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Abstract We establish inequalities of Ulyanov-type for moduli of smoothness relating
the source Lorentz–Zygmund space L p,r (log L)α−γ , γ > 0, and the target space
L p∗,s(log L)α over R

n if 1 < p < p∗ < ∞ and over T
n if 1 < p ≤ p∗ < ∞. The

stronger logarithmic integrability (corresponding to L p∗,s(log L)α) is balanced by an
additional logarithmic smoothness.
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1 Introduction

Limiting problems in analysis require much more refined scales of function spaces
than the classical Lebesgue spaces. For example, significant improvements of classi-
cal inequalities, like the Hausdorff–Young inequality for the Fourier transform, has
been obtained by using Lorentz L p,r -spaces (see, e.g., [24]). These are interpolation
spaces constructed via Peetre’s K-functional (see [4]) and represent a refinement of
the Lebesgue L p-scale. A different extension of the L p-scale, given by the Zygmund
spaces L p(log L)α , has come into play, e.g., in [17] in order to obtain estimates of
the eigenvalues of certain degenerate elliptic differential operators. It is also well
known that the Sobolev space W p

k (Rn) in the limiting situation when p = n
k > 1

is not embedded into the space L∞(Rn) but into the space L∞,p(log L)−1(Rn) as
shown by Brézis and Wainger [5] and Hansen [22]. Thus, Lorentz–Zygmund spaces
L p,r (log L)α appear naturally even in the context of classical Sobolev spaces.

A different approach deriving embedding theorems for L p(T)-functions with a
certain smoothness was used by Ul’yanov [42,43]. The essential tool has been the
inequality

ωk( f, δ)p∗ �

⎛
⎝

δ∫

0

[t−σ ωk( f, t)p]p∗ dt

t

⎞
⎠

1/p∗

,
1

p∗ = 1

p
− σ,

0 < σ < 1/p, k ∈ N, (1.1)

for functions f ∈ L p(T), 1 ≤ p < ∞, nowadays known as Ulyanov’s inequality.
Here the k-th order modulus of smoothness ωk( f, δ)p is defined in the standard way
by

ωk( f, δ)p := sup
|h|≤δ

‖�k
h f ‖p , �h f (x) = f (x + h) − f (x), �k

h = �h�k−1
h .

Throughout the paper we use the notation A � B, with A, B ≥ 0, for the estimate
A ≤ c B, where c is a positive constant, independent of the appropriate variables in
A and B. If A � B and B � A, we write A ≈ B (and say that A is equivalent to
B). For two normed spaces X and Y, we will use the notation Y ↪→ X if Y ⊂ X and
‖ f ‖X � ‖ f ‖Y for all f ∈ Y.

On the one hand, Ulyanov’s approach gives sharp embedding results for certain
degrees of smoothness, e.g., if ωk( f, δ)p = O(δα), 0 < α < k—cf. Remark 1.3 (d)
below. On the other hand, (1.1) has the obvious shortcoming that its left-hand side
cannot decrease faster than O(δk−σ ) even for f ∈ C∞(T); however, for any f ∈
C∞(T) one has ωk( f, δ)r = O(δk), 1 ≤ r ≤ ∞. A replacement of ωk( f, δ)p in (1.1)
by ωk+1( f, δ)p leads to the contradiction ωk( f, δ)p∗ = O(δk+1−σ ), 0 < σ < 1/p,
for smooth f ∈ C∞(T).

Thus one has to use moduli of smoothness ωκ( f, δ)p of fractional order κ > 0 of
a function f ∈ L p(Rn) (or f ∈ L p(Tn)), 1 ≤ p < ∞, given by (cf. [7, p. 788])

ωκ( f, δ)p := sup
|h|≤δ

∥∥�κ
h f (x)

∥∥
L p , �κ

h f (x) =
∞∑

ν=0

(−1)ν
(

κ

ν

)
f
(
x + νh

)
. (1.2)
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Then a typical sharp Ulyanov-type inequality for f ∈ L p(Rn), 1 < p < ∞, reads
as follows ([32], [39])

ωκ( f, δ)p∗ �

⎛
⎝

δ∫

0

[t−σ ωκ+σ ( f, t)p]p∗ dt

t

⎞
⎠

1/p∗

,
1

p∗ = 1

p
− σ

n
, 0 < σ < n/p.

(1.3)
The importance of Ulyanov-type inequalities results from its relation to problems

in the theory of function spaces, approximation theory, and interpolation theory—
see, e.g., [10], [21], [23], [25], [32], [39]. The interplay of Ulyanov inequalities and
embedding theorems shows that it is quite natural to consider the moduli of smoothness
in the framework of the Lorentz–Zygmund spaces.

To define the Lorentz–Zygmund spaces L p,r (log L)α(Rn), 1 ≤ p, r ≤ ∞, α ∈
R, we introduce the logarithmic function �(t) = (1 + | log t |), t > 0. A measurable
function f belongs to the space L p,r;α ≡ L p,r (log L)α(Rn) if

‖ f ‖p,r;α :=
{( ∫∞

0 [t1/p �α(t) f ∗(t)]r dt
t

)1/r
< ∞ , r < ∞

supt>0 t1/p �α(t) f ∗(t) < ∞ , r = ∞,

where f ∗ denotes the non-increasing rearrangement of f. Thus L p = L p,p:0 and
‖ f ‖p = ‖ f ‖p,p;0. In the case of the torus, the integration extends over the interval
(0, 1)—see [3, p. 253]; the Lorentz–Zygmund spaces are rearrangement invariant
Banach function spaces if p > 1. For all these concepts see, e.g., [2], [3, Chap.
4, p. 253]. Likewise (1.2), the fractional modulus of smoothness of a function f ∈
L p,r (log L)α(X), X = R

n or X = T
n , is defined by

ωκ( f, δ)p,r;α := sup
|h|≤δ

∥∥�κ
h f (x)

∥∥
L p,r (log L)α(X)

.

The main goal of the paper is to prove sharp Ulyanov inequalities for the Lorentz–
Zygmund spaces L p,r (log L)α over R

n or T
n . Let us first formulate and comment

our two main results on the Euclidean space R
n (Theorem 1.1) and on the torus

T
n (Theorem 1.2).

Theorem 1.1 Let κ > 0, 1 < p < ∞, 0 < σ < n/p, and α ∈ R.

(i) If γ ≥ 0 and 1 ≤ r ≤ s ≤ ∞, then

ωκ( f, δ)p∗,s;α �
( δ∫

0

[t−σ �γ (t) ωκ+σ ( f, t)p,r;α−γ ]s dt

t

)1/s
,

δ → 0+,
1

p∗ = 1

p
− σ

n
, (1.4)

for all f ∈ L p,r (log L)α−γ (Rn).
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(ii) If γ < 0 and 1 ≤ r ≤ s ≤ ∞, then inequality (1.4) holds only if f = 0.

(iii) If γ ≥ 0 and 1 ≤ s < r < ∞, then inequality (1.4) is not true for all f ∈
L p,r (log L)α−γ (Rn).

Theorem 1.1 (i) shows how the logarithmic component in smoothness on the right-
hand side of (1.4) leads to an additional logarithmic integrability on its left-hand side.

In the next theorem, concerning results on the torus T
n , we consider not only the

sublimiting case 0 < σ < n/p, or equivalently, p < p∗ < ∞ (part (a)) but also the
limiting case σ = 0, or equivalently, p = p∗ (part (b)).

Theorem 1.2 (a) Let κ > 0, 1 < p < ∞, 0 < σ < n/p, 1 ≤ r ≤ s ≤ ∞, α ∈ R,

and γ ≥ 0. Then

ωκ( f, δ)p∗,s;α �
( δ∫

0

[t−σ �γ (t) ωκ+σ ( f, t)p,r;α−γ ]s dt

t

)1/s
,

δ → 0+,
1

p∗ = 1

p
− σ

n
, (1.5)

for all f ∈ L p,r (log L)α−γ (Tn). Inequality (1.5) holds for γ < 0 only if f is
constant.

(b) Let κ > 0, 1 < p < ∞, and α ∈ R.

(i) If 1 < r ≤ s < ∞ then, for all f ∈ L p,r (log L)α−γ (Tn) when δ → 0+,

ωκ( f, δ)p,s;α �
( δ∫

0

[�γ−1/s(t) ωκ( f, t)p,r;α−γ ]s dt

t

)1/s

+�γ (δ) ωκ( f, δ)p,r;α−γ , γ > 0. (1.6)

(ii) If 1 ≤ s < r < ∞ then, for all f ∈ L p,r (log L)α−γ (Tn) when δ → 0+,

ωκ( f, δ)p,s;α �
( δ∫

0

[�γ−1/r (t) ωκ( f, t)p,r;α−γ ]s dt

t

)1/s

+�γ+1/s−1/r (δ) ωκ( f, δ)p,r;α−γ , γ > 1/r − 1/s. (1.7)

Remark 1.3 (a) In the case 1 < p < ∞, 1 ≤ s < r < ∞, n = 1, κ = 1, and
α = γ = 0 Theorem 1.2 (b) (ii) is contained in [31, p. 336].

