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Abstract In this paper the author considers the problem of how large the Hausdorff
dimension of E ⊂ R

d needs to be in order to ensure that the radii set of (d − 1)-
dimensional spheres determined by E has positive Lebesgue measure. The author also
studies the question of how often can a neighborhood of a given radius repeat. There are
two results obtained in this paper. First, by applying a general mechanism developed
in Grafakos et al. (2013) for studying Falconer-type problems, the author proves that
a neighborhood of a given radius cannot repeat more often than the statistical bound
if dimH(E) > d − 1 + 1

d ; In R
2, the dimensional threshold is sharp. Second, by

proving an intersection theorem, the author proves that for a.e a ∈ R
d , the radii set of

(d − 1)-spheres with center a determined by E must have positive Lebesgue measure
if dimH(E) > d − 1, which is a sharp bound for this problem.
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1 Introduction

The classical Falconer distance conjecture states that if a set E ⊂ R
d , d ≥ 2, has

Hausdorff dimension greater than d
2 , then the one-dimensional Lebesgue measure

L1(�(E)) of its distance set,

�(E) := {|x − y| ∈ R : x, y ∈ E},
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is positive, where | · | denotes the Euclidean distance. Falconer gave an example based
on the integer lattice showing that the exponent d

2 is best possible. The best results
currently known, culminating almost three decades of efforts by Falconer [3], Mattila
[11], Bourgain [1], and others, are due to Wolff [15] for d = 2 and Erdoǧan [2] for
d ≥ 3. They prove that L1(�(E)) > 0 if

dimH(E) >
d

2
+ 1

3
.

It is natural to consider related problems, where distances determined by E may be
replaced by other geometric objects, such as triangles [5], volumes [6], angles [7], [8],
and others. Generally, if

� : (Rd)k+1 → R
m

for some 1 ≤ m ≤ (d+1
2

)
, one can define a configuration set

��(E) = {�(x1, . . . , xk+1) : x j ∈ E}

and ask how large dimH(E) needs to be to ensure Lm(��(E)) > 0. For example,
in the distance problem, k = 1,�(x1, x2) = |x1 − x2|; in the volume problem,
k = d,�(x1, . . . , xd+1) = | det(xd+1 − x1, . . . , xd+1 − xd)|; in the angle problem,
k = 1,�(x1, x2) = x1·x2

|x1||x2| .

In this paper, the author considers the problem of the distribution of radii of spheres
determined by (d + 1)-tuples of points from E .

Definition 1.1 A sphere is said to be determined by a (d + 1)-tuple (x1, . . . , xd+1)

if it is the unique sphere passing through all the points x1, . . . , xd+1. A sphere is said
to be determined by a set E if it is determined by a (d + 1)-tuple (x1, . . . , xd+1) ∈
E × · · · × E .

Let R(x1, . . . , xd+1) be the radius of the unique (d − 1)-dimensinal sphere deter-
mined by (x1, . . . , xd+1) and it equals 0 if such a sphere does not exist or it is not
unique. The author obtains two types of results. First, the author estimates how often a
neighborhood of a given radius occurs, in the sense defined below. Second, the author
finds the optimal dimension such that the Lebesgue measure of the set of radii is
positive. The main geometric results are the following.

Theorem 1.2 Let E ⊂ R
d be compact and ν be a Frostman measure on E. Then

dimH(E) > d − 1 + 1
d implies

(ν × · · · × ν)
(
{(x1, . . . , xd+1) : |R(x1, . . . , xd+1)− t | < ε}

)
� ε (1.1)

where the implicit constant is uniform in t on any bounded set.
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Moreover, dimH(E) > d − 1 + 1
d implies

L(R(E × · · · × E)) > 0.

When d = 2, this result is sharp in the sense that (1.1) does not generally hold when
dimH(E) < 3

2 .

In contrast to the incidence result, using Mattila’s classical estimate on the dimen-
sion of intersections (see Theorem 5.1), one can see that

dimH(E) > d − 1 �⇒ R(E × · · · × E) = R
+. (1.2)

This is the optimal result because there is no unique (d − 1)-dimensional sphere
passing through d + 1 points in a hyperplane. However, one can never get this bound
by improving the incidence result above due to its sharpness.

The author also proves an intersection result where rotations and translations in
Theorem 5.1 are replaced by dilations and translations (see Theorem 5.4). From this
intersection theorem, one can conclude the following.

Theorem 1.3 Given E ⊂ R
d with dimH(E) > d − 1, then for a.e. a ∈ R

d ,

L({r > 0 : E determines Sd−1
a,r }) > 0,

where Sd−1
a,r is the (d − 1)-dimensional sphere with center a and radius r .

The bound d − 1 is sharp because a hyperplane can never determine a (d − 1)-
dimensional sphere of finite radius.

