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Abstract It is proved that there does not exist any non zero function in L p(Rn) with
1 ≤ p ≤ 2n/α if its Fourier transform is supported by a set of finite packingα-measure
where 0 < α < n. It is shown that the assertion fails for p > 2n/α. The result is
applied to prove L p Wiener Tauberian theorems for R

n and M(2).
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1 Introduction

A classical result of Wiener [15] states that the translates of a function f ∈ L1(Rn)

span a dense subset of L1(Rn) if and only if the Fourier transform, ̂f of f is not zero
at any point on R

n . That is, if f ∈ L1(Rn) and

̂f (t) = 1

(
√

2π)n

∫

Rn

f (x)e−i x ·t dx,

then for x f (y) = f (−x + y), we have span {x f : x ∈ Rn} = L1(Rn) if and only
if ̂f (t) �= 0 ∀ t ∈ R

n . In fact, if g ∈ L∞(Rn) is such that
∫

Rn
x f (y)g(y)dy =
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0 ∀ x ∈ R
n , we get ˜f ∗ g = 0 where ˜f (t) = f (−t). Distribution theory tells us that

supp ̂g̃ ⊆ {x ∈ R
n : ̂f (x) = 0} (which is Wiener Tauberian theorem in disguise.

See [12]). If ̂f is nowhere vanishing then it follows that g ≡ 0. This crucial step in
the proof of Wiener’s theorem leads us to the study of functions f in L p(Rn) with
supp ̂f in a thin set.

This question also arises in PDE. If u is a tempered solution of the equation
P(D)u = 0, where P(D) is a constant coefficient differential operator then the Fourier
transform û is supported in the zero set of the polynomial P . Agmon and Hörmander
[1] studied the asymptotic properties of u. Agranovsky and Narayanan in [2] proved
that if f ∈ L p(Rn) and supp ̂f is carried by a C1-manifold of dimension d < n, then
f ≡ 0 if p ≤ 2n

d . Notice that in these results and other ones of similar nature, only
the range p > 2 is interesting. If f ∈ L p(Rn), 1 ≤ p ≤ 2 and ̂f is supported in a set
of measure zero then f is identically zero. If p > 2, then ̂f is a tempered distribution
and the support of f is a closed set which may be thin.

Our aim in the first part of this paper is to extend the above results where the integer
dimension manifold set is replaced with finite packing measurable set (see (1.1)). We
also mention that an older result of Beurling (see [3]) says that if f ∈ L p(R), p > 2
and f̂ is supported by a set of Hausdorff dimension less than 2/p, then the function
is identically zero. We show that if f ∈ L p(Rn) and supp ̂f is contained in a set E ,
which has a finite packing α-measure (for 0 < α < n), then f ≡ 0 if p ≤ 2n

α
. By

considering the cartesian product of the Salem set in R (see [13] and also page 263 in
[5]), we show that our result is sharp.

In the second part of the paper we use the above result to prove some L p-Wiener
Tauberian theorems. Wiener [15] characterized the cyclic vectors (with respect to
translations) in L p(R), for p = 1, 2, in terms of the zero set of the Fourier transform.
He conjectured that a similar characterization should be true for 1 < p < 2 (See
page 93 in [15]). Lev and Olevskii in [8] recently proved that for any 1 < p < 2 one
can find two functions in L1(R) ∩ C0(R), such that one is cyclic in L p(R) and the
other is not, but their Fourier transforms have the same (compact) set of zeros. This
disproves Wiener’s conjecture. As is well known, there are no complete answers to
L p-Weiner-Tauberian theorems when p �= 1, 2. See pages 234–236 in [5] for initial
results and [8] for more references.

Beurling [3] proved that if the Hausdorff dimension of the closed set where the
Fourier transform of f vanishes, is α, for 0 ≤ α ≤ 1, then the space of finite linear
combinations of translates of f is dense in L p(R) for 2/(2 − α) < p. Now using our
result, we prove a similar result (including the end points for the range) on R

n where
sets of Hausdorff dimension are replaced with the sets of finite packing α−measure.
Herz studied some versions of L p- Wiener Tauberian theorems and gave alternative
sufficient conditions for the translates of f ∈ L1 ∩ L p(Rn) to span L p(Rn) (See [6]).
With an additional hypothesis on the zero sets of Fourier transform of f , we improve
his result. Rawat and Sitaram [11] initiated the study of L p-versions of the Wiener
Tauberian theorem under the action of motion group M(n) on R

