii)] (cf. the estimate [29, (2.6)])
to arrive at

r

oo 1/r n

R™ 0o 1/

*

S (1) r

N» S R" /[tl/p +l l/rea(l)(l_wa] dt =R" /+/ .
0 0 R

Apply Minkowski’s inequality, observe that

1 O0<t<R™
1/nyn ’ ,
I+ ReT) [ R"t, t>R7",

and use again the monotonicity properties of 1¥¢¢7 (1) to get No < R*(1/p=1/p")
(R N8l p.rsa—y - o

Next we need an analog of Lemma 2.1 with Besov-type spaces (1.10) involved
instead of Riesz-type potential spaces. Note that definition (1.10) is independent of
n > 0 when o > 0. This follows from the Marchaud inequality

]

ws (f, t)p,r;ﬂ 5 17 / uiﬂilwaﬂ((fs u)p,r;ﬂ du (2.4)

t

and a Hardy-type inequality [16, Lemma 3.1 (ii)]. To deduce (2.7), we refer to an
abstract Marchaud inequality from [40]—see the next remark.

Remark 2.5 Let (X, || - ) be a (complex) Banach space and {7 (¢)};>0 be an equi-
bounded (Cp)-semigroup of linear operators from X into itself with infinitesimal
generator At (cf. [4, § 6.7]), i.e.,

Tt +n)=T#)+T () forall /1, b >0, T(O) =1,
IT(¢)]] < C with aconstant C independent of ¢ > 0,
li%l+ IT()f — fll =0 foreach f € X ((Co)-property),
11—

lim H —T(I)J; —f

n — ATfH —0 forall f e D(Ar) (domainof A7).
r—

The operator Ar is closed, D(A7) is a Banach space under the graph norm |/ g|| +
lArgll, and the associated K -functional is given by

K(f t; X, D(A = inf — t)|A .
(f1: X. D) = inf {If gl +lA7gll]
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If one defines the fractional power (—Ar)"*, u > 0, of (—A7) by the strong limit

. H=TO"
A f e g
(=Ap)!f =5 tllloll pm I

El

then (—Ar)* is closed and [40, (1.12) and (1.5)] imply that

K(f.t": X, D(=AD)") t“/uﬂ‘*]K(f, ut G X, D((=A) ) du

t

for any « > 0. 2.5)

Now observe that for X = LP"(logL)?(R"), 1 < p < oo, the generalized
Weierstrass means {Qﬁﬁ‘ b0,

F e "% f, 1>0

W=15 t=0

(2.6)

differing from the Weierstrass means of Lemma 1.4 in the normalization of the parame-
ter t > 0, form (cf. [4,§  6.7]and [16, Cor. 3.15]) an equibounded (Cp)-semigroup
of linear operators of the required type and

D(Agy) = D((—Agg)*) = HP" P
Thus, (2.5) in combination with (1.13) gives the Marchaud inequality (2.7).
An important role in the proof of Theorem 1.1 is played by the following lemma,

generalizing several known results—cf. [25] and [26].

Lemma2.6 Let |l < p<o00,0<o <n/p, 1 <r<s<oo,aeR, and y > 0.
Then

I |Q

1 ra—=y), 1
”f”p*,s;ol S |f|B(p,r;a—y).s fOr all f € Bg{]yr “ )/) s ’ % =
o,y

1
p p

Proof Consider the partition of unity on R”,

Z gi(lEh =1for & £0, ;1) =970, @) :=x(®) — x(20),

Jj=—00
with the cut-off function y from Lemma 1.4. Set
fi=F"lgj(EN* f, j € 2.7)
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Under the assumption that

o0
B S D L @D fillpriamy I 2.8)

j=—00

holds, we show that the assertion of Lemma 2.6 is true. To this end, we first note that

||»7:71[€0/(|%_|)] * f”p,r;ot—y = ”f - VZ*ff”p,r;ot—y + ”f - Vzlfjf”p,r;ot—y
S K(f, 27/ ppnesy g ety (2.9)

by Lemma 1.4. Therefore,

2J
o0
V27 ‘ ; @y s dt
(Wal < Z [£Y(27)2/° K (, 2*](K+<7); Lprie=y gPrie y)]s dt

pr.sio ~ K+o t
Jj=—00 2j-1

K+o

oo
~ /[ZV(I)I_UK(f5 tK+U; LP,V:O(—]/’ Hp‘r;aiy) ]S % )
0

and Lemma 2.6 is established in view of (1.13) and (1.10) provided that (2.8) is valid.

