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Abstract Let Q be a fundamental domain of some full-rank lattice in R
d and let

μ and ν be two positive Borel measures on R
d such that the convolution μ ∗ ν is a

multiple of χQ . We consider the problem as to whether or not both measures must be
spectral (i.e. each of their respective associated L2 space admits an orthogonal basis of
exponentials) and we show that this is the case when Q = [0, 1]d . This theorem yields
a large class of examples of spectral measures which are either absolutely continuous,
singularly continuous or purely discrete spectral measures. In addition, we propose
a generalized Fuglede’s Conjecture for spectral measures on R

1 and we show that it
implies the classical Fuglede’s Conjecture on R

1.

Keywords Convolutions · Fuglede’s Conjecture · Lebesgue measures · Spectral
measures · Spectra
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1 Introduction

Let μ be a compactly supported Borel probability measure on R
d . We say that μ

is a spectral measure if there exists a countable set � ⊂ R
d called spectrum such
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that E(�) := {
e2π i〈λ,x〉 : λ ∈ �

}
is an orthonormal basis for L2(μ). If � ⊂ R

d is
measurable with finite positive Lebesgue measure and dμ(x) = χ�(x)dx is a spectral
measure, then we say that � is a spectral set. Spectral sets were first introduced by
Fuglede [7] and have a very delicate and mysterious relationship with translational
tiling because of the spectral set conjecture (known also as Fuglede’s Conjecture)
proposed by Fuglede.

Conjecture (Fuglede’s Conjecture): A bounded measurable set � on R
d of posi-

tive Lebesgue measure is a spectral set if and only if � is a translational tile.
We say that � is a translational tile if there exists a discrete set J such that⋃

t∈J (�+t) = R
d , and the Lebesgue measure of (�+t)∩(�+t ′) is zero for any dis-

tinct t and t ′ in J . Although this conjecture was eventually disproved in dimension d ≥
3 [11,12,22], most of the known examples of spectral sets are constructed from transla-
tional tiles. An important class of examples of spectral sets constructed in [20] consists
of sets of the form A + [0, 1] tiling [0, N ] for some N , where A ⊂ Z. In fact, in this
case, the corresponding equally weighted discrete measure on A is a spectral measure.

The first singular spectral measure was constructed by Jorgensen and Pedersen [8].
They showed that the standard Cantor measures are spectral measures if the contraction
is 1

2n , while there are at most two orthogonal exponentials when the contraction is
1

2n+1 . Following this discovery, more spectral self-similar/self-affine measures were
also found [4,15,21]. In these investigations, the tiling conditions on the digit sets play
an important role. An interesting question arises naturally:

Question: What kind of measures are spectral measures and how are they related
to translational tilings?

This question seems to be out of reach using our current knowledge. In this paper,
we aim to describe a unifying framework bridging the gap between singular spectral
measures and spectral sets. Let us introduce some simple notations. Denote by L the
Lebesgue measure in R

d and by LE the normalized Lebesgue measure restricted to the
measurable set E of finite positive Lebesgue measure (i.e. LE (F) = L(E∩F)/L(E)).
For a finite set A, we denote by |A| the cardinality of A and by δA the measure

∑
a∈A δa ,

where δa is the Dirac mass at a. We also write A ⊕ B = C if every element in C can
be uniquely expressed as a sum a + b with a ∈ A and b ∈ B. We now make some
observations about specific examples of spectral measures known in the literature.

(1) According to [20], if A ⊂ Z and the set � = A + [0, 1) tiles [0, N ), then � is a
spectral set. We can thus find a set B such that A ⊕ B = {0, 1, ..., N − 1}. This

means that
(

1
|B|δB

)
∗ L� = L[0,N ].

(2) Let μ be the standard one-fourth Cantor (probability) measure defined by the
self-similar identity

μ(·) = 1

2
μ(4·) + 1

2
μ(4 · −2).

It is known that μ is a spectral measure [8]. At the same time, we observe that if
we define ν to be the one-fourth Cantor measure obeying the equation

ν(·) = 1

2
ν(4·) + 1

2
ν(4 · −1),
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then μ∗ν = L[0,1]. This can be seen directly by computing the Fourier transform
of both measures.

In fact, we may view the operation of convolution with a positive measure as certain
kind of generalized translation. The above examples suggest the following question.
Let Q be a fundamental domain of some full-rank lattice on R

d .
F(Q): Any positive Borel measures μ and ν such that μ ∗ ν = LQ are spectral

measures.
Unfortunately, we cannot expect the above statement to be true for all Q. In fact, if

μ = LE with E is the translational tile without a spectrum constructed in [11], then
μ ∗ ν = LQ for some fundamental domain Q as seen directly from the construction
of this counterexample. However, in order to understand which measures are spectral,
it is useful to know to what extent the statement F(Q) is true for some specific Q.
Our first main result unifies the examples of discrete spectral measures, spectral sets
and the singular spectral measures given in (1) and (2) above.

Theorem 1.1 For any d ≥ 1, the statement F ([0, 1]d
)

is true. Moreover, for any
positive Borel measures μ and ν such that μ ∗ ν = L[0,1]d , we can find spectra �μ

and �ν for μ and ν respectively satisfying the property that

�μ ⊕ �ν = Z.

We now give a brief explanation of the proof of Theorem 1.1. We first focus on R
1

where the proof involves two main steps. The first step is a complete characterization
of the Borel probability measures μ and ν satisfying the identity μ ∗ ν = L[0,1].
This characterization is actually a known result in probability due to Lewis [16].
In particular, Lewis proved that only two cases could occur: either one measure is
absolutely continuous and the other one is purely discrete or they are both singular. To
prove our theorem, we will express the measures μ and ν as weak limits of convolutions
of some discrete measures using the result of Lewis (see Sect. 2). The second step is
to construct spectra for μ and ν. This is done by observing that the discrete measures
obtained at each level are spectral measures. We then show that the spectral property
carries over by passing to the weak limit. This argument is a generalization of the proof
in [2] (see Sect. 3). After the dimension one case is established, we characterize the
Borel probability measures μ and ν satisfying μ∗ν = L[0,1]d as Cartesian products of
one-dimensional Borel probability measures σi and τi , i = 1, ..., d, on R

1 satisfying
σi ∗ τi = L[0,1] and also prove the spectral property for those (see Sect. 5).

The results in [11] show that the statement F(Q) might not be true when Q is a
general fundamental domain of a lattice. On the other hand, we also know that it can be
true for some non-cube fundamental domains. For instance, the set Q = [0; 1]+{0, 3}
is not a cube but it is a fundamental domain of the lattice 2Z and it tiles a cube, so
the statement F(Q) holds in this case using Theorem 1.1. Of course, we don’t know
what happens for the vast majority of the fundamental domains. We will focus our
attention on R

1 in which Fuglede’s Conjecture remains open. We propose the following
generalized Fuglede’s Conjecture for spectral measures on R

1 and it is immediate to
see that a full generality of F(Q) on R

1 will imply one direction of this generalized
conjecture.
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Conjecture (Generalized Fuglede’s Conjecture): A compactly supported Borel
probability measure μ on R

1 is spectral if and only if there exists a Borel probability
measure ν and a fundamental domain Q of some lattice on R

1 such that μ ∗ ν = LQ .
This is an open conjecture on R

1 and we will prove that it extends the classical
Fuglede’s Conjecture.