n .
We shall show that some of the results proved in [11] can be improved using our

result. Finally we take up L p-Wiener Tauberian theorem on the Euclidean motion
group M(2).
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In the remaining of this section we recall certain definitions from Fractal geometry
(See [4] and [9]). In the second section we prove the above mentioned result on the
L p-integrability and dimension of the support of ̂f and its sharpness. Finally in the
third section we look at applications of the results proved in Sect. 2 to L p-Wiener
Tauberian theorems on R

n and the Euclidean motion group M(2).
Let Hα denote the Hausdorff α-dimensional outer measure. Let E be a non-empty

bounded subset of R
n . The ε-covering number of E , N (E, ε), is the smallest number

of open balls of radius ε needed to cover E . The ε-packing number of E , P(E, ε),
is the largest number of disjoint open balls of radius ε with centres in E . The ε-
packing of E is any collection of disjoint balls {Brk (xk)}k with centres xk ∈ E and
radii satisfying 0 < rk ≤ ε/2. Let 0 ≤ s < ∞. For 0 < ε < 1 and A ⊂ R

n , put

Ps
ε (A) = sup

{

∑

k

(2rk)
s

}

where the supremum is taken over all permissible ε-packings, {Brk (xk)}k of A. Then
Ps
ε (A) is non-decreasing with respect to ε and we set the packing pre measure, Ps

0
as

Ps
0 (A) = lim

ε↓0
Ps
ε (A).

We have Ps
0 (∅) = 0, Ps

0 is monotonic and finitely subadditive, but not countably
subadditive. The packing s− measure of A, Ps(A) is defined as

Ps(A) = in f
{

∞
∑

i=1

Ps
0 (Ai ) : A = ∪∞

i=1 Ai

}

. (1.1)

Then Ps is Borel regular (Theorem 3.11 in [4]). If ν is a measure, the α-upper
density of ν at x , Dα(ν, x) is defined as

Dα(ν, x) = limsup
r→0

(2r)−αν(Br (x)),

where Br (x) is a ball of radius r with centre x . Similarly α-lower density of ν at x,
Dα(ν, x) is defined using limin f . Let α < n. A set E ⊂ R

n is said to be Ahlfors–
David regular α-set if there exists a, b (both > 0) in R such that

0 < arα ≤ Hα(E ∩ Br (x)) ≤ brα < ∞

for all x ∈ E and 0 < r ≤ 1. For all these definitions and similar ones we refer to [4]
and [9].
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2 Dimensions of Supports of Fourier Transforms

In this section we relate the dimension of the support of the Fourier transform of a
function with its membership in L p. In the following lemma, we recall some needed
results (see pages 78–89 in [9]). For a non-empty subset A of R

n , let A(ε) = {x ∈
R

n : d(x, A) < ε}.
Lemma 2.1 Fix ε > 0. Let |A(ε)| denote the Lebesgue measure of A(ε), where A is
a non-empty bounded subset of R

n. Then,

(1) N (A, 2ε) ≤ P(A, ε) ≤ N (A, ε/2),
(2) �n P(A, ε)εn ≤ |A(ε)| ≤ �n N (A, ε)(2ε)n, where �n denotes the volume of the

unit ball in R
n,

(3) For 0 ≤ s < ∞, P(A, ε/2)εs ≤ Ps
ε (A),

(4) Let B ⊂ R
n be such that Hα(B) < ∞. Then

2−α ≤ Dα(μ, x) ≤ 1

for Hα almost all x ∈ B, where μ = Hα|B.

The following lemma is crucial for us.

Lemma 2.2 Let 0 ≤ α < n and let E ⊂ R
n be such that Pα(E) < ∞. Let S ⊂ E be

bounded and S(ε) = {x ∈ R
n : d(x, S) < ε}. Then

limsup
ε→0

|S(ε)|εα−n < ∞,

where |S(ε)| denotes the Lebesgue measure of S(ε).

Proof Since we have Pα(S) ≤ Pα(E) < ∞, there exists a countable cover {˜Ai } of
S such that

∑

Pα0 (˜Ai ) < ∞. Let R > 0 be such that S ⊂ BR(0). Then {Ai } also
covers S, where Ai = ˜Ai ∩ BR(0) is bounded and

∑

Pα0 (Ai ) ≤ ∑

Pα0 (˜Ai ) < ∞. By
Lemma 2.1,

|Ai (ε)| ≤ �n(2ε)
n N (Ai , ε)

≤ �n(2ε)
n P(Ai , ε/2)

≤ �n2nεn−αPαε (Ai ).

