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Abstract Let Sα,ψ( f ) be the square function defined by means of the cone in R
n+1+

of aperture α, and a standard kernel ψ . Let [w]Ap denote the Ap characteristic of the
weight w. We show that for any 1 < p < ∞ and α ≥ 1,

‖Sα,ψ‖L p(w) � αn[w]max
(

1
2 ,

1
p−1

)

Ap
.

For each fixed α the dependence on [w]Ap is sharp. Also, on all class Ap the result is
sharp in α. Previously this estimate was proved in the case α = 1 using the intrinsic
square function. However, that approach does not allow to get the above estimate with
sharp dependence on α. Hence we give a different proof suitable for all α ≥ 1 and
avoiding the notion of the intrinsic square function.

Keywords Littlewood–Paley operators · Sharp weighted inequalities · Sharp
aperture dependence

Mathematics Subject Classification 42B20 · 42B25

1 Introduction

Let ψ be an integrable function,
∫
Rn ψ = 0, and, for some ε > 0,
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|ψ(x)| ≤ c

(1 + |x |)n+ε and
∫

Rn

|ψ(x + h)− ψ(x)|dx ≤ c|h|ε. (1.1)

Let R
n+1+ = R

n × R+ and �α(x) = {(y, t) ∈ R
n+1+ : |y − x | < αt}. Set ψt (x) =

t−nψ(x/t). Define the square function Sα,ψ( f ) by

Sα,ψ( f )(x) =
⎛
⎜⎝

∫

�α(x)

| f ∗ ψt (y)|2 dydt

tn+1

⎞
⎟⎠

1/2

(α > 0).

We drop the subscript α if α = 1.
Given a weight w, define its Ap characteristic by

[w]Ap = sup
Q

⎛
⎜⎝ 1

|Q|
∫

Q

w dx

⎞
⎟⎠

⎛
⎜⎝ 1

|Q|
∫

Q

w
− 1

p−1 dx

⎞
⎟⎠

p−1

,

where the supremum is taken over all cubes Q ⊂ R
n .

It was proved in [13] that for any 1 < p < ∞,

‖Sψ‖L p(w) ≤ cp,n,ψ [w]max
(

1
2 ,

1
p−1

)

Ap
, (1.2)

and this estimate is sharp in terms of [w]Ap (we also refer to [13] for a detailed history
of closely related results).

Similarly one can show that

‖Sα,ψ‖L p(w) ≤ cp,n,ψγ (α)[w]max
(

1
2 ,

1
p−1

)

Ap
(α ≥ 1, 1 < p < ∞); (1.3)

however, the sharp dependence on α in this estimate cannot be determined by means
of the approach from [13]. The aim of this paper is to find the sharp γ (α) in (1.3).

Let us explain first why the method from [13] gives a rough estimate for γ (α).
The proof in [13] was based on the intrinsic square function Gα,β( f ) by Wilson [19]
defined as follows. For 0 < β ≤ 1, let Cβ be the family of functions supported in the
unit ball with mean zero and such that for all x and x ′, |ϕ(x)− ϕ(x ′)| ≤ |x − x ′|β . If
f ∈ L1

loc(R
n) and (y, t) ∈ R

n+1+ , we define Aβ( f )(y, t) = supϕ∈Cβ | f ∗ ϕt (y)| and

Gα,β( f )(x) =
⎛
⎜⎝

∫

�α(x)

(
Aβ( f )(y, t)

)2 dydt

tn+1

⎞
⎟⎠

1/2

.

Set G1,β( f ) = Gβ( f ).
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The intrinsic square function has several interesting features (established in [19]).
First, though Gβ( f ) is defined by means of kernels with uniform compact support, it
pointwise dominates Sψ( f ). Also there is a pointwise relation between Gα,β( f ) with
different apertures:

Gα,β( f )(x) ≤ α(3/2)n+βGβ( f )(x) (α ≥ 1). (1.4)

Notice that for the usual square functions Sα,ψ( f ) such a pointwise relation is not
available.

In [13], (1.2) with Gβ( f ) instead of Sψ( f ) was obtained. Combining this with
(1.4), we would obtain that one can take γ (α) = α(3/2)n+β in (1.3) assuming that
ψ ∈ Cβ . For non-compactly supported ψ some additional ideas from [19] can be used
that lead to even worse estimate on γ (α). Observe also that it is not clear to us whether
(1.4) can be improved.

