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Abstract Motivated by the study of certain non linear free-boundary value prob-
lems for hyperbolic systems of partial differential equations arising in Magneto-
Hydrodynamics, in this paper we show that an a priori estimate of the solution to
certain boundary value problems, in the conormal Sobolev space H1

tan , can be trans-
formed into an L2 a priori estimate of the same problem.
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1 Introduction and Main Results

The present paper is motivated by the study of certain non linear free-boundary value
problems for hyperbolic systems of partial differential equations arising in Magneto-
Hydrodynamics (MHD).

The well-posedness of initial boundary value problems for hyperbolic PDEs was
studied by Kreiss [15] for systems and Sakamoto [28,29] for hyperbolic equations
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of higher order. The theory was extended to free-boundary problems for a disconti-
nuity by Majda [17,18]. He related the discontinuity problem to a half-space prob-
lem by adding a new variable that describes the displacement of the discontinuity,
and making a change of independent variables that “flattens”the discontinuity front.
The result is a system of hyperbolic PDEs that is coupled with an equation for the
displacement of the discontinuity. Majda formulated analogs of the Lopatinskiı̆ and
uniform Lopatinskiı̆ conditions for discontinuity problems, and proved a short-time,
nonlinear existence and stability result for Lax shocks in solutions of hyperbolic con-
servation laws that satisfy the uniform Lopatinskiı̆ condition (see [3,19] for further
discussion).

Interesting and challenging problems arise when the discontinuity is weakly but
not strongly stable, i.e. the Lopatinskiı̆ condition only holds in weak form, because
surface waves propagate along the discontinuity, see [11,14]. A general theory for the
evolution of such weakly stable discontinuities is lacking.

A typical difficulty in the analysis of weakly stable problems is the loss of regularity
in the a priori estimates of solutions. Short-time existence results have been obtained
for various weakly stable nonlinear problems, typically by the use of a Nash-Moser
scheme to compensate for the loss of derivatives in the linearized energy estimates,
see [2,8,12,32,34].

A fundamental part of the general approach described above is given by the proof
of the well-posedness of the linear boundary value problems (shortly written BVPs in
the sequel) obtained from linearizing the nonlinear problem (in the new independent
variables with “flattened”boundary) around a suitable basic state. This requires two
things: the proof of a linearized energy estimate, and the existence of the solution to
the linearized problem.

In case of certain problems arising in MHD, a spectral analysis of the linearized
equations, as required by the Kreiss–Lopatinskiı̆ theory, seems very hard to be obtained
because of big algebraic difficulties. An alternative approach for the proof of the lin-
earized a priori estimate is the energy method. This method has been applied success-
fully to the linearized MHD problems by Trakhinin (see [33,35] and other references);
typically the method gives an a priori estimate for the solution in the conormal Sobolev
space H1

tan (see Sect. 2 for the definition of this space) bounded by the norm of the
source term in the same function space (or a space of higher order in case of loss of
regularity).

Once given the a priori estimate, the next point requires the proof of the existence
of the solution to the linearized problem. Here one finds a new difficulty. The classical
duality method for the existence of a weak L2 solution requires an a priori estimate for
the dual problem (usually similar to the given linearized problem) of the form L2 − L2

(from the data in the interior to the solution, disregarding for simplicity the boundary
regularity). In case of loss of derivatives, when for the problem it is given an estimate
of the form H1 − L2, one would need an estimate of the form L2 − H−1 for the dual
problem, see [10].

The existence of a solution directly in H1
tan would require an a priori estimate for

the dual problem in the dual spaces (H1
tan)

′ − (H1
tan)

′ (possibly of the form (H1
tan)

′ −
(H2

tan)
′ in case of loss of regularity), but it is not clear how to get it.
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This difficulty motivates the present paper. We show that an a priori estimate of the
solution to certain BVPs in the conormal Sobolev space H1

tan can be transformed into
an L2 a priori estimate, with the consequence that the existence of a weak L2 solution
can be obtained by the classical duality argument.

The most of the paper is devoted to the proof of this result. In the Appendix we
present some examples of free-boundary problems in MHD that fit in the general
formulation described below.

For a given integer n ≥ 2, let R
n+ denote the n-dimensional positive half-space

R
n+ := {x = (x1, . . . , xn) ∈ R

n : x1 > 0}.

We also use the notation x ′ := (x2, . . . , xn). The boundary of R
n+ will be systematically

identified with R
n−1
x ′ .

We are interested in a boundary value problem of the following form

Lγ u + ρ�u = F, in R
n+, (1a)

bγ ψ + Mγ u + b�ψ + ��u = g, on R
n−1 . (1b)

In (1a), Lγ is the first-order linear partial differential operator

Lγ = Lγ (x, D) := γ IN +
n∑

j=1

A j (x)∂ j + B(x), (2)

where the shortcut ∂ j := ∂
∂x j

, for j = 1, . . . , n, is used hereafter and IN denotes the
N × N identity matrix. The coefficients A j = A j (x), B = B(x) (1 ≤ j ≤ n) are
N × N real matrix-valued functions in C∞

(0)(R
n+), the space of restrictions to R

n+ of

functions of C∞
0 (R

n).1

In (1b),

bγ = bγ (x
′, D′) := γ b0(x

′)+
n∑

j=2

b j (x
′)∂ j + β(x ′), (3a)

Mγ = Mγ (x
′, D′) := γM0(x

′)+
n∑

j=2

M j (x
′)∂ j + M(x ′) (3b)

are first-order linear partial differential operators, acting on the tangential variables
x ′ ∈ R

n−1; for a given integer 1 ≤ d ≤ N , the coefficients b j , β and M j , M
(for j = 0, 2, . . . , n) are functions in C∞

0 (R
n−1) taking values in the spaces R

d

and R
d×N respectively. Finally, ρ� = ρ�(x, Z , γ ) in (1a) and b� = b�(x ′, D′, γ ),

�� = ��(x ′, D′, γ ) in (1b) stand for “lower order operators” of pseudo-differential

1 With a slight abuse, the same notations C∞
(0)(R

n+), C∞
0 (Rn) are used throughout the paper to mean the

space of functions taking either scalar or matrix values (possibly with different sizes). We adopt the same
abuse for other function spaces later on.



J Fourier Anal Appl (2014) 20:816–864 819

type, acting “tangentially” on (u, ψ), whose symbols belong to suitable symbol classes
introduced in Sect. 3.1. The operators ρ� = ρ�(x, Z , γ ), b� = b�(x ′, D′, γ ), �� =
��(x ′, D′, γ ) must be understood as some “lower order perturbations” of the leading
operators Lγ , bγ and Mγ in the Eq. (1); in the following we assume that the problem
(1), with given operators Lγ , bγ , Mγ , obeys a suitable a priori estimate which has
to be “stable” under the addition of arbitrary lower order terms ρ�u, b�ψ , ��u in the
interior Eq. (1a) and the boundary condition (1b) (see the assumptions (H)1, (H)2
below). The structure of the operators (3) and ρ�, b�, �� in (1) will be better described
later on.

The unknown u, as well as the source term F , are R
N -valued functions of x , the

unknown ψ is a scalar function of x ′ 2 and the boundary datum g is an R
d -valued

function of x ′. We may assume that u and F are compactly supported in the unitary
n-dimensional positive half-cylinder B

+ := {x = (x1, x ′) : 0 ≤ x1 < 1, |x ′| < 1}.
Analogously, we assume that ψ and g are compactly supported in the unitary (n − 1)-
dimensional ball B(0; 1) := {|x ′| < 1}. For an arbitrary 0 < δ0 < 1, we also set
B

+
δ0

:= {x = (x1, x ′) : 0 ≤ x1 < δ0, |x ′| < δ0} and B(0; δ0) := {|x ′| < δ0}.
The BVP (1) has characteristic boundary of constant multiplicity 1 ≤ r < N in

the following sense: the coefficient A1 of the normal derivative in Lγ displays the
block-wise structure

A1(x) =
(

AI,I
1 AI,I I

1
AI I,I

1 AI I,I I
1

)
, (4)

where AI,I
1 , AI,I I

1 , AI I,I
1 , AI I,I I

1 are respectively r × r , r × (N − r), (N − r) × r ,
(N − r)× (N − r) sub-matrices, such that

AI,I I
1 | x1=0 = 0, AI I,I

1 | x1=0 = 0, AI I,I I
1 | x1=0 = 0, (5)

and AI,I
1 is invertible over B

+. According to the representation above, we split the
unknown u as u = (uI , uI I ); uI := (u1, . . . , ur ) ∈ R

r and uI I := (ur+1, . . . , uN ) ∈
R

N−r are said to be respectively the noncharacteristic and the characteristic compo-
nents of u.

Concerning the boundary condition (1b), we firstly assume that the number d of
scalar boundary conditions obeys the assumption d ≤ r +1. As regards to the structure
of the boundary operator Mγ in (3b), we require that actually it acts nontrivially only
on the noncharacteristic component uI of u; moreover we assume that the first-order
leading partMs

γ ofMγ only applies to a subset of components of the non characteristic

vector u I , namely there exists an integer s, with 1 ≤ s ≤ r , such that the coefficients
M j , M of Mγ take the form

M j = (Ms
j 0
)
, M = (M I 0

)
, j = 0, 2, . . . , n, (6)

2 In nonlinear free-boundary problems the scalar functionψ describes the displacement of the discontinuity.
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where the matrices Ms
j = Ms

j (x
′) ( j = 0, 2, . . . , n) and M I = M I (x ′) belong

respectively to R
d×s and R

d×r . If we set uI,s := (u1, . . . , us), then the operator Mγ

in (3b) may be rewritten, according to (6), as

Mγ u = Ms
γ uI,s + M I uI , (7)

where Ms
γ is the first-order leading operator

Ms
γ (x

′, D′) := γMs
0 +

n∑

j=2

Ms
j∂ j . (8)

As we just said, the operator �� = ��(x ′, D′, γ ) must be understood as a lower order
perturbation of the leading part Ms

γ of the boundary operator Mγ in (7); hence,

according to the form of Mγ , we assume that �� only acts on the component uI,s of
the unknown vector u, that is

��(x
′, D′, γ )u = ��(x

′, D′, γ )uI,s . (9)

A BVP of the form (1), under the structural assumptions (4)–(7), comes from the
study of certain non linear free-boundary value problems for hyperbolic systems
of partial differential equations arising in Magneto-Hydrodynamics. Such problems
model the motion of a compressible inviscid fluid, under the action of a magnetic
field, when the fluid may develop discontinuities along a moving unknown char-
acteristic hypersurface. As we already said, to show the local-in-time existence of
such a kind of piecewise discontinuous flows, the classical approach consists, firstly,
of reducing the original free-boundary problem to a BVP set on a fixed domain,
performing a nonlinear change of coordinates that sends the front of the physi-
cal discontinuities into a fixed hyperplane of the space-time domain. Then, one
starts to consider the well posedness of the linear BVP obtained from linearizing
the found nonlinear BVP around a basic state provided by a particular solution.
The resulting linear problem displays the structure of the problem (1), where the
unknown u represents the set of physical variables involved in the model, while the
unknown ψ encodes the moving discontinuity front. The solvability of the linear
BVP firstly requires that a suitable a priori estimate can be attached to the prob-
lem.

Let the operators Lγ , bγ , Mγ be given, with structure described by formulas (2),
(3a), (4)–(8) above. We assume that the two alternative hypotheses are satisfied:

(H)1. A priori estimate with loss of regularity in the interior term. For all
symbols ρ� = ρ�(x, ξ, γ ) ∈ �0, b� = b�(x ′, ξ ′, γ ) ∈ �0 and �� = ��(x ′, ξ ′, γ ) ∈
�0, taking values respectively in R

N×N , R
d and R

d×s , there exist constants C0 >

0, γ0 ≥ 1, depending only on the matrices A j , B, b j , β, Ms
j , M I in (2), (3),

(7), (8) and a finite number of semi-norms of ρ�, b�, ��, such that for all functions
u ∈ C∞

(0)(R
n+), compactly supported on B

+,ψ ∈ C∞
0 (R

n−1), compactly supported
on B(0; 1), and all γ ≥ γ0 the following a priori energy estimate is satisfied
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γ

(
||u||2

H1
tan,γ (R

n+)
+ ||uI| x1=0||2H1/2

γ (Rn−1)

)
+ γ 2||ψ ||2

H1
γ (R

n−1)

≤ C0

(
1
γ 3 ||F ||2

H2
tan,γ (R

n+)
+ 1

γ
||g||2

H3/2
γ (Rn−1)

)
,

(10)

where F := Lγ u + ρ�(x, Z , γ )u, g := bγ ψ + Mγ u + b�(x ′, D′, γ )ψ +
��(x ′, D′, γ )uI,s and ρ�(x, Z , γ ), b�(x ′, D′, γ ), ��(x ′, D′, γ ) are respectively the
pseudo-differential operators with symbols ρ�, b�, ��.
(H)2. A priori estimate without loss of regularity in the interior term. For
all symbols b� = b�(x ′, ξ ′, γ ) ∈ �0 and �� = ��(x ′, ξ ′, γ ) ∈ �0, taking values
respectively in R

d and R
d×s , there exist constants C0 > 0, γ0 ≥ 1, depending only

on the matrices A j , B, b j ,β, Ms
j , M I in (2), (3), (7), (8) and a finite number of semi-

norms of b�, ��, such that for all functions u ∈ C∞
(0)(R

n+), compactly supported

on B
+, ψ ∈ C∞

0 (R
n−1), compactly supported on B(0; 1), and all γ ≥ γ0 the

following a priori energy estimate is satisfied

γ

(
||u||2

H1
tan,γ (R

n+)
+ ||uI| x1=0||2H1/2

γ (Rn−1)

)
+ γ 2||ψ ||2

H1
γ (R

n−1)

≤ C0
γ

(
||F ||2

H1
tan,γ (R

n+)
+ ||g||2

H3/2
γ (Rn−1)

)
,

(11)

where F := Lγ u, g := bγ ψ + Mγ u + b�(x ′, D′, γ )ψ + ��(x ′, D′, γ )uI,s and
b�(x ′, D′, γ ), ��(x ′, D′, γ ) are respectively the pseudo-differential operators with
symbols b�, ��.

The symbol class �0 and the related pseudo-differential operators will be introduced
in Sect. 3.1. The function spaces and the norms involved in the estimates (10), (11)
will be described in Sect. 2.

By the hypotheses (H)1 and (H)2, we require that an a priori estimate in the
tangential Sobolev space (see the next Sect. 2 and Definition 3 below) is enjoyed
by the BVP (1). The structure of the estimate is justified by the physical models
that we plan to cover (see the Appendix 2). The inserting of the zeroth order terms
ρ�(x, Z , γ )u, b�(x ′, D′, γ )ψ , ��(x ′, D′, γ )uI,s in the interior source term F and the
boundary datum g is a property of stability of the estimates (10), (11), under lower
order operators. We notice, in particular, that the addition of ��(x ′, D′, γ )uI,s in the
boundary condition (1b) only modifies the zeroth order term M I uI for the part that
applies to the components uI,s of the noncharacteristic unknown vector uI , see (7),
(9). This behavior of the boundary condition, under lower order perturbations, is
inspired by the physical problems to which we address. It happens sometimes that the
specific structure of some coefficients involved in the zeroth order part of the original
“unperturbed” boundary operator (7) is needed in order to derive an a priori estimate
of the type (10) or (11) for the corresponding BVP (1); hence these coefficients of
the boundary operator must be kept unchanged by the addition of some lower order
perturbations.

