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1 Introduction

Hardy spaces are an important tool in harmonic analysis. Originally developed for
problems in Complex Analysis they were extended to other structures in almost any
conceivable way [8,15,20]. This interest is due to one principal fact: elements of a
Hardy space can be identified with boundary values of analytic functions (see, e.g., [10]
for the case of Clifford analysis). This identification was the keystone for the work
of Li et al. [15] and it is explained in detailed in [17]. The idea can be summarized
as follows: one studies the boundary behaviour of null-solutions to the Dirac operator
by analyzing the behaviour of the Fourier multipliers of the correspondent boundary
operators. This approach was also used by Mitrea in [18].

Parallel to these developments, in the last decade one can observe an increasing
interest in obtaining discrete counterparts for continuous structures. Since this interest
is mainly driven by applications in physics one is compelled to address the discrete
Dirac operator which stands as a discrete counterpart to the continuous Dirac operator.
This operator was constructed in different contexts and by different methods for several
times in the past (c.f. [6,9,14,22], among others). Depending on their construction
these discrete Dirac operators have different properties and even factorize different
second order difference operators. As one would expect from the continuous case
(where the classic Dirac operator factorizes the Laplacian) there is one particular
operator which is more interesting from the practical point of view than all others.
In the case of a higher dimensional grid, i.e. Z

n , it would be the star Laplacian. But
here a major problem arises. Any factorization of the star Laplacian requires both
forward and backward difference operators. This, in turn, requires a splitting of the
usual Euclidean basis [6,9,11].

Nevertheless, first steps in the direction of a function theory for this kind of Dirac
operator have already been made with a general Cauchy formula, Fischer decompo-
sition, and polynomial solutions (see [1,4,12]). But here resides another problem: the
fundamental solution of the Dirac operator, the so-called discrete Cauchy kernel, is
known only via a Fourier integral which severely limits its applicability from the ana-
lytic point of view. For instance, in [7,11–13] the authors use the discrete fundamental
solution to construct discrete boundary integral operators for a discrete version of the
boundary element method similar to Ryabenkij [19]. Since the discrete fundamental
solution is only known as a numerical approximation the results could be given only
in the form that when the discrete integral equation over the boundary is solvable then
the corresponding discrete potentials provide a solution to the corresponding differ-
ence equation. No direct characterization of the boundary values could be given. But
that is what we are interested in: characterizations of null-solutions of the discrete
Dirac operator based on its discrete boundary values, as in the continuous case. This
problem is not only affected by the expression of the fundamental solution, but also
by the construction of the Dirac operator (which involves forward and backward dif-
ferences) and by the discrete boundary itself. In difference to the continuous case a
discrete boundary contains three layers, two for the inner boundary and two for the
outer boundary. This means that, for instance, a discrete Cauchy integral formula for
the inner domain will require function values from both layers of inner boundary. A
detailed exposition of this effect is given in Sect. 3.
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To obtain characterizations of boundary values of discrete monogenic functions
and corresponding Hardy spaces we need to study the equation over the boundary.
However, this presents an additional difficulty since in the discrete case there is no
limit process to the boundary, that is to say, no traditional trace operator exists. This,
combined with the lack of an explicit closed expression for the Cauchy kernel makes
such a study quite difficult. Nevertheless, we will show that it is possible to get the
symbol of the boundary operator in Fourier domain. For an easier understanding we
will restrict ourselves to the case of d = 3 with the remark that the formulae and
results are valid in any dimension.

The paper is organized as follows. In Sect. 2 we recall some basic facts about discrete
Dirac operators, their underlying algebraic structure, and their fundamental solution
which will be needed in the sequel. Also, for the sake of readership, we include in
there a short description of the main results obtained in this paper. In Sect. 3, we dis-
cuss discrete Borel–Pompeiu and Cauchy formulae and introduce the discrete Cauchy
transform. Although this section is essentially expository in its nature it contains the
framework for discussing discrete boundary values in the next sections. In Sect. 4
we discuss the characterization of discrete boundary values by studying the discrete
symbol of the operator arising from the corresponding boundary equation. This allows
us to obtain conditions for a function to be a boundary value of a discrete monogenic
function in the upper and in the lower half plane. We present these conditions both in
terms of component functions and of the function itself. Based on those conditions,
we obtain the corresponding Hilbert transforms (in the sense that they mimic the tra-
ditional Hilbert transform as an operator which squares to the identity). This allows
us to get the projection operators (classically known as Plemelj or Hardy projections),
Hardy spaces, and a decomposition theorem for l p-functions on the boundary.

In the last section we show the convergence of our formulae, i.e. that when the
lattice constant goes to zero we recover the classic formulae of the continuous case.

2 Preliminaries and Main Results

Let us start with some basic facts of discrete function theory. Without loss of generality
we restrict ourselves to the (for practical applications) most important case d = 3,

with the remark that the results continue to hold in higher dimensions with no relevant
changes.

For the grid hZ
3, with orthonormal basis ek , k = 1, 2, 3, where h > 0 denotes the

lattice constant (mesh size), we define the standard forward and backward differences
∂

± j
h as

∂
+ j
h f (mh) = h−1( f (mh + e j h) − f (mh)),

∂
− j
h f (mh) = h−1( f (mh) − f (mh − e j h)),

for hm = h(m1e1 + m2e2 + m3e3) ∈ hZ
3. As stated in the introduction we want

to use a discrete Dirac operator which factorizes the star-Laplacian �h . To get such
an operator we follow the idea of [1,6]. We split each basis element ek, k = 1, 2, 3,
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into two basis elements e+
k and e−

k , k = 1, 2, 3, i.e., ek = e+
k + e−

k , k = 1, 2, 3,

corresponding to the forward and backward directions. Let us remark that there is
some freedom in the choice of such a basis. Special choices can be found in [2,7,11].
Here we choose the one satisfying the following relations:

⎧
⎪⎪⎨

⎪⎪⎩

e−
j e−

k + e−
k e−

j = 0,

e+
j e+

k + e+
k e+

j = 0,

e+
j e−

k + e−
k e+

j = −δ jk,

(1)

where δ jk is the Kronecker delta. When allowing for complex coefficients, the basis
elements {e1, e2, e3} generate the complexified Clifford algebra C3 = C ⊗R R0,3.

Also, the module is no longer preserved under multiplication. In fact, we have only
the estimate (see [3])

|ab| ≤ 23|a||b|, a, b ∈ C3.

Furthermore, we consider functions defined on (∅ �=)G ⊂ hZ
3 and taking values in

C3. Properties like l p-summability (1 ≤ p < ∞) and so on, are defined for a C3-
valued function by being ascribed to each component. The corresponding spaces are
denoted, respectively, by l p (G, C3) , (1 ≤ p < +∞) and so on.

The discrete Dirac operator D+− and its adjoint operator D−+ are given by

D+−
h =

3∑

j=1

e+
j ∂

+ j
h + e−

j ∂
− j
h ,

D−+
h =

3∑

j=1

e+
j ∂

− j
h + e−

j ∂
+ j
h .

Both operators factorize the star-Laplacian

�h =
3∑

j=1

∂
+ j
h ∂

−j
h ,

i.e.,

(D+−
h )2 = (D−+

h )2 = −�h .

We remark that the factorization of the star-Laplacian requires (e+
j )2 = (e−

j )2 = 0 as
per reference [1].

For more details we refer the reader to the literature, e.g. [1,4,6,11,12].

2.1 Main Results

In this subsection we present our main results. A problem in the discrete versus contin-
uous setting for boundary value problems is that in the first one it is required the values
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on two boundary layers while only one is enough in the second case. This is a direct
consequence of having two difference operators (forward and backward differences)
instead of a single derivative. It also has an indirect consequence of making it hard to
characterize Hardy spaces in the discrete setting.

We begin by presenting Theorems 2.1 and 2.3, where the boundary value of discrete
monogenic functions in the upper, resp. lower, lattice is characterized in terms of their
behaviour in the Fourier domain, as well as their corollaries, which provided us with
closed formulae for the symbols of the discrete Hilbert transforms in the upper, resp.
the lower, lattice.

Theorem 2.1 Let f ∈ l p(hZ
2, C3) given by f = f1 + e+

3 f2 + e−
3 f3 + e+

3 e−
3 f4, with

fi : hZ
2 → C2, i = 1, 2, 3, 4. Then f is the boundary value of a discrete monogenic

function in the discrete upper half plane if and only if its discrete 2D-Fourier transform
F = Fh f, with

F(ξ) = F1(ξ) + e+
3 F2(ξ) + e−

3 F3(ξ) + e+
3 e−

3 F4(ξ), ξ ∈
[
−π

h
,
π

h

]2
,

satisfies the system

⎧
⎨

⎩

hd−
√

4+h2d2

2 F1 + ξ̃−
d F2 = 0,

hd−
√

4+h2d2

2 F3 + ξ̃−
d (F1 − F4) = 0.

(2)

Here, d2 = 4
h2

2∑

j=1
sin2

(
ξ j h
2

)
and ξ̃− =

2∑

j=1
e+

j ξ D− j + e−
j ξ D+ j denote the symbols of

2-dimensional Laplace operator (restricted to the grid hZ
2) and of the 2-dimensional

Dirac operator D−+, respectively.

Corollary 2.2 Let f ∈ l p(hZ
2, C3) be a boundary value of a discrete monogenic

function in the upper half space. Then its 2D-Fourier transform F = Fh f, satisfies
the equation

ξ̃−
d

⎛

⎝e+
3

hd −
√

4 + h2d2

2
+ e−

3
2

hd −
√

4 + h2d2

⎞

⎠ F = F.

Theorem 2.3 Let f ∈ l p(hZ
2, C3) given by f = f1 + e+

3 f2 + e−
3 f3 + e+

3 e−
3 f4, with

fi : hZ
2 → C2, i = 1, 2, 3, 4. Then f is the boundary value of a discrete monogenic

function in the discrete lower half plane if and only if its 2D-Fourier transform F =
Fh f, with

F(ξ) = F1(ξ) + e+
3 F2(ξ) + e−

3 F3(ξ) + e+
3 e−

3 F4(ξ), ξ ∈
[
−π

h
,
π

h

]2
,
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satisfies the system

⎧
⎨

⎩

hd−
√

4+h2d2

2 F2 − ξ̃−
d F1 = 0,

hd−
√

4+h2d2

2 (F1 − F4) − ξ̃−
d F3 = 0.