Theorem 1.2 The generalized Fuglede’s Conjecture implies Fuglede’s Conjecture
on R

1.

Let us make some remarks on the classical Fuglede’s Conjecture on R
1. There is

some evidence that the conjecture may be true on R
1. In particular, the known fact that

all tiling sets of a tile and all spectra of a spectral set are periodic offers some credibility
to the conjecture [10,13]. Moreover, some algebraic conditions, if satisfied, are suffi-
cient to settle the conjecture on R, although these conditions are not easy to check [6].

As our focus is the one-dimensional case, we organize our paper as follows: In
Sect. 2, we describe the factorization of the Lebesgue measure on [0, 1] given by
Lewis and, for the reader’s convenience, we provide a somewhat different proof of
the factorization theorem that avoids some of the complications of the original ones
stemming from the use of probabilistic tools. We then prove the spectral property in
Sect. 3 and discuss the generalized Fuglede’s Conjecture on R

1 in Sect. 4. We will
finally prove Theorem 1.1 in higher dimension in Sect. 5. As this piece of work offers
us several new directions for further research, we end this paper with some remarks
and open question in Sect. 6.

Note: During the preparation of the manuscript, we were made aware that Profes-
sor Xinggang He and his student [1] discovered independently a new class of one-
dimensional spectral measures obtained via a Moran construction of fractals. These
one-dimensional spectral measures turn out to coincide exactly with those we consider
in this paper.

2 Factorization of Lebesgue Measures

Let L[0,1] be the Lebesgue measure supported on [0, 1] and let μ and ν be two Borel
probability measures supported on [0, 1]. We say that (μ, ν) is a complementary pair
of measures with respect to L[0,1] if

μ ∗ ν = L[0,1].

Let N = {Nk}∞k=1 be a sequence of positive integers greater than or equal to 2. We
associate with N the discrete measures

νk = 1

Nk

Nk−1∑

j=0

δ j
N1···Nk

, k ≥ 1. (2.1)

For a given Borel set E of finite positive Lebesgue measure, recall that LE is the
normalized Lebesgue measure supported on E . We now observe that the Lebesgue
measure supported on [0, 1] admits a natural decomposition as convolution products.
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L[0,1) = ν1 ∗
(

L[
0, 1

N1

]
)

= ν1 ∗ ν2 ∗
(

L[
0, 1

N1 N2

]
)

= · · ·
= ν1 ∗ ν2 ∗ · · · ∗ νk ∗

(
L[

0, 1
N1···Nk

]
)

.

The sequence of measures ν1 ∗ ν2 ∗ · · · ∗ νk converges weakly to L[0,1]. Therefore,
one can write the Lebesgue measure as an infinite convolution of discrete measures.

L[0,1] = ν1 ∗ ν2 ∗ · · · . (2.2)

Given a set N as above, we will consider two types of factorization (type I and type
II) of L[0,1] as the convolution of two measures obtained from the infinite factorization
obtained in (2.2).
Type I. There exists a finite positive integer k such that we have either

μN = ν1 ∗ ν3 ∗ ... ∗ ν2k−1 and νN = ν2 ∗ ν4 ∗ ... ∗ ν2k ∗
(

L[
0, 1

N1 N2 ···N2k

]
)

or

μN = ν1 ∗ ν3 ∗ ... ∗ ν2k−1 ∗
(

L[
0, 1

N1 N2 ···N2k

]
)

and νN = ν2 ∗ ν4 ∗ ... ∗ ν2k .

Type II

μN = ν1 ∗ ν3 ∗ · · · ∗ ν2k−1 ∗ · · · (2.3)

νN = ν2 ∗ ν4 ∗ · · · ∗ ν2k · · · . (2.4)

Remark 2.1 The reader might want to construct more general decompositions obtained
by choosing other factorizations of (2.2), but note that if convolution product of two
consecutive factors of (2.2) belong to the same factor in the factorization, say νk and
νk+1, then we have

νk ∗ νk+1 = 1

Nk Nk+1

Nk Nk+1−1∑

j=0

δ j/N1 N2...(Nk Nk+1)

and we would then be able to write the given convolution product as one of type I or
type II associated with a different N .

Note in both cases that μN ∗ νN = L[0,1] by (2.2). Therefore, they are μN and
νN form a complementary pair with respect to L[0,1]. In the case of the type I decom-
position, one is purely discrete and one is absolutely continuous while in the type II
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decomposition, both factors are singularly continuous measures. We say that a com-
plementary pair (μ, ν) is natural if we can find a sequence N of positive integers such
that (μ, ν) = (μN , νN ).

Theorem 2.2 If μ and ν are positive Borel probability measures supported on [0, 1]
and μ ∗ ν = L[0,1], then μ and ν are natural complementary pair.

This theorem is essentially due to Lewis [16] who considered the problem in prob-
ability consisting in characterizing the type of the distributions of pairs of independent
random variables X and Y whose sum X +Y is a uniform random variable on [−π, π ].
For the reader’s convenience, we will give here another proof based on his ideas as
his result is not widely known. Moreover, the proof we give here is more analytical
in flavor and avoids some of the complications arising in the original proof from the
use of probability tools. The main important step of the proof is to show that if two
probability measures μ and ν satisfy μ ∗ ν = L[0,1], then one of them, say μ, must

be ”1/N periodic” in the sense that μ =
(

1/N
∑N−1

j=0 δ j/N

)
∗ μ1 for some integer

N ≥ 2 and μ1 ∗ ν = L[0,1/N ]. This is done by analyzing the structure of the zeros of
the Fourier transform of μ and ν (Lemma 2.5).

We now define the (complex) Fourier transform of a compactly supported proba-
bility measure μ by the formula

μ̂(ξ) =
∫

e−2π iξ x dμ(x), ξ ∈ C.

We will consider convolution products yielding the Lebesgue measure supported on
[−1/2, 1/2] instead of [0, 1] to exploit some symmetric properties of the solutions (as
explained below). Note that μ ∗ ν = L[−1/2,1/2] is equivalent to

μ̂(ξ )̂ν(ξ) = ̂L[−1/2,1/2](ξ) = sin πξ

πξ
. (2.5)

The zero set of the Fourier transform μ̂ in the complex plane will be denoted by

Z(μ̂) = {ξ ∈ C : μ̂(ξ) = 0}.

Since (δx ∗ μ) ∗ (δ−x ∗ ν) = L[−1/2,1/2] for any real numbers x , we may assume the
smallest closed interval containing the support of μ is given by [−a, a]. Denote by
supp μ the closed support of μ. Given a probability measure ρ, we also define the
measure ρ̌ to be the measure satisfying ρ̌(B) = ρ(−B) for any Borel set B ⊂ R.

Lemma 2.3 Let μ and ν be two probability measures such that μ ∗ ν = L[−1/2,1/2]
and assume that the smallest closed interval containing supp μ is of the form [−a, a],
a > 0. Then we have

Z \ {0} = Z(μ̂) ∪ Z (̂ν) (as a disjoint union). (2.6)



J Fourier Anal Appl (2014) 20:453–475 459

Moreover, the smallest closed interval containing supp ν is given by [−b, b] where
b = 1/2 − a and both μ and ν have symmetric distributions around the origin (i.e.
μ̌ = μ and ν̌ = ν).