It is easy to see that the dependence γ (α) = α(3/2)n+β in (1.3) is far from the sharp
one. For instance, it is obvious that the information on β should not appear in (1.3).
All this indicates that the intrinsic square function approach is not suitable for our
purposes in determining the sharp γ (α).

Suppose we seek for γ (α) in the form γ (α) = αr . Then a simple observation
shows that r ≥ n for any 1 < p < ∞. Indeed, consider the Littlewood–Paley
function g∗

μ,ψ( f ) defined by

g∗
μ,ψ( f )(x) =

(∫∫

R
n+1+

(
t

t + |x − y|
)μn

| f ∗ ψt (y)|2 dydt

tn+1

)1/2

.

Using the standard estimate

g∗
μ,ψ( f )(x) ≤ Sψ( f )(x)+

∞∑
k=0

2−kμn/2S2k+1,ψ ( f )(x),

we obtain that (1.3) for some p = p0 and γ (α) = αr0 implies

‖g∗
μ,ψ‖L p0 (w) �

( ∞∑
k=0

2−kμn/22kr0
)
[w]max

(
1
2 ,

1
p0−1

)

Ap0
. (1.5)

This means that if μ > 2r0/n, then g∗
μ,ψ is bounded on L p0(w),w ∈ Ap0 . From this,

by the Rubio de Francia extrapolation theorem, g∗
μ,ψ is bounded on the unweighted

L p for any p > 1, whenever μ > 2r0/n. But it is well known [8] that g∗
μ,ψ is not

bounded on L p if 1 < μ < 2 and 1 < p ≤ 2/μ. Hence, if r0 < n, we would obtain a
contradiction to the latter fact for p sufficiently close to 1.

Our main result shows that for any 1 < p < ∞ one can take the optimal power
growth γ (α) = αn .
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Theorem 1.1 For any 1 < p < ∞ and for all 1 ≤ α < ∞,

‖Sα,ψ‖L p(w) ≤ cp,n,ψα
n[w]max

(
1
2 ,

1
p−1

)

Ap
.

By (1.5), we immediately obtain the following.

Corollary 1.2 Let μ > 2. Then for any 1 < p < ∞,

‖g∗
μ,ψ( f )‖L p(w) ≤ cp,n,μ,ψ [w]max

(
1
2 ,

1
p−1

)

Ap
.

Observe that if μ = 2, then g∗
2,ψ is also bounded on L p(w) for w ∈ Ap (see [17]).

However, the sharp dependence on [w]Ap in the corresponding L p(w) inequality is
unknown to us.

We emphasize that the growth γ (α) = αn is best possible in the weighted L p(w)

estimate for w ∈ Ap. In the unweighted case a better dependence on α is known,

namely, ‖Sα,ψ‖L p ≤ cp,n,ψα
n

min(p,2) , see [1,18].
Some words about the proof of Theorem 1.1. As in [13], we use here the local mean

oscillation decomposition. But in [13] we worked with the intrinsic square function,
and due to the fact that this operator is defined by uniform compactly supported kernels,
we arrived to the operator

A( f )(x) =
( ∑

j,k

( fγ Qk
j
)2χQk

j
(x)

)1/2
,

where Qk
j is a sparse family (see Sect. 2.2 for the definition of this notion) and γ > 1

(here we use the standard notations fQ = 1
|Q|

∫
Q f and γ Q is the γ -fold concentric

dilate of Q). This operator can be handled sufficiently easily.
Here we work with the square function Sα,ψ ( f ) directly, more precisely we consider

its smooth variant S̃α,ψ( f ). Applying the local mean oscillation decomposition to
S̃α,ψ( f ), we obtain that Sα,ψ( f ) is essentially pointwise bounded by αnB( f ), where

B( f )(x) =
∞∑

m=0

1

2mδ

( ∑
j,k

( f2m Qk
j
)2χQk

j
(x)

)1/2
(δ > 0).

Observe that this pointwise aperture estimate is interesting in its own right. In order
to handle B, we use a mixture of ideas from recent papers on a simple proof of the
A2 conjecture [14] and sharp weighted estimates for multilinear Calderón–Zygmund
operators [5]. In particular, similarly to [14], we obtain the X (2)-norm boundedness
of B by A on an arbitrary Banach function space X .