Hence εα−n|Ai (ε)| ≤ Cn Pαε (Ai ) for some fixed constant Cn . We also have |S(ε)| ≤
∑ |Ai (ε)|. Hence, εα−n|S(ε)| ≤ Cn

∑

Pαε (Ai ). So,

limsup
ε→0

εα−n|S(ε)| ≤ Cn

∑

Pα0 (Ai ) < ∞.

Hence we have εα−n|S(ε)| tending to a finite limit as ε → 0.

Theorem 2.3 Let f ∈ L p(Rn) be such that supp ̂f is contained in a set E where
Pα(E) < ∞ for some 0 ≤ α < n. Then f ≡ 0, provided p ≤ 2n

α
.
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Proof For the proof we closely follow the arguments in [1] (See page 174 of [7]).
By convolving f with a compactly supported smooth function we can assume that
f ∈ L p(Rn) where p = 2n/α. Choose an even function χ ∈ C∞

c (R
n) with support

in unit ball and
∫

Rn χ(x)dx = 1. Let χε(x) = ε−nχ(x/ε) and uε = u ∗ χε where
u = ̂f . Then by the Plancherel theorem,

‖uε‖2 =
∫

Rn

| f (x)|2|χ̂(εx)|2dx

� Cεα−n
∞
∑

j=−∞
2 j (n−α) sup

2 j �|εx |�2 j+1
|χ̂ε(x)|2(2− jε)n−α

∫

2 j �|εx |�2 j+1

| f (x)|2dx

= Cεα−n
∞
∑

j=−∞
a j b

ε
j ,

where

a j = 2 j (n−α) sup
2 j �|x |�2 j+1

|χ̂(x)|2,

and

bεj = (2− jε)n−α
∫

2 j �|εx |�2 j+1

| f (x)|2dx .

Applying Holder’s inequality,

|bεj | � C

⎛

⎜

⎝

∫

2 j ε−1�|x |�2 j+1ε−1

| f (x)|pdx

⎞

⎟

⎠

2/p

,

which goes to zero as ε → 0, for any fixed j. Also we have |bεj | � C‖ f ‖2
p < ∞ for

some constant C independent of ε and j . Since
∑

j |a j | is finite, by the dominated
convergence theorem, we have

∑

j a j bεj → 0 as ε → 0.

Let ψ ∈ C∞
c (R

n). Let S = supp ̂f ∩ supp ψ . Then S is a bounded subset of E .
By Lemma 2.2, we have εα−n|Sε | tending to a finite limit as ε → 0. So,
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| < u, ψ > |2 = lim
ε→0

| < uε, ψ > |2

≤ lim
ε→0

‖uε‖2
2

∫

Sε

|ψ |2

≤ c‖ψ‖2∞ lim
ε→0

εα−n|Sε |
∞
∑

j=−∞
a j b

ε
j

= 0

Hence f = 0.

Remark 2.1 For an integer 0 ≤ d < n, any d-dimensional smooth manifold in R
n has

both Hausdorff and Packing dimension as d. (See page 56 and 85 in [9]) Hence the
above Theorem 2.3 extends Theorem 1 in [2].

Lemma 2.4 Let E ⊂ R
n be such that 0 < Hα(E) < ∞. Assume that there exists

constants 0 < a < ∞ and rα > 0 such that arα ≤ Hα(E ∩ Br (x)) for all x ∈ E and
for all r < rα . Then Pα(E) < ∞.

Proof Consider μα(A) = Hα(E ∩ A) for all A ⊆ R
n . Then μα is a finite Borel

regular measure on R
n . Since arα ≤ Hα(E ∩ Br (x)) for all x ∈ E and for all

r < rα , we have a ≤ Dα(μα, x) for all x ∈ E . Let k = in fx∈E {Dα(μα, x)}.
We have 0 < a ≤ k. By Lemma 2.1 (4), we have k < ∞. Also corresponding to
each E ⊆ R

n is a Borel set B ⊇ E such that Pα(B) = Pα(E). (See Theorem
3.11(c) in [4]). Then, μα(B) = Hα(E ∩ B) < ∞. By Theorem 3.16 in [4], we have
Pα(E) = Pα(B) ≤ μα(B)/k < ∞.

Remark 2.2 Ahlfors–David regular α-sets satisfy the hypothesis of the above lemma.