(b) The two terms on the right-hand side of (1.7) are independent of each other:
Consider the case p = r, κ > 0, α = γ > 0. There exists a sufficiently regular
f such that ωκ( f, t)p ≈ �−1/s+1/r−γ (t)

(
�(�(t))

)−β
, where β > 1/s (see [30,

Thm. 2] for κ ∈ N and [34, Thm. 2.5] for κ > 0). Then the first integral term is
equivalent to

(
�(�(δ))

)1/s−β
, while the second behaves like

(
�(�(δ))

)−β
. Next,
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if ωκ( f, t)p ≈ tκ , then the first term leads to �γ−1/r (δ) δκ , while the second
one to �1/s−1/r+γ (δ) δκ . Analogously, the independence of the two terms on the
right-hand side of (1.6) can be shown: Consider ωκ( f, t)p ≈ �−γ (t)

(
�(�(t))

)−β
,

β > 1/s, and ωκ( f, t)p ≈ tκ .

(c) In the case s = r = p and n = 1 estimate (1.6) is an improvement of

ωk( f, δ)p,p;γ �
δ∫

0

�γ (u) ωk( f, u)p
du

u
, δ → 0+, k ∈ N, γ > 0,

f ∈ L p(T), 1 < p < ∞ ,

(see [41]) which follows as a specification of an abstract Ulyanov-type inequality
for semigroups in Banach spaces. Indeed,

⎛
⎝

δ∫

0

[�γ−1/r (u)ωk( f, u)p]p du

u

⎞
⎠

1/p

�

⎛
⎜⎝

0∑
j=−∞

2 j δ∫

2 j−1δ

[�γ (u)ωk( f, u)p]p du

u

⎞
⎟⎠

1/p

�

⎛
⎝

0∑
j=−∞

�γ p(2 j−1δ)ω
p
k ( f, 2 jδ)p

⎞
⎠

1/p

�
0∑

j=−∞
�γ (2 j−1δ)ωk( f, 2 jδ)p

2 j δ∫

2 j−1δ

du

u
,

by the monotonicity properties of the modulus of smoothness. Here the last term
is approximately

∫ δ

0 �γ (u) ωk( f, u)p
du
u . Moreover,

�γ (δ)ωk( f, δ)p ≈ �γ (δ)
ωk( f, δ)p

δk

δ∫

0

uk−1 du �
δ∫

0

�γ (u)ωk( f, u)p
du

u

since �γ (δ) is decreasing and ωk( f, δ)p/δ
k is almost decreasing on (0, 1).

(d) As mentioned above, Ulyanov-type inequalities are closely related to embedding
theorems for smooth function spaces (Lipschitz, Nikolskii–Besov, etc.). In particu-
lar, sharp Ulyanov inequalities imply the following embedding for the generalized
Lipschitz spaces (Nikolskii spaces). Define

Lip
(
ω(·), l, X

) :=
{

f ∈ X : ωl( f, δ)X ≤ Cω(δ), δ → 0 +
}
,

where ω(·) is a is non-decreasing function on [0, 1] such that ω(δ) → 0 as δ →
0+ and δ−lω(δ) is non-increasing (see [34]). Then Theorem 1.1 implies that

Lip
(
ω(·), κ + σ, L p,r (log L)α−γ (Rn)

) ⊂ Lip
(
ω̃(·), κ, L p∗,s(log L)α(Rn)

)
(1.8)

provided that
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⎛
⎝

δ∫

0

[t−σ �γ (t) ω(t)]s dt

t

)1/s = O
(
ω̃(t)

⎞
⎠ . (1.9)

Moreover, as it was shown in [32], this estimate is sharp for the Lebesgue spaces,
that is, in order that embedding (1.8) holds it is necessary that condition (1.9) is
valid. This result and similar ones that can be obtained from Theorems 1.1-1.2
extend several known embedding theorems (see [14], [21], [31], [42,43]). For the
case p = 1 or q = ∞ see also [15, Rem. 3.7], [35], [36].

(e) We mention one simple consequence of Theorems 1.1-1.2 for embeddings
of the Besov spaces B(p,r;β),s

σ,γ . To this end, we define the Besov-type space

B(p,r;β),s
σ,γ (X), X = R

n or X = T
n, β, γ ∈ R, s > 0, by

B(p,r;β),s
σ,γ :=

⎧⎨
⎩ f ∈ L p,r (log L)β : | f |

B(p,r;β),s
σ,γ

:=
⎛
⎝

1∫

0

[u−σ �γ (u)ωη( f, u)p,r;β ]s du

u

⎞
⎠

1/s

< ∞

⎫⎪⎬
⎪⎭

, (1.10)

equipped with the norm

‖ f ‖
B(p,r;β),s

σ,γ
:= ‖ f ‖L p,r (log L)β + | f |

B(p,r;β),s
σ,γ

,

where η > σ ≥ 0. In the case α = γ = 0, p∗ = s = r , Theorem 1.1 (i) and
Theorem 1.2 (a) immediately imply

B(p,p∗;0),p∗
σ,μ+1/p∗ ↪→ B(p∗,p∗;0),p∗

0,μ .

The corresponding result in [10, Cor. 5.3] gives only B(p,p;0),p∗
σ,μ+1 ↪→ B(p∗,p∗;0),p∗

0,μ .

The general case with proofs are considered in Sect. 2.4 below.

In what follows a modification of the K -functional plays an essential role since
they can be identified with the occurring moduli of smoothness. To make this more
precise, introduce the Riesz potential space

H p,r;α
λ (Rn) := {g ∈ L p,r (log L)α(Rn) : |g|

H p,r; α
λ

:= ‖(−�)λ/2g‖p,r;α < ∞} ,

λ > 0,

where (−�)λ/2 is to be understood in the standard way (cf. [4, p. 147]). As K -
functional of the couple (L p,r (log L)α(Rn), H p,r;α

λ (Rn)), we will mainly use the
expression

K ( f, t; L p,r (log L)α, H p,r;α
λ ) := inf

g∈H p,r; α
λ

(
‖ f − g‖p,r;α + t |g|

H p,r; α
λ

)
.
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The following lemma contains some characterizations of this K -functional; here we
use the notation F for the Fourier transformation and F−1 for its inverse.

Lemma 1.4 Let 1 < p < ∞, 1 ≤ r ≤ ∞, α ∈ R, and λ > 0. Define on
L p,r (log L)α(Rn) the generalized Weierstrass means W λ

t and de la Vallée-Poussin
means Vt by

W λ
t f := F−1[e−(t |ξ |)λ] ∗ f, Vt f := F−1[χ(t |ξ |)] ∗ f, t > 0,

where χ ∈ C∞[0,∞) is such that χ(u) = 1 for 0 ≤ u ≤ 1 and χ(u) = 0 for u ≥ 2.

Then
K ( f, tλ; L p,r (log L)α, H p,r;α

λ ) ≈ ‖ f − W λ
t f ‖p,r;α , (1.11)

K ( f, tλ; L p,r (log L)α, H p,r;α
λ ) ≈ ‖ f − Vt f ‖p,r;α + tλ|Vt f |

H p,r; α
λ

, (1.12)

ωλ( f, t)p,r;α ≈ K ( f, tλ; L p,r (log L)α, H p,r;α
λ ). (1.13)

On L p(Rn), 1 ≤ p < ∞, the first two characterizations are folklore and (1.13)
for 1 < p < ∞ has been proved by Wilmes [45]. For the sake of completeness, we
give a proof of (1.11), (1.12), (1.13) in Sect. 2.1.

The paper is organized as follows. Section 2 is devoted to the proof of Theorem
1.1. Since the Fourier multipliers with respect to R

n have periodic counterparts (cf.
[33, Chap. VII]), the abstract arguments are independent of the underlying measure
space, and the Wilmes’ characterization also holds in the periodic situation [46], we
obtain the sublimiting case 0 < σ < n/p of Theorem 1.2 as that of Theorem 1.1 (i);
details are left to the reader. Finally, in Sect. 3 we treat the limiting case σ = 0 for
Lorentz–Zygmund spaces over T

n .

2 The Sublimiting Case p < p∗ for Lorentz–Zygmund Spaces Over R
n

The proof of Theorem 1.1 (i) essentially runs as follows: Replace the modulus of
smoothness on the left-hand side of (1.4) by an appropriate (modified) K -functional,
estimate the latter by a K -functional with respect to L p,r (log L)α−γ -spaces, apply a
Holmstedt-type formula (cf. [19, Thm. 3.1 (c)]) and go back to the associated modulus
of smoothness on L p,r (log L)α−γ . For this purpose, we have to prove a series of
results, e.g., an embedding of a homogeneous Besov-type space into some Lorentz–
Zygmund space, etc. Throughout the proof of Theorem 1.1, it will be convenient to
work with the norm

‖ f ‖�

B(p,r;β),s
σ,γ

:= ‖ f ‖L p,r (log L)β + | f |�
B(p,r;β),s

σ,γ

,

where

| f |�
B(p,r;β),s

σ,γ

:=
⎛
⎝

∞∫

0

[u−σ �γ (u)ωη( f, u)p,r;β ]s du

u

⎞
⎠

1/s

,

being equivalent to ‖ f ‖
B(p,r;β),s

σ,γ
—see (1.10).
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2.1 Auxiliary Means

We start with the proof of (1.11), (1.12), and (1.13).