The paper is organized as follows. The next section contains some preliminary
information. In Sect. 3, we obtain the main estimate, namely, the local mean oscillation
estimate of S̃α,ψ( f ). The proof of Theorem 1.1 is contained in Sect. 4. Section 5
contains some concluding remarks concerning the sharp aperture-weighted weak type
estimates for Sα,ψ( f ).
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2 Preliminaries

2.1 A Weak Type (1, 1) Estimate for Square Functions

It is well known that the operator Sα,ψ is of weak type (1, 1). However, we could not
find in the literature the sharp dependence on α in the corresponding inequality. Hence
we give below an argument based on general square functions.

For a measurable function F on R
n+1+ define

Sα(F)(x) =
( ∫

�α(x)

|F(y, t)|2 dydt

tn+1

)1/2

.

Lemma 2.1 For any α ≥ 1,

‖Sα(F)‖L1,∞ ≤ cnα
n‖S1(F)‖L1,∞ . (2.1)

Proof We will use the following estimate, which can be found in [18, p. 315]: if
� ⊂ R

n is an open set and

U = {x ∈ R
n : Mχ�(x) > 1/(2αn)},

where M is the Hardy–Littlewood maximal operator, then

∫

Rn\U

Sα(F)(x)
2dx ≤ 2αn

∫

Rn\�
S1(F)(x)

2dx

(observe that the definitions of Sα(F) here and in [18] differ by the factor αn/2.)
Let�ξ = {x : S1(F)(x) > ξ} and Uξ = {x : Mχ�ξ (x) > 1/2αn}. Using the weak

type (1, 1) estimate for M , Chebyshev’s inequality, and the above estimate, we obtain

|{x ∈ R
n : Sα(F)(x) > ξ}|

≤ |Uξ | + |{x ∈ R
n \ Uξ : Sα(F)(x) > ξ}|

≤ cnα
n|{x : S1(F)(x) > ξ}| + 1

ξ2

∫

Rn\Uξ

Sα(F)(x)
2dx

≤ cnα
n|{x : S1(F)(x) > ξ}| + 2αn

ξ2

∫

Rn\�ξ
S1(F)(x)

2dx .

Further,

∫

Rn\�ξ
S1(F)(x)

2dx ≤ 2

ξ∫

0

λ|{x : S1(F)(x) > λ}|dλ ≤ 2ξ‖S1(F)‖L1,∞ .
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Combining this with the previous estimate gives

|{x : Sα(F)(x) > ξ}| ≤ cnα
n|{x : S1(F)(x) > ξ}| + 4αn

ξ
‖S1(F)‖L1,∞ ,

which proves (2.1). 
�
Note that the sharp unweighted L p estimates relating square functions of different

apertures were obtained recently in [1].
By Lemma 2.1 and by the weak type (1, 1) estimate for Sψ( f ) [9],

‖Sα,ψ( f )‖L1,∞ ≤ cn,ψα
n‖ f ‖L1 . (2.2)

2.2 Dyadic Grids and Sparse Families

Recall that the standard dyadic grid in R
n consists of the cubes

2−k([0, 1)n + j), k ∈ Z, j ∈ Z
n .

Denote the standard grid by D.
By a general dyadic grid D we mean a collection of cubes with the following

properties: (i) for any Q ∈ D its sidelength �Q is of the form 2k, k ∈ Z; (ii) Q ∩ R ∈
{Q, R,∅} for any Q, R ∈ D ; (iii) the cubes of a fixed sidelength 2k form a partition
of R

n .
Given a cube Q0, denote by D(Q0) the set of all dyadic cubes with respect to Q0,

that is, the cubes from D(Q0) are formed by repeated subdivision of Q0 and each of
its descendants into 2n congruent subcubes. Observe that if Q0 ∈ D , then each cube
from D(Q0) will also belong to D .

We will use the following proposition from [10].

Proposition 2.2 There are 2n dyadic grids Di such that for any cube Q ⊂ R
n there

exists a cube Qi ∈ Di such that Q ⊂ Qi and �Qi ≤ 6�Q.

We say that {Qk
j } is a sparse family of cubes if: (i) the cubes Qk

j are disjoint in j ,

with k fixed; (ii) if �k = ∪ j Qk
j , then �k+1 ⊂ �k ; (iii) |�k+1 ∩ Qk

j | ≤ 1
2 |Qk

j |.