We prove (2.8) by an argument communicated to us by A. Seeger. Choose ¢ €
C>(0, co) with supp@ C (1/4,4) and @ = 1 on supp ¢; set ¢; = @(27/+). Define
15, f = ]-"_I[Fp'j(|§|)] * f. Then Tg,; f; = fj for the f;’s from (2.7). Recall that
supp E c{& e R": 2771 < |&| < 2/*1} and, therefore, by the Nikolskii inequality
from Lemma 2.4,

€77 @27 T, fllpesia SN T3, fllpria—y S U lporiamy . 0 =n(1/p=1/p*),

(2.10)
forall f e LP"“7Y. Now fix p, 1 < p < 00; choose p;, p} suchthat p < pj <
p* < pj < o00.Set oo = n(1/p —1/py), o1 = n(1/p — 1/p}), consequently
0o # o1. Then (2.10) also holds with this fixed p but with (p*, o) replaced by
(p},oi), i =0, 1. Hence, for an arbitrary sequence (F;)jcz, F; € LP"7V, we
have

H ZT@'FJ'
JEZL

e S ST, Fjllprsia S D07 @D 217N Ty, Filpria—y

JEZ jez
SO @2 Flpriay- @.11)
JEL

Now apply an interpolation argument: Define the sequence space £¢ (X), X a normed
space, as the space of X-valued sequences (F;) ez with

) . 1/
I Fpslg = (D127 @) Filie 1) ™ < oo,

JEZL
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and a linear operator S by
S((Fpy) = 2T,
JEZ
Then (2.11) means that
.l Jia— Foss .
S.Zai(L’”“ Yy — LPi5, i=0,1.
Since o(p # o1, we obtain, by [4, Thm. 5.6.1 (dotted version)] that
(@ (X)v gl(X))Gq = gq(X) oc={0-0)op+601, 0<O <1, 1 <g<o0.
(2.12)

Moreover, (LP0-5®, LPT: "“)eq = LP"9% where 1/p* = (1 —0)/p§ +6/pt and
0 <6 < 1. Thus, the real interpolation 1mphes that

Scelrreyy o prhae (2.13)

Choose F; = f; with f; from (2.7). Then

S((Fj) =S((Fi) =D T fi =D fi =

JEZL JEZL

and, by (2.13),

1/q
1l prgia S | D_L277NE @) Fillparia—y 1]
JEL
which gives (2.8) on putting g = s. O

As already announced, we want to apply an appropriate Holmstedt formula for the
proof of Theorem 1.1 (i). To this purpose, we introduce slowly varying functions. A
measurable function b : (0, 00) — (0, 00) is said to be slowly varying on (0, 00),
notation b € SV (0, c0) if, for each ¢ > 0, there is an increasing function g, and a
decreasing g_. such that t*b(t) ~ g.(t) and t~¢b(t) =~ g_.(¢) for all ¢ € (0, 00).
Clearly, one has that £¥ € SV (0,00), y € R. For the sake of simplicity, in the
following we assume that the functions r*¢b(t) are already monotone. To describe
the framework of the desired Holmstedt formula, let (X, Y) be a compatible couple of
Banach spaces, where Y C X has a seminorm |- |y suchthat |-y :=|-llx+1|-|y
is anorm on Y. We will work with the (modified) K -functional

K(f,t; X,Y):=inf (| f — gllx +1lgly)
geyY

and we will state a slight variant of the Holmstedt formula involving slowly varying
functions given in [19, Thm. 3.1 (c¢)] without proof.
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Lemma 2.7 Let 0 <0 <1, 1 <s <00, and b € SV(0, 00). Define the interpola-
tion space (X,Y)g s:p by

e o]

diy /s
X Vo= £ € X5 1l = ([ bwr g x )" <o),

0
If 0 <0 < 1, then

t

dun1/s
K000 (X Vo 1)~ ([ bk (o X 1)
0

forall f e Xandall t > 0.