Proof of Lemma 1.4. First we analyze the proofs in L p(Rn). We start with (1.11).
By [38, Cor. 2.3]),

‖F−1[e−(t |ξ |)λ]‖1 +
∥∥∥F−1

[1 − e−(t |ξ |)λ

(t |ξ |)λ
]∥∥∥

1
+
∥∥∥F−1

[ (t |ξ |)λe−(t |ξ |)λ

1 − e−(t |ξ |)λ
]∥∥∥

1
� 1,

t > 0. (2.1)

Therefore, using Minkowski’s inequality and the boundedness of the first two terms
in (2.1), we get for any g ∈ H p

λ ,

‖ f − W λ
t f ‖p ≤ ‖( f − g) − W λ

t ( f − g)‖p + ‖g − W λ
t g‖p � ‖ f − g‖p + tλ|g|H p

λ

since g − W λ
t g = F−1[(1− e−(t |ξ |)λ)(t |ξ |)−λ] ∗ tλ(−�)λ/2g. Taking the infimum

over all g, we arrive at the part ′′ �′′ of the estimate in (1.11). Similarly, using the
boundedness of the third term in (2.1), we obtain the converse estimate

K ( f, tλ; L p, H p
λ ) ≤ ‖ f − W λ

t f ‖p + tλ|W λ
t f |H p

λ
� ‖ f − W λ

t f ‖p ,

completing the proof of (1.11).
Now consider (1.12). Since Vt f ∈ C∞ ∩ L p for any f ∈ L p, the part ′′ �′′ is

trivial. To verify the converse inequality, we note that, by [38, Cor. 2.3],

‖F−1[χ(t |ξ |)]‖1+
∥∥∥F−1

[1 − χ(t |ξ |)
(t |ξ |)λ

]∥∥∥
1
+
∥∥∥F−1

[ (t |ξ |)λχ(t |ξ |)
1 − e−(t |ξ |)λ

]∥∥∥
1

� 1, t > 0.

(2.2)
The first two estimates show that ‖ f − Vt f ‖p � K ( f, tλ; L p, H p

λ ). Together
with (1.11), the estimate of the third term in (2.2) finally implies that tλ|Vt f |H p

λ
�

K ( f, tλ; L p, H p
λ ).

Concerning the proof of (1.13) in L p(Rn), in the proof given by Wilmes [45]
there are only used pointwise identities, L p-norm triangle inequalities, and the L p-
boundedness of linear operators generated by Fourier multipliers.

To extend (1.11)–(1.13) from L p(Rn) to L p,r (log L)α(Rn), we note that the
Lorentz–Zygmund spaces are interpolation spaces thus normable and triangle inequal-
ities hold. Further, Corollary 3.15 from [16] states that any quasilinear bounded
operator T : L p → L p, 1 < p < ∞, is also bounded on the interpolation
spaces L p,r (log L)α, α ∈ R, 1 ≤ r ≤ ∞. Thus, the L p-norm estimates men-
tioned above are also valid for the L p,r (log L)α-norms. This concludes the proofs of
(1.11)–(1.13). ��

Next we consider a theorem on fractional integration, a slight variant of [29, Thm.
2.1], which is based on a modified Bessel potential operator. We define the Riesz
potential operator with logarithmic component by
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I σ,γ f := kσ,γ ∗ f

where kσ,γ is the function satisfying

F[kσ,γ ](ξ) = |ξ |−σ log−γ (e + |ξ |2), 0 < σ < n, γ > 0.

Analogously to [29], we obtain that

kσ,γ (x) � |x |σ−n�−γ (|x |), k∗
σ,γ (t) ≤ k∗∗

σ,γ (t) � tσ/n−1�−γ (t), (2.3)

where k∗∗
σ,γ (t) := t−1

∫ t
0 k∗

σ,γ (u) du is the maximal function of k∗ (cf. [3, p. 52]).

Lemma 2.1 Let 1 < p < ∞, 1 ≤ r ≤ s ≤ ∞, α ∈ R, γ ≥ 0, 0 < σ < n/p, and
1/p∗ = 1/p − σ/n. Then

‖I σ,γ f ‖p∗,s;α � ‖ f ‖p,r;α−γ for all f ∈ L p,r (log L)α−γ .

The proof is analogous to that of [29, Thm. 2.1] since in [29] only estimates (2.3)
were used to get the corresponding result for the Bessel-type potential operator.

The next lemma deals with a Bernstein inequality for logarithmic derivatives.
Throughout the paper we put

BR(0) := {ξ ∈ R
n : |ξ | ≤ R}.

Lemma 2.2 Let 1 < p < ∞, 1 ≤ r ≤ ∞, α ∈ R, and γ > 0. Then

‖F−1[logγ (e + |ξ |2)ĝ ] ‖p,r;α−γ �
{

�γ (R) ‖g‖p,r;α−γ , 1 ≤ R,

‖g‖p,r;α−γ , 0 < R < 1,

for all g ∈ S′ with supp ĝ ⊂ BR(0).

Proof Let χ ∈ C∞[0,∞) be as in Lemma 1.4. Again, in view of [16, Cor. 3.15], we
only need to show that

‖F−1[logγ (e + |ξ |2)χ(|ξ |2/R2) ] ‖1 � �γ (R), R ≥ 1,

which immediately follows by [38, Cor. 2.3]. ��
A combination of these two lemmas gives the following embedding.

Lemma 2.3 Let 1 < p < ∞, 1 ≤ r ≤ s ≤ ∞, α ∈ R, γ > 0, 0 < σ < n/p, and
1/p∗ = 1/p − σ/n. Then

‖I σ,0g‖p∗,s;α �
{

�γ (R) ‖g‖p,r;α−γ , 1 ≤ R,

‖g‖p,r;α−γ , 0 < R < 1,

for all entire functions g ∈ L p,r (log L)α−γ with supp ĝ ⊂ BR(0).
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Proof Note that I σ,0g = I σ,γ−γ g = I σ,γ F−1[logγ (e + |ξ |2) ĝ ] and, therefore, by
Lemmas 2.1 and 2.2,

‖I σ,0g‖p∗,s;α � ‖F−1[logγ (e + |ξ |2) ĝ ] ‖p,r;α−γ � �γ (R) ‖g‖p,r;α−γ , R ≥ 1.

��
The following variant of Nikolskii’s inequality will turn out to be useful.

Lemma 2.4 Let 1 < p < p∗ < ∞, 1 ≤ r ≤ s ≤ ∞, α ∈ R, and γ ≥ 0. Then

‖g‖p∗,s;α � Rn(1/p−1/p∗)�γ (R) ‖g‖p,r;α−γ

for all g ∈ L p,r (log L)α−γ with supp ĝ ⊂ BR(0), R > 0.

Proof Take χ from Lemma 1.4 and define vR(x) := F−1[χ(|ξ |/R)](x). Then

|vR(x)| � Rn

(1 + R|x |)n
, v∗

R(t) � Rn

(1 + Rt1/n)n
, v∗∗

R (t) � min
{

Rn,
1

t

}
.

By the assumption on the support of the Fourier transform of g, we have vR ∗ g = g.
Therefore, by O’Neil’s inequality,

g∗(t) = (vR ∗ g)∗(t) � t v∗∗
R (t)g∗∗(t) +

∞∫

t

v∗
R(u)g∗(u) du.

Hence,

‖g‖p∗,s;α �

⎛
⎝

∞∫

0

[
t1/p∗

�α(t) min
{

Rn,
1

t

} t∫

0

g∗(u) du
]s dt

t

⎞
⎠

1/s

+ Rn

⎛
⎝

∞∫

0

[
t1/p∗

�α(t)

∞∫

t

g∗(u)

(1 + Ru1/n)n
du
]s dt

t

⎞
⎠

1/s

=: N1 + N2.

Observing that tε�γ (t), ε > 0, is almost increasing and t−ε�γ (t) is almost decreas-
ing, elementary estimates lead to

N1 ≤ Rn

⎛
⎜⎝

R−n∫

0

[
{t1/p∗+1−1/p�γ (t)} t1/p−1�α−γ (t)

t∫

0

g∗(u) du
]s dt

t

⎞
⎟⎠

1/s

+
⎛
⎝

∞∫

R−n

[
{t1/p∗−1/p�γ (t)} t1/p−1�α−γ (t)

t∫

0

g∗(u) du
]s dt

t

⎞
⎠

1/s

� Rn(1/p−1/p∗)�γ (R)

⎛
⎝

∞∫

0

[
t1/p−1�α−γ (t)

t∫

0

g∗(u) du
]s dt

t

⎞
⎠

1/s

.
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Now apply a Hardy-type inequality [16, Lemma 3.1 (i)] to obtain (cf. the estimate [29,
(2.5)])

N1 � Rn(1/p−1/p∗)�γ (R) ‖g‖p,r;α−γ .