(3)

Corollary 2.4 Let f ∈ l p(hZ
2, C3) be a boundary value of a discrete monogenic

function in the lower half space. Then its 2D-Fourier transform F = Fh f, satisfies
the equation

−
ξ̃−
d

⎛

⎝e+
3

2

hd −
√

4 + h2d2
+ e−

3

hd −
√

4 + h2d2

2

⎞

⎠ F = F. (4)

Finally, in Theorem 2.5 we introduce the operators A+, A−, which reconstruct the
boundary data in the 0−layer from the knowledge of boundary data in the 1−layer,
resp. −1−layer, thus giving the complete boundary data of a function in the upper,
resp. lower, discrete Hardy space.

Theorem 2.5 An arbitrary function f ∈ l p(Z
2, C3) can be decomposed into a pair

of functions P+ f and Q+ f where P+ f ∈ h+
p , i.e. it can be extended to the zero layer

via its action in the Fourier domain by

e−
3 F+,0 =

ξ̃−
d

hd +
√

4 + h2d2

2

(
−e−

3 F+,1
1 + e−

3 e+
3 F+,1

3

)
:= A+F+,1,

with F+,1(ξ) = Fh f (ξ , 1) and this pair (F+,0, F+,1) fulfills (23). In the same way

an arbitrary function f ∈ l p(Z
2, C3) can be decomposed into a pair of functions P− f

and Q− f where P− f ∈ h−
p , i.e. it can be extended to the zero layer via its action in

the Fourier domain by

e+
3 F−,0 =

2
√

4 + h2d2

hd +
√

4 + h2d2

(
−e+

3 F−,−1
1 − e+

3 e−
3 F−,−1

3

)

+
ξ̃−
d

⎛

⎝
h2d2 − 1 − hd

√

4 + h2d2

hd −
√

4 + h2d2

⎞

⎠

×
(

e+
3 F−,−1

2 − e+
3 e−

3

(
F−,−1

1 − F−,−1
4

))
:= A−F−,−1

with F−,−1(ξ) = Fh f (ξ ,−1) fulfills (24).
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2.2 Some Remarks on the Fundamental Solution

In this section we present some basic facts on discrete fundamental solutions which
will be required in the sequel. We start with a fundamental solution of the discrete
Dirac operator and its properties.

Definition 2.6 The function E−+
h : hZ

3 → C3 is the discrete fundamental solution
of D−+

h if it satisfies

D−+
h E−+

h = δh,

on hZ
3, where δh denotes the discrete Dirac function given by

δh (mh) =
{

h−3 if mh = 0,

0 if mh �= 0.

There are several methods for constructing fundamental solutions. Here, we estab-
lish the fundamental solution by means of its symbol in the Fourier domain. We recall
the discrete Fourier transform of u ∈ l p

(
hZ

3, C3
)
, 1 ≤ p < +∞,

ξ �→ Fhu(ξ) =
∑

m∈Z3

ei〈mh,ξ〉u(mh)h3, ξ ∈
[
−π

h
,
π

h

]3
,

where 〈mh, ξ 〉 = h
3∑

j=1
m jξ j . Its inverse is given by F−1

h = RhF , where F is the

(standard) continuous Fourier transform

x �→ F f (x) = 1

(2π)3

∫

R3

e−i〈x,ξ〉 f (ξ)dξ,

applied to functions f with supp( f ) ∈ [−π
h , π

h

]3. Hereby, Rh denotes its restriction
to the lattice hZ

3.

Let us recall the known symbols for the forward and backward differences ∂
± j
h ,

namely ξ D± j = ∓h−1
(
1 − e∓ihξ j

)
, as well as the symbol for the star-Laplacian, i.e.,

Fh(−�hu)(ξ) = d2Fhu(ξ), where

d2 = 4

h2

3∑

j=1

sin2
(

ξ j h

2

)

.

Therefore, we have Fh(D−+
h u)(ξ) =

(
3∑

j=1
e+

j ξ D− j + e−
j ξ D+ j

)

Fhu(ξ) so that D−+

has symbol
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ξ̃− =
3∑

j=1

e+
j ξ D− j + e−

j ξ D+ j .

In consequence, the fundamental solution E−+ is given by

E−+
h = RhF

(
ξ̃−
d2

)

=
3∑

j=1

e+
j RhF

(
ξ D− j

d2

)

+ e−
j RhF

(
ξ D+ j

d2

)

. (5)

Moreover, we remark that lim
h→0

ξ̃−
d2 = −iξ

|ξ |2 , the symbol of the right inverse of the

continuous Dirac operator [11,17].

Lemma 2.7 The fundamental solution E−+ satisfies

(i) D−+
h E−+

h (mh) = δh(mh), mh ∈ hZ
3, (6)

(i i) E−+
h ∈ l p(Z

3, C3), p > 3
2 (7)

Proof Statement (i) is obvious. For the proof of (ii) we recall that the fundamental
solution of the discrete Dirac operator is given by

E−+
h (hm) = 1

(2π)3

∫

ξ∈[− π
h , π

h ]3

ξ̃−
d2 e−i〈hm,ξ〉dξ, m ∈ Z

3.

Since ξ̃− =
3∑

j=1
e+

j ξ D− j + e−
j ξ D+ j e j , with e j = e+

j + e−
j , and ξ =

3∑

j=1
(e+

j + e−
j )ξ j , we

get

ξ D± j = ∓ 1

h
(1 − e∓ihξ j ) = ∓ 1

h

[
(1 − cos(hξ j )) ± i sin(hξ j )

]
,

so that we can estimate the fundamental solution by the sum of the following two
integrals

∣
∣
∣
∣
∣
∣
∣

∫

ξ∈[− π
h , π

h ]3

ξ D± j

d2 e−i〈mh,ξ〉dξ

∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣

∫

ξ∈[− π
h , π

h ]3

(

∓1 − cos hξ j

d2h

)

e−i〈mh,ξ〉dξ − i
∫

ξ∈[− π
h , π

h ]3

sin hξ j

d2h
e−i〈mh,ξ〉dξ

∣
∣
∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
∣
∣

∫

ξ∈[− π
h , π

h ]3

1 − cos hξ j

d2h
e−i〈mh,ξ〉dξ

∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣

∫

ξ∈[− π
h , π

h ]3

sin hξ j

d2h
e−i〈mh,ξ〉dξ

∣
∣
∣
∣
∣
∣
∣

. (8)
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By the following theorem, adapted to dimension d = 3 (see [11,21])
Let p1, p2 be two positive integers with p2 < p1 + 3. For N > 0 let κN denote the

set of functions of the form T (ζ ) = T1(ζ )
T2(ζ )

, 0 �= ζ ∈ [−π, π ]3, where Tj (ζ ) denotes

trigonometric polynomials Tj (ζ ) = ∑
m∈Z3 t j,mei〈m,ζ 〉, j = 1, 2 satisfying to

(i) there exist homogeneous polynomials Pj (ζ ) of degree p j , such that Tj (ζ ) =
Pj (ζ ) + o(|ζ |p j ) when ζ → 0, j = 1, 2;

(ii) |T2(ζ )| ≥ 1
N |ζ |p2 for ζ ∈ [−π, π ]3;

(iii) |t j,m | ≤ N , t j,m = 0, |m| > N .

Then, it exists a constant M > 0 such that for all m ∈ Z
3 and T ∈ κN , it holds

∣
∣
∣
∣
∣
∣
∣

∫

[−π,π ]3

T (ζ )ei〈m,ζ 〉dζ

∣
∣
∣
∣
∣
∣
∣

≤ M(|m| + 1)−3−p1+p2 .

As the integrals in (8) fulfilled the above conditions with the change of variables
ζ = hξ and p1 = p2 = 2 in the first case, p1 = 1 and p2 = 2 in the second case, we
obtain

∣
∣
∣
∣

∫

[− π
h , π

h ]3

ξ D± j

d2 e−i〈mh,ξ〉dξ

∣
∣
∣
∣ ≤ Mh

(|mh| + h)3 + M

(|mh| + h)2 = M(2h + |mh|)
(|mh| + h)3

≈ O(
1

|mh|2 ).

Thus, the fundamental solution belongs to l p(Z
3, C3) for p > 3

2 . ��
For the convergence of the discrete fundamental solution to the continuous one we

have the following fundamental lemma.

Lemma 2.8 Let E be the fundamental solution to the (continuous) Dirac operator in
R

3. For any point mh ∈ hZ
3, with m �= 0, there exists a constant C > 0 (independent

on h), such that

|E−+
h (mh) − E(mh)| ≤ C

h

|mh|3 .

Proof The fundamental solution to the Dirac operator in the continuous case can be

expressed via the Fourier transform as E = F
(−iξ

|ξ |2
)

. Hence, we have

|E−+
h (mh) − E(mh)| =

∣
∣
∣
∣
∣
∣
∣

1

(2π)3

∫

ξ∈[− π
h , π

h ]3

ξ̃−
d2 e−i〈mh,ξ〉dξ − 1

(2π)3

∫

R3

−iξ

|ξ |2 e−i〈mh,ξ〉dξ

∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣

∫

ξ∈[− π
h , π

h ]3

1

(2π)3

(
ξ̃−
d2 + iξ

|ξ |2
)

e−i〈mh,ξ〉dξ +
∫

ξ∈R3\[− π
h , π

h ]3

1

(2π)3

iξ

|ξ |2 e−i〈mh,ξ〉dξ

∣
∣
∣
∣
∣
∣
∣

.
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By writing the above formula component-wisely (again, we use ξ̃− =
3∑

j=1
e+

j ξ D− j +

e−
j ξ D+ j e j , with e j = e+

j + e−
j , and ξ =

3∑

j=1
(e+

j + e−
j )ξ j ) we reduce the problem to

the individual estimation of the following integrals for j = 1, 2, 3 ( c.f. also reference
[11])

∣
∣
∣
∣
∣
∣
∣

∫

ξ∈[− π
h , π

h ]3

1

(2π)3

(
ξ D± j

d2 + iξ j

|ξ |2
)

e−i〈mh,ξ〉dξ+
∫

ξ∈R3\[− π
h , π

h ]3

1

(2π)3

iξ j

|ξ |2 e−i〈mh,ξ〉dξ

∣
∣
∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
∣
∣

1

(2π)3

∫

ξ∈[− π
h , π

h ]3

1 − cos(hξ j )

d2h
e−i〈mh,ξ〉dξ

∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣

1

(2π)3

∫

ξ∈[− π
h , π

h ]3

(
ξ j

|ξ |2 − sin(hξ j )

d2h

)

e−i〈mh,ξ〉dξ

+ 1

(2π)3

∫

ξ∈R3\[− π
h , π

h ]3

ξ j

|ξ |2 e−i〈mh,ξ〉dξ

∣
∣
∣
∣
∣
∣
∣

.