Note also that the two a priori estimates in (10), (11) exhibit a different behavior with
respect to the interior data: in (10) a loss of one tangential derivative from the interior
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data F occurs, whereas in (11) no loss of interior regularity is assumed. According to
this different behavior, a stability assumption under lower order perturbations ρ� of
the interior operator Lγ is only required in (H)1.

Both the estimates exhibit the same loss of regularity from the boundary data.
The aim of this paper is to prove the following result.

Theorem 1 Assume that the operators Lγ , bγ , Mγ have the structure described in
(2), (3a), (4)–(8). Let 0 < δ0 < 1.

1. If the assumption (H)1 holds true, then for all symbols ρ�, b�, �� ∈ �0 there exist
constants C̆0 > 0, γ̆0 ≥ 1, depending only on the matrices A j , B, b j , β, Ms

j , M I

in (2), (3), (7), (8), δ0 and a finite number of semi-norms of ρ�, b�, ��, such that
for all functions u ∈ C∞

(0)(R
n+), compactly supported on B

+
δ0

, ψ ∈ C∞
0 (R

n−1),
compactly supported on B(0; δ0), and all γ ≥ γ̆0 the following a priori energy
estimate is satisfied

γ

(
||u||2L2(Rn+)

+ ||uI| x1=0||2H−1/2
γ (Rn−1)

)
+ γ 2||ψ ||2L2(Rn−1)

≤ C̆0

(
1

γ 3 ||F ||2
H1

tan,γ (R
n+)

+ 1

γ
||g||2

H1/2
γ (Rn−1)

)
, (12)

where F := Lγ u + ρ�(x, Z , γ )u and g := bγ ψ + Mγ u + b�(x ′, D′, γ )ψ +
��(x ′, D′, γ )uI,s .

2. If the assumption (H)2 holds true, then for every pair of symbols b�, �� ∈ �0 there
exist constants C̆0 > 0, γ̆0 ≥ 1, depending only on the matrices A j , B, b j , β, Ms

j ,

M I in (2), (3), (7), (8), δ0 and a finite number of semi-norms of b�, ��, such that
for all functions u ∈ C∞

(0)(R
n+), compactly supported on B

+
δ0

, ψ ∈ C∞
0 (R

n−1),
compactly supported on B(0; δ0), and all γ ≥ γ̆0 the following a priori energy
estimate is satisfied

γ

(
||u||2L2(Rn+)

+ ||uI| x1=0||2H−1/2
γ (Rn−1)

)
+ γ 2||ψ ||2L2(Rn−1)

≤ C̆0

γ

(
||F ||2L2(Rn+)

+ ||g||2
H1/2
γ (Rn−1)

)
, (13)

where F := Lγ u and g := bγ ψ + Mγ u + b�(x ′, D′, γ )ψ + ��(x ′, D′, γ )uI,s .

The paper is organized as follows. In Sect. 2 we introduce the function spaces to
be used in the following and the main related notations. In Sect. 3 we collect some
technical tools, and the basic concerned results, that will be useful for the proof of
Theorem 1, given in Sect. 4.

The Appendix 1 contains the proof of the most of the technical results used in Sect.
4. The Appendix 2 is devoted to present some free-boundary problems in MHD, that
can be stated within the general framework developed in the paper.
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2 Function Spaces

The purpose of this Section is to introduce the main function spaces to be used in the
following and collect their basic properties. For γ ≥ 1 and s ∈ R, we set

λs,γ (ξ) := (γ 2 + |ξ |2)s/2 (14)

and, in particular, λs := λs,1.
The Sobolev space of order s ∈ R in R

n is defined to be the set of all tempered
distributions u ∈ S ′(Rn) such that λs û ∈ L2(Rn), being û the Fourier transform of u.
For s ∈ N, the Sobolev space of order s reduces to the set of all functions u ∈ L2(Rn)

such that ∂αu ∈ L2(Rn), for all multi-indices α ∈ N
n with |α| ≤ s, where we have

set

∂α := ∂
α1
1 . . . ∂αn

n , α = (α1, . . . , αn),

and |α| := α1 + · · · + αn , as it is usual.
Throughout the paper, for real γ ≥ 1, Hs

γ (R
n) will denote the Sobolev space of

order s, equipped with the γ -depending norm || · ||s,γ defined by

||u||2s,γ := (2π)−n
∫

Rn

λ2s,γ (ξ)|̂u(ξ)|2dξ, (15)

(ξ = (ξ1, . . . , ξn) are the dual Fourier variables of x = (x1, . . . , xn)). The norms
defined by (15), with different values of the parameter γ , are equivalent each other.
For γ = 1 we set for brevity || · ||s := || · ||s,1 (and, accordingly, Hs(Rn) := Hs

1 (R
n)).

It is clear that, for s ∈ N, the norm in (15) turns out to be equivalent, uniformly
with respect to γ , to the norm || · ||Hs

γ (R
n) defined by

||u||2Hs
γ (R

n) :=
∑

|α|≤s

γ 2(s−|α|)||∂αu||2L2(Rn)
. (16)

Another useful remark about the parameter depending norms defined in (15) is pro-
vided by the following counterpart of the usual Sobolev imbedding inequality

||u||s,γ ≤ γ s−r ||u||r,γ , (17)

for arbitrary s ≤ r and γ ≥ 1.

Remark 2 In Sect. 4, the ordinary Sobolev spaces, endowed with the weighted norms
above, will be considered in R

n−1 (interpreted as the boundary of the half-space R
n+)

and used to measure the smoothness of functions on the boundary; regardless of the
different dimension, the same notations and conventions as before will be used there.

The appropriate functional setting where one measures the internal smoothness of
solutions to characteristic problems is provided by the anisotropic Sobolev spaces
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introduced by Shuxing Chen [7] and Yanagisawa, Matsumura [36], see also [30] .
Indeed these spaces take account of the loss of normal regularity with respect to the
boundary that usually occurs for characteristic problems.

Let σ ∈ C∞([0,+∞[) be a monotone increasing function such that σ(x1) = x1 in
a neighborhood of the origin and σ(x1) = 1 for any x1 large enough.

For j = 1, 2, . . . , n, we set

Z1 := σ(x1)∂1, Z j := ∂ j , for j ≥ 2 .

Then, for every multi-index α = (α1, . . . , αn) ∈ N
n , the differential operator Zα in

the tangential direction (conormal derivative) of order |α| is defined by

Zα := Zα1
1 . . . Zαn

n .

Given an integer m ≥ 1 the anisotropic Sobolev space Hm∗ (Rn+) of order m is defined
as the set of functions u ∈ L2(Rn+) such that Zα∂k

1 u ∈ L2(Rn+), for all multi-indices
α ∈ N

n and k ∈ N with |α| + 2k ≤ m, see [22] and the references therein. Agreeing
with the notations set for the usual Sobolev spaces, for γ ≥ 1, Hm∗,γ (Rn+) will denote
the anisotropic space of order m equipped with the γ -depending norm

||u||2Hm∗,γ (Rn+) :=
∑

|α|+2k≤m

γ 2(m−|α|−2k)||Zα∂k
1 u||2L2(Rn+)

. (18)

Similarly, the conormal Sobolev space Hm
tan(R

n+) of order m is defined to be the set of
functions u ∈ L2(Rn+) such that Zαu ∈ L2(Rn+), for all multi-indices α with |α| ≤ m.
For γ ≥ 1, Hm

tan,γ (R
n+) denotes the conormal space of order m equipped with the

γ -depending norm

||u||2Hm
tan,γ (R

n+) :=
∑

|α|≤m

γ 2(m−|α|)||Zαu||2L2(Rn+)
. (19)

In the end, we remark that the following identity H1∗,γ (Rn+) = H1
tan,γ (R

n+) holds
true. However, for a Sobolev order m > 1 the continuous imbedding Hm∗,γ (Rn+) ⊂
Hm

tan,γ (R
n+) is fulfilled with the strict inclusion relation.

Since the functions we are dealing with, throughout the paper, vanish for large x1
(as they are compactly supported on B

+), without the loss of generality we assume
the conormal derivative Z1 to coincide with the differential operator x1∂1 from now
on.3 This reduction will make easier to implement on conormal spaces the technical
machinery that will be introduced in the next Section.

3 Notice however that, for functions arbitrarily supported on R
n+, the conormal derivative Z1 equals the

singular operator x1∂1 only locally near the boundary {x1 = 0}; indeed, Z1 behaves like the usual normal
derivative ∂1 far from the boundary, according to the properties of the weight σ = σ(x1).
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3 Preliminaries and Technical Tools

We start by recalling the definition of two operators � and �, introduced by Nishitani and
Takayama in [26], with the main property of mapping isometrically square integrable
(resp. essentially bounded) functions over the half-space R

n+ onto square integrable
(resp. essentially bounded) functions over the full space R

n .
The mappings � : L2(Rn+) → L2(Rn) and � : L∞(Rn+) → L∞(Rn) are respec-

tively defined by

w�(x) := w(ex1 , x ′)ex1/2, a�(x) = a(ex1 , x ′), ∀ x = (x1, x ′) ∈ R
n . (20)

They are both norm preserving bijections.
It is also useful to notice that the above operators can be extended to the set D′(Rn+)

of Schwartz distributions in R
n+. It is easily seen that both � and � are topological

isomorphisms of the space C∞
0 (R

n+) of test functions in R
n+ (resp. C∞(Rn+)) onto the

space C∞
0 (R

n) of test functions in R
n (resp. C∞(Rn)). Therefore, a standard duality

argument leads to define � and � on D′(Rn+), by setting for every ϕ ∈ C∞
0 (R

n)

〈u�, ϕ〉 := 〈u, ϕ�−1〉, (21)

〈u�, ϕ〉 := 〈u, ϕ�〉 (22)

(〈·, ·〉 is used to denote the duality pairing between distributions and test functions
either in the half-space R

n+ or the full space R
n). In the right-hand sides of (21), (22),

�−1 is just the inverse operator of �, that is

ϕ�
−1
(x) = 1√

x1
ϕ(log x1, x ′), ∀x1 > 0, x ′ ∈ R

n−1, (23)

while the operator � is defined by

ϕ�(x) = 1

x1
ϕ(log x1, x ′), ∀x1 > 0, x ′ ∈ R

n−1, (24)

for functions ϕ ∈ C∞
0 (R

n). The operators �−1 and � arise by explicitly calculating the
formal adjoints of � and � respectively.

Of course, one has that u�, u� ∈ D′(Rn); moreover the following relations can be
easily verified (cf. [26])

(ψu)� = ψ�u�, (25)

∂ j (u
�) = (Z j u)

�, j = 1, . . . , n, (26)

∂1(u
�) = (Z1u)� + 1

2
u�, (27)

∂ j (u
�) = (Z j u)

�, j = 2, . . . , n, (28)
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whenever u ∈ D′(Rn+) and ψ ∈ C∞(Rn+) (in (25) u ∈ L2(Rn+) and ψ ∈ L∞(Rn+) are
even allowed).

From formulas (27), (28) and the L2-boundedness of �, it also follows that

� : Hm
tan,γ (R

n+) → Hm
γ (R

n) (29)

is a topological isomorphism, for each integer m ≥ 1 and real γ ≥ 1.
The previous remarks give a natural way to extend the definition of the conormal

spaces on R
n+ to an arbitrary real order s. More precisely we give the following

Definition 3 For s ∈ R and γ ≥ 1, the space Hs
tan,γ (R

n+) is defined as

Hs
tan,γ (R

n+) := {u ∈ D′(Rn+) : u� ∈ Hs
γ (R

n)}

and is provided with the norm

||u||2s,tan,Rn+,γ := ||u�||2s,γ = (2π)−n
∫

Rn

λ2s,γ (ξ)|û�(ξ)|2 dξ . (30)

It is obvious that, like for the real order usual Sobolev spaces, Hs
tan,γ (R

n+) is a
Banach space for every real s; furthermore, the above definition reduces to the one
given in Sect. 2 when s is a positive integer. Finally, for all s ∈ R, the � operator
becomes a topological isomorphism of Hs

tan,γ (R
n+) onto Hs

γ (R
n).

In the end, we observe that the following

� : C∞
(0)(R

n+) → S(Rn), � : C∞
(0)(R

n+) → C∞
b (R

n)

are linear continuous operators, where S(Rn) denotes the Schwartz space of rapidly
decreasing functions in R

n and C∞
b (R

n) the space of infinitely smooth functions in
R

n , with bounded derivatives of all orders; notice also that the last maps are not onto.
Finally, we remark that

�−1 : S(Rn) → C∞(Rn+) (31)

is a bounded operator.

3.1 A Class of Conormal Operators

The � operator, defined at the beginning of Sect. 3, can be used to allow pseudo-
differential operators in R

n acting conormally on functions only defined over the
positive half-space R

n+. Then the standard machinery of pseudo-differential calculus
(in the parameter depending version introduced in [1], [6]) can be re-arranged into a
functional calculus properly behaved on conormal Sobolev spaces described in Sect.
2. In Sect. 4, this calculus will be usefully applied to derive from the estimate (10) or
(11) associated to the BVP (1) the corresponding estimate (12) or (13) of Theorem 1.
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Let us introduce the pseudo-differential symbols, with a parameter, to be used later;
here we closely follow the terminology and notations of [9].

Definition 4 A parameter-depending pseudo-differential symbol of order m ∈ R is
a real (or complex)-valued measurable function a(x, ξ, γ ) on R

n × R
n × [1,+∞[,

such that a is C∞ with respect to x and ξ and for all multi-indices α, β ∈ N
n there

exists a positive constant Cα,β satisfying:

|∂αξ ∂βx a(x, ξ, γ )| ≤ Cα,βλ
m−|α|,γ (ξ), (32)

for all x, ξ ∈ R
n and γ ≥ 1.

The same definition as above extends to functions a(x, ξ, γ ) taking values in the
space R

N×N (resp. C
N×N ) of N × N real (resp. complex)-valued matrices, for all

integers N > 1 (where the module | · | is replaced in (32) by any equivalent norm
in R

N×N (resp. C
N×N )). We denote by �m the set of γ -depending symbols of order

m ∈ R (the same notation being used for both scalar or matrix-valued symbols). �m

is equipped with the obvious norms

|a|m,k := max|α|+|β|≤k
sup

(x,ξ)∈Rn×Rn , γ≥1
λ−m+|α|,γ (ξ)|∂αξ ∂βx a(x, ξ, γ )|, ∀ k ∈ N,(33)

which turn it into a Fréchet space. For all m,m′ ∈ R, with m ≤ m′, the continuous
imbedding �m ⊂ �m′

can be easily proven.
For all m ∈ R, the function λm,γ is of course a (scalar-valued) symbol in �m .
Any symbol a = a(x, ξ, γ ) ∈ �m defines a pseudo-differential operator Opγ (a) =

a(x, D, γ ) on the Schwartz space S(Rn), by the standard formula

∀ u ∈ S(Rn),∀ x ∈ R
n, Opγ (a)u(x) = a(x, D, γ )u(x)

:= (2π)−n
∫

Rn

eix ·ξa(x, ξ, γ )̂u(ξ)dξ,

(34)

where, of course, we denote x ·ξ :=∑n
j=1 x jξ j . a is called the symbol of the operator

(34), and m is its order. It comes from the classical theory that Opγ (a) defines a linear
bounded operator

Opγ (a) : S(Rn) → S(Rn) ;

moreover, the latter extends to a linear bounded operator on the space S ′(Rn) of
tempered distributions in R

n .
Let us observe that, for a symbol a = a(ξ, γ ) independent of x , the integral formula

(34) defining the operator Opγ (a) simply becomes

Opγ (a)u = F−1(a(·, γ )̂u) = F−1(a(·, γ )) ∗ u, u ∈ S ′(Rn), (35)
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where F−1 denotes hereafter the inverse Fourier transform and ∗ is the convolution
operator.