2.3 A “Local Mean Oscillation Decomposition”

The non-increasing rearrangement of a measurable function f on R
n is defined by

f ∗(t) = inf{α > 0 : |{x ∈ R
n : | f (x)| > α}| < t} (0 < t < ∞).

Given a measurable function f on R
n and a cube Q, the local mean oscillation of

f on Q is defined by

ωλ( f ; Q) = inf
c∈R

(
( f − c)χQ

)∗(
λ|Q|) (0 < λ < 1).
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By a median value of f over Q we mean a possibly nonunique, real number m f (Q)
such that

max
(|{x ∈ Q : f (x) > m f (Q)}|, |{x ∈ Q : f (x) < m f (Q)}|

) ≤ |Q|/2.

It is easy to see that the set of all median values of f is either one point or a
closed interval. In the latter case we will assume for the definiteness that m f (Q) is
the maximal median value. Observe that it follows from the definitions that

|m f (Q)| ≤ ( f χQ)
∗(|Q|/2). (2.3)

Given a cube Q0, the dyadic local sharp maximal function m#,d
λ;Q0

f is defined by

m#,d
λ;Q0

f (x) = sup
x∈Q′∈D(Q0)

ωλ( f ; Q′).

The following theorem was proved in [15] (a very similar version can be found in
[12]).

Theorem 2.3 Let f be a measurable function on R
n and let Q0 be a fixed cube. Then

there exists a (possibly empty) sparse family of cubes Qk
j ∈ D(Q0) such that for a.e.

x ∈ Q0,

| f (x)− m f (Q0)| ≤ 4m#,d
1

2n+2 ;Q0
f (x)+ 2

∑
k, j

ω 1
2n+2

( f ; Qk
j )χQk

j
(x).

3 A Key Estimate

In this section we will obtain the main local mean oscillation estimate of Sα,ψ . We
consider a smooth version of Sα,ψ defined as follows. Let � be a Schwartz function
such that

χB(0,1)(x) ≤ �(x) ≤ χB(0,2)(x).

Define

S̃α,ψ( f )(x) =

⎛
⎜⎜⎝

∫∫

R
n+1+

�
( x − y

tα

)
| f ∗ ψt (y)|2 dydt

tn+1

⎞
⎟⎟⎠

1/2

(α > 0).

It is easy to see that

Sα,ψ( f )(x) ≤ S̃α,ψ( f )(x) ≤ S2α,ψ( f )(x).
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Hence, by (2.2),
‖S̃α,ψ( f )‖L1,∞ ≤ cn,ψα

n‖ f ‖L1 . (3.1)

Lemma 3.1 For any cube Q ⊂ R
n,

ωλ(S̃α,ψ( f )2; Q) ≤ cn,λ,ψα
2n

∞∑
k=0

1

2kδ

⎛
⎜⎝ 1

|2k Q|
∫

2k Q

| f |
⎞
⎟⎠

2

, (3.2)

where δ = ε from condition (1.1) if ε < 1, and δ < 1 if ε = 1.

Proof Given a cube Q, let T (Q) = {(y, t) : y ∈ Q, 0 < t < �Q}, where �Q denotes
the side length of Q. For x ∈ Q we decompose S̃α,ψ( f )(x)2 into the sum of

I1( f )(x) =
∫∫

T (2Q)

�
( x − y

tα

)
| f ∗ ψt (y)|2 dydt

tn+1

and

I2( f )(x) =
∫∫

R
n+1+ \T (2Q)

�
( x − y

tα

)
| f ∗ ψt (y)|2 dydt

tn+1 .

Let us show first that

(I1( f )χQ)
∗(λ|Q|) ≤ cn,λ,ψα

2n
∞∑

k=0

1

2kε

⎛
⎜⎝ 1

|2k Q|
∫

2k Q

| f |
⎞
⎟⎠

2

. (3.3)

Using that (a + b)2 ≤ 2(a2 + b2), we get

I1( f )(x) ≤ 2
(
I1( f χ4Q)(x)+ I1( f χRn\4Q)(x)

)
.