Proof It is well-known that μ̂ is a non-zero entire analytic function, so its zero set
is a discrete set in the complex plane. Furthermore, since the zeros of ̂χ[−1/2,1/2] are
simple, (2.6) follows from (2.5). Let [c, b] be the smallest closed interval containing
the support of ν. Then a + b = 1/2 and −a + c = −1/2 showing that c = −b and
b = 1/2 − a.

Finally, note that, since μ is a positive measure, Z ((μ̌)̂
) = Z(μ̂). Therefore,

Z ((μ̌)̂
)∪ Z (̂ν) = Z \ {0}. Consider the tempered distribution ρ := μ̌ ∗ ν ∗ δZ. Then

ρ̂ = (μ̌)̂ · ν̂ · δZ = δ0. Hence, ρ is the Lebesgue measure on R and the restriction
of ρ to the interval [−1/2, 1/2] is μ̌ ∗ ν. This shows that μ̌ ∗ ν = L[−1/2,1/2], which
means that μ̌ ∗ ν = μ ∗ ν. Taking Fourier transform, we obtain μ̌ = μ. The proof of
the symmetry of ν is similar. 
�

Note that Lewis used the Hadamard factorization theorem to prove the symmetry
property of μ and ν in Lemma 2.3. The ideas of the following two lemmas are due to
Lewis and form the crucial parts of the argument.

Lemma 2.4 Let r ≥ 1 be the smallest positive zero of μ̂. Then

1

4r
≤ a ≤ 1

2r
and

1

2
− 1

2r
≤ b ≤ 1

2
− 1

4r
.

Proof We just need to prove the lower estimates for both a and b as the upper ones
will follow from these and the fact that a + b = 1/2. Since r is a zero of μ̂, then −r
is also a zero and we must have

∫
cos(2πr x)dμ(x) = 0. This implies that 2πra ≥ π

2
and thus a ≥ 1

4r . In particular, the claim is true for r = 1.
For the upper bound, we consider the following functions for different r .

h(x) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cos(2πx), r = 2;
cos(2πx) − cos(2π2x), r = 3;
cos
(

πr x
2

)∏k−1
j=1

(
cos(2πx) − cos 2(2 j−1)π

r

)
, r > 2, r = 2k;

cos
(

π(r−1)x
2

)
− cos

(
π(r+1)x

2

)∏k−2
j=1

(
cos(2πx) − cos (2π)(2 j)

r

)
, r > 2, r = 2k − 1.

By expanding h(x), we see that h(x) is a linear combination of cos(2πkx), for k =
1..., r − 1. Hence

∫
h(x)dν(x) = 0 as 1, · · · , r − 1 are zeros of ν̂. By checking the

sign of each factor, we see that if 2πx ≤ π(r − 1)/r , then h(x) ≥ 0.
Consider the case where r > 2 is even. We have either 2πb ≥ π(r − 1)/r (i.e.

b ≥ 1/2 − 1/2r ) or ν is supported on the atoms ±(1/r), · · · ,±(r − 3)/r . However,
ν cannot be supported on those atoms since ν̂ would be a polynomial in cos(2πx/r)

of degree at most r − 3, but there are r − 1 zeros for ν̂, a contradiction. Therefore,
we must have b ≥ 1/2 − 1/(2r). The proof for the other cases follows from a similar
argument. 
�



460 J Fourier Anal Appl (2014) 20:453–475

Lemma 2.5 Let N > 0 be a positive integer and let μ and ν be two probability
measures on R such that μ ∗ ν = L[0,1/N ] with neither μ̂ nor ν̂ being identically one.
Suppose that N ∈ Z (̂ν) and let Nr with r > 1 be the smallest positive zero of μ̂. Then

Z(μ̂) ⊂ NrZ.

Proof By rescaling the measures by a factor of N , it is easy to see that it suffices to
consider the case N = 1. By translating the measure (i.e. μ∗(δ−1/2∗ν) = L[−1/2,1/2]),
it suffices to prove the lemma for the case μ ∗ ν = L[−1/2,1/2], where μ̌ = μ and
ν̌ = ν.

Let ρ(E) = ν({0})δ0(E) + 2ν(E ∩ (0, 1/2]) and ρ̌(E) = ρ(−E) for E Borel.
Then, the fact that ν(E) = ν(−E) implies that ρ + ρ̌ = 2ν. Therefore,

μ ∗ ρ + μ ∗ ρ̌ = 2L[−1/2,1/2]. (2.7)

This implies, in particular, that μ ∗ ρ is absolutely continuous with respect to the
Lebesgue measure and we can let g(x) ≥ 0 be its density. Then g(−x) is the density
of (μ ∗ ρ)̌ = μ ∗ ρ̌. By (2.7), we have a.e.

g(x) + g(−x) = 2.

As supp (μ ∗ ρ̌) (and hence supp g(−x)) is contained in [−1/2, a], g(x) = 2 on
[a, 1/2]. We may therefore write

g = 2χ[a,1/2] + gχ[−a,a] = 2χ[a,1/2] + gχ[−a,0] + (2 − g(−x))χ[0,a]
= 2χ[0,1/2] + (gχ[−a,0] − g(−x)χ[0,a]

)
.

Note that 2χ[0,1/2] is the density of the measure L[0,1/2]. Taking Fourier transform,
we have

μ̂(ξ)ρ̂(ξ) = ĝ(ξ) = L̂[0,1/2](ξ) + 2i

a∫

0

g(−x) sin(2πξ x)dx (2.8)

Suppose that r is even. As μ̂(r) = 0, we must have

a∫

0

g(−x) sin(2πr x)dx = 0.

Since a ≤ 1/2r by Lemma 2.4, we have sin(2πr x) ≥ 0 on [0, a] and thus g(−x) = 0
there. Thus, (2.8) implies that

μ̂(ξ)ρ̂(ξ) = L̂[0,1/2](ξ). (2.9)

Hence, Z(μ̂) ⊂ 2Z.
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Writing r = 2nm where m is odd, we deduce from the above argument that Z(μ̂) ⊂
2Z. Consider the measure μ1(E) = μ(E/2) and ρ1(E) = ρ(E/2) we have μ̂1(ξ) =
μ̂(2ξ) and ρ̂1(ξ) = ρ̂(2ξ). By (2.9), we have μ̂1(ξ)ρ̂1(ξ) = L̂[0,1](ξ) (i.e. μ1 ∗
(δ−1/2 ∗ ρ1) = L[−1/2,1/2]). Moreover, Z(μ̂1) = 1

2Z(μ̂). In this case, the smallest
positive zero of μ̂1 will be 2n−1m. Therefore, repeating the above argument, we have
Z(μ̂) ⊂ 2n

Z and the proof will be finished if we can prove our claim if r is odd.
Suppose now that r is odd. We consider the measures ν1(E) = ν(E ∩ [−a, b]) and

ν2(E) = ν(E ∩ [−b,−a)) (Here, it is more convenient not to normalize ν1 and ν2 as
probability measures). We have then ν = ν1 + ν2 and L[−1/2,1/2] = μ ∗ ν1 + μ ∗ ν2.

Let g1 and g2 be the density of μ ∗ ν1 and μ ∗ ν2 respectively. The above implies that

g1(x) + g2(x) = 1 a.e. on [−1/2, 1/2].