Next we show that Theorem 2.3 is sharp. First, let us recall a well known example
due to Salem which shows that there exists a measure ν supported on a Cantor type set
K ⊆ R, of Hausdorff dimension β, 0 < β < 1 with Fourier tranform ν̂ belonging to
Lq(R) for all q > 2/β (See [13] and page 263–271 in [5]). Let M = K × K × . . .× K
(n times) andμ = ν×ν×. . .×ν (n times). Thenμ is supported in M and μ̂ ∈ Lq(Rn)

for q > 2
β

= 2n
α

where α = nβ. Closely following the proof in [5] (page 33) we show
that not only the Hausdorff dimension of M is α, but M also satisfies the hypothesis
of the above Lemma 2.4 and thus proving that the range in Theorem 2.3 is the best
possible.

First, we briefly recall how the above set K ⊆ R is constructed. Choose a positive
number η and an integer N so that Nη < 1 and

Nηβ = 1. (2.1)

Choose N independent points ai in the unit interval [0, 1] in such a way that 0 ≤ a1 <

a2 < . . . < aN ≤ 1 − η and widely enough spaced so that the distance between two
ai is larger than η. The set K is constructed as the intersection of decreasing sequence
of compact sets K j , where K j ’s are defined as follows:
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Choose an increasing sequence of non-zero positive numbers η j converging to η
where

η

(

1 − 1

( j + 1)2

)

≤ η j ≤ η (2.2)

for all j . The first set, K1, is the union of N intervals of length η1 of the form [ak, ak +
η1]. The second set K2, has N 2 intervals of length η1η2 of the form [ai + a jη1, ai +
a jη1 + η1η2] and so on. Inductively, we obtain a sequence K j of decreasing sets of
length η1η2 . . . η j . Then K = ∩ j K j . It is known that the Hausdorff dimension of K
is β. (see [13] and page 268 in [5])

Lemma 2.5 Hausdorff dimension of M = K × K × . . .× K (n times) equals α = nβ
and 0 ≤ Pα(M) < ∞.

Proof Let M j = K j1 × K j2 × . . . × K jn for j = ( j1, j2, . . . , jn). Among the cov-
erings of M which compete in the definition of Hα(M), (the Hausdorff measure of
M) are the coverings M j themselves, consisting of N j1+ j2+...+ jn cubes of volume
�n

i=1(η1η2 . . . η ji ). Since η1 ≤ η2 ≤ . . . < η, we obtain

Hα(M) ≤ N j1(η
β
1 η

β
2 . . . η

β
j1
) . . . N jn (η

β
1 η

β
2 . . . η

β
jn
) ≤ N j1η j1β . . . N jnη jnβ = 1,

and see that the dimension of M is at most α.
To show that the dimension of M is exactly α, we show that Hα(M) is not 0. First

we prove that M satisfies the hypothesis of Lemma 2.4.
Let 0 < r < 1 and x ∈ M , that is let x = (x1, x2, . . . , xn) where xm ∈ K for

all m. For every m, by construction of K , there exists a smallest integer tm such that
K ∩ (xm − r, xm + r) contains at least one interval Itm of length η1 . . . ηm . Thus

K ∩ (xm − r, xm + r) ⊇ K ∩ It1 × . . .× K ∩ Itn . (2.3)

Since Hausdorff measure is translation invariant, we can assume 2r ≤ η1 . . . ηtm−1.
Since α = nβ,

(2r)α ≤ �n
m=1(η

β
1 . . . η

β
tm−1). (2.4)

In computing the Hausdorff measure, it is enough to take the infimum of�dαi over
all coverings of M ∩ Br (x) by countable families of (sufficiently small) open balls
Ai , where the end points of the projection of Ai to mth axis is in the complement
of K ∩ (xm − r, xm + r). From the compactness, it is also clear that these coverings
consist of only a finite number of disjoint, open cubes. Let {Ui } be one such family of
sufficiently small cubes that cover M ∩ Br (x), where the end points of the projection
of Ui to mth axis is in the complement of K ∩ (xm − r, xm + r).