The first integral is the same as in (8) so that we get immediately

∣
∣
∣
∣
∣
∣
∣

1

(2π)3

∫

ξ∈[− π
h , π

h ]3

1 − cos(hξ j )

d2h
e−i〈mh,ξ〉dξ

∣
∣
∣
∣
∣
∣
∣

≤ Mh

(|mh| + h)3

for a certain constant M > 0. The second and third integrals can be written in the
following form

I = 1

(2π)3

∣
∣
∣
∣
∣
∣
∣
∣

∫

ξ∈[− π
h , π

h ]3

(
sin(hξ j )

d2h
− ξ j

|ξ |2
)

e−i〈mh,ξ〉dξ −
∫

ξ∈R3\[− π
h , π

h ]3

ξ j

|ξ |2 e−i〈mh,ξ〉dξ

∣
∣
∣
∣
∣
∣
∣
∣

= 1

(2π)3

∣
∣
∣
∣
∣
∣
∣
∣

∫

ξ∈[− π
h , π

h ]3

(
sin(hξ j )

hd2 − η j

|ξ |2
)(

− 1

m j h

)3
∂3
ξ j

(e−i〈mh,ξ〉)dξ

−
∫

ξ∈R3\[− π
h , π

h ]3

ξ j

|ξ |2
(

− 1

m j h

)3
∂3
ξ j

e−i〈mh,ξ〉dξ

∣
∣
∣
∣
∣
∣
∣
∣



J Fourier Anal Appl (2014) 20:715–750 725

= 1

(2π)3|m j h|3

∣
∣
∣
∣
∣
∣
∣
∣

∫

ξ∈[− π
h , π

h ]3

(
sin(hξ j )

hd2 − η j

|ξ |2
)

∂3
ξ j

(e−i〈mh,ξ〉)dξ

−
∫

ξ∈R3\[− π
h , π

h ]3

ξ j

|ξ |2 ∂3
ξ j

e−i〈mh,ξ〉dξ

∣
∣
∣
∣
∣
∣
∣
∣

.

Integration by parts leads now to the desired result,

I = 1

(2π)3|m j |3h2

∣
∣
∣
∣
∣
∣
∣

∫

ξ∈[− π
h , π

h ]3

(

−cos(hξ j )

d2 + 2 sin2(hξ j ) − 6 cos(2hξ j )

d4

− 48
cos(hξ j ) sin2(hξ j )

d6 − 48
sin4(hξ j )

d8 + 6
1

|ξ |4 − 48
ξ2

j

|ξ |6 + 48
ξ4

j

|ξ |8
)

e−i〈mh,ξ〉dξ

−
∫

ξ∈R3\[− π
h , π

h ]3

(

6
1

|ξ |2 − 48
ξ2

j

|ξ |6 + 48
ξ4

j

|ξ |8
)

e−i〈mh,ξ〉dξ

∣
∣
∣
∣
∣
∣
∣

≤ C1h

|m j h|3

with the constant C1 > 0 being independent on h. The last estimate is true since the
integrand of the first integral has an upper bound C2

|ξ j |2 . Now, using |m| ≤ √
3 max j {m j }

we get

I ≤ C3h

|mh|3

and, therefore,

|E−+
h (mh) − E(mh)| ≤ Ch

|mh|3 .

with the constant C > 0 being independent on h. ��
Remark 2.9 The symbol of the discrete operator D+−

h is given by

ξ̃+ =
3∑

j=1

e+
j ξ D+ j + e−

j ξ D− j .

Therefore, its fundamental solution E+−
h is given by

E+−
h = RhF

(
ξ̃+
d2

)

=
3∑

j=1

e+
j RhF

(
ξ D+ j

d2

)

+ e−
j RhF

(
ξ D− j

d2

)

.

Moreover, for E+−
h we have a convergence result similar to Lemma 2.8.
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2.3 Discrete Stokes Formula

For our study we will need the discrete Stokes formula with respect to our Dirac
operator both for functions defined on hZ

3 as well as for the case of the upper half
lattice hZ

3+, respectively.
In order to simplify notations we introduce the following conventions. First, we

denote a point of the grid Z
3 by n = (n, n3),where n = (n1, n2) ∈ Z

2. In consequence,
the upper half lattice hZ

3+ is defined by n3 > 0. Second, whenever the mesh size h is
fixed we shall abbreviate f (hn) to f (n).

Theorem 2.10 We have
∑

n∈Z3

{[
g(hn)D−+

h

]
f (hn) + g(hn)

[
D+−

h f (hn)
]}

h3 = 0. (9)

for all function f, g such that the (infinite) series converge.

Proof By definition of the discrete operators D+−
h and D−+

h and using n = (n, n3) =
n1e1 + n2e2 + n3e3 we have

∑

n∈Z3

[
g(n)D−+

h

]
f (n)h3 =

∑

n∈Z3

3∑

j=1

[
∂+ j g(n)e−

j + ∂− j g(n)e+
j

]
f (n)h3

=
∑

n∈Z3

3∑

j=1

{[
g(n + e j ) − g(n)

]
e−

j + [
g(n) − g(n − e j )

]
e+

j

}
f (n)h3

=
∑

n∈Z3

3∑

j=1

[
g(n +e j )e

−
j f (n) − g(n)e−

j f (n)+g(n)e+
j f (n)− g(n − e j )e

+
j f (n)

]
h3

=
∑

n∈Z3

3∑

j=1

[
g(n)e−

j f (n− e j )− g(n)e−
j f (n)+g(n)e+

j f (n) − g(n)e+
j f (n + e j )

]
h3

= −
∑

n∈Z3

3∑

j=1

[
g(n)e−

j f (n) −g(n)e−
j f (n−e j )+g(n)e+

j f (n+ e j )− g(n)e+
j f (n)

]
h3

= −
∑

n∈Z3

3∑

j=1

g(n)
[
e−

j ∂− j f (n) + e+
j ∂+ j f (n)

]

= −
∑

n∈Z3

g(n)
[
D+−

h f (n)
]

h3.

��
Replacing g in Theorem 2.10 by a translate of the fundamental solution, g =

E−+
h (· − hm), for a fixed hm ∈ hZ

3, the first sum becomes a discrete convolution
between E−+

h (· − hm)D−+ = δh(· − hm) and f and we get the following corollary.



J Fourier Anal Appl (2014) 20:715–750 727

Corollary 2.11 Let f ∈ l p
(
hZ

3, C3
)

with 1 ≤ p < 3. Then, we have

f (hm) = −
∑

n∈Z3

E−+
h (hn − hm)

[
D+−

h f (hn)
]

h3, hm ∈ hZ
3. (10)

Furthermore, the following discrete unique continuation principle holds.

Corollary 2.12 If f ∈ l p
(
hZ

3, C3
)
, 1 ≤ p < 3, is left monogenic with respect to

the operator D+−
h , i.e., D+−

h f = 0 in hZ
3, then

f = 0 in hZ
3. (11)

We now turn our attention to the case of the upper half lattice

hZ
3+ := {h(n, n3), n ∈ Z

2, n3 ∈ Z+}.

In this case, we obtain the following Stokes’ theorem.

Theorem 2.13 We have

∑

n∈Z
3+

{[
g(hn)D−+

h

]
f (hn) + g(hn)

[
D+−

h f (hn)
]}

h3

= −
∑

n∈Z2

[
g(hn, 0)e+

3 f (h(n, 1)) + g(h(n, 1))e−
3 f (hn, 0)

]
h3. (12)

for all function f and g such that the series converge.

Proof Starting from the definition of our operators D−+
h and D+−

h and again using
the identification n = (n, n3) = n1e1 + n2e2 + n3e3 we obtain

∑

n∈Z
3+

[
g(n)D−+

h

]
f (n)h3 =

∑

n∈Z
3+

2∑

j=1

[
∂+ j g(n)e−

j + ∂− j g(n)e+
j

]
f (n)h3

+
∑

n∈Z
3+

[
∂+3g(n)e−

3 + ∂−3g(n)e+
3

]
f (n)h3

= −
∑

n∈Z
3+

2∑

j=1

g(n)
[
e−

j ∂− j f (n) + e+
j ∂+ j f (n)

]
h3

+
∑

n∈Z2

⎧
⎨

⎩

∑

n3≥1

[
(g(n + e3) − g(n)) e−

3 f (n) + (g(n) − g(n − e3)) e+
3 f (n)

]
h3

⎫
⎬

⎭

= −
∑

n∈Z
3+

2∑

j=1

g(n)
[
e−

j ∂− j f (n) + e+
j ∂+ j f (n)

]
h3
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+
∑

n∈Z2

⎧
⎨

⎩

∑

n3≥1

[
g(n + e3)e

−
3 f (n) − g(n)e−

3 f (n)

+ g(n)e+
3 f (n) − g(n − e3)e

+
3 f (n)

]

⎫
⎬

⎭
h3.

For the last term of the above equality, we get

∑

n3≥1

[
g(n + e3)e

−
3 f (n) − g(n)e−

3 f (n) + g(n)e+
3 f (n) − g(n − e3)e

+
3 f (n)

]

=
∑

n3≥2

g(n)e−
3 f (n − e3) −

∑

n3≥1

g(n)e−
3 f (n)

+
∑

n3≥1

g(n)e+
3 f (n) −

∑

n3≥0

g(n)e+
3 f (n + e3)

= −
∑

n3≥1

g(n)e−
3 [ f (n) − f (n − e3)] −

∑

n3≥1

g(n)e+
3 [ f (n + e3) − f (n)]

− g(n, 0)e+
3 f (n, 1) − g(n, 1)e−

3 f (n, 0)

= −
∑

n3≥1

g(n)
[
e−

3 ∂−3 f (n) + e+
3 ∂+3 f (n)

]
− g(n, 0)e+

3 f (n, 1)

− g(n, 1)e−
3 f (n, 0), n ∈ Z

2,

so that we obtain

∑

n∈Z
3+

[
g(n)D−+

h

]
f (n)h3 = −

∑

n∈Z
3+

g(n)
[
D+−

h f (n)
]

h3

−
∑

n∈Z2

[
g(n, 0)e+

3 f (n, 1) + g(n, 1)e−
3 f (n, 0)

]
h3.