Note that the supp g1 is contained in [−2a, 1/2] and supp g2 is contained in [−1/2, 0].
It follows that g1 = 1 almost everywhere on [0, 1/2]. We may therefore write

g1 = χ[0,1/2] + g1χ[−2a,0].

Taking Fourier transforms and noting that ĝ1(ξ) = μ̂(ξ)ν̂1(ξ), we obtain

μ̂(ξ)ν̂1(ξ) = χ̂[0,1/2](ξ) +
2a∫

0

g1(−x)e2π iξ x dx . (2.10)

As μ̂(r) = 0, by substituting ξ = r and equating the imaginary parts, we have

1

πr
=

2a∫

0

g1(−x) sin(2πr x)dx .

By Lemma 2.4, 2a ≥ 1/2r and therefore,

1

πr
=

1/2r∫

0

g1(−x) sin(2πr x)dx +
2a∫

1/2r

g1(−x) sin(2πr x)dx

≤
1/2r∫

0

g1(−x) sin(2πr x)dx (as sin(2πr x) ≤ 0 on [1/2r, 2a])

≤
1/2r∫

0

sin(2πr x)dx = 1

πr
(as g1(−x) ≤ 1).

Hence, we must have g1(−x) = 1 on [0, 1/2r ] and
∫ 2a

1/2r g1(−x) sin(2πr x)dx = 0,
which implies that g1(−x) = 0 on [1/2r, 2a]. Considering the real part of the Eq.
(2.10) and noting that μ̂(ξ) is real-valued (as μ̌ = μ), we have
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μ̂(ξ)Re (ν̂2(ξ)) = sin πξ

2πξ
+

1/2r∫

0

cos(2πξ x)dx = 1

2πξ

(
sin πξ + sin

πξ

r

)
.

Since Z(μ̂) ⊂ Z, the previous equation shows that in fact Z(μ̂) ⊂ rZ, completing
the proof. 
�
Proof of Theorem 2.2 Let (μ, ν) be a complementary pair with respect to L[0,1]. We
may assume that ν̂(1) �= 0 and we let N1 > 1 be the smallest positive zero of ν̂. We
have Z (̂ν) ⊂ N1Z by Lemma 2.5. As the zero sets of μ̂ and ν̂ are disjoint (see (2.6)),
the set {k ∈ Z : μ̂(k) �= 0} is contained in N1Z.

Consider the periodization of the measure μ defined by μp = μ ∗ δZ. Its distribu-
tional Fourier transform (as a tempered distribution) is given by

μ̂p = μ̂ · δZ = μ̂ · δN1Z

Hence, μp is indeed 1/N1-periodic. It follows immediately that

μ = ν1 ∗ α1 and ν ∗ α1 = L[0,1/N1] (2.11)

where ν1 = 1
N1

∑N1−1
j=0 δ j/N1 and α1(E) = N1μ(E ∩ [0, 1/N1]) for any Borel set

E . The case where α1 is the Dirac measure at the origin immediately yields a type I
decomposition. Otherwise, we apply Lemma 2.5 on the pair (ν, α1). Since ν̂(N1) = 0,
we have α̂1(N1) �= 0 and we can let N2 be the smallest positive integer such that
α̂1(N1 N2) = 0. By Lemma 2.5, we have Z(α̂1) ⊂ N1 N2Z. We obtain

μ = ν1 ∗ α1, ν = ν2 ∗ α2 α1 ∗ α2 = L[0,1/N1 N2]

where ν2 = 1
N2

∑N2−1
j=0 δ j/N1 N2 . The case where α2 is a Dirac measure at the origin

yields again a type I decomposition. Otherwise, we continue this inductive process
and define recursively the probability measures αk , k ≥ 1. If αk = δ0 for some k,
the process stops and we have arrived at a type I decomposition. If αk �= δ0 for all k,
we have then expressed both measures μ and ν at the infinite convolution products
μ = ν1 ∗ ν3 ∗ . . . , ν = ν2 ∗ ν4 ∗ . . . , which yields a type II decomposition. 
�

Theorem 2.2 also gives us a new proof of classification of the set A and B such
that A ⊕ B = {0, ..., n − 1} which was proved in [17] and [20] using a theorem of De
Bruijn.

Corollary 2.6 Let En = {0, 1, · · · , n −1} and let A and B be two finite set of integers
such that A ⊕ B = {0, ..., n − 1}. Suppose that 1 ∈ A. Then there exist integers
N1, ..., N2k such that N1...N2k = n and

A = EN0 ⊕ N0 N1EN2 ⊕ ... ⊕ N0 N1...N2k−1E2k,

B = N0EN1 ⊕ N0 N1 N2EN3 ⊕ ... ⊕ N0 N1...N2k−2E2k−1.
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Proof As A ⊕ B = {0, ..., n − 1}, we have

(
1

|A|δ 1
n A

)
∗
(

1

|B|δ 1
n B

)
∗ L[0,1/n] = L[0,1].

By Theorem 2.2, the measures μ =
(

1
|A|δ 1

n A
)

and ν =
(

1
|B|δ 1

n B
)
∗L[0,1/n] are natural

complementary pair. As one of them is discrete and the other is absolutely continuous,
they correspond to a type I decomposition. Since 1 ∈ A, we have thus 1/n ∈ 1

n A. By
comparing the support of the measures, we obtain the existence of integers N ′

1, N ′
2...

such that

1

n
A = 1

N ′
1
EN ′

1
⊕ 1

N ′
1 N ′

2 N ′
3
EN ′

3
⊕ ... ⊕ 1

N ′
1 N ′

2...N
′
2k−1

EN ′
2k−1

,

1

n
B = 1

N ′
1 N ′

2
EN ′

2
⊕ 1

N ′
1 N ′

2 N ′
3 N ′

4
EN ′

4
⊕ ... ⊕ 1

N ′
1 N ′

2...N
′
2k

EN ′
2k

,

and n = N ′
1...N

′
2k . Letting Nr = N ′

2k−r , we obtain the desired factorization. 
�

3 The Spectral Property

In this section, we show that all measures appearing in natural complementary pairs are
spectral measures. Recall that a Borel probability measure μ is called a spectral mea-
sure with associated spectrum � if the collection of exponentials E(�) = {e2π iλx }λ∈�

forms an orthonormal basis for L2(μ). It is easy to see that E(�) is an orthonormal
set in L2(μ) if and only if

� − � ⊂ Z(μ̂) ∪ {0}.

By a well-known result in [8], � is a spectrum of μ if and only if

Q(ξ) :=
∑

λ∈�

|μ̂(ξ + λ)|2 ≡ 1. (3.1)

In fact, if E(�) is an orthonormal set, Q(ξ) ≤ 1 and Q is an entire function of
exponential type ([8], see also [2]). Let N = {Ni }∞i=1 be a collection of positive
integers and consider the type I and II decomposition as in the previous section. Let

μ(k) = ν1 ∗ ν3 ∗ · · · ∗ ν2k−1, ν(k) = ν2 ∗ ν4 ∗ · · · ∗ ν2k

and, for a given N , we let A1 = {0, .., N1 − 1} and An = N1 · · · Nn−1 · {0, .., Nn − 1}
for n ≥ 2. We start with a simple observation.