Similarly, handle the term N2 , use [16, Lemma 3.1 (ii)] (cf. the estimate [29, (2.6)])
to arrive at

N2 � Rn

⎛
⎝

∞∫

0

[
t1/p∗+1−1/r�α(t)

g∗(t)
(1 + Rt1/n)n

]r
dt

⎞
⎠

1/r

= Rn

⎛
⎜⎝

R−n∫

0

. . . +
∞∫

R−n

. . .

⎞
⎟⎠

1/r

.

Apply Minkowski’s inequality, observe that

(1 + Rt1/n)n ≈
{

1, 0 < t < R−n,

Rnt, t ≥ R−n,

and use again the monotonicity properties of t±ε�γ (t) to get N2 � Rn(1/p−1/p∗)

�γ (R) ‖g‖p,r;α−γ . ��
Next we need an analog of Lemma 2.1 with Besov-type spaces (1.10) involved

instead of Riesz-type potential spaces. Note that definition (1.10) is independent of
η > 0 when σ > 0. This follows from the Marchaud inequality

ωσ ( f, t)p,r;β � tσ
∞∫

t

u−σ−1ωσ+κ ( f, u)p,r;β du (2.4)

and a Hardy-type inequality [16, Lemma 3.1 (ii)]. To deduce (2.7), we refer to an
abstract Marchaud inequality from [40]—see the next remark.

Remark 2.5 Let (X, ‖ · ‖) be a (complex) Banach space and {T (t)}t≥0 be an equi-
bounded (C0)-semigroup of linear operators from X into itself with infinitesimal
generator AT (cf. [4, § 6.7]), i.e.,

T (t1 + t2) = T (t1) + T (t2) for all t1, t2 ≥ 0, T (0) = I,

‖T (t)‖ ≤ C with a constant C independent of t ≥ 0,

lim
t→0+ ‖T (t) f − f ‖ = 0 for each f ∈ X ((C0)-property),

lim
t→0+

∥∥∥T (t) f − f

t
− AT f

∥∥∥ = 0 for all f ∈ D(AT ) (domain of AT ).

The operator AT is closed, D(AT ) is a Banach space under the graph norm ‖g‖+
‖AT g‖ , and the associated K -functional is given by

K ( f, t; X, D(AT )) := inf
g∈D(AT )

{
‖ f − g‖ + t ‖AT g‖

}
.
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If one defines the fractional power (−AT )μ, μ > 0, of (−AT ) by the strong limit

(−AT )μ f := s– lim
t→0+

[I − T (t)]μ
tμ

f,

then (−AT )μ is closed and [40, (1.12) and (1.5)] imply that

K ( f, tμ; X, D((−AT )μ)) � tμ
∞∫

t

u−μ−1 K ( f, uμ+κ ; X, D((−AT )μ+κ)) du

for any κ > 0. (2.5)

Now observe that for X = L p,r (log L)β(Rn), 1 < p < ∞, the generalized
Weierstrass means {Wμ

t }t>0 ,

W
μ
t f :=

{
F−1[e−t |ξ |μ] ∗ f , t > 0
f , t = 0,

(2.6)

differing from the Weierstrass means of Lemma 1.4 in the normalization of the parame-
ter t > 0, form (cf. [4, § 6.7] and [16, Cor. 3.15]) an equibounded (C0)-semigroup
of linear operators of the required type and

D(AWμ) = D((−AW1)μ) = H p,r;β
μ .

Thus, (2.5) in combination with (1.13) gives the Marchaud inequality (2.7).
An important role in the proof of Theorem 1.1 is played by the following lemma,

generalizing several known results—cf. [25] and [26].

Lemma 2.6 Let 1 < p < ∞, 0 < σ < n/p, 1 ≤ r ≤ s ≤ ∞, α ∈ R, and γ ≥ 0.

Then

‖ f ‖p∗,s;α � | f |�
B(p,r;α−γ ),s

σ,γ

for all f ∈ B(p,r;α−γ ),s
σ,γ ,

1

p∗ = 1

p
− σ

n
.

Proof Consider the partition of unity on R
n,

∞∑
j=−∞

ϕ j (|ξ |) = 1 for ξ �= 0, ϕ j (t) = ϕ(2− j t), ϕ(t) := χ(t) − χ(2t),

with the cut-off function χ from Lemma 1.4. Set

f j := F−1[ϕ j (|ξ |)] ∗ f, j ∈ Z. (2.7)
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Under the assumption that

‖ f ‖s
p∗,s;α �

∞∑
j=−∞

[ �γ (2 j )2 jσ ‖ f j‖p,r;α−γ ]s (2.8)

holds, we show that the assertion of Lemma 2.6 is true. To this end, we first note that

‖F−1[ϕ j (|ξ |)] ∗ f ‖p,r;α−γ ≤ ‖ f − V2− j f ‖p,r;α−γ + ‖ f − V21− j f ‖p,r;α−γ

� K ( f, 2− j (κ+σ); L p,r;α−γ , H p,r;α−γ
κ+σ ) (2.9)

by Lemma 1.4. Therefore,

‖ f ‖s
p∗,s;α �

∞∑
j=−∞

[ �γ (2 j )2 jσ K ( f, 2− j (κ+σ); L p,r;α−γ , H p,r;α−γ
κ+σ ) ]s

2 j∫

2 j−1

dt

t

≈
∞∫

0

[ �γ (t)t−σ K ( f, tκ+σ ; L p,r;α−γ , H p,r;α−γ
κ+σ ) ]s dt

t
,

and Lemma 2.6 is established in view of (1.13) and (1.10) provided that (2.8) is valid.
We prove (2.8) by an argument communicated to us by A. Seeger. Choose ϕ̃ ∈

C∞(0,∞) with supp ϕ̃ ⊂ (1/4, 4) and ϕ̃ = 1 on supp ϕ; set ϕ̃ j = ϕ̃(2− j ·). Define
Tϕ̃ j f := F−1[ϕ̃ j (|ξ |)] ∗ f. Then Tϕ̃ j f j = f j for the f j ’s from (2.7). Recall that
supp f̂ j ⊂ {ξ ∈ R

n : 2 j−1 ≤ |ξ | ≤ 2 j+1} and, therefore, by the Nikolskii inequality
from Lemma 2.4,

‖�−γ (2 j )2− jσ Tϕ̃ j f ‖p∗,s;α � ‖Tϕ̃ j f ‖p,r;α−γ � ‖ f ‖p,r;α−γ , σ = n(1/p−1/p∗),
(2.10)

for all f ∈ L p,r;α−γ . Now fix p, 1 < p < ∞; choose p∗
0, p∗

1 such that p < p∗
0 <

p∗ < p∗
1 < ∞. Set σ0 = n(1/p − 1/p∗

0), σ1 = n(1/p − 1/p∗
1), consequently

σ0 �= σ1. Then (2.10) also holds with this fixed p but with (p∗, σ ) replaced by
(p∗

i , σi ), i = 0, 1. Hence, for an arbitrary sequence (Fj ) j∈Z , Fj ∈ L p,r;α−γ , we
have

∥∥∥
∑
j∈Z

Tϕ̃ j Fj

∥∥∥
p∗

i ,s;α �
∑
j∈Z

‖Tϕ̃ j Fj‖p∗
i ,s;α �

∑
j∈Z

�γ (2 j ) 2 jσi ‖Tϕ̃ j Fj‖p,r;α−γ

�
∑
j∈Z

�γ (2 j ) 2 jσi ‖Fj‖p,r;α−γ . (2.11)

Now apply an interpolation argument: Define the sequence space �
q
σ (X), X a normed

space, as the space of X -valued sequences (Fj ) j∈Z with

‖ (Fj ) j‖�
q
σ

:=
(∑

j∈Z

[ 2 jσ ‖�γ (2 j ) Fj‖X ]q
)1/q

< ∞ ,
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and a linear operator S by

S
(
(Fj ) j

) :=
∑
j∈Z

Tϕ̃ j Fj .

Then (2.11) means that

S : �1
σi

(L p,r;α−γ ) → L p∗
i ,s;α, i = 0, 1.

Since σ0 �= σ1 , we obtain, by [4, Thm. 5.6.1 (dotted version)] that

(�1
σ0

(X), �1
σ1

(X))θ,q = �q
σ (X), σ = (1 − θ)σ0 + θσ1, 0 < θ < 1, 1 ≤ q ≤ ∞.

(2.12)
Moreover,

(
L p∗

0 ,s;α, L p∗
1 ,s;α)

θ,q = L p∗,q;α, where 1/p∗ = (1 − θ)/p∗
0 + θ/p∗

1 and
0 < θ < 1. Thus, the real interpolation implies that

S : �1
σ (L p,r;α−γ ) → L p∗,q;α. (2.13)

Choose Fj = f j with f j from (2.7). Then

S
(
(Fj ) j

) = S
(
( f j ) j

) =
∑
j∈Z

Tϕ̃ j f j =
∑
j∈Z

f j = f

and, by (2.13),

‖ f ‖p∗,q;α �

⎛
⎝∑

j∈Z

[ 2 jσ ‖�γ (2 j ) f j‖p,r;α−γ ]q

⎞
⎠

1/q

,

which gives (2.8) on putting q = s. ��
As already announced, we want to apply an appropriate Holmstedt formula for the

proof of Theorem 1.1 (i). To this purpose, we introduce slowly varying functions. A
measurable function b : (0,∞) → (0,∞) is said to be slowly varying on (0,∞),

notation b ∈ SV (0,∞) if, for each ε > 0, there is an increasing function gε and a
decreasing g−ε such that tεb(t) ≈ gε(t) and t−εb(t) ≈ g−ε(t) for all t ∈ (0,∞).