Hence,

(I1( f )χQ)
∗(λ|Q|) ≤ 2

(
(I1( f χ4Q))

∗(λ|Q|/2) (3.4)

+(I1( f χRn\4Q)χQ)
∗(λ|Q|/2)).

By (3.1),

(I1( f χ4Q))
∗(λ|Q|/2) ≤ (S̃α,ψ( f χ4Q))

∗(λ|Q|/2)2 (3.5)

≤ cn,λ,ψα
2n

⎛
⎜⎝ 1

|4Q|
∫

4Q

| f |
⎞
⎟⎠

2

.
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Further, by (1.1), for (y, t) ∈ T (2Q),

|( f χRn\4Q) ∗ ψt (y)| ≤ cψ tε
∫

Rn\4Q

| f (ξ)| 1

(t + |y − ξ |)n+ε dξ

≤ cn,ψ (t/�Q)
ε

∞∑
k=0

1

2kε

1

|2k Q|
∫

2k Q

| f |.

Hence, using Chebyshev’s inequality and that
∫
Rn �

(
x−y
tα

)
dx ≤ cn(tα)n , we have

(I1( f χRn\4Q)χQ)
∗(λ|Q|/2)

≤ 2

λ|Q|
∫∫

T (2Q)

( ∫

Rn

�
( x − y

tα

)
dx

)
|( f χRn\4Q) ∗ ψt (y)|2 dydt

tn+1

≤ cn,λ,ψα
n(1/�Q)

2ε

⎛
⎜⎝

∞∑
k=0

1

2kε

1

|2k Q|
∫

2k Q

| f |
⎞
⎟⎠

2 2�Q∫

0

t2ε−1dt

≤ cn,λ,ψα
n

⎛
⎜⎝

∞∑
k=0

1

2kε

1

|2k Q|
∫

2k Q

| f |
⎞
⎟⎠

2

.

By Hölder’s inequality,

⎛
⎜⎝

∞∑
k=0

1

2kε

1

|2k Q|
∫

2k Q

| f |
⎞
⎟⎠

2

≤
( ∞∑

k=0

1

2kε

) ∞∑
k=0

1

2kε

⎛
⎜⎝ 1

|2k Q|
∫

2k Q

| f |
⎞
⎟⎠

2

.

Combining this with the previous estimate and with (3.5) and (3.4) proves (3.3).
Let x, x0 ∈ Q, and let us estimate now |I2( f )(x)− I2( f )(x0)|. We have

|I2( f )(x)− I2( f )(x0)|

≤
∞∑

k=1

∫∫

T (2k+1 Q)\T (2k Q)

∣∣∣�
( x − y

tα

)
−�

( x0 − y

tα

)∣∣∣| f ∗ ψt (y)|2 dydt

tn+1 .

Suppose (y, t) ∈ T (2k+1 Q) \ T (2k Q). If y ∈ 2k Q, then t ≥ 2k�Q . On the other

hand, if y ∈ 2k+1 Q \ 2k Q, then for any x ∈ Q, |y − x | ≥ 2k−1
2 �Q . Hence, if

t < 2k−1
4α �Q , then |y − x |/αt > 2 and |y − x0|/αt > 2, and therefore,

�
( x − y

tα

)
−�

( x0 − y

tα

)
= 0.
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Assume that t ≥ 2k−1
4α �Q . This easily implies t ≥ 2k−3�Q/α. Thus, using that

∣∣∣�
( x − y

tα

)
−�

( x0 − y

tα

)∣∣∣ ≤
√

n�Q

αt
‖∇�‖L∞ ,

we get

∣∣∣�
( x − y

tα

)
−�

( x0 − y

tα

)∣∣∣χ{T (2k+1 Q)\T (2k Q)}(y, t)

≤ cn
�Q

αt
χ{(y,t):y∈2k+1 Q,2k−3�Q/α≤t≤2k+1�Q

}(y, t).

Hence,

∫∫

T (2k+1 Q)\T (2k Q)

∣∣∣�
( x − y

tα

)
−�

( x0 − y

tα

)∣∣∣| f ∗ ψt (y)|2 dydt

tn+1

≤ cn
�Q

α

2k+1�Q∫

2k−3�Q/α

∫

2k+1 Q

| f ∗ ψt (y)|2 dydt

tn+2 ≤ cn(J1 + J2),

where

J1 = �Q

α

2k+1�Q∫

2k−3�Q/α

∫

2k+1 Q

|( f χ2k+2 Q) ∗ ψt (y)|2 dydt

tn+2

and

J2 = �Q

α

2k+1�Q∫

2k−3�Q/α

∫

2k+1 Q

|( f χRn\2k+2 Q) ∗ ψt (y)|2 dydt

tn+2 .