��
A similar formula holds for the lower half lattice hZ

3− := {h(n, n3), n ∈ Z
2, n3 ∈

Z−}. In fact,

∑

n∈Z
3−

[
g(n)D−+

h

]
f (n)h3 = −

∑

n∈Z
3−

2∑

j=1

g(n)
[
e−

j ∂− j f (n) + e+
j ∂+ j f (n)

]
h3

+
∑

n∈Z2

⎧
⎨

⎩

∑

n3≤−1

[
g(n+e3)e−

3 f (n)− g(n)e−
3 f (n)+g(n)e+

3 f (n)−g(n−e3)e+
3 f (n)

]
⎫
⎬

⎭
h3

= −
∑

n∈Z
3−

2∑

j=1

g(n)
[
e−

j ∂− j f (n) + e+
j ∂+ j f (n)

]
h3
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+
∑

n∈Z2

⎧
⎨

⎩

∑

n3≤0

g(n)e−
3 f (n − e3) −

∑

n3≤−1

g(n)e−
3 f (n) +

∑

n3≤−1

g(n)e+
3 f (n)

−
∑

n3≤−2

g(n)e+
3 f (n + e3)

⎫
⎬

⎭
h3

= −
∑

n∈Z
3−

2∑

j=1

g(n)
[
e−

j ∂− j f (n) + e+
j ∂+ j f (n)

]
h3

−
∑

n∈Z2

∑

n3≤−1

g(n)
[
e−

3 ∂−3 f (n) + e+
3 ∂+3 f (n)

]
h3

+
∑

n∈Z2

[
g(n, 0)e−

3 f (n,−1) + g(n, −1)e+
3 f (n, 0)

]
h3,

so that the following theorem holds.

Theorem 2.14 We have
∑

n∈Z
3−

{[
g(hn)D−+

h

]
f (hn) + g(hn)

[
D+−

h f (hn)
]}

h3

=
∑

n∈Z2

[
g(hn, 0)e−

3 f (h(n,−1)) + g(h(n,−1))e+
3 f (hn, 0)

]
h3. (13)

for all function f and g such that the above series converge.

3 Borel–Pompeiu and Cauchy Formulae for Upper and Lower Lattices

As in the continuous case the combination of the Stokes formula with translates of
the fundamental solution provides the Borel–Pompeiu and Cauchy formulae on the
desired domain. This will be used to define the discrete Cauchy transforms on the
upper and lower half lattices hZ

3±.

We start with the Borel–Pompeiu formula for the upper lattice hZ
3+.

Theorem 3.1 Let E−+
h be the discrete fundamental solution to operator D−+

h . We
have

∑

n∈Z2

[
E−+

h (h(n − m,−m3))e
+
3 f (h(n, 1))

+ E−+
h (h(n − m, 1 − m3))e

−
3 f (h(n, 0))

]
h3

+
∑

n∈Z
3+

E−+
h (hn − hm)

[
D+−

h f (hn)
]

h3

=
{

0, if m = (m, m3) /∈ Z
3+,

− f (hm), if m = (m, m3) ∈ Z
3+.

(14)

for any discrete function f such that the series converge.
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Proof In our discrete Stokes formula (12) we replace g = E−+
h (· − hm), where

m = (m, m3) ∈ Z
3+. This give us the discrete Borel–Pompeiu formula as follows

∑

n∈Z
3+

{[
E−+

h (hn − hm)D−+
h

]
f (hn) + E−+

h (hn − hm)
[
D+−

h f (hn)
]}

h3

= −
∑

n∈Z2

[
E−+

h (h(n − m,−m3))e
+
3 f (h(n, 1))

+ E−+
h (h(n − m, 1 − m3))e

−
3 f (h(n, 0))

]
h3,

which leads to
∑

n∈Z2

[
E−+

h (h(n − m,−m3))e
+
3 f (h(n, 1))

+ E−+
h (h(n − m, 1 − m3))e

−
3 f (h(n, 0))

]
h3

+
∑

n∈Z
3+

E−+
h (hn − hm)

[
D+−

h f (hn)
]

h3

=
{

0, if m = (m, m3) /∈ Z
3+,

− f (hm), if m = (m, m3) ∈ Z
3+.

(15)

��
Remark 3.2 In fact there are several ways to construct a Borel–Pompeiu formula.
The simplest and at the same time the one which requires the most work is by direct
calculation. Another approach which uses the characteristic function appears in [1].
The final form of the Borel–Pompeiu formula depends also on the definition of the
interior and the boundary of the domain.

Now, as a special case we obtain a discrete Cauchy formula.

Theorem 3.3 Let f be a discrete left monogenic function with respect to operator
D+−

h , then the upper discrete Cauchy formula

∑

n∈Z2

[
E−+

h (h(n − m,−m3))e
+
3 f (h(n, 1))+E−+

h (h(n− m, 1− m3))e
−
3 f (hn, 0)

]
h3

=
{

0, if m3 ≤ 0,

− f (hm), if m3 > 0.
(16)

holds under the condition that the involved series converge.

In the same way the lower discrete Cauchy formula can also be given by

∑

n∈Z2

[
E−+

h (h(n − m,−1 − m3))e
+
3 f (hn, 0)+E−+

h (h(n − m,−m3))e
−
3 f (h(n,−1))

]
h3

=
{

0, if m3 ≥ 0,

f (hm), if m3 < 0.
(17)
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A sufficient condition for the convergence of the series is f ∈ l p(hZ
3, C3), 1 ≤

p < ∞. These Cauchy formulae allow us to introduce the following discrete Cauchy
transforms.

Definition 3.4 For a discrete l p-function f , 1 ≤ p < +∞, defined on the boundary
layers (n, 0), (n, 1) with n ∈ Z

2, we define the upper Cauchy transform for m =
(m, m3) ∈ Z

3+ as

C+[ f ](hm) = −
∑

n∈Z2

[
E−+

h (h(n − m,−m3))e
+
3 f (h(n, 1))

+E−+
h (h(n − m, 1 − m3))e

−
3 f (hn, 0)

]
h3, (18)

and for a discrete l p-function f , 1 ≤ p < ∞, defined on the boundary layers
(n,−1), (n, 0) with n ∈ Z

2, we define the lower Cauchy transform at m = (m, m3) ∈
Z

3− by

C−[ f ](hm) =
∑

n∈Z2

[
E−+

h (h(n − m,−1 − m3))e
+
3 f (hn, 0)

+E−+
h (h(n − m,−m3))e

−
3 f (h(n,−1))

]
h3. (19)

From our discrete Cauchy formulae (16) and (17) we can see the dependence of
monogenic functions on the values on boundary which consists of three different layers
(two for each). This dependence appears also in our Cauchy transforms.

Theorem 3.5 Consider the upper and lower Cauchy transforms (18) and (19), respec-
tively. Here, we have

(i) C+[ f ] ∈ l p

(
Z

3+, C3

)
, C−[ f ] ∈ l p

(
Z

3−, C3

)
, 1 ≤ p < +∞, (20)

(i i) D+−
h C+[ f ](hm) = 0,∀m = (m, m3) ∈ Z

3 with m3 > 1, (21)

(i i i) D+−
h C−[ f ](hm) = 0,∀m = (m, m3) ∈ Z

3 with m3 < −1. (22)

Proof We obtain property (i) by application of Hölder’s inequality and the properties
of the fundamental solution to operator D−+

h . For the remaining properties, we prove
only (i i), the proof of (i i i) being similar.

We have for m3 > 1

D+−
h C+[ f ](hm)

= −D+−
h

⎛

⎝
∑

n∈Z2

[
E−+

h (h(n − m,−m3))e
+
3 f (h(n, 1))

+ E−+
h (h(n − m, 1 − m3))e

−
3 f (hn, 0)

]
h3

⎞

⎠
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Taking into account that

∂
+ j
h

(
E−+

h (h(· − m))
) = 1

h

[
E−+

h (h(· − (m + e j ))) − E−+
h (h(· − m))

]

= 1

h

[
E−+

h (h(· − m − e j )) − E−+
h (h(· − m))

]

= −(∂
− j
h E−+)(h(· − m)),

and ∂
− j
h

(
E−+

h (h(· − m))
) = −(∂

+ j
h E−+)(h(· − m)), for j = 1, 2, 3, we have then

D+−
h C+[ f ](hm) =

∑

n∈Z2

[
(D−+E−+

h )(h(n − m,−m3))e
+
3 f (h(n, 1))

+(D−+E−+
h )(h(n − m, 1 − m3))e

−
3 f (hn, 0)

]
h3 = 0.

��
From Theorem 3.3 we obtain a discrete equivalent of the boundary behaviour of a

monogenic function. From Formula (16) we have for the boundary values (at the layer
m3 = 1) of a function which is discrete monogenic in the upper half plane

−
∑

n∈Z2

[
E−+

h (h(n − m,−1))e+
3 f (h(n, 1)) + E−+

h (h(n − m, 0))e−
3 f (h(n, 0))

]
h3

= f (h(m, 1)), (23)

while from Formula (17) for the boundary values (m3 = −1) of a function which is
discrete monogenic in the lower half plane we get

∑

n∈Z2

[
E−+

h (h(n − m, 0))e+
3 f (h(n, 0)) + E−+

h (h(n − m, 1))e−
3 f (h(n,−1))

]
h3

= f (h(m,−1)), (24)

Additionally, we have for the values in the 0-layer in case of a function which is
monogenic in the (complete) upper half space

∑

n∈Z2

[
E−+

h (h(n − m, 0))e+
3 f (h(n, 1)) + E−+

h (h(n − m, 1))e−
3 f (h(n, 0))

]
h3 = 0

and

∑

n∈Z2

[
E−+

h (h(n−m,−1))e+
3 f (h(n, 0)) + E−+

h (h(n−m, 0))e−
3 f (h(n,−1))

]
h3 =0.

for a function which is monogenic in the (complete) lower half space.
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4 Reconstruction on the Boundary Layers

From the last formulae in the previous section we can observe that the boundary
condition involves function values not only in the 0-layer, but also in the layers above
and below. Now, this raises the question how far conditions (23) and (24) can be solved
in the two upper, respectively two lower layers of the boundary? This will give us also
the discrete equivalent of the Plemelj projections and the Hardy spaces.

Since our fundamental solution is only given as a Fourier integral we start our
investigation by calculating the corresponding Fourier symbols.