Clearly, one has that �γ ∈ SV (0,∞), γ ∈ R. For the sake of simplicity, in the
following we assume that the functions t±εb(t) are already monotone. To describe
the framework of the desired Holmstedt formula, let (X, Y ) be a compatible couple of
Banach spaces, where Y ⊂ X has a seminorm | · |Y such that ‖ · ‖Y := ‖ · ‖X + | · |Y
is a norm on Y. We will work with the (modified) K -functional

K ( f, t; X, Y ) := inf
g∈Y

(‖ f − g‖X + t |g|Y )

and we will state a slight variant of the Holmstedt formula involving slowly varying
functions given in [19, Thm. 3.1 (c)] without proof.
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Lemma 2.7 Let 0 ≤ θ ≤ 1, 1 ≤ s ≤ ∞, and b ∈ SV (0,∞). Define the interpola-
tion space (X, Y )θ,s;b by

(X, Y )θ,s;b :=
{

f ∈ X : | f |θ,s;b =
( ∞∫

0

[t−θb(t)K ( f, t; X, Y )]s dt

t

)1/s
< ∞

}
.

If 0 < θ < 1, then

K ( f, t1−θ b(t); (X, Y )θ,s;b, Y ) ≈
( t∫

0

[u−θ b(u)K ( f, u; X, Y )]s du

u

)1/s

for all f ∈ X and all t > 0.

2.2 Proof of Theorem 1.1 (i).

Using the characterization (1.13), we can reduce the problem to estimates between
K -functionals. Thus,

ωκ( f, t)p∗,s;α ≈ K ( f, tκ ; L p∗,s;α, H p∗,s;α
κ ) ≤ ‖ f − g‖p∗,s;α + tκ‖(−�)κ/2g‖p∗,s;α

for all g ∈ H p∗,s;α
κ ,

in particular, in view of Lemma 2.1, for all g ∈ H p,r;α−γ
κ+σ . Consider gt = Vt g, the de

la Vallée-Poussin means of g ∈ H p,r;α−γ
κ+σ from Lemma 1.4. Note that

|gt |H p,r;α−γ
κ+σ

� |g|
H p,r;α−γ

κ+σ

since ‖F−1[χ(t |ξ |)] ‖1 = O(1) by [38, Cor. 2.3]. As supp ĝt ⊂ B2/t (0), Lemmas
2.6 and 2.3 imply that

ωκ( f, t)p∗,s;α � | f − gt |�
B(p,r;α−γ ),s

σ,γ

+ �γ (t) tκ‖(−�)(κ+σ)/2gt‖p,r;α−γ . (2.14)

We want to apply the Holmstedt formula from Lemma 2.7. To this end, we have to get
rid of the de la Vallée-Poussin means, i.e., we have to estimate gt by g. Clearly,

ωκ( f, t)p∗,s;α � | f − g|�
B(p,r;α−γ ),s

σ,γ

+ |g − gt |�
B(p,r;α−γ ),s

σ,γ

+ �γ (t) tκ |gt |H p,r;α−γ
κ+σ

and, by the above argument, |gt |H p,r;α−γ
κ+σ

� |g|
H p,r;α−γ

κ+σ
. Observe that

|g − gt |�
B(p,r;α−γ ),s

σ,γ

≈
⎛
⎝(

t∫

0

+
∞∫

t

)
[u−σ �γ (u)K (g − gt , uκ+σ ; L p,r;α−γ , H p,r;α−γ

κ+σ )]s du

u

⎞
⎠

1/s

.
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Since K (g − gt , uκ+σ ) ≤ uκ+σ |g − gt |H p,r;α−γ
κ+σ

and K (g − gt , uκ+σ ) ≤ ‖g

−gt‖p,r;α−γ , we see that

|g − gt |�
B(p,r;α−γ ),s

σ,γ

� �γ (t) tκ |gt |H p,r;α−γ
κ+σ

+ �γ (t) t−σ ‖g − gt‖p,r;α−γ .

The estimate

‖g − gt‖p,r;α−γ � K (g, tκ+σ ; L p,r;α−γ , H p,r;α−γ
κ+σ ) � tκ+σ |g|

H p,r;α−γ
κ+σ

follows from Lemma 1.4, the definition of the K -functional and the fact that g ∈
H p,r;α−γ

κ+σ . Thus, (2.14) holds for all g ∈ H p,r;α−γ
κ+σ , which implies that

ωκ( f, t)p∗,s;α � inf
g∈H p,r;α−γ

κ+σ

(| f − g|�
B(p,r;α−γ ),s

σ,γ

+ �γ (t) tκ |g|
H p,r;α−γ

κ+σ

)
. (2.15)

Now B(p,r;α−γ ),s
σ,γ = (L p,r;α−γ , H p,r;α−γ

κ+σ )θ,s;�γ , θ = σ/(κ + σ), which directly
follows from the definition of the interpolation space given in Lemma 2.7 and the
characterization (1.13) of the involved K -functional. If we change the variable tκ

to t1−θ and set ρ(t) = t1−θ �γ (t), we can interpret the right-hand side of (2.15) as
K
(

f, ρ(t); (L p,r;α−γ , H p,r;α−γ
κ+σ )θ,s;�γ , H p,r;α−γ

κ+σ

)
. By Lemma 2.7, the latter can be

reformulated as follows

K
(

f, ρ(t); (L p,r;α−γ , H p,r;α−γ
κ+σ )θ,s;�γ , H p,r;α−γ

κ+σ

)

≈
⎛
⎝

t∫

0

[u−θ �γ (u)K ( f, u; L p,r;α−γ , H p,r;α−γ
κ+σ )]s du

u

⎞
⎠

1/s

.

Hence, using the change of variables and (1.13), we arrive at

ωκ( f, t)p∗,s;α �

⎛
⎝

t∫

0

[u−σ �γ (u)K ( f, uκ+σ ; L p,r;α−γ , H p,r;α−γ
κ+σ )]s du

u

⎞
⎠

1/s

≈
⎛
⎝

t∫

0

[u−σ �γ (u) ωκ+σ ( f, u)p,r;α−γ ]s du

u

⎞
⎠

1/s

.

��

2.3 Proof of Theorem 1.1 (ii, iii)

First let γ < 0 and 1 ≤ r ≤ s ≤ ∞. Then it follows from (1.13) that f ∈ H p,r;α−γ
κ+σ

implies that ωκ+σ ( f, t)p,r;α−γ = O(tκ+σ ), t → 0 + . Together with (1.4) and the
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assumption γ < 0, this gives ωκ( f, δ)p∗,s;α = o(δκ), δ → 0 + . Therefore, by
(1.13), it remains to show that

K ( f, δκ ; L p∗,s(log L)α, H p∗,s;α
κ ) = o(δκ) as δ → 0+ �⇒ f = 0.

From the proof of Lemma 1.4 it is clear that

δκ‖(−�)κ/2W κ
δ f ‖p∗,s;α � ‖ f − W κ

δ f ‖p∗,s;α � K ( f, δκ ; L p∗,s(log L)α, H p∗,s;α
κ ).

Thus, by the Fatou property of the Lorentz–Zygmund spaces and the hypothesis, we
have

‖(−�)κ/2 f ‖p∗,s;α ≤ lim inf
δ→0+ ‖(−�)κ/2W κ

δ f ‖p∗,s;α = 0.

But (−�)κ/2 f = 0 yields f = 0 since f ∈ L p∗,s(log L)α. ��
(iii) The case γ ≥ 0 and s < r will be proved by contradiction. Assuming that the

Ulyanov-type inequality (1.4) holds, we prove that a fractional integration theorem
follows, which is false in Lorentz–Zygmund spaces. To this end, consider the set of
entire functions of exponential type

E p,r;α−γ ;R :=
{

PR ∈ L p,r (log L)α−γ (Rn) : supp P̂R ⊂ BR(0), R > 0
}
,

where α ∈ R and γ ≥ 0. Then
⋃

R>0 E p,r;α−γ ;R is dense in L p,r (log L)α−γ since,
by (1.12),

‖ f − Vt f ‖p,r;α−γ � K ( f, tλ; L p,r (log L)α−γ , H p,r;α−γ
λ ).