Let us first estimate J1. Using Minkowski’s integral inequality, we obtain

J1 ≤ �Q

α

⎛
⎜⎝

∫

2k+2 Q

| f (ξ)|
( 2k+1�Q∫

2k−3�Q/α

∫

2k+1 Q

ψt (y − ξ)2
dydt

tn+2

)1/2
dξ

⎞
⎟⎠

2

.

Since
∫

2k+1 Q

ψt (y − ξ)2dy ≤ ‖ψ‖L∞

tn
‖ψt‖L1 = ‖ψ‖L∞‖ψ‖L1

tn
,
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we get

J1 ≤ cψ
�Q

α

( ∫

2k+2 Q

| f (ξ)|dξ
)2

∞∫

2k−3�Q/α

dt

t2n+2

≤ cn,ψα
2n2−k

( 1

|2k+2 Q|
∫

2k+2 Q

| f (ξ)|dξ
)2
.

We turn to the estimate of J2. By (1.1), for (y, t) ∈ T (2k+1 Q),

|( f χRn\2k+2 Q) ∗ ψt (y)| ≤ cψ tε
∫

Rn\2k+2 Q

| f (ξ)| 1

(t + |y − ξ |)n+ε dξ

≤ cn,ψ (t/�Q)
ε

∞∑
i=k

1

2iε

1

|2i Q|
∫

2i Q

| f |.

Therefore,

J2 ≤ cn,ψ
�Q

α

( ∞∑
i=k

1

2iε

1

|2i Q|
∫

2i Q

| f |
)2 1

�2ε
Q

2k+1�Q∫

2k−3�Q/α

∫

2k+1 Q

dydt

tn+2−2ε

≤ cn,ψα
n−2ε2(2ε−1)k

( ∞∑
i=k

1

2iε

1

|2i Q|
∫

2i Q

| f |
)2
.

Combining the estimates for J1 and J2, we obtain

|I2( f )(x)− I2( f )(x0)| ≤ cn,ψα
2n

∞∑
k=1

1

2k

( 1

|2k Q|
∫

2k Q

| f (ξ)|dξ
)2

+cn,ψα
n−2ε

∞∑
k=1

22εk

2k

( ∞∑
i=k

1

2iε

1

|2i Q|
∫

2i Q

| f |
)2
.

By Hölder’s inequality,

∞∑
k=1

22εk

2k

⎛
⎜⎝

∞∑
i=k

1

2iε

1

|2i Q|
∫

2i Q

| f |
⎞
⎟⎠

2
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≤ cε

∞∑
k=1

2εk

2k

∞∑
i=k

1

2iε

⎛
⎜⎝ 1

|2i Q|
∫

2i Q

| f |
⎞
⎟⎠

2

≤ cε

∞∑
k=1

γ (k, ε)

⎛
⎜⎝ 1

|2k Q|
∫

2k Q

| f |
⎞
⎟⎠

2

,

where

γ (k, ε) =
{

1
2εk
, ε < 1

k
2k , ε = 1.

Therefore,

|I2( f )(x)− I2( f )(x0)| ≤ cn,ψα
2n

∞∑
k=1

γ (k, ε)

⎛
⎜⎝ 1

|2k Q|
∫

2k Q

| f |
⎞
⎟⎠

2

.

From this and from (3.3),

ωλ(S̃α,ψ( f )2; Q) ≤ (I1( f )χQ)
∗(λ|Q|)+ ‖I2( f )− I2( f )(x0)‖L∞(Q)

≤ cn,λ,ψα
2n

∞∑
k=0

γ (k, ε)

⎛
⎜⎝ 1

|2k Q|
∫

2k Q

| f |
⎞
⎟⎠

2

,

which completes the proof. 
�

4 Proof of Theorem 1.1

4.1 Several Auxiliary Operators

Throughout this subsection we assume that f, g ≥ 0. Given a sparse family S =
{Qk

j } ⊂ D , define

T S
2,m f (x) =

⎛
⎝∑

j,k

( f2m Qk
j
)2χQk

j
(x)

⎞
⎠

1/2

.