Let pim be the smallest integer p such that mth projection of Ui contains at least
one interval of K p and Pi = (pi1 , pi2 , . . . pin ). Then, from (2.3), tm ≤ pim . Let

pim = tm + sim (2.5)

Let mth projection of Ui contain k(m)i number of constituent intervals of K pm . Then

Ui contain ki = �n
m=1k(m)i number of cubes of MPi = K pi1

× . . . × K pin
. Let di
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denote the diameter of Ui . Then

dn
i ≥ ki�

n
m=1(η1η2 . . . ηpim

). (2.6)

Let jm’s be large such that ∪Ui contains M j ∩ M ∩ Br (x)where M j = K j1 × . . .×K jn

and M j ⊂ MPi , for all i . Then Ui contains ki N ( j1−pi1+...+ jn−pin ) cubes of M j . By
(2.5), Ui contains ki N ( j1−t1−si1+...+ jn−tn−sin ) cubes of M j . However by (2.3),

M ∩ Br (x) ∩ M j ⊆ Mt ⊂ M ∩ Br (x),

where Mt = (K ∩ It1) × . . . × (K ∩ Itn ). So the number of cubes of M j covered
by ∪Ui is at least N j1−t1+...+ jn−tn . Since

∑

i ki N ( j1−t1−si1+...+ jn−tn−sin ) is the total
number of cubes of M j covered by ∪Ui ,

∑

i

ki N ( j1−t1−si1+...+ jn−tn−sin ) ≥ N j1−t1+...+ jn−tn . (2.7)

The Eq. (2.6) implies that

dαi ≥ (ki�
n
m=1(η1η2 . . . ηpim

))β

≥ (2r)α(ki�
n
m=1(ηtmηtm+1 . . . ηpim

))β(from (2.0.4))

≥ (2r)α
(

ki�
n
m=1ηtmη

pim −tm

[

(

1 − 1

(tm + 1)2

)

. . .

(

1 − 1

p2
im

)])β

from(2.0.2)

Sinceηm is an increasing sequence and by (2.2),ηt1ηt2 . . . ηtn ≥ ( 3
4η)

n . Fix C = ( 3
4η)

n .
Thus

dαi ≥ C(2r)α
(

kiη
(pi1+...+pin −(t1+...tn))�n

m=1

[ (

1 − 1

tm + 1

)(

1 + 1

pim

)])β

≥ C(2r)α
(

kiη
(pi1+...+pin −(t1+...tn))�n

m=1

[

1

2

(

1 + 1

pim

) ])β

> Crαkβi η
(pi1+...+pin −(t1+...tn))β,

From (2.1), we have

N ( j1+... jn)−(pi1+...pin )η( j1+... jn−t1−...tn)β = η(pi1+...+pin −(t1+...tn))β .

Thus
dαi ≥ Crαkβi N ( j1+... jn)−(pi1+...pin )η( j1+... jn−t1−...tn)β . (2.8)

Also, there exists a constant CN ,n (= 2n(N − 1)n), such that 1 ≤ ki ≤ CN ,n because
of the choice of pik . Let L = (CN ,n)

β−1. Since 0 < β < 1,

kβi > Lki (2.9)
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From (2.5) and (2.9), summing over i in (2.8), we have

�i d
α
i ≥ C Lrαη( j1+... jn−t1−...−tn)β�i ki N ( j1+... jn)−(t1+...tn+si1+...sin )

≥ C Lrαη( j1+... jn−t1−...−tn)βN j1+... jn−t1−...−tn (from (2.0.7))

= C Lrα (from (2.0.1))

> 0

Thus Hα(M ∩ Br (x)) ≥ C Lrα for all x ∈ M and 0 < r < 1. Similarly we prove that
Hα(M) > 0. By Lemma 2.4, Pα(M) < ∞.

Remark 2.3 As remarked by one of the referees of this paper, the set constructed in
Lemma 2.5 is fractal even if α is an integer. In [2], the authors proved the sharpness
of Theorem 2 (in [2]) for any integer α ≥ n/2 by constructing a smooth manifold
M ⊂ R

n and μ supported on M such that the Fourier transform f = μ̂ ∈ L p(Rn)

for all p > 2n/α. It would be interesting to see if this can be done for all integers α
between 0 and n.

3 Applications to Wiener Tauberian Theorems

3.1 L p Wiener Tauberian Theorems on R
n

In this section, we improve the results on L p versions of Wiener Tauberian type
theorems on R

n obtained in [11]. Consider the motion group M(n) = R
n

� SO(n)
with the group law

(x1, k1)(x2, k2) = (x1 + k1x2, k1k2).

For a function h on R
n and an arbitrary g = (y, k) ∈ M(n), let gh be the function

gh(x) = h(kx + y), x ∈ R
n . Let ̂h denote the Euclidean Fourier transform of the

function h. For h ∈ L1 ∩ L p(Rn), 1 ≤ p ≤ ∞, let S = {r > 0 : ̂h ≡ 0 on Cr },
where Cr is the sphere of radius r > 0 centered at origin in R

n . Let Y = Span{gh :
g ∈ M(n)}. Then the main result from [11] is

Theorem 3.1 (1) If p = 1, then Y is dense in L1(Rn) if and only if S is empty and
̂h(0) �= 0.