Moreover, the following Riesz-type inequality holds for 1 < p∗ < ∞, 1 ≤ s ≤ ∞,
κ > 0,

|P1/δ|H p∗,s;α
κ

� δ−κωκ(P1/δ, δ)p∗,s;α , P1/δ ∈ E p,r;α−γ ;1/δ. (2.16)

Indeed, this is proved in [45] for p∗ = s and the argument used in the proof of Lemma
1.4 shows that (2.16) is true. Formula (1.13) and the definition of the K -functional
imply that

ωκ+σ (P1/δ, t)p,r;α−γ ≈ K (P1/δ, tκ+σ ; L p,r (log L)α−γ , H p,r;α−γ
κ+σ )

� tκ+σ |P1/δ|H p,r;α−γ
κ+σ

. (2.17)

Estimates (2.16) and (2.17) applied to (1.4) lead to

|P1/δ|H p∗,s;α
κ

� δ−κ

⎛
⎝

δ∫

0

[t−σ tκ+σ |P1/δ|H p,r;α−γ
κ+σ

]s dt

t

⎞
⎠

1/s

≈ |P1/δ|H p,r;α−γ
κ+σ

.
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Since the estimates involved are independent of δ > 0, we get

‖I σ,γ f ‖p∗,s;α � ‖ f ‖p,r;α−γ , f ∈ L p,r (log L)α−γ , (2.18)

where 1 < p < ∞, 0 < σ < n/p, and 1
p∗ = 1

p − σ
n . The following example

provides a contradiction to (2.18). Let

fβ(x) =
{ |x |−n/p(log 1

|x | )
−β, |x | < 1/2;

0, |x | ≥ 1/2.

Then

f ∗
β (t) ≈

{
t−1/p(log 1

t )
−β, t < |B1/2(0)|

0, otherwise

and ‖ f ∗
β (t)‖p,r;α−γ ≈

(∫ |B1/2(0)|
0 [ �α−γ−β(u) ]r du

u

)1/r
. The latter converges if β >

α − γ + 1/r and then fβ ∈ L p,r (log L)α−γ . On the other hand, for 0 < |x | ≤ 1/2,

I σ,γ fβ(x) ≈

∫

|y|<1/2

1

|x − y|n−σ �γ (|x − y|) |y|−n/p log−β(1/|y|) dy

�
∫

|x |/4<|y|<|x |/2

1

|x |n−σ �γ (1/|x |) |x |−n/p log−β(1/|x |) dy

≈ |x |σ−n/p log−γ−β(1/|x |).

Hence,

(I σ,γ fβ)∗(t) � tσ/n−1/p log−γ−β(1/t), 0 < t < |B1/2(0)|

and ‖I σ,γ fβ‖p∗,s;α �
(∫ |B1/2(0)|

0 [ �α−γ−β(t) ]s dt
t

)1/s
, which diverges if β < α −

γ + 1/s. Since r > s, there exists β such that α − γ + 1/r < β < α − γ + 1/s and
hence (2.18) does not hold for s < r and σ = n(1/p − 1/p∗). ��

2.4 Embedding Results for Besov Spaces

Let us give two (nonlimiting) embeddings of the B(p,r;β),s
σ,γ -spaces that follow from

Theorems 1.1 (i) and 1.2 (a).

Corollary 2.8 Let 1 < p < ∞, 0 < σ = n( 1
p − 1

p∗ ) < n/p, α ∈ R, γ ≥ 0 and
1 ≤ r ≤ s ≤ ∞. Then, for X = R

n or X = T
n, we have (see the definition of the

Besov spaces in (1.10))

B(p,r;α−γ ),ξ
λ+σ,μ+γ (X) ↪→ B(p∗,s;α),ξ

λ,μ (X), λ, ξ > 0, μ ∈ R, (2.19)
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and
B(p,r;α−γ ),ξ

σ,μ+γ+max{1/ξ,1/s}(X) ↪→ B(p∗,s;α),ξ
0,μ (X), μ, ξ > 0. (2.20)

In the case α = γ = 0, p∗ = s, p = r , (2.19) coincides with the embedding [10,
Cor. 5.3 (i)]. On the other hand, in this case (2.20) improves the embedding [10, Cor. 5.3
(ii)] since B(p,p;0),ξ

σ,μ+max{1/ξ,1/s} ↪→ B(p∗,p∗;0),ξ
0,μ is sharper than B(p,p;0),ξ

σ,μ+1 ↪→ B(p∗,p∗;0),ξ
0,μ

when max{1/ξ, 1/s} < 1.

Proof We only prove the limiting case (2.20). By Theorems 1.1 (i) and 1.2 (a) we have

| f |ξ
B(p∗,s;α),ξ

0,μ

=
1∫

0

[ �μ(u) ωκ( f, u)p∗,s;α]ξ du

u

�
1∫

0

�μξ (u)
( u∫

0

[ t−σ �γ (t) ωκ+σ ( f, t)p,r;α−γ ]s dt

t

) ξ
s du

u
.

Using Hardy’s inequality (see, e.g., [2])

1∫

0

�A(t)

⎛
⎝

t∫

0

f (u)
du

u

⎞
⎠

B

dt

t
�

1∫

0

�A+B(t) f B(t)
dt

t
, f ≥ 0, B ≥ 1, A > −1,

we get, in the case ξ ≥ s,

| f |ξ
B(p∗,s;α),ξ

0,μ

≤
1∫

0

[ u−σ �μ+γ+1/s(u) ωκ+σ ( f, u)p,r;α−γ ]ξ du

u
= | f |ξ

B(p,r;α−γ ),ξ
σ,μ+γ+1/s

.

Let us now consider the case ξ < s. Using Hardy’s inequality (see [6,37])

1∫

0

�A(t)

⎛
⎝

t∫

0

f (u)
du

u

⎞
⎠

B

dt

t
�

1∫

0

�A+1(t) f B(t)
dt

t
, 0 < B < 1, A > −1,

which is true for any non-negative function f satisfying f (u) ≤ C f (t) for u/2 ≤ t ≤
u, 0 ≤ u ≤ 1, and monotonicity properties of the modulus of smoothness, we get

| f |ξ
B(p∗,s;α),ξ

0,μ

≤
1∫

0

[ u−σ �μ+γ+1/ξ (u) ωκ+σ ( f, u)p,r;α−γ ]ξ du

u
= | f |ξ

B(p,r;α−γ ),ξ
σ,μ+γ+1/ξ

.

��
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A similar approach via Ulyanov’s inequalities can also be applied to obtain embed-
ding theorems for general Calderón-type spaces

�l(G, E) =
{

f ∈ G : ‖ f ‖G + ‖ωl( f, ·)G‖E < ∞
}
,

introduced by Calderón [8]. Note that the classical Besov spaces B p,q
α are a particular

case of the Calderón spaces.

3 The Limiting Case p = p∗ for Lorentz–Zygmund Spaces Over T
n

In this section we discuss the limiting case σ = 0, i.e., when p = p∗. When
trying to follow the effective approach of Sect. 2, we encounter the difficulty that we
cannot carry out the monotonicity arguments used in the proof of Lemma 2.4 on the
whole half-line, but only on the interval (0, 1) or (1,∞) separately. There are two
possibilities how to overcome this obstacle. One is to use the concept of broken indices
for the log-function - see [18]. The other, which we make use of, is to restrict ourselves
to the n-dimensional torus T

n . In the following we use the standard Fourier series
setting (cf. [33, Chap. VII]),

f (x) ∼
∑

m∈Zn

f̂me2π imx , f̂m =
∫

Tn

f (x)e−2π imx dx, f ∈ L1(Tn),

and denote by TN the set of all trigonometric polynomials of degree N , i.e.,

TN :=
⎧⎨
⎩TN =

∑
|m|≤N

cme2π imx : cm ∈ C, m ∈ Z
n

⎫⎬
⎭ , N ∈ N0.

Since in this section there will be no ambiguity, we use the notation of the previous
sections though the underlying measure space is T

n . Thus we write

L p,r;α := { f ∈ L1(Tn) : ‖ f ‖p,r;α :=
⎛
⎝

1∫

0

[t1/p�α(t) f ∗(t)]r dt

t

⎞
⎠

1/r

< ∞},

for the periodic Riesz-potential space H p,r;α
λ (Tn) of order λ > 0

H p,r;α
λ := {g ∈ L p,r;α : |g|

H p,r;α
λ

:= ‖(−�)λ/2g‖p,r;α < ∞} , (−�)λ/2g ∼
∑

m∈Zn

|m|λ ĝm e2π imx ,
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and for the associated K -functional K ( f, tλ; L p,r;α(Tn), H p,r;α
λ (Tn))

K ( f, tλ; L p,r;α, H p,r;α
λ ) := inf

g∈H p,r;α
λ

(‖ f − g‖p,r;α + tλ|g|
H p,r;α

λ

) , λ > 0.

On account of the Poisson-summation formula (see [44, p. 37]) we note that the
periodic analogs of (1.11) and (1.12) hold; the periodic analog of (1.13) is due to
Wilmes [46]. Hence the following variant of Lemma 1.4 is true.