The following result was proved in [4].
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Lemma 4.1 For any 1 < p < ∞,

‖T S
2,0‖L p(w) ≤ cn,p[w]max( 1

2 ,
1

p−1 )

Ap
.

Given a sparse family S = {Qk
j } ⊂ D, define

M S
m ( f, g)(x) =

∑
j,k

( f2m Qk
j
)

⎛
⎜⎜⎝

1

|2m Qk
j |

∫

Qk
j

g

⎞
⎟⎟⎠χ2m Qk

j
(x).

Applying Proposition 2.2, we decompose the family of cubes {Qk
j } into 2n disjoint

families Fi such that for any Qk
j ∈ Fi there exists a cube Pm,i

j,k ∈ Di such that

2m Qk
j ⊂ Pm,i

j,k and �Pm,i
j,k

≤ 6�2m Qk
j
. Hence,

M S
m ( f, g)(x) ≤ 62n

2n∑
i=1

M S
i,m( f, g)(x), (4.1)

where

M S
i,m( f, g)(x) =

∑
j,k

( fPm,i
j,k
)

⎛
⎜⎜⎝

1

|Pm,i
j,k |

∫

Qk
j

g

⎞
⎟⎟⎠χPm,i

j,k
(x).

The following statement was obtained in [5].

Lemma 4.2 Suppose that the sum defining M S
i,m( f, g) contains finitely many terms.

Then there are at most 2n cubes Qν ∈ Di covering the support of M S
i,m( f, g) so that

for every Qν there are two sparse families Si,1 and Si,2 from Di having the property
that for a.e. x ∈ Qν ,

M S
i,m( f, g)(x) ≤ cn(m + 1)

2∑
κ=1

∑

Qk
j ∈Si,κ

fQk
j
gQk

j
χQk

j
(x).

Observe that the proof of Lemma 4.2 is based on Theorem 2.3 along with [14,
Lemma 3.2]. Formally Lemma 4.2 follows from [5, Lemma 4.2] taking there m = 2
(which corresponds to a bilinear case) and l = m, and from the subsequent argument
in [5, Sect. 4.2].

Let X be a Banach function space, and let X ′ denote the associate space (see [2,
Ch. 1]). Given a Banach function space X , denote by X (2) the space endowed with
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the norm

‖ f ‖X (2) = ‖| f |2‖1/2
X .

It is well known [16, Ch. 1] that X (2) is also a Banach space.

Lemma 4.3 For any Banach function space X,

sup
S∈D

‖T S
2,m f ‖X (2) ≤ cnm1/2 max

1≤i≤2n
sup

S∈Di

‖T S
2,0 f ‖X (2) .

Proof By the standard argument, it suffices to prove the estimate for a finite partial
sum T̃ S

2,m f from the series defining T S
2,m f . Fix S ∈ D. By duality, there exists g ≥ 0

with ‖g‖X ′ = 1 such that

‖T̃ S
2,m f ‖2

X (2) =
∫

Rn

(T̃ S
2,m f )2g dx =

∑
j,k

( f2m Qk
j
)2

∫

Qk
j

g (4.2)

=
∫

Rn

M S
m ( f, g) f dx,

where the sum defining M S
m ( f, g) contains finitely many terms. By Lemma 4.2 and

by Hölder’s inequality,

∫

Qν

M S
i,m( f, g) f dx ≤ cnm

2∑
κ=1

∑

Qk
j ∈Si,κ

( fQk
j
)2

∫

Qk
j

g

≤ cnm
2∑
κ=1

∫

Rn

(T Si,κ
2,0 f )2g dx

≤ 2cnm sup
S∈Di

‖T S
2,0 f ‖2

X (2) .

Summing up over Qν and using (4.1), we obtain

∫

Rn

M S
m ( f, g) f dx ≤ cnm max

1≤i≤2n
sup

S∈Di

‖T S
2,0 f ‖2

X (2) .

This along with (4.2) completes the proof.
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4.2 Proof of Theorem 1.1

Let Q ∈ D. By Lemma 3.1, for all x ∈ Q,

m#,d
1

2n+2 ;Q

(
(S̃α,ψ( f )2)

)
(x) ≤ cn,ψα

2n M f (x)2.