An exhaustive account of the symbolic calculus for pseudo-differential operators
with symbols in�m can be found in [6] (see also [9]). Here, we just recall the following
result, concerning the composition and the commutator of two pseudo-differential
operators.

Proposition 5 Let a ∈ �m and b ∈ �l , for l,m ∈ R. Then the composed operator
Opγ (a)Opγ (b) is a pseudo-differential operator with symbol in �m+l ; moreover, if
we let a#b denote the symbol of the composition, one has for every integer N ≥ 1

a#b −
∑

|α|<N

(−i)|α|

α! ∂αξ a∂αx b ∈ �m+l−N . (36)

Under the same assumptions, the commutator [Opγ (a),Opγ (b)] := Opγ (a)Opγ (b)−
Opγ (b)Opγ (a) is again a pseudo-differential operator with symbol c ∈ �m+l . If we
further assume that one of the two symbols a or b is scalar-valued (so that a and b
commute in the point-wise product), then the symbol c of [Opγ (a),Opγ (b)] has order
m + l − 1.

We point out that when the symbol b ∈ �l of the preceding statement does not
depend on the x variables (i.e. b = b(ξ, γ )) then the symbol a#b of Opγ (a)Opγ (b)
reduces to the point-wise product of symbols a and b, that is the asymptotic formula
(36) is replaced by the exact formula

(a#b)(x, ξ, γ ) = a(x, ξ, γ )b(ξ, γ ) . (37)

Remark 6 In the next Sect. 4, in order to handle the boundary condition (1b), the alge-
bra of pseudo-differential operators presented above will be used in the framework
of R

n−1
x ′ , considered as the boundary of the half-space R

n+. According to (34), for a
boundary symbol a = a(x ′, ξ ′, γ ), x ′, ξ ′ ∈ R

n−1, the related pseudo-differential oper-
ator will be denoted by Opγ (a) or a(x ′, D′, γ ). In particular, we will write λm,γ (D′)
to mean the boundary operator with symbol λm,γ (ξ ′) defined by (14) with ξ ′ instead
of ξ .

Starting from the symbolic classes �m , m ∈ R, we introduce now the class of
conormal operators in R

n+, to be used in the sequel.
Let a(x, ξ, γ ) be a γ−depending symbol in �m , m ∈ R. The conormal operator

with symbol a, denoted by Opγ� (a) (or equivalently a(x, Z , γ )) is defined by setting

∀ u ∈ C∞
(0)(R

n+),
(

Opγ� (a)u
)� = (Opγ (a)

)
(u�) . (38)

In other words, the operator Opγ� (a) is the composition of mappings

Opγ� (a) = �−1 ◦ Opγ (a) ◦ � . (39)
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As we already noted, u� ∈ S(Rn) whenever u ∈ C∞
(0)(R

n+); hence formula (38)

makes sense and gives that Opγ� (a)u is a C∞-function in R
n+ (see also (31)). Also

Opγ� (a) : C∞
(0)(R

n+) → C∞(Rn+) is a linear bounded operator that extends to a linear

bounded operator from the space of distributions u ∈ D′(Rn+) satisfying u� ∈ S ′(Rn)

into D′(Rn+) itself4. Throughout the paper, we continue to denote this extension by
Opγ� (a) (or a(x, Z , γ ) equivalently).

As an immediate consequence of (39), we have that for all symbols a ∈ �m , b ∈ �l ,
with m, l ∈ R, there holds

∀ u ∈ C∞
(0)(R

n+), Opγ� (a)Opγ� (b)u = (Opγ (a)Opγ (b)(u�)
)�−1

. (40)

Then, it is clear that a functional calculus of conormal operators can be straight-
forwardly borrowed from the corresponding pseudo-differential calculus in R

n ; in
particular we find that products and commutators of conormal operators are still oper-
ators of the same type, and their symbols are computed according to the rules collected
in Proposition 5.

Below, let us consider the main examples of conormal operators that will be met in
Sect. 4.

As a first example, we quote the multiplication by a matrix-valued function B ∈
C∞
(0)(R

n+). It is clear that this makes an operator of order zero according to (38); indeed
(25) gives for any vector-valued u ∈ C∞

(0)(R
n+)

(Bu)�(x) = B�(x)u�(x), (41)

and B� is a C∞-function in R
n , with bounded derivatives of any order, hence a symbol

in �0.
We remark that, when computed for B�, the norm of order k ∈ N, defined on

symbols by (33), just reduces to

|B�|0,k = max|α|≤k
||∂αB�||L∞(Rn) = max|α|≤k

||ZαB||L∞(Rn+), (42)

where the second identity above exploits formulas (26) and that � maps isometrically
L∞(Rn+) onto L∞(Rn).

Now, let L := γ IN +
n∑

j=1
A j (x)Z j be a first-order linear partial differential operator,

with matrix-valued coefficients A j ∈ C∞
(0)(R

n+) for j = 1, . . . , n and γ ≥ 1. Since
the leading part of L only involves conormal derivatives, applying (25), (27) and (28)
then gives

4 In principle, Opγ� (a) could be defined by (38) over all functions u ∈ C∞(Rn+), such that u� ∈ S(Rn).

Then Opγ� (a) defines a linear bounded operator on the latter function space, provided that it is equipped

with the topology induced, via �, from the Fréchet topology of S(Rn).
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⎛

⎝γ u +
n∑

j=1

A j Z j u

⎞

⎠
�

=
(
γ I − 1

2
A�1

)
u� +

n∑

j=1

A�j∂ j u
� = Opγ (a)u�,

where a = a(x, ξ, γ ) :=
(
γ IN − 1

2 A�1(x)
)

+ i
∑n

j=1 A�j (x)ξ j is a symbol in �1.

Then L is a conormal operator of order 1, according to (38).

3.2 Sobolev Continuity of Conormal Operators

We recall the following classical Sobolev continuity property for ordinary pseudo-
differential operators on R

n .

Proposition 7 If s,m ∈ R then for all a ∈ �m the pseudo-differential operator
Opγ (a) extends as a linear bounded operator from Hs+m

γ (Rn) into Hs
γ (R

n), and the
operator norm of such an extension is uniformly bounded with respect to γ .

We refer the reader to [6] for a detailed proof of Proposition 7. A thorough analysis
shows that the norm of Opγ (a), as a linear bounded operator from Hs+m

γ (Rn) to
Hs
γ (R

n), actually depends only on a norm of type (33) of the symbol a, besides the
Sobolev order s and the symbolic order m (cf. [6] for detailed calculations). From the
Sobolev continuity of pseudo-differential operators quoted above, and using that the
operator �maps isomorphically conormal Sobolev spaces in R

n+ onto ordinary Sobolev
spaces in R

n (see (29) and Definition 3), we easily derive the following result.

Proposition 8 If s,m ∈ R and a ∈ �m, then the conormal operator Opγ� (a) extends

to a linear bounded operator from Hs+m
tan,γ (R

n+) to Hs
tan,γ (R

n+); moreover the operator
norm of such an extension is uniformly bounded with respect to γ .

In order to perform the subsequent analysis, our interest will be mainly focused on
the conormal operators of the type

λm,γ (Z) := Opγ� (λ
m,γ ), m ∈ R . (43)

Firstly, it is worth to remark that for each real m, the conormal operator λm,γ (Z)
is invertible, its two-sided inverse being provided by the operator λ−m,γ (Z). Hence,
applying Proposition 8 to the operators λm,γ (Z), λ−m,γ (Z) gives that the following

λm,γ (Z) : Hm
tan,γ (R

n+) → L2(Rn+), λ−m,γ (Z) : L2(Rn+) → Hm
tan,γ (R

n+),

are linear bounded operators. Notice also that, from Plancherel’s identity, the norm
(30) (with m instead of s) on Hm

tan(R
n+) can be restated in terms of the operatorλm,γ (Z)

as

||u||m,tan,Rn+,γ = ||λm,γ (Z)u||L2(Rn+) . (44)

The relation (44) will play an essential role in the proof of estimate (13).
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4 Proof of Theorem 1

This Section is entirely devoted to the proof of Theorem 1.

4.1 The Strategy of the Proof.

We closely follow the techniques developed in [20] (see also [21]). In principle, for
given smooth functions u, ψ under the assumptions of Theorem 1, we consider the
problem analogous to (1) solved by the functions λ−1,γ (Z)u and λ−1,γ (D′)ψ ; 5 this
problem is obtained by acting on the original BVP solved by (u, ψ) by the operators
λ−1,γ (Z), λ−1,γ (D′) and making use of the rules of the symbolic calculus collected
in Sect. 3.1. In the resulting equations, new terms appear, including the commutator
between the differential operator Lγ and the conormal operator λ−1,γ (Z), in the
interior equation, and similar commutators arising from the interaction of λ−1,γ (D′)
with the operators in the boundary condition. We apply the assumption (H)1 (or
(H2)) to the problem for (λ−1,γ (Z)u, λ−1,γ (D′)ψ), writing for it the estimate (10)
(or (11)). The structure of the estimates (10), (11) allows to treat the commutator
terms involved in the equations either as a part of the source terms or as lower order
operators. The desired estimates (12), (13) come respectively from (10), (11) for
(λ−1,γ (Z)u, λ−1,γ (D′)ψ), in view of the equivalence of norms (44), (19) in Hm

tan(R
n+)

and the similar equivalence of norms (15), (16) for ordinary Sobolev spaces on the
boundary.

4.2 A Modified Version of the Conormal Operator λ−1,γ (Z)

As explained before, we are going to act on the equation (1a), written for a given smooth
function u, by the conormal operator λ−1,γ (Z). To make possible the interaction
between λ−1,γ (Z) and the term of Lγ involving the normal derivative ∂1, we need to
slightly modify the conormal operator λ−1,γ (Z). Here, we follow the ideas of [20].

To be definite, let us illustrate the strategy for the operator λm,γ (Z) with general
order m ∈ R. The first step is to decompose the symbol λm,γ as the sum of two
contributions. To do so, we take an arbitrary even function χ ∈ C∞(Rn) with the
following properties

0≤χ(x)≤1, ∀ x ∈R
n, χ(x)≡1, for |x |≤ ε0

2
, χ(x)≡0, for |x | > ε0, (45)

with a suitable 0 < ε0 < 1 that will be specified later on, see Lemma 10. Then, we
set:

λ
m,γ
χ (ξ) := χ(D)(λm,γ )(ξ) = (F−1χ ∗ λm,γ )(ξ),

rm(ξ, γ ) := λm,γ (ξ)− λ
m,γ
χ (ξ) = (I − χ(D))(λm,γ )(ξ) .

(46)

5 Actually, instead of (λ−1,γ (Z)u, λ−1,γ (D′)ψ) we will consider similar functions obtained by applying
to (u, ψ) a suitable modified version of the operators λ−1,γ (Z), λ−1,γ (D′), that will be rigorously defined
in Sect. 4.2. These new operators will be constructed in such a way to differ from λ−1,γ (Z), λ−1,γ (D′)
by suitable regularizing lower order reminders.
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The following result (see [20, Lemma 4.1]) shows that the function λm,γ
χ behaves, as

a symbol, like λm,γ .

Lemma 9 Let the function χ ∈ C∞(Rn) satisfy the assumptions in (45). Then λm,γ
χ

is a symbol in �m, i.e. for all α ∈ N
n there exists a constant Cm,α > 0 such that:

|∂αξ λm,γ
χ (ξ)| ≤ Cm,αλ

m−|α|,γ (ξ), ∀ ξ ∈ R
n . (47)

An immediate consequence of Lemma 9 and (46) is that rm is also a γ -depending
symbol in �m .

Let us define, with the obvious meaning of the notations:

λ
m,γ
χ (D) := Opγ (λm,γ

χ ), rm(D, γ ) := Opγ (rm),

λ
m,γ
χ (Z) := Opγ� (λ

m,γ
χ ), rm(Z , γ ) := Opγ� (rm) .

(48)

A useful property of the modified operator λm,γ
χ (Z) is that it preserves the compact

support of functions, as shown by the following

Lemma 10 Let 0 < δ0 < 1 be fixed. There exists ε0 = ε0(δ0) > 0 such that, if
χ ∈ C∞

0 (R
n) satisfies the assumption (45) with the previous choice of ε0, then for all

u ∈ C∞
(0)(R

n+), with suppu ⊆ B
+
δ0

, we have

suppλm,γ
χ (Z)u ⊆ B

+ .

Remark 11 Note that the support of λm,γ
χ (Z)u is bigger than the support of u, depend-

ing on suppχ . Hence, if one wants that supp λm,γ
χ (Z)u is contained in the fixed domain

B
+, one has to choose χ with sufficiently small support.

The second important result is concerned with the conormal operator rm(Z , γ ) =
Opγ� (rm), and tells that it essentially behaves as a regularizing operator on conormal
Sobolev spaces.

Lemma 12 1. For every p ∈ N, the conormal operator rm(Z , γ ) extends as a linear
bounded operator, still denoted by rm(Z , γ ), from L2(Rn+) to H p

tan,γ (R
n+).

2. Moreover, for every h ∈ N there exists a positive constant C p,h,n,χ , depending
only on p, h, χ and the dimension n, such that for all γ ≥ 1 and u ∈ L2(Rn+):

||rm(Z , γ )u||H p
tan,γ (R

n+) ≤ C p,h,n,χγ
−h ||u||L2(Rn+) . (49)

The proof of Lemmata 10, 12 is postponed to Appendix 1.
In the following sections, the above analysis will be applied to the operator

λ−1,γ (Z). According to (46), we decompose

λ−1,γ (Z) = λ−1,γ
χ (Z)+ r−1(Z , γ ) . (50)
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4.3 A Boundary Operator

As it was already explained in Sect. 4.1, we need to derive the problem analogous to (1)
satisfied by (λ−1,γ (Z)u, λ−1,γ (D′)ψ) for given smooth functions (u, ψ). Actually,
as we said, λ−1,γ (Z)must be replaced by its modification λ−1,γ

χ (Z) (see (50)). Anal-
ogously, we have to introduce an appropriate modification of λ−1,γ (D′), to be used
as a “boundary counterpart” of λ−1,γ

χ (Z): this new operator comes from computing

the value of λ−1,γ
χ (Z)u on the boundary {x1 = 0}. To this end, it is worthwhile to

make an additional hypothesis about the smooth function χ involved in the definition
of λ−1,γ

χ (Z). We assume that χ has the form:

∀ x = (x1, x ′) ∈ R
n, χ(x) = χ1(x1)χ̃(x

′), (51)

where χ1 ∈ C∞(R) and χ̃ ∈ C∞(Rn−1) are given nonnegative even functions, to be
chosen in such a way that conditions (45) are made satisfied.

As we did in Sect. 4.2, the result we are going to present here are stated for the
general conormal operator λm,γ (Z)with an arbitrary order m ∈ R. All the proofs will
be given in the Appendix 1.

Following closely the arguments employed to prove [20, Proposition 4.10], we are
able to get the following

Proposition 13 Assume that χ obeys the assumptions (45), (51). Then, for all γ ≥ 1
and m ∈ R the function b′

m(ξ
′, γ ) defined by

b′
m(ξ

′, γ ) := (2π)−n
∫

Rn

λm,γ (η1, η
′+ξ ′)

(
e(·)1/2χ1

)∧1
(η1)̂̃χ(η′) dη, ∀ ξ ′ ∈R

n−1,

(52)

is a γ -depending symbol in R
n−1 belonging to�m, where ∧1 is used to denote the one-

dimensional Fourier transformation with respect to x1, while ∧ denotes the (n − 1)-
dimensional Fourier transformation with respect to x ′. Moreover, for all functions
u ∈ C∞

(0)(R
n+) there holds

∀ x ′ ∈ R
n−1, (λm,γ

χ (Z)u)| x1=0(x
′) = b′

m(D
′, γ )(u| x1=0)(x

′) . (53)

The next Lemma shows that the boundary pseudo-differential operator b′
m(D

′, γ )
differs from the operator λm,γ (D′) by a lower order remainder.