Lemma 3.1 Let 1 < p < ∞, 1 ≤ r ≤ ∞, α ∈ R, and λ > 0. Define the
generalized Weierstrass means W λ

t and de la Vallée-Poussin means Vt on the space
L p,r (log L)α(Tn) by

W λ
t f :=

∑
m∈Zn

e−(t |m|)λ f̂me2π imx , Vt f :=
∑

|m|≤2/t

χ(t |m|) f̂me2π imx , t > 0,

where χ ∈ C∞[0,∞) is from Lemma 1.4. Then

K ( f, tλ; L p,r (log L)α, H p,r;α
λ ) ≈ ‖ f − W λ

t f ‖p,r;α , (3.1)

K ( f, tλ; L p,r (log L)α, H p,r;α
λ ) ≈ ‖ f − Vt f ‖p,r;α + tλ|Vt f |

H p,r; α
λ

, (3.2)

ωλ( f, t)p,r;α ≈ K ( f, tλ; L p,r (log L)α, H p,r;α
λ ). (3.3)

3.1 Auxiliary Results

We start with deriving analogs of Lemmas 2.1, 2.2, and 2.4 in the limiting case p =
p∗. These results will be used in the proof of Theorem 1.2 (b). Define a fractional
integration Ĩ 0,γ of logarithmic order γ > 0 via Ĩ 0,γ f := k̃0,γ ∗ f, where the Fourier
series and the growth behavior (at the origin) of k̃0,γ —see [44, Thm. 7 (ii)]—are given
by

k̃0,γ (x) ∼
∑

m∈Zn

e2π imx

logγ (e + |m|2) , |k̃0,γ (x)| � 1

|x |n log−γ−1 1

|x | , x → 0. (3.4)

As the next result is a slight variant of [29, Thm. 2.4], we state it without proof.

Lemma 3.2 Let 1 < p < ∞, 1 ≤ r ≤ s ≤ ∞, α ∈ R and γ > 0. Then

‖ Ĩ 0,γ f ‖p,s;α � ‖ f ‖p,r;α−γ for all f ∈ L p,r (log L)α−γ (Tn).

By the Poisson-summation formula (see [44, p. 37]), it is clear that the proof of
Lemma 2.2 also works in the periodic situation. Hence, we obtain the following lemma.
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Lemma 3.3 Let 1 < p < ∞, 1 ≤ r ≤ ∞, α ∈ R and γ > 0. Then the Bernstein-
type inequality

∥∥∥
∑

|m|≤N

logγ (e + |m|2) cke2π imx
∥∥∥

p,r;α−γ
� �γ (N )

∥∥∥
∑

|m|≤N

cme2π imx
∥∥∥

p,r;α−γ

holds for all trigonometric polynomials of degree N .

A combination of these two lemmas yields a Nikolskii-type inequality for the lim-
iting case.

Lemma 3.4 Let 1 < p < ∞, 1 ≤ r ≤ s ≤ ∞, α ∈ R, and γ > 0. Then

∥∥∥
∑

|m|≤N

cme2π imx
∥∥∥

p,s;α � �γ (N )

∥∥∥
∑

|m|≤N

cme2π imx
∥∥∥

p,r;α−γ

for all trigonometric polynomials in TN , N ∈ N.

Proof By Lemma 3.2,

∥∥∥
∑

|m|≤N

cme2π imx
∥∥∥

p,s;α =
∥∥∥
∑

|m|≤N

logγ (e + |m|2)
logγ (e + |m|2)cme2π imx

∥∥∥
p,s;α

�
∥∥∥
∑

|m|≤N

logγ (e + |m|2) cme2π imx
∥∥∥

p,r;α−γ

and an application of Lemma 3.3 gives the assertion. ��
To formulate an analog of Lemma 2.6 in our limiting case, we recall definition (1.10)

of the Besov-type space involving only the logarithmic smoothness �γ , γ > 0,

B(p,r;β),s
0,γ (Tn)

:=
{

f ∈ L p,r;β : | f |
B(p,r;β),s

0,γ

:=
⎛
⎝

1∫

0

[ �γ (u) ωκ( f, u)p,r;β ]s du

u

⎞
⎠

1/s

< ∞
}
,

where κ > 0. The notation B(p,r;β),s
0,γ is justified by the fact that the definition is inde-

pendent of κ > 0. To verify this, we make use of the notion of the best approximation.
Here EN ( f )p,r;β denotes the error of approximation of f ∈ L p,r;β by elements from
TN , given by

EN ( f )p,r;β := inf{‖ f − TN ‖p,r;β : TN ∈ TN }

and we call T p,r;β
N ( f ) ∈ TN the best approximant of f ∈ L p,r;β by TN . Next we

observe that, for any κ > 0,
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E j ( f )p,r;α−γ � ωκ( f, 1/j)p,r;α−γ � 1

( j + 1)κ

j∑
i=0

(i + 1)κ−1 Ei ( f )p,r;α−γ .

j ∈ N0. (3.5)

Here the first estimate is the Jackson inequality, which can be easily derived from the
classical Jackson’s theorem for the integer order moduli of smoothness (see [12, Thm.
2.1]):

E j ( f )p,r;α−γ � ω[κ]+1( f, 1/j)p,r;α−γ � ωκ( f, 1/j)p,r;α−γ .

The second estimate in (3.5) is the weak inverse inequality, which is known (see [11,
Thm. 2.3]) for the case κ ∈ N. We can prove it, for any κ > 0, as follows. By (3.2),

ωκ( f, 1/2m)p,r;α−γ ≈ ‖ f − V2−m f ‖p,r;α−γ + 2−mκ |V2−m f |
H p,r; α−γ

κ
.

Now we use the fact that the de la Vallée-Poussin sum satisfies ‖Vt f ‖p,r;α−γ ≤
C‖ f ‖p,r;α−γ and V1/N TN = TN , TN ∈ TN . Therefore, one has (see also [9, Sect. 4])

‖ f − V2−m f ‖p,r;α−γ � E2m ( f )p,r;α−γ . (3.6)

We now need the Bernstein inequality in L p,r;α−γ (Tn),

|TN |
H p,r; α−γ

κ
= |V1/N TN |

H p,r; α−γ
κ

� N κ K (TN , tκ ; L p,r (log L)α, H p,r;α
κ )

� N κ‖TN ‖p,r;α−γ ,

which follows from (3.2). This estimate and (3.6) yield

|V2−m f |
H p,r; α−γ

κ
= |

m∑
l=1

(V2−l f − V2−l+1 f ) + V1 f |
H p,r; α−γ

κ

�
m∑

l=1

2lκ‖V2−l f − V2−l+1 f ‖p,r;α−γ + ‖V1 f ‖p,r;α−γ

�
m−1∑
l=0

2lκ E2l ( f )p,r;α−γ + E0( f )p,r;α−γ .

Thus, we get

ωκ( f, 1/2m)p,r;α−γ � 2−mκ
(

E0( f )p,r;α−γ +
m−1∑
l=0

2lκ E2l ( f )p,r;α−γ

)
,
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which is equivalent to the last estimate in (3.5). Using monotonicity properties of the
modulus of smoothness, we get

⎛
⎝

1∫

0

[ �γ (u) ωκ( f, u)p,r;β ]s du

u

⎞
⎠

1/s

≈
( ∞∑

ν=1

[ �γ (1/ν) ωκ( f, 1/ν)p,r;β ]s 1

ν

)1/s

.

This estimate, (3.5), and Hardy’s inequality imply that, for any γ, s > 0,

⎛
⎝

1∫

0

[ �γ (u) ωκ( f, u)p,r;β ]s du

u

⎞
⎠

1/s

≈
( ∞∑

ν=1

[ �γ (1/ν) Eν−1( f )p,r;β ]s 1

ν

)1/s

.(3.7)

Note that in the case 0 < s < 1 we use the following Hardy-type inequality for

monotone sequences {εi } (cf. [6]):
∑∞

ν=1 ν−1
[
�γ (ν)ν−κ

∑ν
i=0(i + 1)κ−1εi

]s
�∑∞

ν=1 ν−1[ �γ (ν) εν−1]s .

Finally, (3.7) immediately implies that the definition of B(p,r;β),s
0,γ is independent of

κ > 0.

Lemma 3.5 If 1 < p, r < ∞, 1 ≤ s < ∞, α ∈ R, and β > −1/s, then

B(p,r;α),s
0,β (Tn) ↪→ L p,s;β+α+1/ max{s,r}(Tn).

In particular, we have

B(p,r;α−γ ),s
0,γ−1/s (Tn) ↪→ L p,s;α(Tn) , γ > 0, 1 < r ≤ s < ∞, (3.8)

and

B(p,r;α−γ ),s
0,γ−1/r (Tn) ↪→ L p,s;α(Tn) , γ > 1/r − 1/s, 1 ≤ s < r < ∞. (3.9)

Proof By [28, Thm. 4.6],

L p,r;α(Tn) ↪→ L p1(Tn) for any p1 ∈ [1, p). (3.10)

If n ≥ 2, choose p1 such that

max
{

1,
np

n + p

}
< p1 < min{p, n}. (3.11)

Together with the (generalized) Sobolev embedding theorem (cf., e.g., [16, Thm. 4.8
and Thm. 4.2]), embedding (3.10) implies that

W 1L p,r;α(Tn) ↪→ W 1L p1(Tn) ↪→ L p∗
1 (Tn),

1

p∗
1

= 1

p1
− 1

n
.
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If n = 1, then, cf. [1, Lemma 5.8, p. 100], W 1L1(Tn) ↪→ C(Tn), which, together
with (3.10) shows that the embedding

W 1L p,r;α(Tn) ↪→ W 1L p1(Tn) ↪→ L p∗
1 (Tn)

remains true with any p∗
1 ∈ [1,∞], and hence with p∗

1 satisfying 1 < p < p∗
1 < ∞.