(2) If 1 < p < 2n
n+1 , then Y is dense in L p(Rn) if and only if S is empty.

(3) If 2n
n+1 ≤ p < 2, and every point of S is an isolated point, then Y is dense in

L p(Rn).
(4) If 2 ≤ p ≤ 2n

n−1 , and S is of zero measure in R
+, then Y is dense in L p(Rn).

(5) If 2n
n−1 < p < ∞, then Y is dense in L p(Rn) if and only if S is nowhere dense.

We prove that the part (3) of the above theorem can be improved:

Theorem 3.2 Let f ∈ L1(Rn)∩ L p(Rn) and let S = {r > 0 : ̂f ≡ 0 on Cr } be such
that Pβ(S) < ∞, for some 0 ≤ β < 1. If 2n

n+1−β ≤ p ≤ 2, then Y = Span{g f :
g ∈ M(n)} is dense in L p(Rn).
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Proof Fix ε < 1. Suppose Y is not dense in L p(Rn). Let h ∈ Lq(Rn) annihilate
all the elements in Y , where 1

p + 1
q = 1. We can assume h to be smooth, bounded

and radial (see the arguments in [11]). It follows that h ∗ f ≡ 0. Then supp ̂h is
contained in the zero set of ̂f . Let α be such that 2 ≤ q = 2n

α
≤ 2n

n−1+β . Choose an

even function χ ∈ C∞
c (R

n) with support in the unit ball and
∫

Rn χ(x)dx = 1. Let
χε(x) = ε−nχ(x/ε) and uε = u ∗ χε where u = ̂h. Since 2 ≤ q, as in Theorem 2.3,

‖uε‖2 � Cεα−n
∞
∑

j=−∞
a j b

ε
j ,

where a j = 2 j (n−α) sup
2 j �|x |�2 j+1

|χ̂(x)|2

and bεj = (2− jε)n−α
∫

2 j �|εx |�2 j+1

|h(x)|2dx .

and
∞
∑

j=−∞
a j bεj → 0 as ε → 0.

Let ψ ∈ C∞
c (R

n). Let M = supp ̂h ∩ supp ψ and let Rψ > 0 be such that
M is contained in a ball of radius Rψ . For x ∈ M , ‖x‖ ∈ S and ‖x‖ ≤ Rψ . Let
Sψ = {r ∈ S : r ≤ Rψ }. Then Sψ is a bounded subset of S. With similar arguments
in Lemma 2.2, we prove that lim

ε→0
εβ−1

∫

Mε
|ψ(x)|2dx < ∞:

Since Pβ(Sψ) ≤ Pβ(S) < ∞, let {Ai } be a cover of Sψ such that
∑

i Pβ0 (Ai ) < ∞.

Then Pβ0 (Ai ∩ Sψ) < ∞. For Si
ψ = Ai ∩ Sψ , let P(Si

ψ, ε) be the maximum number

of disjoint balls with centers {r j } in Si
ψ , of radius ε and N (Si

ψ, ε) be the ε-covering

number of Si
ε . Then

Si
ψ ⊆ ∪N (Si

ψ ,ε)

j=1 (r j − ε/2, r j + ε/2) and

Sψ(ε) ⊂ ∪i Si
ψ(ε) ⊆ ∪i ∪N (Si

ψ ,ε)

j=1 (r j − ε, r j + ε).

If x ∈ M(ε), then ‖x‖ ∈ Sψ(ε). We have,

∫

M(ε)

|ψ(x)|2dx ≤
∫

r∈Sψ(ε)

∫

|ψ(rω)|2dωrn−1dr

≤ (Rψ + ε)n−1
∫

r∈Sψ(ε)

∫

|ψ(rω)|2dωdr

≤ (Rψ + 1)n−1‖ψ‖2∞�n

∑

i

N (Si
ψ ,ε)

∑

j=1

r j +ε
∫

r j −ε
dr
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= C1

∑

i

N (Si
ψ, ε)(2ε)

≤ 2C1ε
∑

i

P(Si
ψ, ε/2) (by lemma 2.1)

where C1 = (Rψ + 1)n−1‖ψ‖2∞�n is a constant independent of ε and �n is the
volume of the unit sphere in R

n . Thus,

lim
ε→0

εβ−1
∫

M(ε)

|ψ(x)|2dx ≤ 2C1

∑

i

lim
ε→0

εβ P(Si
ψ, ε/2) ≤ 2C1

∑

i

Pβ0 (Ai ) < ∞.