2.2 Proof of Theorem 1.1 (i).

Using the characterization (1.13), we can reduce the problem to estimates between
K -functionals. Thus,

e (fo ) prosia & K (f, 05 LP75% HP 59 < | f = gllpe s + £ 1= A" gll e s

forall g € H,f*’s“",

in particular, in view of Lemma 2.1, forall g € H;',“"". Consider g; = V;g, the de

la Vallée-Poussin means of g € H?*"" from Lemma 1.4. Note that

. < .
|gt|HKlrjrr<;a—V ~ |8|H’(/’1+r&a—y

since |F [ x@EDT I = O(1) by [38, Cor. 2.3]. As suppg; C By/;(0), Lemmas
2.6 and 2.3 imply that
Wy (fa l)p*,s;a ,S |f - gl'tIB(p,r;a—y),s + Ky (t) tK”(_A)(KJrG)/ng”p,r;a—y- (214)
oy

We want to apply the Holmstedt formula from Lemma 2.7. To this end, we have to get
rid of the de la Vallée-Poussin means, i.e., we have to estimate g; by g. Clearly,

i #
Wy (f? t)p*,S;Of S, |f - g|Bép},,r:ot7y),s + |g — &8 |B;p1;r:ozfy).s + gy(t) tK |gl|HI§7¥;0‘—V

and, by the above argument, |g;| ppray - Observe that
K+o

HPY < gl

f
|g — & |Bl(7’pj;r;m—y)vs

t [ee) J 1/s
~ (/+/)[u_"£y(u)l((g — g, u" T Py H,([:_r;“_y)]S?u
0
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Since K(g — g;,u“*°) < u*t9|g — gt|Hp.r;a—y and K(g — g, u¥t) < |g
Kk+o
—8illp,ria—y » We see that

# _
18 = 81 (pra—pys SO 118t ypra—y €O 177NI8 = &ill pria—y-
B(r,y K+o
The estimate
o rio—
lg — gllpria—y S K(g, (o Py H{+o‘ "< tK+G|g|Hpj:;0t*V
K+o

follows from Lemma 1.4, the definition of the K-functional and the fact that g €
HP/*7V  Thus, (2.14) holds for all g € H?';*"" | which implies that

K+o

Ol fpra S if (1 = 8 pras + OO Il ypray). (215)
3% K+o

p.ria—y
g€t s

Now BLe™7s — (prre—y HPUATVy, 6 = o/ + o), which directly
follows from the definition of the interpolation space given in Lemma 2.7 and the
characterization (1.13) of the involved K -functional. If we change the variable *
to +'7? and set p(t) = 117907 (1), we can interpret the right-hand side of (2.15) as

K(f, p(t); (LPe7Y, Hp’r;a_y)g,s;n, H,ﬁ’_r;a_y). By Lemma 2.7, the latter can be

K+o
reformulated as follows

K(f. p@); (LP7Y  HE g g, HESYTY)

K+o K+o
t 1/s
~ [ _ny . yp.ria—y p.rie—=y sdu
~ w0 WK (f,u; L TP
0

Hence, using the change of variables and (1.13), we arrive at

t 1/s
_ i o du
wi (f, t)p*,s;(x 5 /[u GEV(M)K(f, u/c-i-a; L=y, Hl{p_;_r&a y)]s7
0
t 1/s
_ du
~ /[u Uﬁy(”) W+ (f, u)p,r;oz—y]37
0
[m|

Firstlet y <0Oand 1 <r <s < co. Then it follows from (1.13) that f € H'">*77
implies that w6 (f, 1) pria—y = O(t“*9), t — 0+ . Together with (1.4) and the
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assumption y < 0, this gives w,(f, 8)p+ 5.0 = 0(8°), 6 — 0+ . Therefore, by
(1.13), it remains to show that

K(f.8 LP"*(log L)%, H"*5%) = o(8)as § > 0+ =  f=0.
From the proof of Lemma 1.4 it is clear that
SN—AYWE fllprsia S I = WE Fllpesia S K (85 LY (log L)*, HP ™).

Thus, by the Fatou property of the Lorentz—Zygmund spaces and the hypothesis, we
have

182 fllpe s < Timinf (=AY 2WE Fllpe e = 0.