Lemma 4.1 The Fourier symbols of the fundamental solution on the layers −1, 0, 1
are given by

Fh E−+(ξ , 0) =
ξ̃−
d

1
√

4 + h2d2
+ (

e+
3 − e−

3

)

⎛

⎝
1

2
− hd

2
√

4 + h2d2

⎞

⎠ , (25)

Fh E−+(ξ , 1) =
ξ̃−
d

⎛

⎝
2 + d2h2

2
√

4 + h2d2
− hd

2

⎞

⎠ − e−
3

⎛

⎝− 3hd+h3d3

2
√

4 + h2d2
+ h2d2

2
+ 1

2

⎞

⎠

+ e+
3

⎛

⎝
hd

2
√

4 + h2d2
− 1

2

⎞

⎠ , (26)

Fh E−+(ξ ,−1) =
ξ̃−
d

⎛

⎝
2+d2h2

2
√

4 + h2d2
− hd

2

⎞

⎠+e+
3

⎛

⎝− 3hd + h3d3

2
√

4 + h2d2
+ h2d2

2
+ 1

2

⎞

⎠

− e−
3

⎛

⎝
hd

2
√

4 + h2d2
− 1

2

⎞

⎠ , (27)

where d2 = 4
h2

2∑

j=1
sin2

(
ξ j h
2

)
and ξ̃− =

2∑

j=1
e+

j ξ D− j + e−
j ξ D+ j .

Proof From Sect. 2 we know that the Fourier symbol of the fundamental solution
E−+

h (hn) for arbitrary n ∈ Z
3 is given by

E−+
h (hn) = RhF

(
ξ̃−
d2

)

= 1

(2π)3

∫

[− π
h , π

h ]3

e−ih〈n,ξ〉 ξ̃−
d2 dξ,

with ξ̃− =
3∑

j=1
e+

j ξ D− j + e−
j ξ D+ j . Now, for n3 fixed we apply the 2D discrete Fourier

transform
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Fh E−+(η, hn3) =
∑

n∈Z2

eih〈n,η〉

⎡

⎢
⎣

1

(2π)3

∫

[− π
h , π

h ]3

e−ih〈n,ξ〉 ξ̃−
d2 dξ

⎤

⎥
⎦

=
∑

n∈Z2

eih〈n,η〉

⎡

⎢
⎣

1

(2π)3

∫

[− π
h , π

h ]3

e−ih〈n,ξ〉 ξ̃− + ξ̃
3

d2 + 4
h2 sin2

(
ξ3h
2

)dξ

⎤

⎥
⎦

= 1

(2π)2

∫

[− π
h , π

h ]2

∑

n∈Z2

eih〈n,η−ξ 〉 1

2π

×
π
h∫

− π
h

⎛

⎝
e−ihn3ξ3 ξ̃−

d2 + 4
h2 sin2

(
ξ3h
2

) + e−ihn3ξ3 ξ̃
3

d2 + 4
h2 sin2

(
ξ3h
2

)

⎞

⎠ dξ3dξ,

where d2 = 4
h2

2∑

j=1
sin2

(
ξ j h
2

)
and ξ̃− =

2∑

j=1
e+

j ξ D− j + e−
j ξ D+ j , ξ̃3

= e+
3 ξ D−3 + e−

3 ξ D+3.

We are interested in the Fourier symbol for n3 = −1, 0, 1. To this end we need the
following integrals

π
h∫

− π
h

1

d2 + 4
h2 sin2 ξ3h

2

dξ3 = 2

d2

√
d2

4 + h2d2 arctan
tan hξ3

2√
h2d2

4+h2d2

∣
∣
∣
∣

π
h

− π
h

= 2π

d
√

4 + h2d2
,

π
h∫

− π
h

2h−1 sin2 hξ3
2

d2 + 4
h2 sin2 ξ3h

2

dξ3 = h

2

π
h∫

− π
h

(

1 − 1

1 + 4
h2d2 sin2 ξ3h

2

)

dξ3 = π − hdπ
√

4 + h2d2
,

π
h∫

− π
h

h−1 cosh ξ3

d2 + 4
h2 sin2 ξ3h

2

dξ3 =
π
h∫

− π
h

h−1(1 − 2 sin2 hξ3
2 )

d2 + 4
h2 sin2 ξ3h

2

dξ3 =
π
h∫

− π
h

h−1

d2 + 4
h2 sin2 ξ3h

2

dξ3

−
π
h∫

− π
h

2h−1 sin2 hξ3
2

d2 + 4
h2 sin2 ξ3h

2

dξ3 = 2π

hd
√

4 + h2d2
− π + hdπ

√

4 + h2d2
,

and
π
h∫

− π
h

h−1 cos 2hξ3

d2 + 4
h2 sin2 ξ3h

2

dξ3 = 1

d2h

π
2∫

− π
2

cos 4t

1 + 4
d2h2 sin2 t

2

h
dt

= 2

d2h2

π
2∫

− π
2

1 − 8 cos2 t sin2 t

1 + 4
d2h2 sin2 t

dt = 2

π
2∫

− π
2

1
d2h2 + 2 − 2 − 8

d2h2 cos2 t sin2 t

1 + 4
d2h2 sin2 t

dt
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= 2

⎡

⎢
⎣

π
2∫

− π
2

1
d2h2 + 2

1 + 4
d2h2 sin2 t

dt − 2

π
2∫

− π
2

sin2 t + cos2 t + 4
d2h2 cos2 t sin2 t

1 + 4
d2h2 sin2 t

dt

⎤

⎥
⎦

= 2

⎡

⎢
⎣

(
1

d2h2 + 2

)
π
2∫

− π
2

1

1 + 4
d2h2 sin2 t

dt − 2

π
2∫

− π
2

sin2(t)

1 + 4
d2h2 sin2 t

dt − 2

π
2∫

− π
2

cos2 tdt

⎤

⎥
⎦

= 2

⎡

⎣

(
1

d2h2
+ 2

)
πhd

√

4 + h2d2
+ h3d3

2

π
√

4 + h2d2
− h2d2

2
π − π

⎤

⎦

= 2

⎡

⎣

(
1

dh
+ 2dh + h3d3

2

)
π

√

4 + h2d2
− h2d2

2
π − π

⎤

⎦ .

Now, for n3 = 0 we get

Fh E−+(η, 0) = 1

(2π)2

∫

[− π
h , π

h ]2

∑

n∈Z2

eih〈n,η−ξ 〉 1

2π

×
π
h∫

− π
h

(
ξ̃−

d2 + 4
h2 sin2 ξ3h

2

+ ξ̃
3

d2 + 4
h2 sin2 ξ3h

2

)

dξ3dξ

= 1

(2π)2

∫

[− π
h , π

h ]2

∑

n∈Z2

eih〈n,η−ξ 〉 1

2π

×
π
h∫

− π
h

(
ξ̃−

d2 + 4
h2 sin2 ξ3h

2

+ e+
3 (1 − eihξ3) − e−

3 (1 − e−ihξ3)

h(d2 + 4
h2 sin2 ξ3h

2 )

)

dξ3dξ

= 1

(2π)2

∫

[− π
h , π

h ]2

∑

n∈Z2

eih〈n,η−ξ 〉 1

2π

×
π
h∫

− π
h

(
ξ̃−

d2 + 4
h2 sin2 ξ3h

2

+ (e+
3 − e−

3 )
1 − cos hξ3

h(d2 + 4
h2 sin2 ξ3h

2 )

)

dξ3dξ

= 1

(2π)2

∫

[− π
h , π

h ]2

∑

n∈Z2

eih〈n,η−ξ 〉 1

2π

×
π
h∫

− π
h

(
ξ̃−

d2 + 4
h2 sin2 ξ3h

2

+ (
e+

3 − e−
3

) 2h−1 sin2 hξ3
2

d2 + 4
h2 sin2 ξ3h

2

)

dξ3dξ .
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This results in

Fh E−+(ξ , 0) =
ξ̃−
d

1
√

4 + h2d2
+ (

e+
3 − e−

3

)

⎛

⎝
1

2
− hd

2
√

4 + h2d2

⎞

⎠ .

Furthermore, for the case n3 = 1 we have

Fh E−+(η, 1) = 1

(2π)2

∫

[− π
h , π

h ]2

∑

n∈Z2

eih〈n,η−ξ 〉 1

2π

×
π
h∫

− π
h

e−iξ3h

(
ξ̃−

d2 + 4
h2 sin2 ξ3h

2

+ ξ̃
3

d2 + 4
h2 sin2 ξ3h

2

)

dξ3dξ

= 1

(2π)2

∫

[− π
h , π

h ]2

∑

n∈Z2

eih〈n,η−ξ 〉 1

2π

×
π
h∫

− π
h

e−iξ3h

(
ξ̃−

d2 + 4
h2 sin2 ξ3h

2

+ e+
3 (1 − eihξ3) − e−

3 (1 − e−ihξ3)

h(d2 + 4
h2 sin2 ξ3h

2 )

)

dξ3dξ

= 1

(2π)2

∫

[− π
h , π

h ]2

∑

n∈Z2

eih〈n,η−ξ 〉 1

2π

×
π
h∫

− π
h

e−iξ3h ξ̃−
d2 + 4

h2 sin2 ξ3h
2

+ e+
3 (1 − eihξ3) − e−

3 (1 − e−ihξ3)

h(d2 + 4
h2 sin2 ξ3h

2 )
e−iξ3hdξ3dξ

= 1

(2π)2

∫

[− π
h , π

h ]2

∑

n∈Z2

eih〈n,η−ξ 〉 1

2π

×
π
h∫

− π
h

(
ξ̃− cos ξ3h

d2 + 4
h2 sin2 ξ3h

2

+ e+
3 (e−iξ3h − 1) − e−

3 (e−iξ3h − e−2iξ3h)

h(d2 + 4
h2 sin2 ξ3h

2 )

)

dξ3dξ

= 1

(2π)2

∫

[− π
h , π

h ]2

∑

n∈Z2

eih〈n,η−ξ 〉 1

2π

×
π
h∫

− π
h

(
ξ̃− cos ξ3h

d2 + 4
h2 sin2 ξ3h

2

+e+
3

(
h−1 cos hξ3

d2 + 4
h2 sin2 ξ3h

2

− h−1

d2 + 4
h2 sin2 ξ3h

2

)

−e−
3

(
h−1 cos hξ3

d2 + 4
h2 sin2 ξ3h

2

− h−1 cos 2hξ3

d2 + 4
h2 sin2 ξ3h

2

))

dξ3dξ .
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Here, we get

Fh E−+(ξ , 1)

= 1

2π

⎡

⎣ξ̃−

⎛

⎝
2π

d
√

4 + h2d2
− πh + h2dπ

√

4 + h2d2

⎞

⎠

− e−
3

⎛

⎝
2π

hd
√

4 + h2d2
− π + hdπ

√

4 + h2d2

− 2

⎡

⎣

(
1

dh
+ 2dh + h3d3

2

)
π

√

4 + h2d2
− h2d2

2
π − π

⎤

⎦

⎞

⎠

+ e+
3

⎛

⎝
2π

hd
√

4 + h2d2
− π + hdπ

√

4 + h2d2
− 2π

hd
√

4 + h2d2

⎞

⎠

=
ξ̃−
d

⎛

⎝
2 + d2h2

2
√

4 + h2d2
− hd

2

⎞

⎠ − e−
3

⎛

⎝− 3hd + h3d3

2
√

4 + h2d2
+ h2d2

2
+ 1

2

⎞

⎠

+ e+
3

⎛

⎝
hd

2
√

4 + h2d2
− 1

2

⎞

⎠ .