Notation. Throughout the paper,
X � Y means that there exists C > 0 such that X ≤ CY .
Sd−1 = {x ∈ R

d : |x | = 1}.
For A ⊂ R

d , Aa,r = {r x + a : x ∈ A}.
For a measureμ on R

d and a function q(x) on R
d , q∗μ is the measure on R induced

by q(x), i.e.
∫
R

f d(q∗μ) = ∫
Rd f ◦ q dμ.

μ̂(ξ) = ∫
e−2π i x ·ξ dμ(x) is the Fourier transform of measure μ.

2 The Incidence Result

In [4], Grafakos et al. develop the following general mechanism to solve Falconer-type
problems.
� is said to be translation invariant if it can be written as

�0(x
k+1 − x1, . . . , xk+1 − xk).

Theorem 2.1 (Grafakos et al. [4]) Suppose � is translation invariant and for some
γ > 0,
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|μ̂t (−ξ, ξ, 0, . . . , 0)| � (1 + |ξ |)−γ ,
|μ̂t (0, ξ, 0, . . . , 0)| � (1 + |ξ |)−γ , (2.1)

|μ̂t (ξ, 0, 0, . . . , 0)| � (1 + |ξ |)−γ ,

where μt is the natural measure on {u : �0(u) = t} and the implicit constant is
uniform in t on any bounded set. Then dimH(E) > d − γ

k implies

(ν × · · · × ν)
(
{(x1, . . . , xk+1) : |�(x1, . . . , xk+1)− t | < ε}

)
� εm (2.2)

where ν is a Frostman measure on E and the implicit constant is uniform in t in any
bounded set. It follows that the m-dimensional Lebesgue measure Lm(��(E)) > 0.

3 Proof of Theorem 1.2

Since R(x1, . . . , xd+1) is translation invariant and it can be written as R0(xd+1 −
x1, . . . , xd+1 − xd), by Theorem 2.1 it suffices to show that the three inequalities in
(2.1) hold for the natural measure μ1 on {(u0, . . . , ud) ∈ R

d : R0(u1, . . . , ud) = 1}.
Observe that

a (d + 1)-tuple (x1, . . . , xd+1) determines a sphere of radius 1

⇔ (0, xd+1 − x1, . . . , xd+1 − xd) determines a sphere of radius

1 passing through the origin

⇔ xd+1 − xi ∈ a + Sd−1 for some a ∈ Sd−1

and 0 �= xd+1 − xi �= xd+1 − x j ,∀i �= j.

Hence

{(u1, . . . , ud) : R0(u
1, . . . , ud) = 1}

= {(σ0 + σ1, σ0 + σ2, . . . , σ0 + σd) : σi ∈ Sd−1} − N , (3.1)

where N is a set of measure 0.
Let ψ be a smooth cut-off function which may vary from line to line. By changing

variables as (3.1),

|μ̂1(ξ,−ξ, 0, . . . , 0)| =

∣
∣∣∣∣∣∣

∫

{u:R0(u)=1}
e−2π iu·(ξ,−ξ,0,...,0) du

∣
∣∣∣∣∣∣

=

∣
∣∣∣∣∣∣

∫

Sd−1

. . .

∫

Sd−1

e−2π iξ ·(σ1−σ2)ψ dσ0 . . . dσd

∣
∣∣∣∣∣∣
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�

∣
∣∣∣∣∣∣

∫

Sd−1

∫

Sd−1

e−2π iξ ·(σ1−σ2)ψ dσ1 dσ2

∣
∣∣∣∣∣∣

=

∣
∣∣∣∣∣∣

∫

Sd−1

e−2πξ ·σ1

⎛

⎜
⎝

∫

Sd−1

e2π iξ ·σ2ψ dσ2

⎞

⎟
⎠ dσ1

∣
∣∣∣∣∣∣

=

∣
∣∣∣∣∣∣

∫

Sd−1

e−2πξ ·σ1a(ξ, σ1) dσ1

∣
∣∣∣∣∣∣
. (3.2)

By stationary phase (see, e.g. [13]), |a(ξ, σ1)| � (1 + |ξ |)− d−1
2 and

∣
∣∣∣∣∣∣

∫

Sd−1

e−2πξ ·σ1
(
(1 + |ξ |) d−1

2 a(ξ, σ1)
)

dσ1

∣
∣∣∣∣∣∣
� (1 + |ξ |)− d−1

2 . (3.3)

Hence

|μ̂1(ξ,−ξ, 0, . . . , 0)| � (1 + |ξ |)−(d−1).

For μ̂1(ξ, 0, . . . , 0) and μ̂1(0, ξ, 0, . . . , 0), after changing variables as above,

μ̂1(ξ, 0, . . . , 0) =
∫

Sd−1
. . .

∫

Sd−1

e−2π iξ ·(σ0+σ1)ψ dσ0 . . . dσd ,

μ̂1(0, ξ, 0, . . . , 0) =
∫

Sd−1

. . .

∫

Sd−1

e−2π iξ ·(σ0+σ2)ψ dσ0 . . . dσd .