But (—A)¥/2f = (Qyields f = 0since f € L?"(log L)“. o

(iii) The case y > 0 and s < r will be proved by contradiction. Assuming that the
Ulyanov-type inequality (1.4) holds, we prove that a fractional integration theorem
follows, which is false in Lorentz—Zygmund spaces. To this end, consider the set of
entire functions of exponential type

Epria—y:R = {PR € LP"(log L)*™" (R") : supp Pr C Br(0), R > O},

where ¢ € R and y > 0. Then UR>0 E, r.o—y.r is dense in LP"(log L)*™7 since,
by (1.12),

Wf = Vifllprie—y S S K(ft Lp,r(logL)a—y’H){J,r;Ol—V).

Moreover, the following Riesz-type inequality holds for 1 < p* < 0o, 1 <5 < oo,
Kk >0,

|P1ysl e S8 e (Pys, &) prsias Plys € Epria—y;1)s- (2.16)

Indeed, this is proved in [45] for p* = s and the argument used in the proof of Lemma
1.4 shows that (2.16) is true. Formula (1.13) and the definition of the K-functional
imply that

K (Pyjs, t“T7; LP " (log L)* ™, HI*TY)

w/c+(r(1 1/6» t)p,r;a—y ~
STV Ps|pray - 2.17
~ | 1/8| Kpiro' Y ( )

Estimates (2.16) and (2.17) applied to (1.4) lead to
1/s

P <87 1ot p — ~ |P ey
| 1/8|Hp A /[ | 1/8|H17rvt y] | 1/8|H’!)+r00t 14
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Since the estimates involved are independent of § > 0, we get

17 fllprsie S W lpria—y s  f €L (logL)*™, (2.18)
where 1 < p <00, 0 <o <n/p,and%—

provides a contradiction to (2.18). Let

| .
5= 2. The following example

- 1 \— )
fory = | X177 Gog g™ x| < 172
0, x| > 1/2.
Then
_1/”(log 1)7F, t < |B12(0)]
fp@ = I 0, otherwise

1r
and | £3(0) | priay = ( NP2 Ol =y =5y, )]’d“) . The latter converges if § >
a —y + 1/r and then fg € LP"(log L)*~7. On the other hand, for 0 < |x| < 1/2,

1
oy ~ —1/P 190~ P
177 fp(x) = / =7 (| _yDIyI log™"(1/lyD dy

Iyl<1/2
1

|x|r=oer (1/]x[)
lxl/4<lyl<x|/2

~ [x|77Plog ™V P (1/1x)).

Z lx|7"/P log P (1/|x]) dy

Hence,

(I7Y fg)*(1) 2 17" VP 1og VP (1/1), 0 <t <|Bip(0)]

1/s
and [[1%Y fgll p* s > ( O‘BI/Z(O)l[E‘)‘_V_ﬁ(t)]S#) , which diverges if 8 < o —

y + 1/s. Since r > s, there exists f suchthatoe —y +1/r < 8 <a—y + 1/s and
hence (2.18) does not hold for s < r ando = n(1/p — 1/p*). O

2.4 Embedding Results for Besov Spaces

Let us give two (nonlimiting) embeddings of the B, );r;’g )% _spaces that follow from
Theorems 1.1 (i) and 1.2 (a).

Corollary 2.8 Let 1 < p < 00,0 <o =n(l — —) <n/p, x €R, y>0and
1 <r <s <oo.Then, for X =R" or X = T” we have (see the definition of the
Besov spaces in (1.10))

BT (X) B“’ SOERY A ESO0, peR, (2.19)
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and
(p,r;a—y).& (p*.s;0).&
Bo,u+y+max{1/§,l/s}(x) — Bo,u (X), w, &> 0. (2.20)
Inthecase o = y =0, p* =5, p = r, (2.19) coincides with the embedding [10,

Cor. 5.3 (1)]. On the other hand, in this case (2.20) improves the embedding [ 10, Cor. 5.3
ST ,p30), *p%0).£ . .00, *,p*;0),
(i1)] since Bt(rﬁﬁ»m)af{l/s,l/s} — Bé{’u p0).8 is sharper than Béﬁti]) § — B(()i P06
when max{1/&, 1/s} < 1.