Finally, the case n3 = −1 being similar to the above case of n3 = 1, we have that
(27) holds. ��

Now, conditions (23) and (24) can be written as

Fh E−+(ξ ,−1)e+
3 Fh f +(ξ , 1) + Fh E−+(ξ , 0)e−

3 Fh f +(ξ , 0) = −Fh f +(ξ , 1).

(28)
as well as

Fh E−+(ξ , 1)e−
3 Fh f −(ξ ,−1) + Fh E−+(ξ , 0)e+

3 Fh f −(ξ , 0) = Fh f −(ξ ,−1).

(29)
on the Fourier side. The zero layer will not be very interesting for our investigation
here. Nevertheless, for sake of completeness on the zero layer we have

Fh E−+(ξ , 1)e−
3 Fh f +(ξ , 0) + Fh E−+(ξ , 0)e+

3 Fh f +(ξ , 1) = 0,

Fh E−+(ξ ,−1)e+
3 Fh f −(ξ , 0) + Fh E−+(ξ , 0)e−

3 Fh f −(ξ ,−1) = 0, (30)

respectively.



738 J Fourier Anal Appl (2014) 20:715–750

This allows us to write the terms (28) and (29) using the above lemma in Fourier
domain. Here, we obtain

⎛

⎝
ξ̃−
d

⎛

⎝
2 + d2h2

2
√

4 + h2d2
− hd

2

⎞

⎠ − e−
3

⎛

⎝
hd

2
√

4 + h2d2
− 1

2

⎞

⎠

⎞

⎠ e+
3 Fh f +(ξ , 1)

= −Fh f +(ξ , 1) −
⎛

⎝
ξ̃−
d

1
√

4 + h2d2
+ e+

3

⎛

⎝
1

2
− hd

2
√

4 + h2d2

⎞

⎠

⎞

⎠ e−
3 Fh f +(ξ , 0),

(31)

as well as
⎛

⎝
ξ̃−
d

⎛

⎝
2 + d2h2

2
√

4 + h2d2
− hd

2

⎞

⎠ + e+
3

⎛

⎝
hd

2
√

4 + h2d2
− 1

2

⎞

⎠

⎞

⎠ e−
3 Fh f −(ξ ,−1)

= Fh f −(ξ ,−1)−
⎛

⎝
ξ̃−
d

1
√

4 + h2d2
−e−

3

⎛

⎝
1

2
− hd

2
√

4 + h2d2

⎞

⎠

⎞

⎠ e+
3 Fh f −(ξ , 0).

(32)

Again, for the zero layer we get

(
ξ̃−
d

(
2+d2h2

2
√

4+h2d2
− hd

2

)

+ e+
3

(
hd

2
√

4+h2d2
− 1

2

))

e−
3 Fh f +(ξ , 0)

= −
(

ξ̃−
d

1√
4+h2d2

− e−
3

(
1
2 − hd

2
√

4+h2d2

))

e+
3 Fh f +(ξ , 1), (33)

and
(

ξ̃−
d

(
2+d2h2

2
√

4+h2d2
− hd

2

)

− e−
3

(
hd

2
√

4+h2d2
− 1

2

))

e+
3 Fh f −(ξ , 0)

= −
(

ξ̃−
d

1√
4+h2d2

+ e+
3

(
1
2 − hd

2
√

4+h2d2

))

e−
3 Fh f −(ξ ,−1), (34)

Now, to get conditions for our boundary values we need to study the solvability of
equations (31) and (32). To simplify the presentation of our calculations we introduce
the following abbreviations:

A =
ξ̃−
d

⎛

⎝
d2h2

2
√

4 + h2d2
− hd

2

⎞

⎠ , B =
ξ̃−
d

1
√

4 + h2d2
,

C = hd

2
√

4 + h2d2
− 1

2
.
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We would like to point out that C is a scalar operator while A and B are vector-
valued operators. Since e±

3 act like projectors ((e±
3 )2 = 0!) and C3 can be realized as

C3 = C2 ⊕ e+
3 C2 ⊕ e−

3 C2 ⊕ e+
3 e−

3 C2, where C2 is the complexified Clifford algebra
spanned by {e+

1 , e−
1 , e+

2 , e−
2 }, we can further decompose our functions into

F±(ξ , 0) := Fh f ±(ξ , 0) = F±,0
1 + e+

3 F±,0
2 + e−

3 F±,0
3 + e+

3 e−
3 F±,0

4 ,

F+(ξ , 1) := Fh f +(ξ , 1) = F+,1
1 + e+

3 F+,1
2 + e−

3 F+,1
3 + e+

3 e−
3 F+,1

4 ,

F−(ξ ,−1) := Fh f −(ξ ,−1) = F−1
1 + e+

3 F−,−1
2 + e−

3 F−,−1
3 + e+

3 e−
3 F−,−1

4

where the components F+,0
j , F−,0

j , F+,1
j , F−1

j , j = 1, 2, 3, 4, take values in the sub-
algebra of C2.

Let us start with layer 1. Using the above decomposition we can write Condition
(31) on the 1−layer as

((
A + B − e−

3 C
)

e+
3 + 1

) (
F+,1

1 + e+
3 F+,1

2 + e−
3 F+,1

3 + e+
3 e−

3 F+,1
4

)

= − (
B − e+

3 C
)

e−
3

(
F+,0

1 + e+
3 F+,0

2 + e−
3 F+,0

3 + e+
3 e−

3 F+,0
4

)
, (35)

which leads to the following system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F+,1
2 − (A + B) F+,1

1 = −C F+,0
2 ,

(C + 1) F+,1
1 = B F+,0

2 ,

(C + 1) F+,1
3 = B

(
F+,0

1 − F+,0
4

)
,

C F+,1
1 + (A + B) F+,1

3 + F+,1
4 = C

(
F+,0

1 − F+,0
4

)
+ B F+,0

2 .

First of all, we observe that given the values of our function on the 0−layer we can
obtain its values on the 1−layer as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F+,1
1 = (C + 1)−1 B F+,0

2 ,

F+,1
2 = −(C + 1)−1 (C(C + 1) − (A + B) B) F+,0

2 ,

F+,1
3 = (C + 1)−1 B

(
F+,0

1 − F+,0
4

)
,

F+,1
4 = (C + 1)−1

(
B F+,0

2 + (C (C + 1) − (A + B)B)
(

F+,0
1 − F+,0

4

))
.

(36)

Hereby, we remark that (C + 1)−1 exists, since (C + 1) =
(

hd

2
√

4+h2d2
+ 1

2

)

= 0 is

equivalent to 4 + h2d2 = h2d2.
But, more important, by eliminating F+,0

2 and F+,0
1 − F+,0

4 we get the following
conditions

{
(C(C + 1) − (A + B)B) F+,1

1 + B F+,1
2 = 0,

B(F+,1
1 − F+,1

4 ) + (C(C + 1) − (A + B)B) F+,1
3 = 0

(37)
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for the function on the 1−layer. This leads to the following characterization for a
function to be a boundary value of a discrete monogenic function.

We now proceed with the proof of Theorem 2.1.

Proof We only need to remark that C(C + 1) − (A + B)B = 1
2

(
hd√

4+h2d2
− 1

)

.

Moreover, in this case the values on the 0−layer are given from (36) by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F+,0
2 = ξ̃−

d

(

hd
2 +

√

1 +
(

hd
2

)2
)

F1,

F+,0
1 − F+,0

4 = ξ̃−
d

(

hd
2 +

√

1 +
(

hd
2

)2
)

F3.

(38)

and the discrete monogenic function itself is obtained by applying the discrete upper
Cauchy transform. ��

The condition in the previous theorem is given component-wise. But one would
like to have an expression it in terms of the function itself. To obtain such a condition
we remark that we have

e−
3 F = e−

3 (F1 − F4) − (1 + e+
3 e−

3 )F2,

e−
3 e+

3 F = −(1 + e+
3 e−

3 )F1 − e−
3 F3.

By abbreviating
ξ̃−
d

hd−
√

4+h2d2

2 := G in Condition (2) we obtain F1 = −G−1 F2 and

F3 = −G−1 (F1 − F4) . Hence, we have

e−
3 e+

3 F = −G−1e−
3 (F1 − F4) + G−1(1 + e+

3 e−
3 )F2 = −G−1e−

3 F = e−
3 G−1 F.

This results in

e−
3 (e+

3 F − G−1 F) = 0.

In the same way, from e+
3 F = e+

3 F1+e+
3 e−

3 F3 and e+
3 e−

3 F = e+
3 e−

3 (F1−F4)−e+
3 F2,

together with Condition (2), we obtain

e+
3 e−

3 F = −Ge+
3 e−

3 F3 − Ge+
3 F1 = −Ge+

3 F = e+
3 G F.

Here, we arrive at

e+
3 (e−

3 F − G F) = 0.

Now, taking into account that (e+
3 e−

3 + e−
3 e+

3 )F = −F we can sum up both terms
and get
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−F = e−
3 G−1 F + e+

3 G F

= e−
3

ξ̃−
d

2

hd −
√

4 + h2d2
F + e+

3

ξ̃−
d

hd −
√

4 + h2d2

2
F

= −
ξ̃−
d

⎛

⎝e−
3

2

hd −
√

4 + h2d2
F + e+

3

hd −
√

4 + h2d2

2

⎞

⎠ F.

This allows us to get the desired characterization of a boundary value of a discrete
monogenic function in terms of the function itself, thus proving Corollary 2.2.

Based on Corollary 2.2 we can introduce the operator

H+ f = F−1
h

⎡

⎣
ξ̃−
d

⎛

⎝e+
3

hd −
√

4 + h2d2

2
+ e−

3
2

hd −
√

4 + h2d2

⎞

⎠

⎤

⎦Fh f

which satisfies H2+ f = f .
Now, let us take a look at the case of the lower half plane. For the (−1)-layer and

using our abbreviations we can write (32) as:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1 + C) F−,−1
2 = −B F−,0

1 ,

F−,−1
1 + (A + B) F−,−1

2 = −C F−,0
1 ,

F−,−1
3 + (A + B)

(
F−,−1

1 − F−,−1
4

)
= −C F−,0

3 ,

C
(

F−,−1
1 − F−,−1

4

)
− (A + B) F−,−1

2 − F−,−1
4 = C F−,0

1 − B F−,0
3 .