Lemma 14 For m ∈ R, let b′
m(ξ

′, γ ) be defined by (52). Then there exists a symbol
βm(ξ

′, γ ) ∈ �m−2 such that:

b′
m(ξ

′, γ ) = λm,γ (ξ ′)+ βm(ξ
′, γ ), ∀ ξ ′ ∈ R

n−1 . (54)

As a consequence of Proposition 13 and Lemma 10, we see now that, like λm,γ
χ (Z),

the boundary operator b′
m(D

′, γ ) preserves the compactness of the support of functions
on R

n−1.
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Corollary 15 For all m ∈ R and ψ ∈ C∞
0 (R

n−1) with suppψ ⊂ B(0; δ0), then

supp b′
m(D

′, γ )ψ ⊂ B(0; 1) . (55)

In the following the results stated in Proposition 13, Lemma 14 and Corollary 15
will be applied to the case of m = −1.

4.4 Regularized BVP

From now on, we will focus on the proof of the estimate (12) stated in the first part
of Theorem 1, under the assumption (H)1 about the BVP (1). The second part of
Theorem 1 (estimate (13), under the assumption (H)2) follows by developing similar
arguments to those explained here below; we will write in details only those steps
which make the difference between the proof of the two statements 1 and 2 (see Sect.
4.7).

Let (u, ψ) be given smooth functions obeying the assumptions of Theorem 1. Given
arbitrary symbols ρ� = ρ�(x, ξ, γ ) ∈ �0, �� = ��(x ′, ξ ′, γ ), b� = b�(x ′, ξ ′, γ ) ∈ �0,
let us set

F := Lγ u + ρ�(x, Z , γ )u, (56)

g := bγ ψ + Ms
γ uI,s + M I uI + b�(x

′, D′, γ )ψ + ��(x
′, D′, γ )uI,s . (57)

We are going to derive a corresponding BVP for the pair of functions (λ−1,γ
χ (Z)u, b′−1

(D′, γ )ψ), to which the a priori estimate (10) will be applied. Notice that, in view of
Lemma 10 and Corollary 15, the functions λ−1,γ

χ (Z)u, b′−1(D
′, γ )ψ are supported on

B
+ and B(0; 1), as required in the hypothesis (H)1, provided the function χ satisfies

the assumptions (45) with a sufficiently small 0 < ε0 < 1.

4.4.1 The Interior Equation

We follow the strategy already explained in Sect. 4.1, where now the role of the operator
λ−1,γ (Z) is replaced by λ−1,γ

χ (Z). Thus, for a given smooth function u ∈ C∞
(0)(R

n+),
supported on B

+
δ0

, from (56), we find that

Lγ (λ−1,γ
χ (Z)u)+ ρ�(λ

−1,γ
χ (Z)u)+ [λ−1,γ

χ (Z),Lγ + ρ�]u = λ−1,γ
χ (Z)F, in R

n+,
(58)

where here and in the rest of this section, it is written ρ� instead of ρ�(x, Z , γ ), in
order to shorten formulas.

We will see that the commutator term [λ−1,γ
χ (Z),Lγ + ρ�]u, involved in the

left-hand side of the above equation, can be restated as a lower order pseudo-
differential operator of conormal type with respect to λ−1,γ

χ (Z)u, up to some “smooth-
ing reminder” to be treated as a part of the source term in the right-hand side of the
equation.
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To this end, we proceed as follows. Firstly, we decompose the commutator term in
the left-hand side of (58) as the sum of two contributions corresponding respectively
to the tangential and normal components of Lγ .

In view of (4), (5), we may write the coefficient A1 of the normal derivative ∂1 in
the expression (2) of Lγ as

A1 = A1
1 + A2

1, A1
1 :=

(
AI,I

1 0
0 0

)
, A2

1 | x1=0 = 0, (59)

hence

A2
1∂1 = H1 Z1,

where H1(x) = x−1
1 A2

1(x) ∈ C∞
(0)(R

n+). Accordingly, we split Lγ as

Lγ = A1
1∂1 + Ltan,γ , Ltan,γ := γ IN + H1 Z1 +

n∑

j=2

A j Z j + B . (60)

Consequently, we have:

[λ−1,γ
χ (Z),Lγ + ρ�]u = [λ−1,γ

χ (Z), A1
1∂1]u + [λ−1,γ

χ (Z),Ltan,γ + ρ�]u . (61)

Note that Ltan,γ + ρ� is just a conormal operator of order 1, according to the termi-
nology introduced in Sect. 3.1.

4.4.2 The Tangential Commutator

Concerning the tangential commutator term [λ−1,γ
χ (Z),Ltan,γ + ρ�]u, we use the

identity

λ1,γ (Z)λ−1,γ (Z) = I d, (62)

and formula (50) to rewrite it as follows

[λ−1,γ
χ (Z),Ltan,γ + ρ�]u = [λ−1,γ

χ (Z),Ltan,γ + ρ�]λ1,γ (Z)λ−1,γ (Z)u

= [λ−1,γ
χ (Z),Ltan,γ + ρ�]λ1,γ (Z)

(
λ−1,γ
χ (Z)u

)

+ [λ−1,γ
χ (Z),Ltan,γ + ρ�]λ1,γ (Z)r−1(Z , γ )u. (63)

Since λ−1,γ
χ is a scalar symbol, from the symbolic calculus (see Proposition 5) we

know that

ρ0,tan(x, Z , γ ) := [λ−1,γ
χ (Z),Ltan,γ + ρ�]λ1,γ (Z) (64)
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is a conormal pseudo-differential operator with symbol ρ0,tan(x, ξ, γ ) ∈ �0. Hence,
the first term in the decomposition provided by (63) can be regarded as an additional
lower order term with respect to λ−1,γ

χ (Z)u, besides ρ�(λ
−1,γ
χ (Z)u), in the equation

(58) (see formula (103)). On the other hand, from Lemma 12, the second term in the
decomposition (63)

R−1(x, Z , γ )u := [λ−1,γ
χ (Z),Ltan,γ + ρ�]λ1,γ (Z)r−1(Z , γ )u (65)

can be moved to the right-hand side of the equation (58) and treated as a part of the
source term (see Sect. 4.5.1).

4.4.3 The Normal Commutator

We consider now the normal commutator term [λ−1,γ
χ (Z), A1

1∂1]u involved in (61).
With respect to the tangential term studied in Sect. 4.4.2, here the analysis is little
more technical.

First of all, we notice that, due to the structure of the matrix A1
1 (see (59)), the com-

mutator [λ−1,γ
χ (Z), A1

1∂1] acts non trivially only on the noncharacteristic component
of the vector function u; namely we have:

[λ−1,γ
χ (Z), A1

1∂1]u =
( [λ−1,γ

χ (Z), AI,I
1 ∂1]uI

0

)
. (66)

Therefore, we focus on the study of the first nontrivial component of the commutator
term. Note that the commutator [λ−1,γ

χ (Z), AI,I
1 ∂1] cannot be merely treated by the

tools of the conormal calculus developed in Sect. 3.1, because of the presence of the
effective normal derivative ∂1 (recall that AI,I

1 is invertible). This section is devoted

to the study of the normal commutator [λ−1,γ
χ (Z), AI,I

1 ∂1]uI . The following result is
of fundamental importance for the sequel. Here again, for the sake of generality, the
result is given with a general order m.

Proposition 16 For all m ∈ R, there exists a symbol qm(x, ξ, γ ) ∈ �m−1 such that

[λm,γ
χ (Z), AI,I

1 ∂1]w = qm(x, Z , γ )(∂1w), ∀w ∈ C∞
(0)(R

n+), ∀ γ ≥ 1 . (67)

Proof The proof follows the same lines of that of [20, Proposition 4.8].

For given w ∈ C∞
(0)(R

n+), let us explicitly compute
(
[λm,γ
χ (Z), AI,I

1 ∂1]w
)�

; using

the identity (∂1w)
� = e−x1(Z1w)

� and that λm,γ
χ (Z) and Z1 commute, we find for

every x ∈ R
n :
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(
[λm,γ
χ (Z), AI,I

1 ∂1]w
)�
(x)

=
(
λm,γ
χ (Z)

(
AI,I

1 ∂1w
)

−AI,I
1 ∂1

(
λm,γ
χ (Z)w

))�
(x)

= λm,γ
χ (D)

(
AI,I,�

1 (∂1w)
�
)
(x)− AI,I,�

1 (x)
(
∂1

(
λm,γ
χ (Z)w

))�
(x)

= λm,γ
χ (D)

(
AI,I,�

1 e−(·)1(Z1w)
�
)
(x)− AI,I,�

1 (x)e−x1
(

Z1λ
m,γ
χ (Z)w

)�
(x)

= λm,γ
χ (D)

(
AI,I,�

1 e−(·)1(Z1w)
�
)
(x)− AI,I,�

1 (x)e−x1
(
λm,γ
χ (Z)Z1w

)�
(x)

= λm,γ
χ (D)

(
AI,I,�

1 e−(·)1(Z1w)
�
)
(x)− AI,I,�

1 (x)e−x1λm,γ
χ (D)(Z1w)

�(x) .

(68)

Observing that λm,γ
χ (D) acts on the space S(Rn) as the convolution by the inverse

Fourier transform of λm,γ
χ (see (35)), the preceding expression can be equivalently

restated as follows:

(
[λm,γ
χ (Z), AI,I

1 ∂1]w
)�
(x)

= F−1
(
λm,γ
χ

)
∗ AI,I,�

1 e−(·)1(Z1w)
�(x)− AI,I,�

1 (x)e−x1F−1
(
λm,γ
χ

)
∗ (Z1w)

�

=
〈
F−1

(
λm,γ
χ

)
, AI,I,�

1 (x − ·)e−(x1−(·)1)(Z1w)
�(x − ·)

〉

− AI,I,�
1 (x)e−x1〈F−1

(
λm,γ
χ

)
, (Z1w)

�(x − ·)〉
=
〈
ηm,γ , χ(·)AI,I,�

1 (x − ·)e−(x1−(·)1)(Z1w)
�(x − ·)

〉

−
〈
ηm,γ , χ(·)AI,I,�

1 (x)e−x1(Z1w)
�(x − ·)

〉

=
〈
ηm,γ , χ(·)AI,I,�

1 (x − ·)(∂1w)
�(x − ·)

〉

−
〈
ηm,γ , χ(·)AI,I,�

1 (x)e−(·)1(∂1w)
�(x − ·)

〉

=
〈
ηm,γ , χ(·)

(
AI,I,�

1 (x − ·)− AI,I,�
1 (x)e−(·)1

)
(∂1w)

�(x − ·)
〉
, (69)

where ηm,γ := F−1 (λm,γ ), and the identity F−1
(
λ

m,γ
χ

) = χηm,γ (following at once
from (46)) has been used. Just for brevity, let us further set

K(x, y) :=
(

AI,I,�
1 (x − y)− AI,I,�

1 (x)e−y1
)
χ(y) . (70)

Thus the identity above reads as

(
[λm,γ
χ (Z), AI,I

1 ∂1]w
)�
(x) = 〈ηm,γ , K(x, ·)(∂1w)

�(x − ·)〉 , (71)
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where the “kernel” K(x, y) is a bounded function in C∞(Rn × R
n), with bounded

derivatives of all orders. This regularity of K is due to the presence of the function
χ in formula (70); actually the vanishing of χ at infinity prevents the blow-up of the
exponential factor e−y1 , as y1 → −∞. We point out that this is precisely the step of
our analysis of the normal commutator, where this function χ is needed.

After (70), we also have that K(x, 0) = 0; then, by a Taylor expansion with respect
to y, we can represent the kernel K(x, y) as follows

K(x, y) =
n∑

k=1

bk(x, y)yk, (72)

where bk(x, y) are given bounded functions in C∞(Rn × R
n), with bounded deriv-

atives; it comes from (70) and (45) that bk can be defined in such a way that for all
x ∈ R

n there holds6

supp bk(x, ·) ⊆ {|y| ≤ 2ε0}. (73)

Inserting (72) in (71) and using standard properties of the Fourier transform we get

(
[λm,γ
χ (Z), AI,I

1 ∂1]w
)�
(x) =

〈
ηm,γ ,

n∑

k=1

bk(x, ·)(·)k(∂1w)
�(x − ·)

〉

=
n∑

k=1

〈
(·)kF−1 (λm,γ ) , bk(x, ·)(∂1w)

�(x − ·)
〉

= i
n∑

k=1

〈
F−1 (∂kλ

m,γ ) , bk(x, ·)(∂1w)
�(x − ·)

〉

= i
n∑

k=1

〈
∂kλ

m,γ , F−1 (bk(x, ·)(∂1w)
�(x − ·))

〉

= i
n∑

k=1

∫

Rn

∂kλ
m,γ (ξ)F−1(bk(x, ·)(∂1w)

�(x − ·))(ξ)dξ

= i
n∑

k=1

(2π)−n
∫

Rn

∂kλ
m,γ (ξ)

⎛

⎝
∫

Rn

eiξ ·ybk(x, y)(∂1w)
�(x − y)dy

⎞

⎠ dξ . (74)

Note that forw ∈ C∞
(0)(R

n+) and any x ∈ R
n the function bk(x, ·)(∂1w)

�(x −·) belongs

to S(Rn); hence the last expression in (74) makes sense. Henceforth, we replace (∂1w)
�

6 This can be made by multiplying K(x, y) by a suitable cut off function ϕ = ϕ(y) ∈ C∞
0 (Rn) such that

ϕ(y) = 1 for |y| ≤ 2ε0. This multiplication does not modify K, since K is supported on {|y| ≤ ε0} with
respect to y. Thus the equality (72) still holds, where the functions bk (x, y) are replaced by bk (x, y)ϕ(y)
compactly supported with respect to y.
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by any function v ∈ S(Rn). Our next goal is writing the integral operator

(2π)−n
∫

Rn

∂kλ
m,γ (ξ)

⎛

⎝
∫

Rn

eiξ ·ybk(x, y)v(x − y)dy

⎞

⎠ dξ (75)

as a pseudo-differential operator.
Firstly, we make use of the inversion formula for the Fourier transformation and

Fubini’s theorem to recast (75) as follows:

∫

Rn

eiξ ·ybk(x, y)v(x − y)dy= (2π)−n
∫

Rn

eiξ ·ybk(x, y)

⎛

⎝
∫

Rn

ei(x−y)·ηv̂(η)dη

⎞

⎠ dy

= (2π)−n
∫

Rn

eix ·η
⎛

⎝
∫

Rn

e−iy·(η−ξ)bk(x, y)dy

⎞

⎠ v̂(η)dη

= (2π)−n
∫

Rn

eix ·ηb̂k(x, η − ξ )̂v(η)dη ; (76)

for every index k, b̂k(x, ζ ) denotes the partial Fourier transform of bk(x, y) with
respect to y. Then, inserting (76) into (75) we obtain

(2π)−n
∫

Rn

∂kλ
m,γ (ξ)

⎛

⎝
∫

Rn

eiξ ·ybk(x, y)v(x − y)dy

⎞

⎠ dξ

= (2π)−2n
∫

Rn

∂kλ
m,γ (ξ)