Proof We only prove the limiting case (2.20). By Theorems 1.1 (i) and 1.2 (a) we have

Sdu

1
|f|$(ﬂ*,3;a).$ = /[EM(”)CUK(]C, u)p*,s;a] 7
i ;

B,

1 u

d
S/M(u) (/[f"éy(t)wm(f’ f)wza—y]th) w

0 0

o o
U
<

Using Hardy’s inequality (see, e.g., [2])

‘ B

1 1
/eAa) /f(u)%u ?5/6“30);‘30)?, f=0, B>=1, A>-—1,
0 0 0

we get, in the case & > s,

1
§ - +y+1 du £
|f|B(p*,S:a).$ = /[u gyl () wto (f, ”)P,r;a*}/ﬁ? = |f|B(p,r:a*)/)15'
0,0 0 o, u+y+l/s

Let us now consider the case & < s. Using Hardy’s inequality (see [6,37])

1 B

t 1
/KA(t) /f(u)%” %S/EA‘H(I)]‘B(I)?, 0<B<1, A>—1,
0 0

0

which is true for any non-negative function f satisfying f(u) < Cf(¢)foru/2 <t <
u, 0 < u < 1, and monotonicity properties of the modulus of smoothness, we get

o, ut+y+1/&

1
- du
s = [ O 0 (ot iy B = 1 e
0,1
0
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A similar approach via Ulyanov’s inequalities can also be applied to obtain embed-
ding theorems for general Calderdn-type spaces

NGB ={FeG: Iflc+larf. )6lls <o},

introduced by Calderoén [8]. Note that the classical Besov spaces BY? are a particular
case of the Calderén spaces.

3 The Limiting Case p = p* for Lorentz—Zygmund Spaces Over T"

In this section we discuss the limiting case o = 0, i.e., when p = p*. When
trying to follow the effective approach of Sect. 2, we encounter the difficulty that we
cannot carry out the monotonicity arguments used in the proof of Lemma 2.4 on the
whole half-line, but only on the interval (0, 1) or (1, oo) separately. There are two
possibilities how to overcome this obstacle. One is to use the concept of broken indices
for the log-function - see [18]. The other, which we make use of, is to restrict ourselves
to the n-dimensional torus T”. In the following we use the standard Fourier series
setting (cf. [33, Chap. VII]),

f(.x) ~ Z f’:ne27't’imx7 ]7;1 :/f(x)e—2ﬂimx dx, f c LI(TH),
Tn

mez"

and denote by 7y the set of all trigonometric polynomials of degree N, i.e.,
In = 1Tn = Z cne?™m* e C, meZ"t, N eN.
lm|<N

Since in this section there will be no ambiguity, we use the notation of the previous
sections though the underlying measure space is T". Thus we write

1 1/r

. d
Lo = A f e LYT"Y 1 fllpria = / [tl/”E“(t)f*(t)]’Tt < oo},

0
for the periodic Riesz-potential space H. f T (T™) of order A > 0
Hp’r;a = S Lp'r;a N i
A {g I8l

= (=8 2gllpria <00}, (=A)Pg~ > |m|* g e,

meZh
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and for the associated K-functional K (f,t*; LP"*(T"), H""* (T"))

K(f, % LP7 HPT ) c=inf (1f = gllpira + 1718l ypoe) , A > 0.
geH"" »

On account of the Poisson-summation formula (see [44, p. 37]) we note that the
periodic analogs of (1.11) and (1.12) hold; the periodic analog of (1.13) is due to
Wilmes [46]. Hence the following variant of Lemma 1.4 is true.

Lemma3.l Let 1 < p < o0, 1 <r <o00,a € R, and A > 0. Define the
generalized Weierstrass means Wt)‘ and de la Vallée-Poussin means V; on the space
LP" (log L) (T") by

Wt)uf = Z e_(llml))‘f’;leznimx’ th = Z X(t|m|)f’:ne27'[imx’ t > O,

meZl |m|<2/t

where x € C*[0, 00) is from Lemma 1.4. Then

K(f, 1" LP"(log L)Y, H" )y ~ || f — W} Fllpra » (3.1)
K(f, 1" LP"(Qog L)*, H'" Y ~ | f = Vi fllpria + r*|vtf|H;.r;a . (32
0n(fs ) pria & K(f, 1% LP" (log L)*, HP™®). (3.3)

3.1 Auxiliary Results

We start with deriving analogs of Lemmas 2.1, 2.2, and 2.4 in the limiting case p =
p*. These results will be used in the proof of Theorem 1.2 (b). Define a fractional
integration 107 of logarithmic order y > 0 via 107 f = 120,,, * f, where the Fourier
series and the growth behavior (at the origin) of 120, y—see [44, Thm. 7 (ii)]—are given
by

2mwimx

fo, 0~ > ———— ko, S

14 AN
£ log? (e + ImP)

1
—log 7 —, x> 0. 34)
|x| |x|

As the next result is a slight variant of [29, Thm. 2.4], we state it without proof.