(39)

Again, we can obtain the values of the function on the (−1)−layer in terms of its
values on the 0−layer.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F−,−1
1 = −(C + 1)−1 (C (C + 1) − (A + B) B) F−,0

1 ,

F−,−1
2 = − (C + 1)−1 B F−,0

1 ,

F−,−1
3 = −(C + 1)−1 (C(C + 1) − (A + B)B) F−,0

3 ,

F−,−1
4 = −(C + 1)−1

(
(C(C + 1) − (A + B) B) F−,0

1 − B F−,0
3

)
.

(40)

as well as the condition for the function on the (−1)−layer.

{−B F−,−1
1 + (C(C + 1) − (A + B)B) F−,−1

2 = 0,

(C(C + 1) − (A + B)B)
(

F−,−1
1 − F−,−1

4

)
− B F−,−1

3 = 0.
(41)

In the same way as in the case of the discrete upper half space we can obtain an
equivalent description for the lower half space, as indicated in Theorem 2.3. In fact,
from (39) we can obtain the values on the 0−layer as



742 J Fourier Anal Appl (2014) 20:715–750

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F−,0
1 = − ξ̃−

d

(

hd
2 +

√

1 +
(

hd
2

)2
)

F2,

F−,0
3 = − ξ̃−

d

(

hd
2 +

√

1 +
(

hd
2

)2
)

(F1 − F4)

. (42)

Similar to the case of the discrete upper half plane we would like to have a char-
acterization of a boundary value of a discrete monogenic function in terms of the
function itself. Let us start again with

e−
3 F = e−

3 (F1 − F4) − (1 + e+
3 e−

3 )F2,

e−
3 e+

3 F = −(1 + e+
3 e−

3 )F1 − e−
3 F3.

Again, we use condition (3) together with the abbreviation
ξ̃−
d

hd−
√

4+h2d2

2 := G to
obtain F1 = G F2 and F3 = G (F1 − F4) . This leads to

e−
3 e+

3 F = Ge−
3 (F1 − F4) − G(1 + e+

3 e−
3 )F2 = Ge−

3 F = −e−
3 G F.

Here, we get

e−
3 (e+

3 F + G F) = 0.

In the same way, from e+
3 F = e+

3 F1+e+
3 e−

3 F3 and e+
3 e−

3 F = e+
3 e−

3 (F1−F4)−e+
3 F2,

we obtain

e+
3 e−

3 F = G−1e+
3 e−

3 F3 + G−1e+
3 F1 = G−1e+

3 F = −e+
3 G−1 F.

Hence, we have

e+
3 (G−1 F + e−

3 F) = 0.

Like in the case of the discrete upper half sphere we get

−F = e−
3 e+

3 F + e+
3 e−

3 F

= −e−
3 G F − e+

3 G−1 F

= −e−
3

ξ̃−
d

hd −
√

4 + h2d2

2
F − e+

3

ξ̃−
d

2

hd −
√

4 + h2d2
F

= −
ξ̃−
d

⎛

⎝−e−
3

hd −
√

4 + h2d2

2
F − e+

3
2

hd −
√

4 + h2d2

⎞

⎠ F.



J Fourier Anal Appl (2014) 20:715–750 743

This proves Corollary 2.4. We can again point out that Equation 4 induces the
following operator

H− f = −F−1
h

⎡

⎣
ξ̃−
d

⎛

⎝e+
3

2

hd −
√

4 + h2d2
+ e−

3

hd −
√

4 − h2d2

2

⎞

⎠

⎤

⎦Fh f

which satisfies H2− f = f .
Furthermore, we would like to remark that both Conditions (2) and (3) are linear.

This motivates the following definition.

Definition 4.2 We define the upper discrete Hardy space h+
p as the space of discrete

functions f ∈ l p(hZ
2, C3) whose discrete 2D-Fourier transform fulfils system (2) and

the lower discrete Hardy space h−
p as the space of discrete functions f ∈ l p(hZ

2, C3)

whose discrete 2D-Fourier transform fulfils system (3).

First of all it is obvious from the construction that the upper and lower discrete
Hardy spaces are indeed spaces. The principal question at this point is: Does the
decomposition of the continuous L p-space into Hardy spaces still holds true in the
discrete case?

We start by studying the intersection of the two spaces, i.e. h+
p ∩h−

p . This means we
are interested in what functions f have their discrete 2D-Fourier transform F = Fh f
fulfil both (37) and (41), i.e.

⎧
⎪⎪⎨

⎪⎪⎩

(C(C + 1) − (A + B)B) F1 + B F2 = 0,

B(F1 − F4) + (C(C + 1) − (A + B)B) F3 = 0,

−B F1 + (C(C + 1) − (A + B)B) F2 = 0,

(C(C + 1) − (A + B)B) (F1 − F4) − B F3 = 0.

First of all, from the first and third equation we get

(B2 + (C(C + 1) − (A + B)B)2)F2 = 0.

We remark that B2 +(C(C +1)−(A+ B)B)2 �= 0 since h2d2 = (hd −2)

√

4 + h2d2

does not have any positive roots. This implies F2 = F1 = 0.

Furthermore, from the second and fourth equations we obtain

(B2 + (C(C + 1) − (A + B)B)2)F3 = 0

which again implies F3 = F4 = 0. Therefore, we have h+
p ∩ h−

p = {0}. The question
is now, what is P+ f + P− f ? Here we have:

Fh
[
P+ f + P− f

]

= 1

2
Fh f + 1

2

⎡

⎣
ξ̃−
d

⎛

⎝e+
3

hd −
√

4 + h2d2

2
+ e−

3
2

hd −
√

4 + h2d2

⎞

⎠

⎤

⎦Fh f
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+ 1

2
Fh f − 1

2

⎡

⎣
ξ̃−
d

⎛

⎝e+
3

2

hd −
√

4 + h2d2
+ e−

3

hd −
√

4 − h2d2

2

⎞

⎠

⎤

⎦Fh f

= Fh f − 1

2

ξ̃−
d

⎛

⎝
2

hd −
√

4 + h2d2
−

hd −
√

4 + h2d2

2

⎞

⎠
(
e+

3 − e−
3

)Fh f

= Fh f − hd

2

ξ̃−
d

(
e+

3 − e−
3

)Fh f.

Therefore, we get

(P+ + P−) f = f − h

2
F−1

h

[
ξ̃−(e+

3 − e−
3 )Fh f

]
= f + (e+

3 − e−
3 )

h

2
F−1

h

[
ξ̃−Fh f

]
.

Moreover, this equation can further be rewritten as

(P+ + P−) f = f + (e+
3 − e−

3 )
h

2

2∑

k=1

[
e+

k ∂−k
h + e−

k ∂+k
h

]
f.

Notice that
∑2

k=1

[
e+

k ∂−k
h + e−

k ∂+k
h

]
represents the discrete Dirac operator D−+

h in

2D. When h goes to zero this term disappears.
Due to the properties of H+ and H− we can introduce the Plemelj or Hardy projec-

tions P+ = 1
2 (I + H+) and P− = 1

2 (I + H−) . From the previous constructions it is
clear that f ∈ h+

p is equivalent to say that P+ f = f, while f ∈ h−
p means P− f = f.

We remark that the projectors P+ and P− together with their respective projectors
Q+ = I − P+ and Q− = I − P− provide two Hardy-type decompositions, one acting
on the 1-layer and the other on the −1-layer.

We now conclude this section with the proof of Theorem 2.5.

Proof We begin with the remark that once the pair (F+,0, F+,1), resp. (F−,0, F−,−1),

is obtained the decompositions are obvious by construction. For the individual con-
struction of the pairs we need the extensions to the zero layer from the 1-layer, resp.
the −1-layer. We have for the 1-layer

(C + 1) F+,1
1 = B F+,0

2 ,

(C + 1) F+,1
3 = B

(
F+,0

1 − F+,0
4

)

so that by e−
3 F+,0 = e−

3

(
F+,0

1 − F+,0
4

)
+ e−

3 e+
3 F+,0

2 we get

e−
3 F+,0 = B−1(C + 1)(−e−

3 F+,1
1 + e−

3 e+
3 F+,1

3 ),
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that is

e−
3 F+,0 =

ξ̃−
d

hd +
√

4 + h2d2

2

(
−e−

3 F+,1
1 + e−

3 e+
3 F+,1

3

)
:= A+F+,1.

In a similar way, we have for the case of the lower lattice

F−,−1
1 + (A + B) F−,−1

2 = −C F−,0
1 ,

F−,−1
3 + (A + B)

(
F−,−1

1 − F−,−1
4

)
= −C F−,0

3 .

which means that e+
3 F−,0 = e+

3 F−,0
1 + e+

3 e−
3 F−,0

3 can be obtained by

e+
3 F−,0 = (−C)−1

(
e+

3 F−,−1
1 + e+

3 e−
3 F−,−1

3

)

−(−C)−1(A + B)
(

e+
3 F−,−1

2 − e+
3 e−

3

(
F−,−1

1 − F−,−1
4

))
,

that is to say,

e+
3 F−,0 =

2
√

4 + h2d2

hd +
√

4 + h2d2

(
−e+

3 F−,−1
1 − e+

3 e−
3 F−,−1

3

)

+
ξ̃−
d

⎛

⎝
h2d2−1−hd

√

4 + h2d2

hd−
√

4 + h2d2

⎞

⎠
(

e+
3 F−,−1

2 − e+
3 e−

3

(
F−,−1

1 −F−,−1
4

))

:= A−F+,−1.

��
Furthermore, we get on the zero layer

e3 F−,0 = e+
3 F−,0 + e−

3 F−,0 = A+F+,1 + A−F−,−1

which can be seen as the discrete equivalent of the usual jump condition in the con-
tinuous case.

5 Convergence Results

Finally, we are interested how far our discrete results correspond to the results in the
continuous case. That means we need to study what happens if our lattice constant h
goes to zero. Let us denote by C
 the continuous Cauchy transform

C
 f (y) =
∫

R2

E(x − y)(−e3) f (x)d
x , y = (y, y3) ∈ R
3, y3 > 0,
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with E(x) being the fundamental solution to the Dirac operator D =
3∑

j=1
e j

∂
∂x j

(c.f.