Combining the embedding W 1L p,r;α(Tn) ↪→ L p∗
1 (Tn) with the trivial embedding

L p,r;α(Tn) ↪→ L p,r;α(Tn) and using a limiting interpolation, we arrive at

X :=
(

L p,r;α(Tn), W 1L p,r;α(Tn)
)

0,s;β ↪→
(

L p,r;α(Tn), L p∗
1 (Tn)

)
0,s;β =: Y

for any s ∈ [1,∞] and β ∈ R. Since (cf. [20, (1.6)])

K ( f, t; L p,r;α(Tn), W 1L p,r;α(Tn)) ≈ min{1, t}‖ f ‖p,r;α + ω1( f, t)p,r;α

for all f ∈ L p,r;α(Tn) + W 1L p,r;α(Tn) and every t > 0, one can show that X =
B(p,r;α),s

0,β (Tn). Note that

‖ f ‖X := ‖ f ‖p,r;α +
⎛
⎝

1∫

0

[�β(t) ω1( f, t)p,r;α]s dt

t

⎞
⎠

1/s

.

Moreover, if 1 ≤ s < ∞ and β > −1/s, then, using [18, Thm. 5.9+, Thm. 4.7+ (ii),
p. 952], we obtain that Y ↪→ L p,s;β+α+1/ max{s,r}(Tn) and the result follows.

Replace α by α − γ, take β = γ − 1/s and β = γ − 1/r, to obtain embeddings
(3.10) and (3.9), respectively. ��

3.2 Proof of Theorem 1.2 (b)

Unlike the proof of part (a), here we will use the technique based on estimates of the
best approximations rather than a Holmstedt-type formula.

Proof By (3.3) and (3.2),

ωκ( f, 1/N )p,s;α � ‖ f − V1/N f ‖p,s;α + N−κ |V1/N f |
H p,s; α

κ
=: I + I I. (3.12)

(i) Let us first handle the case r ≤ s. Lemma 3.4 together with (3.2) and (3.3) gives

I I � (log N )γ ωκ( f, 1/N )p,r;α−γ . (3.13)
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Concerning I , we first observe that under our restriction on the parameters, by (3.10),

‖ f ‖p,s;α � ‖ f ‖p,r;α−γ +
( 1∫

0

[�γ−1/s(t) ω1( f, t)p,r;α−γ ]s dt

t

)1/s

� ‖ f ‖p,r;α−γ +
( ∞∑

j=1

[�γ−1/s( j) E j ( f )p,r;α−γ ]s 1

j

)1/s
(3.14)

for all f ∈ L p,r (log L)α−γ (Tn), where the latter inequality follows by (3.7). For
arbitrary g ∈ L p,r;α−γ (Tn) set f := g − T p,r;α−γ

N (g). This implies that

E j ( f )p,r;α−γ ≤ ‖ f ‖p,r;α−γ = ‖g − T p,r;α−γ

N (g)‖p,r;α−γ = EN (g)p,r;α−γ ,

0 ≤ j ≤ N ,

and

E j ( f )p,r;α−γ = E j (g)p,r;α−γ , j ≥ N .

Rewrite (3.14) for the above function f = g − T p,r;α−γ

N (g) to get

EN (g)p,s;α � ‖g − T p,r;α−γ

N (g)‖p,s;α

� EN (g)p,r;α−γ +
[( N∑

j=1

+
∞∑

j=N+1

)
[�γ−1/s( j) E j ( f )p,r;α−γ ]s 1

j

]1/s

� EN (g)p,r;α−γ + EN (g)p,r;α−γ

( N∑
j=1

[�γ−1/s( j)]s 1

j

)1/s

+
( ∞∑

j=N+1

[�γ−1/s( j) E j (g)p,r;α−γ ]s 1

j

)1/s

� �γ (N ) EN (g)p,r;α−γ

+
( ∞∑

j=N+1

[�γ−1/s( j) E j (g)p,r;α−γ ]s 1

j

)1/s
.

Observe that, by [12, Thm. 2.1],

E j (g)p,r;α−γ � ω[κ]+1(g, 1/j)p,r;α−γ � ωκ(g, 1/j)p,r;α−γ ,

and that, by (3.6), ‖g − V1/N g‖p,s;α � EN (g)p,s;α to get the desired estimate for I.
Together with (3.13), this establishes (1.6).
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(ii) Let us now consider the case 1 ≤ s < r. Concerning I , we first observe that
under our restriction on the parameters, by (3.9),

‖ f ‖p,s;α � ‖ f ‖p,r;α−γ +
( 1∫

0

[�γ−1/r (t) ω1( f, t)p,r;α−γ ]s dt

t

)1/s
.

Now follow straightforward the proof in (i) to obtain

EN (g)p,s;α � �γ+1/s−1/r (N ) EN (g)p,r;α−γ

+
( ∞∑

j=N+1

[�γ−1/r ( j) E j (g)p,r;α−γ ]s 1

j

)1/s

for any g ∈ L p,r;α−γ (Tn). This implies that

I � �γ+1/s−1/r (δ) ωκ( f, δ)p,r;α−γ +
( δ∫

0

[�γ−1/r (t) ωκ( f, t)p,r;α−γ ]s dt

t

)1/s
.

(3.15)
With regard to I I, we need the following variant of Nikolskii’s inequality for trigono-
metric polynomials TN ∈ TN (Tn) which states that

‖TN ‖p,s;α � (log N )γ+1/s−1/r‖TN ‖p,r;α−γ , γ > 1/r − 1/s, s < r, (3.16)

and which will be proved below. Suppose (3.16) is true. Then

I I � N−κ(log N )γ+1/s−1/r |V1/N f |
H p,r; α−γ

κ
� (log N )γ+1/s−1/rωκ( f, 1/N )p,r;α−γ ,

by (3.2) and (3.3). In view of (3.15), this proves assertion (1.7).
To prove (3.16), we need the following Remez inequality (see [13] and also [27])

T ∗
N (0) ≤ C(n)T ∗

N (N−n), N ∈ N, (3.17)

where T ∗
N is the non-increasing rearrangement of TN . Then

‖TN ‖s
p,s;α �

N−n∫

0

[ t1/p�α(t)T ∗
N (t) ]s dt

t
+

1∫

N−n

[ t1/p�α(t)T ∗
N (t) ]s dt

t
=: I1 + I2.
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By (3.17),

I1 � T ∗
N (N−n)s

N−n∫

0

[ t1/p�α(t) ]s dt

t
� T ∗

N (N−n)s N−ns/p�αs(N )

� T ∗
N (N−n)s�γ s(N )

⎛
⎜⎝

N−n∫

0

[ t1/p�α−γ (t) ]r dt

t

⎞
⎟⎠

s/r

� �γ s(N )

⎛
⎜⎝

N−n∫

0

[ t1/p�α−γ (t)T ∗
N (t) ]r dt

t

⎞
⎟⎠

s/r

� �γ s(N )‖TN ‖s
p,r;α−γ .

Finally, by Hölder’s inequality,

I2 �

⎛
⎝

1∫

N−n

[ t1/p�α−γ (t)T ∗
N (t) ]r dt

t

⎞
⎠

s/r ⎛
⎝

1∫

N−n

�γ sr/(r−s)(t)
dt

t

⎞
⎠

(r−s)/r

� �γ s+1−s/r (N )

⎛
⎝

1∫

N−n

[ t1/p�α−γ (t)T ∗
N (t) ]r dt

t

⎞
⎠

s/r

� �γ s+1−s/r (N )‖TN ‖s
p,r;α−γ .

Note that the power of the �(N )-factor is positive since γ > 1/r − 1/s. ��

3.3 Embedding Results for Besov Spaces

We finish the paper with two limiting embeddings of the B(p,r;β),s
σ,γ -spaces that follow

from Theorem 1.2 (b).

Corollary 3.6 Assume 1 < p < ∞, α ∈ R, and either 1 < r ≤ s < ∞ or
1 ≤ s < r < ∞. Let γ + max{ 1

s − 1
r , 0} > 0. Then

B(p,r;α−γ ),ξ

λ,μ+γ+max{ 1
s − 1

r ,0}(T
n) ↪→ B(p,s;α),ξ

λ,μ (Tn), λ, ξ > 0, μ ∈ R, (3.18)

and

B(p,r;α−γ ),ξ

0,μ+γ+max{ 1
ξ
− 1

s ,0}+max{ 1
s − 1

r ,0}(T
n) ↪→ B(p,s;α),ξ

0,μ (Tn), ξ > 0, μξ > −1.

(3.19)

The proofs of (3.18) and (3.19) follow the same line as the proof of Corollary 2.8
using the Ulyanov inequalities from Theorem 1.2 (b) and suitable Hardy’s inequalities.
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