Hence,

| < u, ψ > |2 = lim
ε→0

| < uε, ψ > |2

≤ lim
ε→0

‖uε‖2
2

∫

Mε

|ψ |2

≤ Clim
ε→0

εα−n
∞
∑

j=−∞
a j b

ε
j

∫

Mε

|ψ(x)|2dx

≤ Clim
ε→0

εα−n−β+1εβ−1
∞
∑

j=−∞
a j b

ε
j

∫

Mε

|ψ(x)|2dx

≤ CC1 lim
ε→0

∞
∑

j=−∞
a j b

ε
j

= 0,

since 2 ≤ 2n
α

≤ 2n
n−1+β , that is 0 ≤ α − n − β + 1. Hence h = 0.

Remark 3.1 Suppose every point of S is an isolated point. Convolving f with an
arbitrary Schwartz class function whose Fourier transform is compactly supported,
we may assume that S is finite. The case β = 0 in the above theorem then implies part
(3) of Theorem 3.1.

Now let f be an integrable function in L1 ∩ L p(R) and let F denote the closed
set where the Fourier transform of f vanishes. In [3], A. Beurling proved that if for
some p in (1, 2), the space of finite linear combinations of translates of f is not dense
in L p(R), then the Hausdorff dimension of F is at least 2 − (2/p) (see also page
312 in [5]). In other words, if the Hausdorff dimension of F is α, for 0 ≤ α ≤ 1,
then the space of finite linear combinations of translates of f is dense in L p(R) for
2/(2 − α) < p < ∞. Now using Theorem 2.3, we prove a similar result (including
the end points for the range) on R

n where Hausdorff dimension is replaced with the
packing dimension.
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Theorem 3.3 Let f ∈ L1(Rn) ∩ L p(Rn) for 2n
2n−α ≤ p < ∞ and let the zero set of

̂f ⊆ E, where Pα(E) < ∞ for some 0 ≤ α < n. Then X = span{x f : x ∈ R
n} is

dense in L p(Rn).

Proof Suppose X is not dense in L p(Rn). Then there exists a non trivial, smooth and
radial h ∈ Lq(Rn) such that h ∗ f1 ≡ 0 for all f1 ∈ X (see the arguments in [11]).
Clearly the zero set of X (⊂ L1(Rn)), ∩

u∈X
{s ∈ R

n : û(s) = 0} is equal to the zero set

of ̂f , Z(̂f ). Hence supp ̂h ⊆ Z(̂f ). Since 2n
2n−α ≤ p < ∞, we have 1 < q ≤ 2n

α
. By

Theorem 2.3, h = 0. Thus X is dense in L p(Rn).

In [6], C. S Herz studied the versions of L p- Wiener Tauberian theorems. From
Theorem 1 and Theorem 4 of [6], we note that for f ∈ L1 ∩ L p(Rn), p < ∞ the
alternative sufficient conditions for the translates of f to span L p are,

(1) |K (ε)| = o(εn(1−2/q)) for each compact subset K of E .
(2) dim E = α < 2n/q, with the proviso, if n > 2, that q ≤ 2n/(n − 2).

where E denotes the zero set of ̂f and 1
p + 1

q = 1. With an additional hypothesis on
E , using Theorem 3.3, we can improve the result in [6]:

Proposition 3.4 For f ∈ L1 ∩ L p(Rn), 1 ≤ p < ∞ a sufficient condition that
the translates of f span L p is : the zero set of ̂f has finite packing α- measure for
α ≤ 2n/q where 1

p + 1
q = 1.

3.2 L p Wiener Tauberian Theorem on M(2)

In this section, we look at one sided and two sided analogues of Wiener Tauberian
Theorems on M(2) and improve a few results from [10].

The group M(2) is the semi-direct product of C with the special orthogonal group
K = SO(2). The group law in G = M(2) is given by

(z, eiα)(w, eiβ) = (z + eiαw, ei(α+β)).