[12]). For the convergence of our upper discrete Cauchy transform we have the follow-
ing theorem. A similar theorem holds in case of the lower discrete Cauchy transform.

Theorem 5.1 If f ∈ L p
(
R

2, C3
)∩ Cα(R2, C3), 0 < α ≤ 1, 1 < p < +∞, then we

get

∣
∣
∣C
 f (y) − C+ f (y)

∣
∣
∣ ≤ C‖ f ‖L p h2, (43)

for any point y ∈ Z+ and C > 0 being a constant independent on h and f .

Proof Let us first remark that for functions f ∈ L p
(
R

2, C3
)∩ Cα(R2, C3), 0 < α ≤

1, 1 < p < ∞, we have ‖ f (·h)‖p+2/α ≤ C‖ f ‖L p . This is an easy adaptation of
Lemma 3.1 in [7]. We will consider a fixed point y such that there exist for a given h
an mh with y = mhh and y3 > 1. Now, let W (x) be a square with center x and edge
length h. Furthermore, let 1/q + 1/p = 1 and 1/s + 1/(p + 2/α) = 1 then we have

∣
∣
∣C
 f (y) − C+ f (y)

∣
∣
∣

=
∣
∣
∣
∣

∫

R2

E
(

x − y, −y3

)
(−e3) f (x, 0)d
x +

∑

n∈Z2

[
E−+

h

(
nh − y, −y3

)
e+

3 f (nh, 1h)

+ E−+
h

(
nh − y, h − y3

)
e−

3 f (nh, 0)
]
h2
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣

∑

n∈Z2

( ∫

W (nh)

E(x − y, −y3)(−e+
3 − e−

3 ) f (x, 0)d
x

+
[

E−+
h

(
nh − y, −y3

)
e+

3 f (nh, 1h) + E−+
h

(
nh − y, h − y3

)
e−

3 f (nh, 0)
])

h2
∣
∣
∣
∣

≤
∑

n∈Z2

(∣
∣
∣

[
E−+

h

(
nh − y, −y3

)
− E

(
nh − y, −y3

)]
e+

3 f (nh, 1h)

∣
∣
∣h2

+
∣
∣
∣

[
E−+

h

(
nh − y, h − y3

)
− E

(
nh − y, h − y3

)]
e−

3 f (nh, 0)

∣
∣
∣h2

)

+

∣
∣
∣
∣
∣
∣
∣

∑

n∈Z2

⎛

⎜
⎝E

(
nh − y, −y3

)
e+

3 f (nh, 1h)h2 −
∫

W (nh)

E
(

x − y, −y3

)
e+

3 f (x, 0)d
x

⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣

∑

n∈Z2

⎛

⎜
⎝E

(
nh − y, h − y3

)
e−

3 f (nh, 0)h2 −
∫

W (nh)

E
(

x − y, −y3

)
e−

3 f (x, 0)d
x

⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣

≤ c2
1

∑

n∈Z2

(∣
∣
∣E−+

h

(
nh − y, −y3

)
− E

(
nh − y, −y3

) ∣
∣
∣
∣
∣ f (nh, 1h)

∣
∣h2

+
∣
∣
∣E−+

h

(
nh − y, h − y3

)
− E

(
nh − y, h − y

) ∣
∣
∣
∣
∣ f (nh, 0)

∣
∣h2.

)
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+

∣
∣
∣
∣
∣
∣
∣

∑

n∈Z2

⎛

⎜
⎝E

(
nh − y, −y3

)
e+

3 f (nh, 1h)h2 −
∫

W (nh)

E
(

x − y, −y3

)
e+

3 f (x, 0)d
x

⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣

∑

n∈Z2

⎛

⎜
⎝E

(
nh − y, h − y3

)
e−

3 f (nh, 0)h2 −
∫

W (nh)

E
(

x − y, −y3h
)

e−
3 f (x, 0)d
x

⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣

with c1 = 23/2. Now, Hölder’s inequality and Lemma 2.8 provides

∑

n∈Z2

∣
∣
∣E−+

h

(
nh − y,−y3

)
− E

(
nh − y,−y3

) ∣
∣
∣
∣
∣ f (nh, 1h)

∣
∣h2

≤
⎛

⎝
∑

n∈Z2

∣
∣
∣E−+

h (nh − y,−y3) − E(nh − y,−y3)

∣
∣
∣
s

h2

⎞

⎠

1/s

‖ f ‖p+2/α

≤ C1h1+2/s‖ f ‖p+2/α

as well as

∑

n∈Z2

∣
∣
∣E−+

h

(
nh − y, h − y3

)
− E

(
nh − y, h − y3

) ∣
∣
∣
∣
∣ f (nh, 0)

∣
∣h2

≤
⎛

⎝
∑

n∈Z2

∣
∣
∣E−+

h

(
nh − y, h − y3

)
− E

(
nh − y, h − y3

) ∣
∣
∣
s
h3

⎞

⎠

1/s

‖ f ‖p+2/α

≤ C1h1+2/s‖ f ‖p+2/α

The third term

∣
∣
∣
∣
∣
∣
∣

∑

n∈Z2

⎛

⎜
⎝E

(
nh − y,−y3

)
e+

3 f (nh, 1h)h2 −
∫

W (nh)

E
(

x − y,−y3

)
e+

3 f (x, 0)d
x

⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣

can be modified to

=

∣
∣
∣
∣
∣
∣
∣

∑

n∈Z2

∫

W (nh)

(
E
(

nh − y,−y3

)
e+

3 [ f (nh, 1h) − f (x, 0)]d
x

+
∫

W (nh)

[E
(

nh − y,−y3

)
− E

(
x − y,−y3

)
]e+

3 f (x, 0)d
x

⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣
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We can estimate the first term using Hölders inequality:
∣
∣
∣
∣
∣
∣
∣

∑

n∈Z2

∫

W (nh)

E
(

nh − y, −y3

)
e+

3

[
f (nh, 1h) − f (x, 0)

]
d
x

∣
∣
∣
∣
∣
∣
∣

≤ c1

⎛

⎝
∑

n∈Z2

∣
∣
∣E

(
nh − y,−y3

) ∣
∣
∣
q
h2q

⎞

⎠

1/q
⎛

⎜
⎝
∑

n∈Z2

∫

W (nh)

∣
∣
∣ f (nh, 1h) − f (x, 0)

∣
∣
∣

p
d
x

⎞

⎟
⎠

1/p

≤ C2

⎛

⎝
∑

n∈Z2

1

|nh − y, −y3|2q

⎞

⎠

1/q

h2‖ f ‖L p

For the second term we can use the Taylor expansion for the kernel:

∑

n∈Z2

∣
∣
∣
∣
∣
∣
∣

∫

W (nh)

[
E
(

nh − y,−y3

)
− E

(
x − y,−y3

) ]
e+

3 f (x, 0)d
x

∣
∣
∣
∣
∣
∣
∣

≤ c1

∑

n∈Z2

∫

W (nh)

2∑

k=1

∣
∣
∣∂xk E

(
nh − x,−y3

) ∣∣
∣
x=y

∣
∣
∣
∣
∣xk − nkh

∣
∣
∣
∣ f (x, 0)

∣
∣d
x

≤ C3

∑

n∈Z2

h2+2/q

|(nh − y,−y3)|3

⎛

⎜
⎝

∫

W (nh)

| f (x, 0)|pd
x

⎞

⎟
⎠

1/p

≤ C4h2+2/q‖ f ‖L p

The last term can be estimate in the same way as the third term. Since we have
‖ f ‖p+2/α ≤ C‖ f ‖L p we get our result by joining all estimates together. ��

Since we have the convergence of our discrete Cauchy transforms to the continuous
Cauchy transform the question remains how far (31) and (32) correspond to the classic
continuous case when h → 0.

If we let h → 0 on both sides of terms (31) and (32), we get

(
1

2

−iξ

|ξ | − 1

2
e+

3

)

e−
3 f̂ +(ξ , 0) +

(
1

2

−iξ

|ξ | − 1

2
e−

3

)

e+
3 f̂ +(ξ , 0) = 0, (44)

(
1

2

−iξ

|ξ | + 1

2
e−

3

)

e+
3 f̂ +(ξ , 0) +

(
1

2

−iξ

|ξ | + 1

2
e+

3

)

e−
3 f̂ +(ξ , 0) = − f̂ +(ξ , 0),

(45)

as well as
(

1

2

−iξ

|ξ | + 1

2
e−

3

)

e+
3 f̂ −(ξ , 0) +

(
1

2

−iξ

|ξ | + 1

2
e+

3

)

e−
3 f̂ −(ξ , 0) = 0, (46)
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(
1

2

−iξ

|ξ | − 1

2
e+

3

)

e−
3 f̂ −(ξ , 0) +

(
1

2

−iξ

|ξ | − 1

2
e−

3

)

e+
3 f̂ −(ξ , 0) = f̂ −(ξ , 0).

(47)

Hereby, f̂ ±(ξ , 0) denote the limits of F±,±1(ξ) = Fh f ±(ξ ,±1h) when h → 0, as
well as F±,0(ξ) = Fh f ±(ξ , 0). Therefore, we obtain

1

2

−iξ

|ξ |
(
e−

3 + e+
3

)
f̂ +(ξ , 0) = 1

2

(
e+

3 e−
3 + e−

3 e+
3

)
f̂ +(ξ , 0),

1

2

−iξ

|ξ |
(
e−

3 + e+
3

)
f̂ +(ξ , 0) = − f̂ +(ξ , 0) − 1

2

(
e+

3 e−
3 + e−

3 e+
3

)
f̂ +(ξ , 0), (48)

as well as

1

2

−iξ

|ξ |
(
e−

3 + e+
3

)
f̂ −(ξ , 0) = −1

2

(
e+

3 e−
3 + e−

3 e+
3

)
f̂ −(ξ , 0),

1

2

−iξ

|ξ |2
(
e−

3 + e+
3

)
f̂ −(ξ , 0) = f̂ −(ξ , 0) + 1

2

(
e+

3 e−
3 + e−

3 e+
3

)
f̂ −(ξ , 0). (49)

Now, if we remember our initial splitting of the Euclidean basis e3 = e−
3 + e+

3 with
e+

3 e−
3 + e−

3 e+
3 = −1, Equations (48) and (49) can be rewritten as

−iξ

|ξ | (−e3) f̂ +(ξ , 0) = f̂ +(ξ , 0), (50)

−iξ

|ξ | e3 f̂ −(ξ , 0) = f̂ −(ξ , 0), (51)

respectively. The last expressions are the Plemelj–Sokhotzki formulae for the half
space in the continuous case [17].
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