⎛

⎝
∫

Rn

eix ·ηb̂k(x, η − ξ )̂v(η)dη

⎞

⎠ dξ . (77)

Recall that for each x ∈ R
n , the function y �→ bk(x, y) belongs to C∞

0 (R
n) (and its

compact support does not depend on x , see (73)); thus, for each x ∈ R
n , b̂k(x, ζ ) is

rapidly decreasing in ζ .
Because λm,γ ∈ �m and since v̂(η) is also rapidly decreasing, Fubini’s theorem

can be used to change the order of the integrations within (77). So we get

(2π)−2n
∫

Rn

∂kλ
m,γ (ξ)

⎛

⎝
∫

Rn

eix ·ηb̂k(x, η − ξ )̂v(η)dη

⎞

⎠ dξ

= (2π)−2n
∫

Rn

eix ·η
⎛

⎝
∫

Rn

b̂k(x, η − ξ)∂kλ
m,γ (ξ)dξ

⎞

⎠ v̂(η)dη

= (2π)−n
∫

Rn

eix ·ηqk,m(x, η, γ )̂v(η)dη, (78)
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where we have set

qk,m(x, ξ, γ ) := (2π)−n
∫

Rn

b̂k(x, η)∂kλ
m,γ (ξ − η)dη . (79)

Notice that formula (79) defines qk,m as the convolution of the functions b̂k(x, ·) and
∂kλ

m,γ ; hence qk,m is a well defined C∞-function in R
n × R

n .
The proof of Proposition 16 will be accomplished, once the following Lemma will

be proved. ��
Lemma 17 For every m ∈ R, k = 1, . . . , n, qk,m ∈ �m−1, i.e. for all α, β ∈ N

n there
exists a positive constant Ck,m,α,β , independent of γ , such that

|∂αξ ∂βx qk,m(x, ξ, γ )| ≤ Ck,m,α,βλ
m−1−|α|,γ (ξ), ∀ x, ξ ∈ R

n . (80)

The proof of Lemma 17 is postponed to Appendix 1.
Now, we continue the proof of Proposition 16

End of the proof of Proposition 16. The last row of (78) provides the desired repre-
sentation of (75) as a pseudo-differential operator; actually it gives the identity

(2π)−n
∫

Rn

∂kλ
m,γ (ξ)

⎛

⎝
∫

Rn

eiξ ·ybk(x, y)v(x − y)dy

⎞

⎠ dξ = Opγ (qk,m)v(x),

for every v ∈ S(Rn).
Inserting the above formula (with v = (∂1w)

�) into (74) finally gives

(
[λm,γ
χ (Z), AI,I

1 ∂1]w
)�
(x) = Opγ (qm)(∂1w)

�(x), (81)

where qm = qm(x, ξ, γ ) is the symbol in �m−1 defined by

qm(x, ξ, γ ) := i
n∑

k=1

qk,m(x, ξ, γ ) . (82)

Of course, formula (67) is equivalent to (81), in view of (38). This ends the proof of
Proposition 16. ��

We come back to the analysis of the normal commutator term [λ−1,γ
χ (Z), AI,I

1 ∂1]uI .
To estimate it, we apply the result of Proposition 16 for m = −1 and w = uI . Then
we find the representation formula

[λ−1,γ
χ (Z), AI,I

1 ∂1]uI = q−1(x, Z , γ )(∂1uI ), (83)



J Fourier Anal Appl (2014) 20:816–864 841

where the symbol q−1 ∈ �−2 is defined by (82). Since AI,I
1 is invertible, from (56),

∂1uI can be represented in terms of tangential derivatives of u and F , as follows

∂1uI = (AI,I
1 )−1 F I + Tγ u, (84)

where Tγ = Tγ (x, Z) denotes the tangential partial differential operator

Tγ u := −(AI,I
1 )−1

⎡

⎢⎣γ uI + H1 Z1uI I +
⎛

⎝
n∑

j=2

A j Z j u + Bu + ρ�u

⎞

⎠
I
⎤

⎥⎦ (85)

and we have set H1 := x−1
1 AI,I I

1 (recall that H1 ∈ C∞
(0)(R

n+) since AI,I I
1 | x1=0 = 0).

Inserting (84) into (83) leads to

[λ−1,γ
χ (Z), AI,I

1 ∂1]uI = q−1(x, Z , γ )((AI,I
1 )−1 F I )+ q−1(x, Z , γ )Tγ u . (86)

The first term in the right-hand side of (86) is moved to the right-hand side of equation
(58) and incorporated into the source term. As for the second term q−1(x, Z , γ )Tγ u,
a similar analysis to the one performed about the tangential commutator term in the
right-hand side of (61) can be applied to rewrite it as the sum of a lower order operator
acting on λ−1,γ

χ (Z)u and some smoothing reminder. More precisely, applying again
the identities (62) and (50) we get

q−1(x, Z , γ )Tγ u = q−1(x, Z , γ )Tγ λ1,γ (Z)
(
λ−1,γ
χ (Z)u

)

+ q−1(x, Z , γ )Tγ λ1,γ (Z)r−1(Z , γ )u . (87)

Combining (86), (87) and (66) we decompose the normal commutator term in (61) as
the sum of the following contributions

[λ−1,γ
χ (Z), A1

1∂1]u =
(

q−1(x, Z , γ )((AI,I
1 )−1 F I )

0

)
+ ρ0,nor (x, Z , γ )(λ−1,γ

χ (Z)u)

+ S−1(x, Z , γ )u . (88)

In the representation provided by (88), the conormal operator

ρ0,nor (x, Z , γ ) :=
(

q−1(x, Z , γ )Tγ λ1,γ (Z)
0

)
(89)

has symbol in�0(in view of Proposition 5), and hence it must be treated as an additional
lower order operator, besides ρ� and ρ0,tan , within the equation (58) (see (103)); on
the other hand

S−1(x, Z , γ )u :=
(

q−1(x, Z , γ )Tγ λ1,γ (Z)r−1(Z , γ )u
0

)
(90)
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can be regarded as a smoothing reminder and then moved to the right-hand side of
the equation (58) to be treated as a part of the source term, in view of Lemma 12 (see
Section 4.5.1).

4.4.4 The boundary condition

We are going to write a boundary condition to be coupled to (58).
Firstly we notice that, by Proposition 13 for m = −1:

(λ−1,γ
χ (Z)u)| x1=0 = b′−1(D

′, γ )(u| x1=0), (91)

where the symbol b′−1 ∈ �−1 on R
n−1 is defined by (52). Then we apply the operator

b′−1 = b′−1(D
′, γ ) to (57) and we obtain

bγ (b
′−1ψ)+ Ms

γ

(
b′−1uI,s

| x1=0

)
+ M I

(
b′−1uI| x1=0

)
+ b�(b

′−1ψ)+ ��

(
b′−1uI,s

| x1=0

)

+[b′−1, bγ ]ψ + [b′−1, b�]ψ + [b′−1,Ms
γ ](uI,s

| x1=0)+ [b′−1, ��](uI,s
| x1=0)

+[b′−1,M I ](uI| x1=0) = b′−1g, on R
n−1, (92)

where, for simplicity, we have dropped the explicit dependence on x ′, D′ and γ in
the operators. We observe that, in view of the symbolic calculus (see Proposition 5),
the commutators appearing above are all pseudo-differential operators on R

n−1; more
precisely, since b′−1(ξ

′, γ ) is a scalar symbol we have that

[b′−1, b�] = [b′−1(D
′, γ ), b�(x

′, D′, γ )]
[b′−1, ��] = [b′−1(D

′, γ ), ��(x ′, D′, γ )]
[b′−1,M I ] = [b′−1(D

′, γ ),M I ] (93)

are operators with symbol in �−2, while

[b′−1, bγ ] = [b′−1(D
′, γ ), bγ (x

′, D′)]
[b′−1,Ms

γ ] = [b′−1(D
′, γ ),Ms

γ (x
′, D′)] (94)

are operators with symbol in �−1.
Since the a priori estimate in assumption (H)1 displays a loss of regularity from

the boundary data, the above operators must be treated in two different ways. The
commutators in (93) can be moved to the right-hand side and treated as additional
forcing terms. On the contrary, the commutators in (94) cannot be regarded as a part
of the source term in the equation (92) without loosing derivatives on the unknowns
u and ψ . These operators require a more careful analysis that essentially relies on
similar arguments to those used to study the commutator term appearing in the interior
equation (58) (see Sects. 4.4.2, 4.4.3).
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We use Lemma 14 and the identity λ1,γ (D′)λ−1,γ (D′) = I d to write

[b′−1(D
′, γ ), bγ ]ψ = [b′−1(D

′, γ ), bγ ]λ1,γ (D′)λ−1,γ (D′)ψ
= [b′−1(D

′, γ ), bγ ]λ1,γ (D′)(b′−1(D
′, γ )− β−1(D

′, γ ))ψ

=
(

[b′−1(D
′, γ ), bγ ]λ1,γ (D′)

)
(b′−1(D

′, γ )ψ)

−
(

[b′−1(D
′, γ ), bγ ]λ1,γ (D′)

)
β−1(D

′, γ )ψ

= d0(x
′, D′, γ )(b′−1(D

′, γ )ψ)+ d−3(x
′, D′, γ )ψ, (95)

where

d0(x
′, D′, γ ) := [b′−1(D

′, γ ), bγ ]λ1,γ (D′) (96)

has symbol in �0 and

d−3(x
′, D′, γ ) := −[b′−1(D

′, γ ), bγ ]λ1,γ (D′)β−1(D
′, γ ) (97)

has symbol in �−3, since β−1(ξ
′, γ ) ∈ �−3.

Analogously, we can treat the term in u involving the commutator [b′−1,Ms
γ ],

namely we find:

[b′−1(D
′, γ ),Ms

γ ]uI,s
| x1=0 = e0(x

′, D′, γ )
(

b′−1(D
′, γ )uI,s

| x1=0

)

+ e−3(x
′, D′, γ )uI,s

| x1=0, (98)

where

e0(x
′, D′, γ ) := [b′−1(D

′, γ ),Ms
γ ]λ1,γ (D′) (99)

has symbol in �0 and

e−3(x
′, D′, γ ) := −[b′−1(D

′, γ ),Ms
γ ]λ1,γ (D′)β−1(D

′, γ ) (100)

has symbol in �−3.
Thanks to the stability of the estimate (10) with respect to zero-th order

terms in ψ and uI,s , the operators d0(x ′, D′, γ ) and e0(x ′, D′, γ ) in the rep-
resentations (95), (98) can be just regarded as additional lower order terms
in b′−1(D

′, γ )ψ and b′−1(D
′, γ )uI,s

| x1=0, together with b�(x ′, D′, γ )(b′−1(D
′, γ )ψ),

��(x ′, D′, γ )
(

b′−1(D
′, γ )uI,s

| x1=0

)
in the Eq. (92) (see formulas (104), (105) below).

The terms involving d−3(x ′, D′, γ ), e−3(x ′, D′, γ ) can be just moved to the right-hand
side of (92) and absorbed into the boundary datum (see (107)).
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Remark 18 Let us notice that in view of Proposition 13 (and using that the operator
λ

−1,γ
χ (Z) acts component-wise on functions) the following identities hold

b′−1(D
′, γ )

(
uI| x1=0

)
=
(
λ−1,γ
χ (Z)uI

)

| x1=0
=
(
λ−1,γ
χ (Z)u

)I

| x1=0
(101)

and similarly for uI,s .

4.4.5 Final Form of the Regularized BVP

Summarizing the calculations performed in the previous Sect. 4.4 and in view of
Remark 18, the functions (λ−1,γ

χ (Z)u, b′−1(D
′, γ )ψ) satisfy the system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Lγ (λ−1,γ
χ (Z)u)+ ρ̃(x, Z , γ )(λ−1,γ

χ (Z)u) = F in R
n+

bγ (b′−1(D
′, γ )ψ)+ Ms

γ

(
λ

−1,γ
χ (Z)u

)I,s

| x1=0
+ M I

(
λ

−1,γ
χ (Z)u

)I

| x1=0

+ b̃(x ′, D′, γ )(b′−1(D
′, γ )ψ)+ �̃(x ′, D′, γ )

(
λ

−1,γ
χ (Z)u

)I,s

| x1=0

= G on R
n−1,

(102)

where

ρ̃(x, Z , γ ) := ρ�(x, Z , γ )+ ρ0,tan(x, Z , γ )+ ρ0,nor (x, Z , γ ), (103)

b̃(x ′, D′, γ ) := b�(x
′, D′, γ )+ d0(x

′, D′, γ ), (104)

�̃(x ′, D′, γ ) := ��(x
′, D′, γ )+ e0(x

′, D′, γ ), (105)

F := λ−1,γ
χ (Z)F −

(
q−1(x, Z , γ )((AI,I

1 )−1 F I )

0

)

− R−1(x, Z , γ )u − S−1(x, Z , γ )u, (106)

G := b′−1(D
′, γ )g − [b′−1(D

′, γ ), b�(x
′, D′, γ )]ψ − d−3(x

′, D′, γ )ψ
−[b′−1(D

′, γ ),M I ](uI| x1=0)

−[b′−1(D
′, γ ), ��(x ′, D′, γ )](uI,s

| x1=0)− e−3(x
′, D′, γ )uI,s

| x1=0,

(107)

and the operators ρ0,tan , ρ0,nor , d0, e0, R−1, S−1, d−3, e−3 are defined in the preceding
Sects. 4.4.1–4.4.4.

4.5 The Estimate Associated to the Regularized BVP

From assumption (H)1, we know that there exist constants C0 > 0, γ0 ≥ 1, depending
only on the coefficients of the operator Lγ and a finite number of semi-norms of
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ρ̃ = ρ̃(x, ξ, γ ) ∈ �0, �̃ = �̃(x ′, ξ ′, γ ), b̃ = b̃(x ′, ξ ′, γ ) ∈ �0, such that for all
γ ≥ γ0 the following estimate holds for the functions (λ−1,γ

χ (Z)u, b′−1(D
′, γ )ψ)

γ

(
||λ−1,γ

χ (Z)u||2
H1

tan,γ (R
n+)

+ ||(λ−1,γ
χ (Z)uI )| x1=0||2

H1/2
γ (Rn−1)

)

+ γ 2||b′−1(D
′, γ )ψ ||2H1

γ (R
n−1)

≤ C0

(
1

γ 3 ||F ||2
H2

tan,γ (R
n+)

+ 1

γ
||G||2

H3/2
γ (Rn−1)

)
. (108)

We start analyzing the terms appearing in the left-hand side of (108).
In view of (44), (50) we compute

||λ−1,γ
χ (Z)u||H1

tan,γ (R
n+) = ||λ1,γ (Z) λ−1,γ

χ (Z)u||L2(Rn+)

=
∣∣∣∣

∣∣∣∣λ
1,γ (Z)

(
λ−1,γ (Z)− r−1(Z , γ )

)
u

∣∣∣∣

∣∣∣∣
L2(Rn+)

=
∣∣∣
∣∣∣u − λ1,γ (Z) r−1(Z , γ )u

∣∣∣
∣∣∣
L2(Rn+)

≥ ||u||L2(Rn+) − ||λ1,γ (Z) r−1(Z , γ )u||L2(Rn+)
= ||u||L2(Rn+) − ||r−1(Z , γ )u||H1

tan,γ (R
n+).

Using Lemma 12 with h = 1, there exists a constant C1, independent on γ , such that

||r−1(Z , γ )u||H1
tan,γ (R

n+) ≤ C1

γ
||u||L2(Rn+), ∀γ ≥ 1.