Proposition 3.1 Each νn is a spectral measure with spectrum An. For all k ≥ 1, μ(k)

is a spectral measure with spectrum given by
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�k =
k⊕

j=1

A2 j−1. (3.2)

In particular, the type I natural complementary pair μN and νN defined in the previous
section are spectral measures.

Proof It is immediate to see that the measure 1
Nn

∑Nn−1
j=0 δ j/Nn is a spectral measure

with spectrum {0, .., Nn − 1}. Therefore, νn = 1
Nn

∑Nn−1
j=0 δ j/(N1···Nn) is a spectral

measure with spectrum N1 · · · Nn−1 · {0, .., Nn − 1} = An .
Note that Z(ν̂n) = N1 N2...NnZ \ N1 N2...Nn−1Z and

̂μ(k)(ξ) =
k∏

j=1

ν̂2 j−1(ξ).

For notational convenience, we define N0 = 1. Taking distinct λ1, λ2 ∈ �k and
writing λ� =∑k

j=1 r�, j N1 N2...N2 j−2, for � = 1, 2, we have

λ1 − λ2 =
k∑

j=1

(r1, j − r2, j )N1 N2 · · · N2 j−2 =
k∑

j=J

s j N1 N2 · · · N2 j−2,

where J is the first index such that r1, j �= r2, j and −(N2J−1 − 1) ≤ sJ ≤ N2J−1 − 1.

so ν̂2J−1(λ1−λ2) = ν̂2J−1(N1 · · · N2J−2sJ ) = 0. Therefore,̂μ(k)(λ1−λ2) = 0. This
proves the orthogonality of E(�k) in L2(μ(k)). As L2(μ(k)) is a finite dimensional
vector space of dimension N1 N3 · · · N2k−1 = card (E(�)), the collection E(�) must
be complete in L2(μ(k)).

To prove the last statement, we just consider the case where μN = μ(k) and
νN = ν(k) ∗ (L[0, 1

N1···N2k
]), as the case μN = ν1 ∗ ν3 ∗ ... ∗ ν2k−1 ∗ (L[0, 1

N1 N2 ···N2k
])

and νN = ν2 ∗ ν4 ∗ ... ∗ ν2k is similar.
It is easily seen, as before, that ν(k) is also a discrete spectral measure with spectrum

�̃k =
k⊕

j=1

A2 j .

Moreover, ν̂(k) is N1...N2k-periodic. Let α denote the measure L[0, 1
N1 N2 ···N2k

]. Then α

has N1 N2...N2kZ as a spectrum. It follows that

∑

λ∈�̃k+N1···N2kZ

|ν̂N (ξ + λ)|2 =
∑

λ∈�̃k ,m∈Z

∣
∣
∣ν̂(k)(ξ + λ + N1...N2km)

∣
∣
∣
2 |̂α(ξ + λ + N1...N2km)|2

=
∑

λ∈�̃k

∣
∣
∣ν̂(k)(ξ + λ)

∣
∣
∣
2 ·
∑

m∈Z

|̂α(ξ + λ + N1...N2km)|2 ≡ 1.
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Hence, νN a spectral measure with spectrum �̃k + N1 · · · N2kZ. 
�
It remains to deal with the spectral property for complementary pairs μN and νN

of type II. Since these two measures have essentially the same form, we will discuss
only the case μ := μN . Note that the measure μ will be the weak limit of the measures
μ(k) and

μ̂(ξ) =
∞∏

j=1

ν̂2 j−1(ξ) = ̂μ(k)(ξ) ·
∞∏

j=k+1

ν̂2 j−1(ξ). (3.3)

Here we recall that ν2 j−1 = 1
N2 j−1

∑N2 j−1−1
r=0 δ r

N1···N2 j−1
and its Fourier transform is

given by

ν̂2 j−1(ξ) = e−π i(N2 j−1−1)ξ/(N1···N2 j−1)
sin(πξ/(N1 · · · N2 j−2))

N2 j−1 sin(πξ/(N1 · · · N2 j−1))
. (3.4)

Let

�μ =
∞⊕

j=1

A2 j−1 =
∞⋃

k=1

�k,

(with only finite sums of elements of A2 j−1, j ≥ 1, appearing in �μ). The exponentials
{e2π iλx }λ∈�μ are mutually orthogonal in L2(μ) by Proposition 3.1. Our goal is verify
(3.1). To do this, we note that, as Q is an entire function, we just need to show that
Q(ξ) ≡ 1 on a neighborhood of 0. Let

Qk(ξ) =
∑

λ∈�k

|μ̂(ξ + λ)|2.

Now, we fix two positive integers n and p. By (3.3) and the fact that {�k}k≥1 is an
increasing sequence of sets,

Qn+p(ξ) = Qn(ξ) +
∑

λ∈�n+p\�n

|μ̂(ξ + λ)|2

= Qn(ξ) +
∑

λ∈�n+p\�n

∣
∣
∣̂μ(n+p)(ξ + λ)

∣
∣
∣
2 ·
∣
∣
∣
∣
∣
∣

∞∏

j=n+p+1

ν̂2 j−1(ξ+λ)

∣
∣
∣
∣
∣
∣

2

. (3.5)

We need the following proposition which provides a crucial estimate for the last term
in the previous expression in order to establish the spectral property.

Proposition 3.2 There exists c > 0 such that

inf
k≥1

inf
λ∈�k

∣
∣
∣
∣
∣
∣

∞∏

j=k+1

ν̂2 j−1(ξ + λ)

∣
∣
∣
∣
∣
∣

2

≥ c
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for all |ξ | < 1/2, where �k is given in (3.2).

Proof Let λ ∈ �k and xk,λ = ξ+λ
N1 N2···Nk

. We first note that, by (3.4),

∣
∣
∣
∣
∣
∣

∞∏

j=k+1

ν̂2 j−1(ξ + λ)

∣
∣
∣
∣
∣
∣

2

=
∞∏

j=k+1

sin2(π(ξ + λ)/(N1 · · · N2 j−2))

N 2
2 j−1 sin2((π(ξ + λ))/(N1 · · · N2 j−1))

=
∞∏

j=k+1

sin2(πx2 j−2,λ)

N 2
2 j−1 sin2(πx2 j−1,λ)

. (3.6)

Writing λ =∑k
j=1 r j N1 N2...N2 j−2 with 0 ≤ r j ≤ N2 j−1−1, we see immediately

that λ ≤ N1 · · · N2k−1 − 1. Hence, we have

λ

N1 · · · N2k
≤ N1 · · · N2k−1 − 1

N1 · · · N2k
≤ 1

N2k
≤ 1

2
.

Therefore, for all |ξ | < 1/2, we have

C := sup
k≥1

sup
λ∈�k

x2k,λ = sup
k≥1

sup
λ∈�k

ξ + λ

N1 · · · N2k
<

3

4

as all N j ≥ 2. Note that Nk xk,λ = xk−1,λ and using two elementary inequalities

sin x ≤ x and sin x ≥ x − x3

3! , we have the following estimation for the product in
(3.6),

∞∏

j=k+1

sin2(πx2 j−2,λ)

N 2
2 j−1 sin2(πx2 j−1,λ)

≥
∞∏

j=k+1

(
1 − π2

6
x2

2 j−2,λ

)2

=
∞∏

j=k+1

(

1 − π2

6

(
x2k,λ

N2k+1...N2 j−2

)2
)2

≥
∞∏

j=k+1

(

1 − π2

6

(
C

22( j−k)−2

)2
)2

=
∞∏

j=1

(

1 − 3π2

32

(
1

22 j−2

)2
)2

:= c.