Lemma3.2 Let |l <p<oo, 1 <r<s<oo,ae€Rand y > 0. Then

17 Fllpasia SN pria—y forall f e L7 (log L)*77 (T").

By the Poisson-summation formula (see [44, p. 37]), it is clear that the proof of
Lemma 2.2 also works in the periodic situation. Hence, we obtain the following lemma.
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Lemma33 Let 1 < p <oo,1 <r <00, € Rand y > 0. Then the Bernstein-
type inequality

‘ Z 10gy(e+ |m|2) ckeZﬂimx
lm|<N

SZV(N)H Z CmeZnimx
lm|<N

p.rie—y p.ria—y

holds for all trigonometric polynomials of degree N.

A combination of these two lemmas yields a Nikolskii-type inequality for the lim-
iting case.

Lemma34 Let 1l <p<oo, 1 <r<s<oo,aeR, and y > 0. Then

H Z Cm emex S@y(N) H Z Cme2nimx
p.s;a

lm|<N |m|<N

p.ria=y

for all trigonometric polynomials in Ty, N € N.

Proof By Lemma 3.2,

H 2 cmeZﬂlmx

1, log” (e + |m|2)

ImI<N p,s'a p.s;a
< y 2 2wimx
S log” (e + [m|") cme 4
ml<N prey
and an application of Lemma 3.3 gives the assertion. O

To formulate an analog of Lemma 2.6 in our limiting case, we recall definition (1.10)
of the Besov-type space involving only the logarithmic smoothness €Y, y > 0,

B()p r;B), S(Tn)

du

= {f e LP"h |f|Béh,r:ﬁ)~S = /[ZV(M)wK(f, W) p,r;pl’ —
0

)

where « > 0. The notation B(p 0.y rib):s g justified by the fact that the definition is inde-
pendent of « > 0. To verify this, we make use of the notion of the best approximation.
Here En(f)p,r,p denotes the error of approximation of f € L¥" P by elements from
7Ty , given by

En(f)prp =1i0f{lf = Tnlprp: Tn € Iy}

and we call Tﬁ’r;ﬁ(f) € Ty the best approximant of f € LP"# by Ty. Next we
observe that, for any « > 0,
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Ej(f)p,r;oc—y S w(f, I/J)prot yN Z(l‘l’l)K IE(f)pra Iz

( + D
j € No. (3.5)

Here the first estimate is the Jackson inequality, which can be easily derived from the
classical Jackson’s theorem for the integer order moduli of smoothness (see [12, Thm.
2.1)):

Ej(f)p,r;(x—)/ 5 w[K]—H(fv ]/j)p,r;oc—y 5 wK(fs l/j)p,r;a—y~

The second estimate in (3.5) is the weak inverse inequality, which is known (see [11,
Thm. 2.3]) for the case « € N. We can prove it, for any « > 0, as follows. By (3.2),

w/c(f l/zm)pra Yy~ ||f V2 ’"f”pra y+2_mK|V2 "’f|HPVDt V-

Now we use the fact that the de la Vallée-Poussin sum satisfies |V fllp ria—y <
Cl fllp,r;u—y and Vi;NTy = Ty, Ty € Ty. Therefore, one has (see also [9, Sect. 4])

”f V2 '"f”p ra—y ~ S E2’”(f)p,r;ot—y- (36)

We now need the Bernstein inequality in L?-"> ¢~V (T"),
|TN|HK’"”‘”‘V = |V1/NTN|HM ay SNK(Ty, t*; LP"(log L)Y, HP'" %)

5 N* ”TN ”p,r;a—y s

which follows from (3.2). This estimate and (3.6) yield
m
Vamn flgpriamy = 1 D (Vo f = Varret f) 4 Vi f iy
=1

m
S D2 WVart f = Vot fllpiriamy + IV Fllpriay
=1

m—1
,S 2IKEZI (f)p,r;afy + EO(f)p,r;afy-
[=0
Thus, we get
m—1
a)/c(f 1/Zm)p ro—y ~ N (EO(f)p,r;ot—y + Z ZZK Ezl(f)p,r;a—y)7
=0
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which is equivalent to the last estimate in (3.5). Using monotonicity properties of the
modulus of smoothness, we get