Hence

||λ−1,γ
χ (Z)u||H1

tan,γ (R
n+) ≥ ||u||L2(Rn+) − C1

γ
||u||L2(Rn+) ≥ 1

2
||u||L2(Rn+), ∀γ ≥ γ1

(109)

with large enough γ1 ≥ 1.
Using Proposition 13 and Lemma 14 we get

(λ−1,γ
χ (Z)uI )| x1=0 = b′−1(D

′, γ )(uI| x1=0)

= λ−1,γ (D′)(uI| x1=0)+ β−1(D
′, γ )(uI| x1=0).
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Again by Lemma 14 we derive that β−1(ξ
′, γ ) ∈ �−3, hence by Proposition 7 and

(17), we get

||(λ−1,γ
χ (Z)uI )| x1=0||H1/2

γ (Rn−1)

= ||λ−1,γ (D′)(uI| x1=0)+ β−1(D
′, γ )(uI| x1=0)||H1/2

γ (Rn−1)

≥ ||λ1/2,γ (D′)λ−1,γ (D′)(uI| x1=0)||L2(Rn+) − ||β−1(D
′, γ )(uI| x1=0)||H1/2

γ (Rn−1)

≥ ||uI| x1=0||H−1/2
γ (Rn−1)

− C ||uI| x1=0||H−5/2
γ (Rn−1)

≥
(

1 − C

γ 2

)
||uI| x1=0||H−1/2

γ (Rn−1)
≥ 1

2
||uI| x1=0||H−1/2

γ (Rn−1)
, ∀γ ≥ γ1 (110)

with large enough γ1 ≥ 1, and C a positive constant independent of γ . As regards to
the term ||b′−1(D

′, γ )ψ ||2
H1
γ (R

n−1)
in (108) we write again, by Lemma 14,

b′−1(D
′, γ )ψ = λ−1,γ (D′)ψ + β−1(D

′, γ )ψ .

Arguing as above we obtain

||b′−1(D
′, γ )ψ ||H1

γ (R
n−1) ≥ ||λ−1,γ (D′)ψ ||H1

γ (R
n−1) − ||β−1(D

′, γ )ψ ||H1
γ (R

n−1)

≥ ||ψ ||L2(Rn−1) − C ||ψ ||H−2
γ (Rn−1)

≥
(

1 − C

γ 2

)
||ψ ||L2(Rn−1)

≥ 1

2
||ψ ||L2(Rn−1), ∀γ ≥ γ1 (111)

with γ1 ≥ 1 large enough, and C a positive constant independent on γ .
To conclude the estimate, we need to analyze the different commutator terms

involved in the data F ,G in right-hand side of (108). The next two sections are
devoted to the study of these commutator terms.

4.5.1 The Estimate of the Internal Source Term F

To provide an estimate of the H2
tan-norm of the source term F in the internal equation

of the BVP (102), we need to estimate in H2
tan(R

n+) the different terms involving F
and the function u in the right-hand side of (106).

Concerning the terms in the right-hand side of (106) containing the function u,
from Lemma 12 and the fact that the operators [λ−1,γ

χ (Z),Ltan,γ + ρ�]λ1,γ (Z) and
q−1(x, Z , γ )Tγ λ1,γ (Z) involved in the definition of R−1, S−1 are of order zero (see
(65), (90)), we get

||R−1u||H2
tan,γ (R

n+) ≤ C ||r−1(Z , γ )u||H2
tan,γ (R

n+) ≤ C1||u||L2(Rn+),

||S−1u||H2
tan,γ (R

n+) ≤ C ||r−1(Z , γ )u||H2
tan,γ (R

n+) ≤ C1||u||L2(Rn+),
(112)

for suitable positive constants C,C1 independent of γ ≥ 1.
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As regards to the terms in the right-hand side of (106) that contain the function F ,
since the operator q−1(x, Z , γ ) has symbol in �−2 (cf. Proposition 16), we immedi-
ately find that

||λ−1,γ
χ (Z)F ||H2

tan,γ (R
n+) ≤ C ||F ||H1

tan,γ (R
n+),

||q−1(x, Z , γ )((AI,I
1 )−1 F I )||H2

tan,γ (R
n+) ≤ C ||F I ||L2(Rn+) ≤ C

γ
||F I ||H1

tan,γ (R
n+),

(113)

for a suitable positive C , independent of γ .
Collecting estimates (112), (113) we obtain

||F ||H2
tan,γ (R

n+) ≤ C
{
||F ||H1

tan,γ (R
n+) + ||u||L2(Rn+))

}
, (114)

where again C is some positive constant independent of γ .

4.5.2 The Estimate of the Boundary Data G

In this section we provide an estimate of the H3/2-norm of the boundary data G in
the right-hand side of (102)2, as it is required by the estimate (108); in particular, we
need to consider the commutator terms involved in (107).

From Sect. 4.4.4 we know that the commutators in (93) are pseudo-differential
operators with symbols in �−2. Hence from Proposition 7, there exists a constant
C > 0 such that, ∀ γ ≥ 1,

||[b′−1(D
′, γ ), b�(x ′, D′, γ )]ψ ||

H3/2
γ (Rn−1)

≤C ||ψ ||
H−1/2
γ (Rn−1)

≤ C
γ 1/2 ||ψ ||L2(Rn−1),

||[b′−1(D
′, γ ),M I ]uI| x1=0||H3/2

γ (Rn−1)
≤ C ||uI| x1=0||H−1/2

γ (Rn−1)
,

||[b′−1(D
′, γ ), ��(x ′, D′, γ )]uI,s

| x1=0||H3/2
γ (Rn−1)

≤ C ||uI,s
| x1=0||H−1/2

γ (Rn−1)
.

(115)

Finally, since d−3(x ′, D′, γ ) and e−3(x ′, D′, γ ) have symbol in �−3 (see (97) and
(100)) we obtain

||d−3(x
′, D′, γ )ψ ||

H3/2
γ (Rn−1)

≤ C ||ψ ||
H−3/2
γ (Rn−1)

≤ C

γ 3/2 ||ψ ||L2(Rn−1), ∀ γ ≥ 1, (116)

||e−3(x
′, D′, γ )uI,s

| x1=0||H3/2
γ (Rn−1)

≤ C ||uI,s
| x1=0||H−3/2

γ (Rn−1)

≤ C

γ
||uI,s

| x1=0||H−1/2(Rn−1), ∀ γ ≥ 1, (117)
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with γ -independent positive constant C . Collecting the preceding estimates (115)–
(117) and using (107) we obtain

||G||
H3/2
γ (Rn−1)

≤ C
(
||b′−1(D

′, γ )g||
H3/2
γ (Rn−1)

+||[b′−1(D
′, γ ), b�(x

′, D′, γ )]ψ ||
H3/2
γ (Rn−1)

+||[b′−1(D
′, γ ), ��(x ′, D′, γ )]uI,s

| x1=0||H3/2
γ (Rn−1)

+ ||d−3(x
′, D′, γ )ψ ||

H3/2
γ (Rn−1)

+||[b′−1(D
′, γ ),M I ]uI| x1=0||H3/2

γ (Rn−1)
+ ||e−3(x

′, D′, γ )uI,s
| x1=0||H3/2

γ (Rn−1)

)

≤ C

(
||g||

H1/2
γ (Rn−1)

+ 1

γ 1/2 ||ψ ||L2(Rn−1) + ||uI| x1=0||H−1/2
γ (Rn−1)

)
, ∀ γ ≥ 1,

(118)

with γ -independent positive constant C .

4.6 Proof of Estimate (12)

We start from (108) and use (109), (110), (111), (114) and (118) to get

γ

(
||u||2

L2(Rn+)
+ ||uI| x1=0||2H−1/2

γ (Rn−1)

)
+ γ 2||ψ ||2

L2(Rn−1)

≤ C
γ 3

(
||F ||2

H1
tan,γ (R

n+)
+ ||u||2

L2(Rn+)

)

+ C
γ

(
||g||2

H1/2
γ (Rn−1)

+ 1
γ
||ψ ||2

L2(Rn−1)
+ ||uI| x1=0||2H−1/2

γ (Rn−1)

)

for all γ ≥ γ1, with γ1 ≥ 1 large enough, and C > 0 independent of γ .
Then estimate (12) follows by absorbing into the left-hand side the terms involving

the functions u, ψ in the right-hand side of the above inequality. This ends the proof
of the statement 1 of Theorem 1.

4.7 Proof of Estimate (13), Statement 2 of Theorem 1.

In the end, let us shortly discuss the proof of the estimate (13) in Theorem 1, statement
2, under the assumption (H)2 about the BVP (1).

As it was done in Sect. 4.4, for given smooth functions (u, ψ) we firstly define the
data

F := Lγ u,
g := bγ ψ + Ms

γ uI,s + M I uI + b�(x ′, D′, γ )ψ + ��(x ′, D′, γ )uI,s .
(119)

Notice that, differently from the case of statement 1 (see formulas (56), (57)), no lower
order term in u is involved in the definition of the interior source term F in (119); this
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agrees with the assumption (H)2, about the BVP (1), where no stability assumption
under lower order interior operators is required for the estimate (11).

Then, following the strategy already explained in Sect. 4.1, we apply the operator
λ

−1,γ
χ (Z) to the first equation in (119) and we find

Lγ (λ−1,γ
χ (Z)u) = λ−1,γ

χ (Z)F − [λ−1,γ
χ (Z),Lγ ]u, in R

n+ . (120)

Compared to the analogous equation (58), in the left-hand side of the above equation
there is no lower order operator ρ�(x, Z , γ ). Moreover, we notice that the term involv-

ing the commutator [λ−1,γ
χ (Z),Lγ ] has been put in the right-hand side of the equation

(120), which means that this term can be just regarded as a part of the source term
of such an equation. This is a consequence of the fact that the a priori estimate (11),
that is associated to the BVP (1) under the assumption (H)2, does not lose derivatives
from the interior source term F : the H1

tan-norm of the unknown u is measured by the
H1

tan-norm of F .
Concerning the boundary condition, the same arguments developed in the Sect.

4.4.4 give that the functions (λ−1,γ
χ (Z)u, b′−1(D

′, γ )ψ) satisfy the equation (102)2
on the boundary.

Applying the estimate (11) to the BVP (120), (102)2 we find again that (λ−1,γ
χ (Z)u,

b′−1(D
′, γ )ψ) obey the estimate

γ

(
||λ−1,γ

χ (Z)u||2
H1

tan,γ (R
n+)

+ ||(λ−1,γ
χ (Z)uI )| x1=0||2

H1/2
γ (Rn−1)

)

+ γ 2||b′−1(D
′, γ )ψ ||2

H1
γ (R

n−1)

≤ C0
γ

(
||F ||2

H1
tan,γ (R

n+)
+ ||G||2

H3/2
γ (Rn−1)

)
,

(121)

where the interior source term F is defined now as

F := λ−1,γ
χ (Z)F − [λ−1,γ

χ (Z),Lγ ]u, (122)

while the boundary datum G is given by (107).
To conclude the proof, it remains to provide an estimate of the Sobolev norms of

F and G appearing in the right-hand side of (121). The estimate of G is exactly the
estimate (118) obtained in Sect. 4.5.2.

Concerning the estimate of F , from (122) we firstly get

||F ||H1
tan,γ (R

n+) ≤
{
||λ−1,γ

χ (Z)F ||H1
tan,γ (R

n+) + ||[λ−1,γ
χ (Z),Lγ ]u||H1

tan,γ (R
n+)

}

≤ C
{
||F ||L2(Rn+) + ||[λ−1,γ

χ (Z),Lγ ]u||H1
tan,γ (R

n+)

}
, (123)

for a positive constant C independent of γ ≥ 1. In order to estimate the norm of the
commutator term [λ−1,γ

χ (Z),Lγ ]u involved in the right-hand side of (123), the same
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analysis performed in Sects. 4.4.2 and 4.4.3 leads to the formula

[λ−1,γ
χ (Z),Lγ ]u = [λ−1,γ

χ (Z), A1
1∂1]u + [λ−1,γ

χ (Z),Ltan,γ ]u
=
(

q−1(x, Z , γ )(∂1uI )

0

)
+ [λ−1,γ

χ (Z),Ltan,γ ]u, (124)

where the result of Proposition 16 (see also (66)) has been used to get the second
equality above and Ltan,γ is the tangential differential operator defined in (60).

Since, in view of Proposition 5, [λ−1,γ
χ (Z),Ltan,γ ] is a conormal operator with

symbol in �−1, Proposition 8 yields

||[λ−1,γ
χ (Z),Ltan,γ ]u||H1

tan,γ (R
n+) ≤ C ||u||L2(Rn+), (125)

with some positive γ -independent constant C .
As for q−1(x, Z , γ ), it is a conormal operator with symbol in �−2. Writing again

∂1uI is terms of conormal derivatives of u and F as in (84) gives

q−1(x, Z , γ )(∂1uI ) = q−1(x, Z , γ )
(
(AI,I

1 )−1 F I + Tγ u
)
,

where Tγ is the conormal operator of order 1 defined in (85) (with ρ� = 0). Hence in
view of Proposition 8 we get

||[λ−1,γ
χ (Z), AI,I

1 ∂1]uI ||H1
tan,γ (R

n+)

=
∣∣∣
∣∣∣λ1,γ (Z)

(
q−1(x, Z , γ )((AI,I

1 )−1 F I + Tγ u)
)∣∣∣
∣∣∣
L2(Rn+)

≤
∣∣∣
∣∣∣λ1,γ (Z)

(
q−1(x, Z , γ )((AI,I

1 )−1 F I )
)∣∣∣
∣∣∣
L2(Rn+)

+ ||λ1,γ (Z)q−1(x, Z , γ )Tγ u||L2(Rn+)

≤ C0

(
||F I ||H−1

tan,γ (R
n+)

+ ||u||L2(Rn+)
)

≤ C0

(
1

γ
||F I ||L2(Rn+) + ||u||L2(Rn+)

)
. (126)

Collecting estimates (123), (125), (126), we finally get

||F ||H1
tan,γ (R

n+) ≤ C
(
||F ||L2(Rn+) + ||u||L2(Rn+)

)
, ∀ γ ≥ 1, (127)

with γ -independent positive constant C .
The estimate (13) follows at once by combining (121) with (118) and (127).
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Appendix 1: Proof of Some Technical Lemmata

Proof of Lemma 10

For a given smooth function u ∈ C∞
(0)(R

n+), an explicit calculation gives that

λm,γ
χ (Z)u(x)=

〈
F−1λm,γ (·), χ(·)e− (·)1

2 u(x1e−(·)1 , x ′−(·)′)
〉
, ∀ x =(x1, x ′) ∈ R

n+.

We have to prove that, under a suitable choice of ε0, if x /∈ B
+ then λm,γ

χ (Z)u(x) = 0.
This is true if

y �→ vx (y) := χ(y)e− y1
2 u(x1e−y1 , x ′ − y′)

is identically zero as long as x /∈ B
+.

Since R
n+ \ B

+ = {x = (x1, x ′) : x1 ≥ 1, ∀ x ′ ∈ R
n−1} ∪ {x = (x1, x ′) : |x ′| ≥

1, ∀ x1 ∈ [0,+∞[} we need to analyze the following two cases.
1st case: x1 ≥ 1.
Let y ∈ R

n be arbitrarily fixed. If y /∈ suppχ , then χ(y) = 0, which implies
vx (y) = 0. If y ∈ suppχ , then we have −ε0 ≤ y1 ≤ ε0 and |y′| ≤ ε0. Hence, we
derive that e−ε0 ≤ e−y1 ≤ eε0 and, since x1 ≥ 1, x1e−y1 ≥ e−y1 ≥ e−ε0 . Since
u(x1, x ′) = 0 when x1 ≥ δ0, if we choose ε0 > 0 such that e−ε0 > δ0 (that is
equivalent to ε0 < log(1/δ0)), then we get that

∀ y ∈ suppχ, ∀ x1 ≥ 1 : u(x1e−y1 , x ′ − y′) = 0,

which gives vx (y) = 0.
2nd case: |x ′| ≥ 1.
Again, if y /∈ suppχ , then vx (y) = 0. If y ∈ suppχ then |x ′ − y′| ≥ |x ′| − |y′| ≥

1 − |y′| ≥ 1 − ε0. To conclude, in this case it is sufficient to choose ε0 > 0 such that
1 − ε0 > δ0 in order to have again vx (y) = 0.