As
∑∞

j=1 1/22 j−2 < ∞ and all factors are positive, c > 0 and hence the proof is
complete. 
�
Proof of Theorem 1.1 on R

1. In view of Theorem 2.2, we just need to show that all
natural complementary pairs are spectral measures. Let N be a sequence of positive
integers greater than or equal to 2. If the pair is of type I, then Proposition 3.1 shows
that both factors are spectral measures.
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It remains to consider the type II case. Let μN and νN be defined in (2.3) and (2.4).
As mentioned before, we only need to prove that μ = μN is a spectral measure. Let
c be the positive number determined in Proposition 3.2. By Proposition 3.1 and (3.1),
we have

∑

λ∈�n+p\�n

∣
∣
∣̂μ(n+p)(ξ + λ)

∣
∣
∣
2 = 1 −

∑

λ∈�n

∣
∣
∣̂μ(n+p)(ξ + λ)

∣
∣
∣
2
.

Using this fact and Proposition 3.2, we obtain from (3.5) that

Qn+p(ξ) ≥ Qn(ξ) + c ·
⎛

⎝1 −
∑

λ∈�n

| ̂μ(n+p)(ξ + λ)|2
⎞

⎠ .

Fixing n and letting p go to infinity, it follows that

Q(ξ) ≥ Qn(ξ) + c

⎛

⎝1 −
∑

λ∈�n

|μ̂(ξ + λ)|2
⎞

⎠ = Qn(ξ) + c(1 − Qn(ξ)).

Finally, taking n to infinity, we obtain that c(1 − Q(ξ)) ≤ 0. But c > 0 and Q(ξ) ≤ 1
because {e2π iλx }λ∈� is an orthogonal set in L2(μ). This show that Q(ξ) = 1 for
|ξ | ≤ 1/2 and thus for all ξ ∈ R by analyticity, completing the proof.

We now establish the tiling property of the spectra. Suppose that we are given a type
I decomposition. Then Proposition 3.1 implies that μN and νN have the following
spectra:

�μ =
k⊕

j=1

A2 j−1, �ν =
k−1⊕

j=1

A2 j ⊕ N1 · · · N2k−1Z.

It can be seen immediately that �μ ⊕ �ν = {0, 1, · · · , N2k−1 − 1} ⊕ N2k−1Z = Z.

Suppose now the decomposition is of type II. Note that the complementary measures
have the following spectra using the above notations.

�μ =
∞⊕

j=1

A2 j−1, �ν =
∞⊕

j=1

A2 j .

Note that −�ν is also spectrum of ν. We now claim that �μ ⊕ (−�ν) = Z. Observe
that

A1 ⊕ (−A2) = {−N1 N2 + N1, .., N1 − 1}.
A1 ⊕ (−A2) ⊕ A3 = {−N1 N2 + N1, .., N1 N2 N3 − N1 N2 + N1 − 1}.

Inductively, the sets A1 ⊕ (−A2) ⊕ ... ⊕ (−1)k−1 Ak cover an increasing sequence of
consecutive integers. showing that �μ ⊕ (−�ν) = Z. This proves our claim. 
�
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4 Generalized Fuglede’s Conjecture

In this section, we will formulate a generalization of Fuglede’s conjecture and prove
that it implies the original one. Recall the conjecture we are interested in:

Conjecture (Generalized Fuglede’s Conjecture): A compactly supported Borel
probability measure μ on R

1 is spectral if and only if there exists a Borel probability
measure ν and a fundamental domain Q of some lattice on R

1 such that μ ∗ ν = LQ .
We first prove the following proposition.

Proposition 4.1 Let � and Q be bounded measurable sets of positive Lebesgue mea-
sure on R

1. Suppose that L� ∗ ν = LQ, for some Borel probability measure ν. Then

ν =
N∑

k=1

1

N
δak , Q =

N⋃

k=1

(� + ak)

and L((� + ak) ∩ (� + a�)) = 0 for all k �= �.

Proof We first note that L�∗ν = LQ if and only if (L�∗δy)∗(ν∗δx ∗δ−y) = (LQ∗δx )

for any real numbers x and y. Therefore, there is no loss of generality to assume that
the smallest closed intervals containing � and Q are respectively [0, a] and [0, b].
As Q = supp (L� ∗ ν) = � + supp ν, The support of ν has to be contained in the
non-negative part of the real line.

Let ε > 0 and consider the interval Eε = [0, ε). Let ηε ∈ Eε be a Lebesgue point
of χQ . Then, using L� ∗ ν = LQ ,

1

L(Q)
L (Q ∩ [ηε, ηε + h)) = 1

L(�)

ηε+h∫

0

L (� ∩ ([ηε, ηε + h) − y)) dν(y)

= 1

L(�)

ηε+h∫

0

L ((� + y) ∩ [ηε, ηε + h)) dν(y),

since � and supp ν are contained in [0,∞). This implies that

L(�)

L(Q)
L(Q ∩ [ηε, ηε + h)) ≤ L([ηε, ηε + h))ν([0, ηε + h)) = hν([0, ηε + h)).

Since ηε is a Lebesgue point of χQ , we have limh→0
L(Q∩[ηε,ηε+h))

h = 1. Therefore,

by taking h → 0, we deduce that L(�)
L(Q)

≤ ν([0, ηε]). Letting ε approach zero, we
obtain the inequality

L(�)

L(Q)
≤ ν({0}). (4.1)

Since L(�) > 0, ν has an atom at 0 and we can write

ν = p0δ0 + (1 − p0)ν1, p0 = ν({0}) and ν1({0}) = 0. (4.2)
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The equation L� ∗ ν = LQ can thus be rewritten as

(1 − p0)L� ∗ ν1 = LQ − p0L�. (4.3)

Since the left hand side of (4.3) is still a positive measure, this implies that

0 ≤ (LQ − p0L�)(�) ≤ L(�)

L(Q)
− p0.

Combining this with (4.1), we conclude that p0 = L(�)
L(Q)

and, using (4.3), we obtain

L� ∗ ν1 = LQ\�.

If p0 = 1, then Q = � and ν = δ0, so we are done. If not, we then repeat
the argument with Q replaced by Q \ �. We can find � + a1 ⊂ Q \ � such that
p1 := ν1({a1}) > 0 and ν1 = p1δa1 + (1 − p1)ν2. Moreover, p1 = L(�)/L(Q \ �).
By (4.2),

ν = L(�)

L(Q)

(
δ0 + δa1

)+ (1 − p1)ν2.

The theorem will be proved if p1 = 1. Otherwise, we continue this process to obtain a
maximal number N of measure disjoint translates of �, �+ a1,..,�+ aN−1 such that
Q ⊃ ⋃N−1

k=0 (� + ak). Since L(�) > 0 and L(Q) ≥ NL(�), N is the largest integer
such that L(Q) ≥ NL(�). We can then write

ν = L(�)

L(Q)

(
δ0 + ... + δaN−1

)+ (1 − pN−1)νN .

If pN−1 < 1, we could iterate this process to obtain one more disjoint translate of �

contained in Q, which is certainly impossible by this choice of N . Hence, pN−1 = 1.
As ν is a probability measure, we must have L(�)/L(Q) = 1/N . Therefore, the
proposition is proved. 
�
Theorem 4.2 The validity of generalized Fuglede’s Conjecture implies that of the
original Fuglede’s Conjecture on R

1.