1 1/s ~ 1/s
[ @ e (fwprgP )~ (S Uy 0 f, 1) gl
k\JsUWp,r;p " k\J> p.rip v .
0 v=1
This estimate, (3.5), and Hardy’s inequality imply that, for any y, s > 0,
1 I/s ~ 1/s
(7 o (et | ~ DL (A/v) Evi(f) 1) 6
K \J> p.riB " v—1 p.r;B D .

0 v=1

Note that in the case 0 < s < 1 we use the following Hardy-type inequality for

s
monotone sequences {&;} (cf. [6]): >0, v_l[ﬁy(v)v_’( Sl + l)K_lsi] <
> v W) e T

Finally, (3.7) immediately implies that the definition of
k> 0.

Béﬁ;r B s independent of

Lemma3s If1 < p,r<oo, 1 <s<oo, xR, and B > —1/s, then

B&Pﬂ,r:a),s (T") < 1,P-s:B+a+1/max{s.r} (T™).

In particular, we have

Bgf’y*’_“;’/;”*s(ﬂr") < LPSYTY) .y >0, l<r<s<oo, (3.8)

and
BTN e LPSUTY), y > U r—1/s, 1<s<r<oco. (39)
Proof By [28, Thm. 4.6],
LP7%(T") «— LPY(T") forany p; € [1, p). (3.10)

If n > 2, choose p; such that

max{l, } < p1 < min{p, n}. (3.11)

n+p

Together with the (generalized) Sobolev embedding theorem (cf., e.g., [16, Thm. 4.8
and Thm. 4.2]), embedding (3.10) implies that

Wle,r;a(Tn) s WILm (T") s LPT(’]IW), = _Z
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If n = 1, then, cf. [1, Lemma 5.8, p. 100], wWILY(T") < C(T"), which, together
with (3.10) shows that the embedding

WILPT(T) s WILP/(T") < LPI(T")

remains true with any p} € [1, oo], and hence with pj satisfying 1 < p < p} < oco.
Combining the embedding W!LP"¢(T") — LP1(T") with the trivial embedding
LP7%(T") — LP"%(T") and using a limiting interpolation, we arrive at

X = (L2, whLPTe (T ) %(Lp”;“(T"),LPT(’]I‘"))O %

0,5:8 .53

forany s € [1, oo] and B € R. Since (cf. [20, (1.6)])
K (f.t; LP7(T™), WLPZ(T) ~ min{1, 1} £l p.ria + @1 (f2 D poria

forall f e LP"(T") + WILP"*(T") and every ¢t > 0, one can show that X =
B (T"). Note that

1/s

1
d
1Fllx o= 1l s + / (80 o1 (f. el
0

Moreover, if 1 <s < ooand B > —1/s, then, using [18, Thm. 5.9, Thm. 4.7 (ii),
p. 952], we obtain that ¥ < LP-s:ftetl/maxis.r}(ny and the result follows.

Replace a by o — y, take B =y — 1/s and 8 = y — 1/r, to obtain embeddings
(3.10) and (3.9), respectively. m]
3.2 Proof of Theorem 1.2 (b)

Unlike the proof of part (a), here we will use the technique based on estimates of the
best approximations rather than a Holmstedt-type formula.

Proof By (3.3) and (3.2),
O (f, 1/ N)psia SN = Viyn Fllpsie + N7 WVyN flppsca =0 L+ 11 (3.12)
(i) Let us first handle the case » < s. Lemma 3.4 together with (3.2) and (3.3) gives
11 S (og NY 0 (f. 1/N)p oy (3.13)
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Concerning [, we first observe that under our restriction on the parameters, by (3.10),

1
17 Cdt\1/s
”f”p,s;oz S, ”f”p,r;a—y + (/[ey 1/s (t) w1 (fa t)p,r;ot—y]A 7)
0

i , 1N\ 1/s
S lpriay + (IO D E ey 2) T Gl

Jj=1

for all f € LP"(log L)*~7 (T"), where the latter inequality follows by (3.7). For
arbitrary g € LP77V (T") set f := g — T"""* 7 (g). This implies that

Ej(f)p,r;a—y = ”f”p,r;oz—y =|g— Tﬁ’r;aiy(g)”p,r;a—y = EN(g)p,r;oz—y ,
0<j=N,

and
Ej(f)p,r;a—y = Ej(g)p,r;oc—y > J=N.