The Haar measure on G is given by dg = dzdα where dz is the Lebesgue measure on
C and dα is the normalized Haar measure on S1. For each λ > 0, we have a unitary
irreducible representation of G realized on H = L2(K ) = L2([0, 2π ], dt), given by

[πλ(z, eit )u](s) = eiλ<z,eis>u(s − t),

for (z, eit ) ∈ G and u ∈ H . Here < z, w >=Rez.w̄. It is known that these are all the
infinite dimensional, non equivalent unitary irreducible representations of G. Apart
from the above family, we have another family {χn, n ∈ Z}, where Z is the set of
integers, of one dimensional unitary representations of G, given by χn(z, eiα) = einα .
Then the unitary dual ̂G, of G is the collection {πλ, λ > 0} ∪ {χn : n ∈ Z} (see page
165, [14]).
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For f ∈ L1(G), define the “group theoretic” Fourier transform of f as follows:

πλ( f ) =
∫

G

f (g)πλ(g)dg, λ > 0

and

χn( f ) =
∫

G

f (z, eiα)e−inαdzdα, n ∈ Z.

From the Plancherel theorem for G (see page 183, [14]) we have for f ∈ L2(G),

‖ f ‖2
2 =

∞
∫

0

‖πλ( f )‖2
H Sλdλ,

where ‖.‖H S denotes the Hilbert–Schmidt norm.
For g1, g2 ∈ G, the two sided translate, g1 f g2 of f is the function defined by

g1 f g2(g) = f (g−1
1 gg2). For f ∈ L1(G) ∩ L p(G), let S = {a > 0 : πa( f ) =

0}, X = Span {g1 f g2 : g1, g2 ∈ G}, S′ = {λ > 0 : Range of πλ( f ) is not dense}
and V f be the closed subspace spanned by the right translates of f in L p(G).

Theorem 3.5 Let f ∈ L1(G) ∩ L p(G).

(1) For 4
3−α ≤ p < 2, if S = {a > 0 : πa( f ) = 0} is such that Pα(S) < ∞ for

0 ≤ α < 1, then X = span{g1 f g2 : g1, g2 ∈ M(2)} is dense in L p(M(2)).
(2) If f is radial in the R

2 variable and Pα(S′) < ∞ for some 0 ≤ α < 1, then
V f = L p(M(2)) provided 4

3−α ≤ p ≤ 2.

Proof To prove part (1), we proceed as in the proof of Theorem 2.1 in [10]. It is enough
to prove L p(G/K ) ⊆ X .

For given a, ε > 0, there exists constants c1, c2, . . . , cm , w ∈ H and elements
x1, x2, . . . xm ∈ G such that ‖∑m

j=1 c jπa(x j )v0 − w‖ < ε, where v0 is K -fixed

vector vo ≡ 1 ∈ H . Define Fa = ∑m
j=1 c j f x−1

j . Then πa(Fa)v0 �= 0. Let

F#
a (x) =

∫

K

Fa(xk)dk, x ∈ G.

Then whenever πa( f ) �= 0, as in the proof of Theorem 2.1 in [10] we have a right
K -invariant function F#

a which can be considered as a function on R
2, that is F#

a ∈
L1(R2) ∩ L p(R2) such that its Euclidean Fourier transform is not identically zero on
the sphere Ca = {x ∈ R

2 : ‖x‖ = a}.
Define S1 = ∩a∈Sc {r > 0 : ̂F#

a ≡ 0 on Cr }. Then S1 ⊂ S. We have

Span{g F#
a : g ∈ G, a ∈ Sc

1} ⊆ Span{g1 f g2 : g1, g2 ∈ G}. Also using Theorem 3.2,
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Span{g F#
a :g ∈G, a ∈ Sc

1}= L p(G/K ). Thus L p(G/K )⊆ Span{g1 f g2 :g1, g2 ∈G}=
X .

To prove part(2), we proceed as in the proof of (c) of Theorem 3.2 in [10]. Let
φ(z)eim0α ∈ Lq ∩ L∞(M(2)) kill all the functions in V f where 1

p + 1
q = 1. Then f

being radial in the R
2-variable we are led to the convolution equation fm ∗R2 φm = 0

where φm is defined by

φm(z) =
2π
∫

0

φ(eiαz)ei(m0+m)αdα.

and fm is defined by

fm(z) =
∫

S1

f (z, eiα)e−imαdα

Taking Fourier transform we obtain that supp ̂φm is contained in {z ∈ R
2 : ‖z‖ ∈

S}. Proceeding as in the proof of Theorem 3.2, we have < φm, ψ >= 0 for all
ψ ∈ C∞

c (R
2) and m. Thus φm ≡ 0 for all m.
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