Proof Suppose that � is a bounded spectral set, then L� is a spectral measure. By
the generalized Fuglede’s Conjecture, we can find a probability measure ν and a
fundamental domain Q of some lattice � such that

L� ∗ ν = LQ .

By Proposition 4.1, ν is a purely discrete measure that can be written as ν = 1
#AδA

for some finite discrete subset A and

Q =
⋃

a∈A
(� + a).
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As Q is a fundamental domain Q of the lattice �, � is a translational tile with tiling
set given by A + �.

Conversely, suppose that � is a bounded translational tile with tiling set J . By the
result of Lagarias and Wang [13], all tiling sets on R

1 are periodic. This implies that
we can find a finite set A ⊂ R and a lattice � such that J = A+�. This means that the
set Q = � + A is a fundamental domain of �. Letting ν = 1

#AδA, L� ∗ ν = LQ . By
the generalized Fuglede’s Conjecture, L� is a spectral measure and � is a spectral
set. 
�

5 The Higher Dimensional Case

Let μ1,...,μd be Borel probability measures on R
1. The Cartesian product of these

measures is the unique Borel probability measure μ1 ⊗ ... ⊗ μd on R
d such that

(μ1 ⊗ ... ⊗ μd)(E1 × ... × Ed) =
d∏

i=1

μi (Ei ),

for any Borel sets Ei , 1 ≤ i ≤ d, on R
1. In this section, we characterize the measures

μ and ν on R
d which are solutions of the equation

μ ∗ ν = L[0,1]d . (5.1)

as Cartesian products of the measures satisfying the corresponding one-dimensional
equation.

Theorem 5.1 Let μ and ν be compactly supported probability measures on R
d . Then

μ and ν are solutions to (5.1) if and only if there exists compactly supported Borel
probability measures {σi }d

i=1 and {τi }d
i=1 on R

1 such that

μ = σ1 ⊗ ... ⊗ σd , ν = τ1 ⊗ ... ⊗ τd (5.2)

and σi ∗ τi = L[0,1] for all i = 1, ..., d.

Note that the sufficiency part of the theorem follows by a direct computation. We
only need to establish the necessity part of the theorem. Denote by P the orthogonal
projection of the first coordinate on R

d and Q the orthogonal projection of the corre-
sponding orthogonal complement. If μ is a positive Borel measure on R

d , we denote
by μP−1 the positive Borel measure on R

1 defined by μP−1(E) = μ(P−1(E)) for
any Borel set E ⊂ R and the measure μQ−1 is similarly defined. We will need the
following lemmas.

Lemma 5.2 Let μ and ν be two probability measures on R
d . Then

(μ ∗ ν)P−1 =
(
μP−1

)
∗
(
ν P−1

)
, and (μ ∗ ν)Q−1 =

(
μQ−1

)
∗
(
νQ−1

)
.
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In particular, if μ and ν are two Borel probability measures satisfying (5.1), then we
have

(
μP−1

)
∗ (ν P−1) = L[0,1) and

(
μQ−1

)
∗
(
νQ−1

)
= L[0,1]d−1 .

Proof The proof follows easily from the fact that

(
μP−1

)̂
(ξ) = μ̂(ξ, 0, ..., 0), and

(
μQ−1

)̂
(ξ2, ..., ξd) = μ̂(0, ξ2, ..., ξd).


�
Lemma 5.3 Let ν be a Borel probability measure on R

d . Then, there is at most one
probability measure μ on R

d satisfying μ ∗ ν = L[0,1]d .

Proof If μ is as above, we have

μ̂(ξ )̂ν(ξ) = (L[0,1]d

)̂
(ξ), ξ ∈ R

d . (5.3)

Therefore, μ̂(ξ) is thus determined on the set

F =
{
ξ ∈ R

d : ξi �∈ Z
d , i = 1, ..., d

}
,

Since F = R
d and μ̂ is continuous (as μ is compactly supported), μ̂ and thus μ is

completely determined by (5.3). 
�
The previous lemma is also valid if [0, 1]d is replaced by a d-dimensional rectan-

gular box. Now, we proceed to the proof of Theorem 5.1.

Proof of Theorem 5.1 We prove the necessity part of the theorem by induction on the
dimension. The statement is proved when d = 1 in Theorem 2.2. Assuming that the
statement is true for d − 1, we now establish it on R

d .
Let μ and ν be two Borel probability measures satisfying μ ∗ ν = L[0,1]d . By

Lemma 5.2 and Theorem 2.2 [see also Eq. (2.11)], we can find an integer N1 ≥ 2
such that μP−1 and ν P−1 can be decomposed (after possibly interchanging these two
measures) as

μP−1 = ν1 ∗ α1, and α1 ∗
(
ν P−1

)
= L[0,1/N1] (5.4)

where ν1 = 1/N1
∑N1−1

j=0 δ j/N1 and α1(E) = N1(μP−1)(E ∩ [0, 1/N1)) for any

Borel set E . Let CN1 be the d-dimensional rectangular box
[
0, 1

N1

)
×[0, 1]d−1. Then

[0, 1]d \ CN1 =
[

1
N1

, 1
]

× [0, 1]d−1 and

μ
(
CN1

) = μP−1
([

0,
1

N1

))
= 1

N1
.
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Hence, we can define two Borel probability measures on R
d , ρ1 and ρ̃1, satisfying

ρ1(E) = N1μ
(
E ∩ CN1

)
, ρ̃1(E) = N1

N1 − 1
μ
(

E ∩
(
[0, 1]d \ CN1

))

for any Borel sets E . Then μ = 1
N1

ρ1 + (1 − 1
N1

)ρ̃1. Since supp ρ̃ ⊂ [0, 1]d \ CN1

and supp ν ⊂ [0, 1]d , we have ν ∗ ρ̃ = 0 on the rectangular box CN1 . Hence,

ρ1 ∗ ν = N1(μ ∗ ν) = LCN1
on CN1 .

We can thus write ρ1 ∗ ν = LCN1
+ η where η is a positive measure. However, η = 0

as ρ1 ∗ ν and LCN1
are probability measures. Hence,

(ν1 ⊗ δ0d−1) ∗ ρ1 ∗ ν =
⎛

⎝ 1

N1

N1−1∑

j=0

δ( j/N1,0...,0)

⎞

⎠ ∗ ρ1 ∗ ν = L[0,1]d

where 0d−1 = (0, ..., 0) ∈ R
d−1. By Lemma 5.3, we have that

μ = (ν1 ⊗ δ0d−1

) ∗ ρ1, and ρ1 ∗ ν = L[0,1/N1]×[0,1]d−1 . (5.5)

Furthermore, ρ1 P−1 = α1 where α1 is defined in (5.4).
We now consider two cases depending on whether μP−1 and ν P−1 correspond to

a type I or type II decomposition (as defined in Sect. 2).
Case 1 (Type I decomposition): Using the notations introduced in Sect. 2, we have

then, without loss of generality, that

μP−1 = ν1 ∗ ...ν2k−1, ν P−1 = ν2 ∗ ...ν2k ∗ L[
0, 1

N1 ...N2k

].