Rewrite (3.14) for the above function f = g — Tl{,l’r;a_y(g) to get

EN(g)p,s;a Sleg— Tjg’r;aiy(g)”p,s;a

N oo
S EN(g)p,r;otfy + [(Z"’ Z )[EV_I/S(].) Ej(f)p,r;afy]s l.:ll/
j=1 j=N+1 J

N
EYRRSINTE
S EN@ iy T EN@priamy (2107 O15)
j=1

— —1/s( 5'1 1s
+( E [Ky (]) Ej(g)p,r;(x—y]‘ _.)
J=N+1 J

5 EV(N) EN (g)p,r; oa—y

B —1/s - sl 1/s
(X TG Ej@pray )
J=N+1 J

Observe that, by [12, Thm. 2.1],
Ei(@)pria—y < o +1(8 V) poria—y S wie (g, VDpria—y

and that, by (3.6), llg — Vi/ngllp,sia S En(8)p,s:a to get the desired estimate for 1.

~

Together with (3.13), this establishes (1.6).
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(i1) Let us now consider the case 1 < s < r. Concerning I, we first observe that
under our restriction on the parameters, by (3.9),

din1/s
T

1
1 pssa S U iy + ([ 1077 0 0100
0

Now follow straightforward the proof in (i) to obtain

EN@psia SOTVTVINYEN@ pria—y

(G E @)
J=N+1 J

forany g € LP7>*7V(T"). This implies that

8

dt
LSOV G e (f D ray + / R iy
0

1/s

(3.15)
With regard to 11, we need the following variant of Nikolskii’s inequality for trigono-
metric polynomials Tx € 7y (T") which states that

TN llpsia S Qog N VN Tyl iy s v > Ur = 1/s, s <1, (3.16)
and which will be proved below. Suppose (3.16) is true. Then
115 N~ Aog Ny VTV £l oy S Qog NPT 0 (£ /N iy

by (3.2) and (3.3). In view of (3.15), this proves assertion (1.7).
To prove (3.16), we need the following Remez inequality (see [13] and also [27])

Ty(0) < CmTy(N™"), NEeN, (3.17)
where T is the non-increasing rearrangement of 7. Then

NT" 1
dt dt
ITVIE o0 S /[r”f’e“(r)m(t)]s?+ [t”f’z“(t)'m(r)]f? = I + .
0 N—n

p,sia ~
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By (3.17),

e

L S TH(NTY / e Y < TH(NT"SNTS/P*(N)
) t

N1 s/r

S TR(N T (N) / [t”f’ea—w)]’?

0

N7 s/r

< O (N) / [r‘/w“*mwﬁ(r)r%
0

SO MWITYI, iy

Finally, by Holder’s inequality,

1 s/r 1 (r—s)/r
dt dt
LS / (e Ty 17— ( / e —
1 s/r
s+1—=s/r 1/p pa— * rdt
S (N) [t/Pe* V(TR ()] "
§ E}’S"'l—s/r(N) ” TN ”;!r;a_y .
Note that the power of the £(N)-factor is positive since y > 1/r — 1/s. O
3.3 Embedding Results for Besov Spaces
We finish the paper with two limiting embeddings of the B<”,""”* -spaces that follow

from Theorem 1.2 (b).

Corollary 3.6 Assume 1 < p < oo, o € R, and either 1 < r < s < 00 or

1§s<r<oo.Lety+max{%—%,0}>0. Then

(p,r;a—y).§ n (p,s;a).& mn
Bx,u+y+max{§—},0}(’1r ) — Bk,u T, ME>0, nekR, (3.18)
and
B(l’,f:ﬂl—)/)qf (P]Iv‘l) s B(()’pl;’s;a)sé (Tn)’ g_— > O, Mé— > _1

0,//.+y+max{é7%,0}+max{%7%,0}
(3.19)

The proofs of (3.18) and (3.19) follow the same line as the proof of Corollary 2.8
using the Ulyanov inequalities from Theorem 1.2 (b) and suitable Hardy’s inequalities.
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