Finally, the result is proved if we choose 0 < ε0 ≤ min{log(1/δ0), 1 − δ0}.

Proof of Lemma 12

For arbitrary u ∈ L2(Rn+), we observe that in view of (35), (38)

(rm(Z , γ )u)
� = rm(D, γ )u

� = F−1(rm(·, γ )) ∗ u� ; (128)

then, for arbitrary β ∈ N
n :

∂β(rm(Z , γ )u)
� = (∂βF−1(rm(·, γ )) ∗ u� .

Since H p
tan,γ (R

n+) is topologically isomorphic to H p
γ (R

n) for all positive integers p,
via the � operator, and u� ∈ L2(Rn), then rm(Z , γ )u ∈ H p

tan,γ (R
n+) is proven provided

that ∂βF−1(rm(·, γ )) belongs to L1(Rn) for all β ∈ N
n with |β| ≤ p.
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On the other hand, by the standard properties of the Fourier transform and by (46),
we get

F−1(rm(·, γ )) = F−1((I − χ(D))λm,γ ) = F−1(F−1((1 − χ)λ̂m,γ ))

= (2π)−n ˜
((1 − χ)λ̂m,γ ) = (1 − χ)F−1(λm,γ ), (129)

where we have used the identity F−1g = (2π)−n˜̂g, with g̃(x) = g(−x), and that χ
is an even function.

Let us firstly focus on F−1(λm,γ ). For arbitrary positive integers N , k and β ∈ N
n

one computes

|z|2(N+k)∂βz F−1(λm,γ )(z) = i |β| ∑

|α|=N+k

(N + k)!
α! z2αF−1(ξβλm,γ )(z)

= i |β|(−1)N+k
∑

|α|=N+k

(N + k)!
α! F−1

(
∂2α
ξ (ξ

βλm,γ )
)
(z) . (130)

On the other hand, since λm,γ ∈ �m , for |α| = N + k we get

|∂2α
ξ (ξ

βλm,γ (ξ))| ≤ Cα,βλ
m+|β|−2|α|,γ (ξ) = Cα,βλ

m+|β|−2(N+k),γ (ξ)

= Cα,βλ
−2k,γ (ξ)λm+|β|−2N ,γ (ξ)

≤ Cα,βγ
−2kλm+|β|−2N ,γ (ξ), ∀ ξ ∈ R

n, ∀ γ ≥ 1 .

For fixed β, we choose the integer Nβ = N such that 2N ≥ m + |β| + 1 + n; then

λm+|β|−2N ,γ (ξ) ≤ λ−(1+n),γ (ξ) ≤ (1 + |ξ |2)− n+1
2 , ∀ ξ ∈ R

n, ∀ γ ≥ 1

yields

|∂2α
ξ (ξ

βλm,γ (ξ))| ≤ Cα,βγ
−2k(1 + |ξ |2)− n+1

2 , ∀ ξ ∈ R
n, ∀ γ ≥ 1 ;

hence ∂2α
ξ (ξ

βλm,γ (ξ)) ∈ L1(Rn) and, from Riemann–Lebesgue Theorem,

F−1(∂2α
ξ (ξ

βλm,γ (ξ))) ∈ L∞(Rn) ∩ C0(Rn) and we have

||F−1(∂2α
ξ (ξ

βλm,γ (ξ)))||L∞(Rn) ≤ ∫

Rn
|∂2α
ξ (ξ

βλm,γ (ξ))| dξ

≤ Cα,βγ−2k
∫

Rn
(1 + |ξ |2)− n+1

2 dξ ≤ Cα,β,nγ−2k, ∀ γ ≥ 1 .

Therefore, in view of (130),

|z|2(N+k)∂βz F−1(λm,γ )(z) ∈ L∞(Rn) ∩ C0(Rn)
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and

|z|2(N+k)|∂βz F−1(λm,γ )(z)| ≤ Ck,N ,β,nγ
−2k, ∀ z ∈ R

n, γ ≥ 1,

where the constant Ck,N ,β,n is independent of γ .
Summarizing, we have proved that:

∀β ∈ N
n,∀ k, N ∈ N, with k ≥ 1, N ≥ m+|β|+1+n

2 , ∃ C = Ck,N ,β,n > 0 :
1. |z|2(N+k)∂

β
z F−1(λm,γ )(z) ∈ L∞(Rn) ∩ C0(Rn)

2. |z|2(N+k)|∂βz F−1(λm,γ )(z)| ≤ Ck,N ,β,nγ
−2k, ∀ z ∈ R

n, γ ≥ 1 .

For arbitrary β ∈ N
n , we consider ∂βF−1(rm(·, γ )). From (129) we compute, by

Leibniz formula,

∂βF−1(rm(·, γ ))(z) = −
∑

ν<β

(
β

ν

)
∂β−ν

z χ(z)∂νz F−1(λm,γ )(z)

+ (1 − χ)(z)∂βz F−1(λm,γ )(z) . (131)

Note that ∂β−νχ , for all ν < β, and 1 − χ are identically zero on a neighbourhood of
z = 0. Then, from 1, 2 above we derive that

∀β ∈ N
n,∀ k, N ∈ N, with k ≥ 1, N ≥ m+|β|+1+n

2 , ∃ C = Ck,N ,β,χ,n > 0 :
3. ∂β−ν

z χ(z)∂νz F−1(λm,γ )(z), (1 − χ)(z)∂βz F−1(λm,γ )(z) ∈ L∞(Rn) ∩ C0(Rn),

∀ ν < β ;
4. |∂β−ν

z χ(z)∂νz F−1(λm,γ )(z)| ≤ Ck,N ,β,χ,nγ
−2k(1 + |z|2)−N ,

|(1 − χ)(z)∂βz F−1(λm,γ )(z)| ≤ Ck,N ,β,χ,nγ
−2k(1 + |z|2)−N , ∀ z ∈ R

n,

ν < β, γ ≥ 1 .

Thus, applying 4 for N ≥ max
{

n+1
2 ,

m+|β|+n+1
2

}
, from (131) we obtain that

∂βF−1(rm(·, γ )) ∈ L1(Rn) and for all γ ≥ 1:

||∂βF−1(rm(·, γ ))||L1(Rn) ≤ CN ,k,n,β,χγ
−2k
∫

Rn

(1 + |z|2)−N dz ≤ Ck,n,β,χγ
−2k

≤ Ck,n,β,χγ
−k, (132)

where the constant Ck,n,β,χ is independent of γ .
For every positive integer p, applying the above result to all multi-indices β ∈ N

n

with |β| ≤ p gives that ∂β(rm(Z , γ )u)� = ∂βF−1(rm(·, γ )) ∗ u� belongs to L2(Rn)

with

||∂β(rm(Z , γ )u)
�||L2(Rn) ≤ ||∂βF−1(rm(·, γ ))||L1(Rn)||u�||L2(Rn)

≤ Ck,n,β,χγ
−k ||u||L2(Rn+) . (133)
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This gives that rm(Z , γ )u ∈ H p
tan,γ (R

n+). Furthermore, for an arbitrary positive integer
h we apply (133) for each β ∈ N

n with |β| ≤ p for k = p − |β| + h to get

||rm(Z , γ )u||2
H p

tan,γ (R
n+)

≤ C p||(rm(Z , γ )u)
�||2

H p
γ (R

n)

=
∑

|β|≤p

γ 2(p−|β|)||∂β(rm(Z , γ )u)
�||2L2(Rn)

≤
∑

|β|≤p

γ 2(p−|β|)Ch,p,n,β,χγ
−2(p−|β|+h)||u||2L2(Rn+)

≤ Ch,p,n,χγ
−2h ||u||2L2(Rn+)

, (134)

for a suitable γ -independent positive constant Ch,p,n,χ . This shows the estimate (49)
and completes the proof.

Proof of Proposition 13

Let u ∈ C∞
(0)(R

n+); to find a symbol b′
m satisfying (53), from (46) we firstly compute

(λm,γ
χ (Z)u)�(x) = λm,γ

χ (D)(u�)(x) = (F−1(λm,γ
χ ) ∗ u�)(x)

= 〈F−1(λm,γ
χ ), u�(x − ·)〉

= 〈F−1(λm,γ ), χ(·)e x1−(·)1
2 u(ex1−(·)1, x ′ − (·)′)〉, ∀ (x1, x ′) ∈ R

n,

hence, by (31),

λ
m,γ
χ (Z)u(x) = 〈F−1(λm,γ ), χ(·)e x1−(·)1

2 u(ex1−(·)1, x ′ − (·)′)〉�−1

= 1√
x1

〈
F−1(λm,γ ), χ(·)e log x1−(·)1

2 u(elog x1−(·)1, x ′ − (·)′)
〉

=
〈
F−1(λm,γ ), χ(·)e −(·)1

2 u(x1e−(·)1 , x ′ − (·)′)
〉

=
〈
λm,γ ,F−1

(
χ(·)e −(·)1

2 u(x1e−(·)1 , x ′ − (·)′)
)〉

= (2π)−n
∫
λm,γ (ξ)

(∫
eiξ ·yχ(y)e− y1

2 u(x1e−y1 , x ′ − y′)dy
)

dξ, ∀ x1 > 0,

∀ x ′ ∈ R
n−1 .

The regularity of u legitimates all the above calculations. Setting x1 = 0 in the
last expression above, we deduce the corresponding expression for the trace on the
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boundary of λm,γ
χ (Z)u

(λm,γ
χ (Z)u)| x1=0(x

′)

= (2π)−n
∫
λm,γ (ξ)

(∫
eiξ ·yχ(y)e− y1

2 (u| x1=0)(x
′ − y′)dy

)
dξ . (135)

Now we substitute (51) into the y-integral appearing in the last expression above; then
Fubini’s theorem gives

∫
eiξ ·yχ1(y1)χ̃(y

′)e− y1
2 (u| x1=0)(x

′ − y′)dy

=
∫

eiξ ′·y′
(∫

eiξ1 y1e− y1
2 χ1(y1)dy1

)
χ̃ (y′)(u| x1=0)(x

′ − y′)dy′

=
∫

eiξ ′·y′
(∫

e−iξ1(−y1)e− y1
2 χ1(y1)dy1

)
χ̃ (y′)(u| x1=0)(x

′ − y′)dy′

=
∫

eiξ ′·y′
(∫

e−iξ1(−y1)e− y1
2 χ1(−y1)dy1

)
χ̃(y′)(u| x1=0)(x

′ − y′)dy′

=
(

e
(·)1

2 χ1

)∧1
(ξ1)

∫
eiξ ′·y′

χ̃ (y′)(u| x1=0)(x
′ − y′)dy′, (136)

where we have used that χ1 is even and ∧1 denotes the one-dimensional Fourier
transformation with respect to y1. Writing, by the inversion formula, (u| x1=0)(x ′ −
y′) = (2π)−n+1

∫
ei(x ′−y′)·η′

û| x1=0(η
′)dη′ and using once more Fubini’s theorem and

that χ̃ is even, we further obtain

∫
eiξ ′·y′

χ̃ (y′)(u| x1=0)(x
′ − y′)dy′

= (2π)−n+1
∫

eiξ ′·y′
χ̃(y′)

(∫
ei(x ′−y′)·η′

û| x1=0(η
′)dη′

)
dy′

=
∫

eix ′·η′
(
(2π)−n+1

∫
ei(ξ ′−η′)·y′

χ̃ (y′)dy′
)

û| x1=0(η
′)dη′

=
∫

eix ′·η′
(
(2π)−n+1

∫
e−i(ξ ′−η′)·(−y′)χ̃ (−y′)dy′

)
û| x1=0(η

′)dη′

= (2π)−n+1
∫

eix ′·η′̂̃χ(ξ ′ − η′)û| x1=0(η
′)dη′ ; (137)

here ∧ is used here to denote the (n − 1)-dimensional Fourier transformation with
respect to x ′. Inserting (136), (137) into (135) then leads to

(λm,γ
χ (Z)u)| x1=0(x

′)

= (2π)−n
∫
λm,γ (ξ)

(
e
(·)1

2 χ1

)∧1
(ξ1)

(
(2π)−n+1

∫
eix ′·η′̂̃χ(ξ ′ − η′)û| x1=0(η

′)dη′
)

dξ .

(138)
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Because
(

e
(·)1

2 χ1

)∧1 ∈ S(R), ̂̃χ ∈ S(Rn−1) and û| x1=0 ∈ S(Rn−1), the double

integral

∫ ∫
eix ′·η′

λm,γ (ξ)
(

e
(·)1

2 χ1

)∧1
(ξ1)̂̃χ(ξ ′ − η′)û| x1=0(η

′)dη′dξ

converges absolutely; hence Fubini’s theorem allows to exchange the order of the
integrations in (138) and find

(λm,γ
χ (Z)u)| x1=0(x

′) = (2π)−n+1
∫

eix ′·η′
b′

m(η
′, γ )û| x1=0(η

′)dη′, (139)

where b′
m(η

′, γ ) is defined by (52). This shows the identity (53).

Proof of Lemma 14

We follow the same lines of the proof of [20, Lemma 4.11]. Setting for short

φ(x) := ex1/2χ1(x1)χ̃(x
′), (140)

the symbol (52) can be re-written as

b′
m(ξ

′, γ ) = (2π)−n
∫
λm,γ (η1, η

′ + ξ ′)φ̂(η) dη . (141)

Substituting in (141) the function η �→ λm,γ (η1, η
′+ξ ′) by its Taylor expansion about

η = 0

λm,γ (η1, η
′ + ξ ′) =

∑

|α|<N

(∂αλm,γ )(0, ξ ′)
α! ηα

+ N
∑

|α|=N

ηα

α!
1∫

0

(∂αλm,γ )(tη1, ξ
′ + tη′)(1 − t)N−1dt (142)

for N = 2, we get

b′
m(ξ

′, γ ) = (2π)−n
∫ ⎡

⎣λm,γ (ξ ′)+
n∑

j=1

η j (∂ jλ
m,γ )(0, ξ ′)

+ 2
∑

|α|=2

ηα

α!
1∫

0

(∂αλm,γ )(tη1, ξ
′ + tη′)(1 − t)dt

⎤

⎦ φ̂(η) dη
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= (2π)−nλm,γ (ξ ′)
∫
φ̂(η) dη − i(2π)−n

n∑

j=1

(∂ jλ
m,γ )(0, ξ ′)

∫
∂̂ jφ(η)dη

− 2(2π)−n
∑

|α|=2

1

α!
∫ ⎛

⎝
1∫

0

∂αλm,γ (tη1, tη′ + ξ ′)(1 − t) dt

⎞

⎠ ∂̂αφ(η) dη .

(143)

From Plancherel’s identity and (140) (cf. also (45), (51)) we compute

(2π)−n
∫
φ̂(η) dη = φ(0) = 1,

(2π)−n
∫
∂̂1φ(η) dη = ∂1φ(0) = − 1

2 ,

(2π)−n
∫
∂̂ jφ(η) dη = ∂ jφ(0) = 0, j ≥ 2 .