By the previous steps, the identities in (5.5) hold. A similar argument, shows the
existence of a probability measure ρ2 such that

ν = (ν2 ⊗ δ0d−1) ∗ ρ2 and ρ1 ∗ ρ2 = L[
0, 1

N1 N2

]
×[0,1]d−1 .

Continuing this procedure 2k-times, we deduce the existence of probability measures
ρ2k−1 and ρ2k such that

μ = ((ν1 ∗ ν3 ∗ ... ∗ ν2k−1) ⊗ δ0d−1

) ∗ ρ2k−1, (5.6)

ν = ((ν2 ∗ ν4 ∗ ... ∗ ν2k) ⊗ δ0d−1

) ∗ ρ2k, (5.7)

and

ρ2k−1 ∗ ρ2k = L[0,1/N1 N2...N2k ]×[0,1]d−1 . (5.8)
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By (5.6) and Lemma 5.2, μP−1 = ν1∗...ν2k−1∗ρ2k−1 P−1, showing that ρ2k−1 P−1 =
δ0. Hence, we can write ρ2k−1 = δ0 ⊗σ for some positive measure σ on R

d−1. Using
(5.8) and Lemma 5.2 again, we obtain that σ ∗ (ρ2k Q−1) = L[0,1]d−1 . Hence,

ρ2k−1 ∗ ρ2k = L[0,1/N1 N2...N2k ] ⊗ L[0,1]d−1

= L[0,1/N1 N2...N2k ] ⊗
(
σ ∗

(
ρ2k Q−1

))

= (δ0 ⊗ σ) ∗
(
L[0,1/N1 N2...N2k ] ⊗

(
ρ2k Q−1

))

= ρ2k−1 ∗
(
L[0,1/N1 N2...N2k ] ⊗

(
ρ2k Q−1

))
.

Lemma 5.3 shows that ρ2k = L[0,1/N1 N2...N2k ] ⊗ (ρ2k Q−1) and (5.7) implies that
ν = ν P−1 ⊗ ρ2k Q−1. Finally, applying the induction hypothesis to the identity
σ ∗(ρ2k Q−1) = L[0,1]d−1 , we can write σ = σ2⊗...⊗σd and ρ2k−1 Q−1 = τ2⊗...⊗τd

with σi ∗ τi = L[0,1] and Theorem 5.1 for dimension d follows.
Case 2 (Type II decomposition). In this case, we can without loss of generality

assume that

μP−1 = ν1 ∗ ν3 ∗ ..., ν P−1 = ν2 ∗ ν4 ∗ ...

and we still have (5.6), (5.7) and (5.8) for all k = 1, 2, .... with ρn P−1 �= δ0 for
any integer n. As ρn are all probability measures, we can assume, by passing to
subsequences if necessary, that the sequences {ρ2k−1} and {ρ2k} converge weakly to
some probability measures that we denote by σ and τ , respectively. From (5.8), it is
immediate to see that the supports of σ and τ are both contained in {0} × [0, 1]d−1.
We can write σ = δ0 ⊗ σ ′ and τ = δ0 ⊗ τ ′. By passing to weak limit in (5.6) and
(5.7), we have

μ =
(
μP−1 ⊗ δ0d−1

)
∗ (δ0 ⊗ σ ′), ν =

(
ν P−1 ⊗ δ0d−1

)
∗ (δ0 ⊗ τ ′). (5.9)

As μ∗ν = L[0,1]d and
(
μP−1

1 ⊗ δ0d−1

)
∗
(
ν P−1

1 ⊗ δ0d−1

)
= L[0,1] ⊗ δ0d−1 , we have

σ ′ ∗ τ ′ = L[0,1]d−1 ,

The conclusion follows immediately by (5.9) using the induction hypothesis. 
�
Proof of Theorem 1.1 on R

d . The proof follows from the result on R
1. By Theorem

5.1, we can write μ = σ1 ⊗ ... ⊗ σd and ν = τ1 ⊗ ... ⊗ τd with σi ∗ τi = L[0,1].
Therefore, our conclusion on R

1 implies that σi and τi are spectral measures on R
1

with spectrum �σi and �τi respectively. Moreover, they satisfies �σi ⊕�τi = Z. Now
we define

�μ =
d⊗

i=1

�σi , �ν =
d⊗

i=1

�τi ,
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where
⊗d

i=1 Ai := {(a1, ..., ad) : ai ∈ Ai } for sets Ai ⊂ R
1. We claim that �μ is a

spectrum for μ (the proof that �ν is a spectrum for ν is similar).
Note that μ̂(ξ) =∏d

i=1 σ̂i (ξi ). From this, it follows easily that

∑

λ∈�μ

|μ̂(ξ + λ)|2 =
d∏

i=1

⎛

⎝
∑

λi ∈�σi

|σ̂i (ξi + λi )|2
⎞

⎠ = 1.

Hence, �μ is a spectrum for μ. That the tiling property of the spectra (i.e. �μ ⊕�ν =
Z

d ) follows immediately from the tiling property of �σi and �τi . 
�

6 Remarks and Open Questions

As indicated in the introduction, the statement F(Q) is false in general. Nonetheless,
this statement suggests many related questions that may help us understand the rela-
tionship among convolutions, translational tilings and spectral measures. Motivated
by the generalized Fuglede’s Conjecture, one of the main questions we would like
to ask is:
(Q1): For which Q is the statement F(Q) true?

This question seems to be hard if we go beyond cubes as the methods of this paper
would be difficult to extend. An easier, but still interesting question concerns the
decomposition of the Lebesgue measure on sets as convolution product of singular
measures:
(Q2): For what kind of measurable (resp. spectral) sets Q can LQ be decomposed into
the convolution of two singularly continuous (resp. spectral) measure ?

One natural type of such sets will be the self-affine tiles [14]. These tiles can be
described as infinite convolution product of discrete measures and can therefore be
decomposed into two singular measures using methods similar to those in Sect. 2.

Fourier frames and exponential Riesz bases are natural generalization of exponential
orthonormal bases. It has been an interesting question to produce singular measures
with Fourier frames but not exponential orthonormal bases. By now we only know we
can produce such measures by considering measures which are absolutely continuous
with respect to a spectral measure with density bounded above and away from 0 or
convolving a spectral measure with some discrete measures [5,9]. These methods are
rather restrictive. As absolutely continuous (w.r.t. Lebesgue) measures with Fourier
frames were completely classified in [19], we ask
(Q3): Can we produce new singular measures admitting Fourier frames by decompos-
ing an absolutely continuous (w.r.t. Lebesgue) measures with Fourier frames? Con-
versely, is it true that all measures admitting Fourier frames are constructed in this
way?

Given a spectral measure μ, another important issue is to classify its spectrum.
This question has been studied for Lebesgue measures and some Cantor measures in
[2,3,18]. However, there is no satisfactory answer when the measure is singular. The
tiling statement of Theorem 1.1, suggests a possible answer.
(Q4): Let μ and ν be a natural complementary pair of L[0,1]. Let also �μ be a spectrum
for L2(μ), does there exist a spectrum �ν for L2(ν) such that �μ ⊕ �ν = Z?
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It is not difficult to prove that (Q4) actually holds for type I decompositions. The
remaining challenge is to answer the question for type II decompositions.

Acknowledgments The authors would like to thank the anonymous referee for his/her valuable comments
and suggestions.
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