Hence, applying Theorem 2.3 to S̃α,ψ( f )2, we get that there exists a sparse family
S = {Qk

j } ⊂ D(Q) such that for a.e. x ∈ Q,

|S̃α,ψ( f )(x)2 − m Q(S̃α,ψ( f )2)| ≤ cn,ψα
2n

(
M f (x)2 +

∞∑
m=0

1

2mδ

(
T S

2,m f (x)
)2

)
.

Hence,

|S̃α,ψ( f )2 − m Q(S̃α,ψ( f )2)|1/2 ≤ cn,ψα
n(

M f (x)+ T ( f )(x)
)
, (4.3)

where

T ( f )(x) =
∞∑

m=0

1

2mδ/2 T S
2,m f (x).

Assuming, for instance, that f ∈ L1, and using (2.3) and (3.1), we get

lim|Q|→∞ m Q(S̃α,ψ( f )2) = 0.

Therefore, letting Q tend to anyone of 2n quadrants and using Fatou’s lemma, by (4.3)
we obtain

‖S̃α,ψ( f )‖L p(w) ≤ cn,ψα
n(‖M f ‖L p(w) + ‖T ( f )‖L p(w)

)
. (4.4)

Combining Lemma 4.1 and Lemma 4.3 with X = L3/2(w) yields

‖T ( f )‖L3(w) ≤
∞∑

m=0

1

2mδ/2 ‖T S
2,m f ‖L3(w)

≤ cn

∞∑
m=0

m1/2

2mδ/2 max
1≤i≤2n

sup
S∈Di

‖T S
2,0 f ‖L3(w)

≤ cn,δ[w]1/2
A3

‖ f ‖L3(w).

Hence, by the sharp version of the Rubio de Francia extrapolation theorem (see [6] or
[7]),

‖T ( f )‖L p(w) ≤ cn,p,δ[w]max( 1
2 ,

1
p−1 )

Ap
‖ f ‖L p(w) (1 < p < ∞). (4.5)
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Thus, applying this result along with Buckley’s estimate ‖M‖L p(w) ≤ cn,p[w]
1

p−1
Ap

(see [3]) and (4.4), we get

‖Sα,ψ‖L p(w) ≤ ‖S̃α,ψ‖L p(w) ≤ cn,p,ψα
n[w]max( 1

2 ,
1

p−1 )

Ap
,

and therefore, the proof is complete.

5 Concluding Remarks

In a recent work [11], the following weak type estimate was obtained for Gβ( f ) (and
hence for Sψ( f )): if 1 < p < 3, then

‖Gβ( f )‖L p,∞(w) � [w]max( 1
2 ,

1
p )

Ap
�p([w]Ap )‖ f ‖L p(w),

where�p(t) = 1 if 1 < p < 2 and �p(t) = 1 + log t if p ≥ 2. The proof was based
on the local mean oscillation decomposition technique along with the estimate

‖T S
2,0 f ‖L p,∞(w) � [w]max( 1

2 ,
1
p )

Ap
�p([w]Ap )‖ f ‖L p(w). (5.1)

Since the space L p,∞(w) is normable if p > 1 (see, e.g., [2, p. 220]), combining
Lemma 4.3 with X = L1+ε,∞(w), ε > 0, and (5.1) yields for 2 < p < 3 that

‖T f ‖L p,∞(w) � [w]max( 1
2 ,

1
p )

Ap
�p([w]Ap )‖ f ‖L p(w). (5.2)

Hence, exactly as above, by (4.3) (and by the weak type estimate for M proved in [3]),
we obtain

‖Sα,ψ( f )‖L p,∞(w) � αn[w]max( 1
2 ,

1
p )

Ap
�p([w]Ap )‖ f ‖L p(w) (2 < p < 3).

We emphasize that our approach does not allow to extend this estimate to 1 < p ≤ 2.
This is clearly related to the same problem with (5.2). The limitation 2 < p < 3 in
(5.2) is due to Lemma 4.3 where the condition that X is a Banach function space was
essential in the proof. This raises a natural question whether Lemma 4.3 holds under
the condition that X is a quasi-Banach space. Observe that the same question can be
asked regarding a recent estimate relating X -norms of Calderón–Zygmund and dyadic
positive operators [15].
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