(144)

On the other hand, from (14) one trivially computes that (∂1λ
m,γ )(0, ξ ′) = 0 for all

ξ ′ ∈ R
n−1. Inserting the last relation and (144) into (143) then gives (54), where we

set

βm,δ(ξ
′, γ ) := −2(2π)−n

∑

|α|=2

1

α!
∫ ⎛

⎝
1∫

0

∂αλm,γ (tη1, tη′ + ξ ′)(1 − t) dt

⎞

⎠

× ∂̂αφ(η) dη . (145)

To prove that βm belongs to �m−2, differentiation under the integral sign of (145)
gives, for an arbitrary ν′ ∈ N

n−1,

∂ν
′
ξ ′ βm,δ(ξ

′, γ )

= −2(2π)−n
n∑

|α|=2

1

α!
∫ ⎡

⎣∂ν′
ξ ′

⎛

⎝
1∫

0

(∂αλm,γ )(tη1, tη′ + ξ ′)(1 − t) dt

⎞

⎠

⎤

⎦× ∂̂αφ(η)dη

= −2(2π)−n
n∑

|α|=2

1

α!
∫ ⎡

⎣
1∫

0

(∂α+(0,ν′)λm,γ )(tη1, tη′+ξ ′)(1 − t) dt

⎤

⎦ ∂̂αφ(η) dη ;

(146)

hence from λm,γ ∈ �m we obtain

|∂ν′
ξ ′ βm,δ(ξ

′, γ )| ≤ Cm,ν′
∑

|α|=2

∫ ⎛

⎝
1∫

0

λm−2−|ν′|,γ (tη1, tη′ + ξ ′) dt

⎞

⎠ |̂∂αφ(η)| dη,

(147)

for a suitable γ−independent positive constant Cm,ν′ .
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Recall that, for all s ∈ R, γ ≥ 1 and ξ, η ∈ R
n

λs,γ (ξ) ≤ 2|s|λs,γ (ξ − η)λ|s|(η), (148)

see [6], [27, Lemma 1.18]. Then, we apply (148) (for s = m − 2 − |ν′|) to estimate
λm−2−|ν′|,γ (tη1, tη′ + ξ ′) within the right-hand side of (147) by

λm−2−|ν′|,γ (tη1, tη′ + ξ ′) ≤ 2|m−2−|ν′||λm−2−|ν′|,γ (ξ ′)λ|m−2−|ν′||(tη)
≤ 2|m−2−|ν′||λm−2−|ν′|,γ (ξ ′)λ|m−2−|ν′||(η),

∀ ξ ′ ∈ R
n−1, η ∈ R

n, t ∈ [0, 1],

and combine with (147) to finally get

|∂ν′
ξ ′ βm(ξ

′, γ )| ≤ C ′
m,ν′λm−2−|ν′|,γ (ξ ′)

∑

|α|=2

∫
λ|m−2−|ν′||(η)|̂∂αφ(η)|dη

≤ C ′′
m,ν′λm−2−|ν′|,γ (ξ ′), (149)

for C ′
m,ν′ ,C ′′

m,ν′ suitable positive constants independent of γ (notice in particular that
the integrals in the sum involved in the right-hand side of the first inequality in (149)
are absolutely convergent, because ∂̂αφ ∈ S(Rn) for all |α| = 2).

Proof of Corollary 15

For all ψ ∈ C∞
0 (R

n−1) under the above assumptions, let � ∈ C∞
(0)(R

n+) be chosen in
such a way that

supp� ⊆ B
+
δ0
, �| x1=0 = ψ . (150)

Such a function � could be for instance obtained as

�(x1, x ′) := η(x1)ψ(x
′), ∀ x1 ≥ 0, x ′ ∈ R

n−1,

with η = η(x1) ∈ C∞
(0)([0,+∞[) such that

η(x1) = 1, 0 ≤ x1 <
δ0

2
, η(x1) = 0, x1 > δ0 .

Then, in view of Proposition 13 one has

b′
m(D

′, γ )ψ = b′
m(D

′, γ )(�| x1=0) = (λm,γ
χ (Z)�)| x1=0 .

Then, from (150) and Lemma 10,

supp b′
m(D

′, γ )ψ ⊂ B
+ ∩ {x1 = 0} = B(0; 1) .
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Proof of Lemma 17

Recall that we have defined for each k = 1, . . . , n

qk,m(x, ξ, γ ) := (2π)−n
∫

Rn

b̂k(x, η)∂kλ
m,γ (ξ − η) dη, (151)

where the functions bk = bk(x, y) (cf. (72)) are given in C∞(Rn ×R
n), have bounded

derivatives in R
n × R

n , and satisfy for all x ∈ R
n

supp bk(x, ·) ⊆ {|y| ≤ 2ε0} .

Recall also that b̂k(x, ζ ) denotes the partial Fourier transform of bk(x, y)with respect
to y.

The following lemma is concerned with the behavior at infinity of b̂k(x, ζ ).

Lemma 19 Let the function bk = bk(x, y) ∈ C∞(Rn ×R
n) obey all of the preceding

assumptions. Then, for every positive integer N and all multi-indices α ∈ N
n there

exists a positive constant CN ,α such that

(1 + |ζ |2)N |∂αx b̂k(x, ζ )| ≤ CN ,α, ∀ x, ζ ∈ R
n . (152)

Proof Since for each x ∈ R
n , the function bk(x, ·) has compact support (independent

of x), integrating by parts we get for an arbitrary integer N > 0

(1 + |ζ |2)N b̂k(x, ζ ) =
∑

|α|≤N

N !
α!(N − |α|)!

∫

{|y|≤2ε0}
ζ 2αe−iζ ·ybk(x, y) dy

=
∑

|α|≤N

N !
α!(N − |α|)! (−1)|α|

∫

{|y|≤2ε0}
∂2α

y (e−iζ ·y)bk(x, y) dy

=
∑

|α|≤N

N !
α!(N − |α|)! (−1)|α|

∫

{|y|≤2ε0}
e−iζ ·y∂2α

y bk(x, y) dy, (153)

from which (152) trivially follows, using that y−derivatives of bk(x, y) are bounded
in R

n × R
n by a positive constant independent of x . ��

We are going now to analyze the behavior at infinity of the derivatives of
qk,m(x, ξ, γ ) defined as in (151). For all multi-indices α, β ∈ N

n , differentiation
under the integral sign in (151) gives

∂αξ ∂
β
x qk,m(x, ξ, γ ) = (2π)−n

∫
∂
β
x b̂k(x, η)∂α+ek

λm,γ (ξ − η) dη, (154)
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where ek := (0, . . . , 1︸︷︷︸
k

, . . . , 0). Then using thatλm,γ is a symbol of order m together

with (152) and combining with (148), for s = m − 1 − |α|, we obtain

|∂αξ ∂βx qk,m(x, ξ, γ )| ≤ CN ,βCm,α

∫
λ−2N (η)λm−1−|α|,γ (ξ − η) dη

≤ CN ,m,α,βλ
m−1−|α|,γ (ξ)

∫
λ|m−1−|α||−2N (η) dη, (155)

where the integral in the last line is finite, provided that the integer N is
taken to be sufficiently large. This provides the estimate (80), with constant
CN ,m,α,β

∫
λ|m−1−|α||−2N (η) dη independent of γ .

Appendix 2: Some Examples from MHD

Current-Vortex Sheets

Consider the equations of ideal compressible MHD:

⎧
⎪⎪⎨

⎪⎪⎩

∂tρ + div (ρv) = 0,
∂t (ρv)+ div (ρv ⊗ v − H ⊗ H)+ ∇q = 0,
∂t H − ∇ × (v×H) = 0,
∂t
(
ρe + 1

2 |H |2)+ div
(
(ρe + p)v + H×(v×H)

) = 0,

(156)

whereρ denotes density, v ∈ R
3 plasma velocity, H ∈ R

3 magnetic field, p = p(ρ, S)
pressure, q = p + 1

2 |H |2 total pressure, S entropy, e = E + 1
2 |v|2 total energy, and

E = E(ρ, S) internal energy. With a state equation of gas, ρ = ρ(p, S), and the
first principle of thermodynamics, (156) is a closed system. The system is symmetric
hyperbolic provided ρ > 0, ∂ρ

∂p > 0. System (156) is supplemented by the divergence
constraint

div H = 0 (157)

on the initial data.
Current-vortex sheets are weak solutions of (156) that are smooth on either side of

a smooth hypersurface �(t) = {x1 = ψ(t, x ′)} in [0, T ] × �, where � ⊂ R
3, x ′ =

(x2, x3) and that satisfy suitable jump conditions at each point of the front �(t).
Let us denote �±(t) = {x1 ≷ ψ(t, x ′)}, where � = �+(t) ∪�−(t) ∪ �(t); given

any function g we denote g± = g in�±(t) and [g] = g+
|� − g−

|� the jump across �(t).
One looks for smooth solutions (v±, H±, p±, S±) of (156) in�±(t) such that�(t)

is a tangential discontinuity, namely the plasma does not flow through the discontinuity
front and the magnetic field is tangent to �(t), see e.g. [16], so that the boundary
conditions take the form

∂tψ = v± · N , H± · N = 0 , [q] = 0 on �(t) , (158)
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with N := (1,−∂x2ψ,−∂x3ψ). Because of the possible jump in the tangential velocity
and magnetic fields, there is a concentration of vorticity and current along the discon-
tinuity �(t). Notice that the function ψ describing the discontinuity front is part of
the unknown of the problem, i.e. this is a free-boundary problem. The well-posedness
of the nonlinear problem (156)–(158) is shown in [8,34] under the assumption of the
structural stability condition |H+ × H−| > 0 on �(t).

After a change of independent variables that “flattens”the boundary, a linearization
around a suitable basic state and some reductions, Trakhinin [33,34] (see also [8]) gets
a linearized problem for u = (v±, H±, p±, S±) of the form (1) with Lγ as in (2), bγ
as in (3a), Mγ as in (3b) but with M2 = M3 = 0, that is the boundary operator has
order zero in u. Moreover, because of the special reductions, the boundary data are
zero, i.e. g = 0 in (1b), and F in (1a) is such that the solution satisfies some additional
constraints.

It is proved that the solution of the linearized problem satisfies an a priori estimate
similar to (11) (with g = 0). Instead, the linearized problem with general data F and
g �= 0 admits an a priori estimate with a loss of two derivatives, see [34] for details.

Analogous results for incompressible current-vortex sheets are obtained in [4] and
[23].

Plasma-Vacuum 1

Using the previous notations, let �+(t) and �−(t) be space-time domains occupied
by the plasma and the vacuum respectively. That is, in the domain�+(t) we consider
system (156), (157) governing the motion of an ideal plasma and in the domain�−(t)
we consider the so-called pre-Maxwell dynamics

∇ × H = 0, div H = 0, (159)

describing the vacuum magnetic field H ∈ R
3, see [13].

The plasma variable (v, H, p, S) is connected with the vacuum magnetic field H
through the relations [13]

∂tψ = v · N , H · N = 0, H · N = 0, [q] = 0, on �(t), (160)

where the jump of the total pressure across the interface is [q] = q|� − 1
2 |H|2|� . The

well-posedness of the nonlinear problem (156), (157), (159), (160) is shown in [31,32]
under the assumption of the structural stability condition |H × H| > 0 on �(t).

As in the case of current-vortex sheets, after a change of independent variables
that “flattens”the boundary, a linearization around a suitable basic state and some
reductions, the authors obtain a linearized problem for u = (v, H, p, S,H) of the
form (1) with Lγ as in (2), bγ as in (3a), Mγ as in (3b) with M2 = M3 = 0, that is the
boundary operator has order zero in u. Moreover, because of the special reductions,
the boundary data are zero, i.e. g = 0 in (1b), and F in (1a) is such that the solution
satisfies some additional constraints.
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In [31] it is proved that the solution of the linearized problem satisfies an a priori
estimate similar to (11) (with g = 0). The vacuum magnetic field H is estimated in
the standard Sobolev space H1 with full regularity. Instead, the linearized problem
with general data F and g �= 0 admits an a priori estimate similar to (10), with loss of
one derivative in F and g, see [32].

For similar results in the case of the incompressible plasma - vacuum problem, see
[25].

Plasma-Vacuum 2

In the domain �+(t) we consider system (156), (157) governing the motion of an
ideal plasma and in the domain �−(t) we consider the Maxwell equations

⎧
⎪⎨

⎪⎩

∂tH + ∇ × E = 0,

∂tE − ∇ × H = 0,

div H = div E = 0,

(161)

describing the vacuum magnetic and electric fields H, E ∈ R
3, see [13].

The plasma variable (v, H, p, S) is connected with the vacuum variable (H, E)
through the relations [13]

∂tψ = v · N , H · N = 0,H · N = 0 , [q] = 0, N ×E = (N · v)H, on �(t),

(162)

where the jump of the total pressure across the interface is [q] = q|�− 1
2 |H|2|�+ 1

2 |E |2|� .
The stability of the linearized problem obtained from (156), (157), (161), (162) is

shown in [5] under suitable stability conditions on�(t). The authors obtain a linearized
problem for u = (v, H, p, S,H, E) of the form (1) with Lγ as in (2), bγ as in (3a),
Mγ as in (3b) with M2 = M3 = 0, that is the boundary operator has order zero in u.
Moreover, because of the special reductions, the boundary data are zero, i.e. g = 0 in
(1b), and F in (1a) is such that the solution satisfies some additional constraints. It is
proved that the solution of the linearized problem satisfies an a priori estimate similar
to (11) (with g = 0). The vacuum variable (H, E) is estimated in the standard Sobolev
space H1 with full regularity.

Contact Discontinuities

We consider the equations of ideal compressible MHD (156) for two-dimensional
planar flows with respect to the unknown vector U = (p, v, H, S), with v(t, x) =
(v1, v2) ∈ R

2, H(t, x) = (H1, H2) ∈ R
2, x = (x1, x2). For simplicity, let us assume

that the plasma obeys the state equation of a polytropic gas

ρ(p, S) = Ap1/γ e−S/γ , A > 0, γ > 1 . (163)
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Following the notations already introduced for current vertex sheets, contact discon-
tinuities are weak solutions of (156), that are smooth on either side of a smooth
hypersurface �(t) = {x1 = ψ(t, x2)} in [0, T ] × R

2, satisfying at each point of the
front �(t) suitable jump conditions. More precisely, one looks for smooth solutions
U± of (156) in�±(t) := {x1 ≷ ψ(t, x2)}, satisfying on�(t) the following conditions

v+
N − ∂tψ = 0, [v] = 0, [H ] = 0, H±

N �= 0, [p] = 0, (164)

where N := (1,−∂2ψ) is the space normal to the front �(t), HN = H1 − ∂2ψH2.
After a change of independent variables that “flattens” the boundary, in [24] the

authors perform a linearization of the free-boundary problem (156), (164) for con-
tact discontinuities, around a suitable sufficiently smooth basic state ( p̂, v̂, Ĥ , Ŝ, ϕ̂),
obeying the “stability” condition

[
∂1 p̂
] ≥ c0 > 0, on {x1 = ϕ̂(t, x2)} . (165)

Under the preceding assumptions, the linearized problem can be recast in the form of
(1) with Lγ as in (2), bγ = 0 and Mγ of order one in U as in (3b). Moreover, because
of the special reductions, the boundary data are zero, i.e. g = 0 in (1b), whereas the
only nonzero components of F in (1a) are the ones corresponding to the equation for
v.

In [24] it is proved that the solution of the above linearized problem satisfies an a
priori estimate in the Sobolev space H1

tan similar to (11).
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