By a similar argument,

|μ̂1(ξ, 0, . . . , 0)|, |μ̂1(0, ξ, 0, . . . , 0)| � (1 + |ξ |)−(d−1),

which completes the proof of Theorem 1.2.

4 Sharpness of Theorem 1.2 in R
2

When d = 2, Theorem 1.2 says dimH(E) > 3
2 implies (2.2), more precisely

(ν × ν × ν)
(
{(x1, x2, x3) : |R(x1, x2, x3)− t | < ε}

)
� ε (4.1)
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where ν is a Frostman measure on the compact set E ⊂ R
2 and the implicit constant

is uniform in t on any bounded set. The following example motivated by Mattila [11]
shows that 3

2 is sharp for (4.1).
Without loss of generality, fix t = 100. Let Cα ⊂ [0, 1] denote the Cantor set of

dimension α and ν denote the natural probability measure on Cα . Let

E =
(

200⋃

k=−200

(Cα + k)

)

× [−200, 200] (4.2)

and extend ν to E in the natural way.

Let

Sa = {(x, y) ∈ R
2 : 0 ≤ x ≤ 1, a ≤ y ≤ a + 1}.

When a � 1, for all x ∈ S0, y ∈ Sa , the vector y − x is almost perpendicular to
the x-axis. Therefore one can pick a

√
ε × ε rectangle in

{z ∈ R
2 : |R(x, y, z)− 100| < ε}

such that its
√
ε-edges are perpendicular to the x-axis. (see the figure above).

If a varies continuously, the
√
ε × ε rectangle translates continuously. Then there

exists an a0 ∈ (a − 2, a) such that one of the
√
ε-edges lies on the line x = n for

some n ∈ Z. By the construction of E , for all x ∈ S0, y ∈ Sa0 ,

ν
(
{z ∈ R

2 : |R(x, y, z)− 100| < ε}
)

� ε
1
2 · εα = ε

1
2 +α. (4.3)
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Hence

(ν × ν × ν) ({(x, y, z) : |R(x, y, z)− 100| < ε})
� (ν × ν × ν) ({(x, y, z) : x ∈ S0, y ∈ Sa, |R(x, y, z)− 100| < ε})
� ε

1
2 +α,

(4.4)

which implies that when α < 1
2 , (4.1) fails.

It follows that for dimH(E) < 3
2 , (4.1) is not generally true, which proves the

sharpness arguement of Theorem 1.2.

Remark 4.1 The sharpness of (4.1) doesn’t mean 3
2 is the best possible for the radii

problem, but for the method used above, it cannot be, generally, improved.

Remark 4.2 The example above cannot show the sharpness in higher dimensions. For
example, in R

3, the rectangle one can pick will become a
√
ε×√

ε× ε rectangle. For

any set like Cα×Cβ×Cγ , the lower bound obtained for (2.2) is ε
α
2 + β

2 +γ . In nontrivial
cases (i.e. dimH(E) > 2) it is always true that α2 + β

2 +γ > 1
2 (α+β+γ ) > 1, which

does not contradict the upper bound. In fact, in many relavant problems, a similar
example can show the sharpness in d = 2 but fails in d ≥ 3 (see, e.g. [5], [11]).

5 An Intersection Theorem

Given A, B ⊂ R
d , the author considers the behavior of the intersection A ∩ Tα(B),

where {Tα}α is some family of transformations. Mattila ([11], [10]) proves a general
intersection theorem for orthogonal transformations.

Theorem 5.1 (Mattila [10]) In R
d , let s, t > 0, s + t > d and t > d+1

2 . If A, B ⊂ R
d

are Borel sets with Hs(A) > 0,Ht (B) > 0, then for θd almost all g ∈ O(d),

L({a ∈ R
d : dimH(A ∩ (gB + a) ≥ s + t − d}) > 0,

where θd is the Haar measure on O(d).

There are also intersection theorems on larger transformation groups, e.g. similarities
([9], [10]).

Theorem 5.2 (Kahane [9]) Let G be a closed subgroup of GL(n,R) and let τ be a
Haar measure on G. Let E and F be two σ -compact subsets of R

d . Then for τ -almost
all g ∈ G and ε > 0,

L({a ∈ R
d : dimH(E ∩ (gF + a)) ≥ dimH(E)+ dimH(F)− d − ε}) > 0.

From Theorem 5.1, it follows that when d = 2, for every r > 0, there exists some
a ∈ R

2 such that dimH(E ∩ Sd−1
a,r ) ≥ dimH(E)−1 > 0. Hence (1.2) holds for d = 2.

In higher dimensions it follows by the following lemma.



J Fourier Anal Appl (2014) 20:668–678 675

Lemma 5.3 Suppose F ⊂ Sd−1 ⊂ R
d and dimH(F) > d − 2, then F uniquely

determines Sd−1, i.e. Sd−1 is the only sphere which can be determined by F.

Proof It follows by induction. For d = 2, it’s trivial because F has at least three
points.

Suppose it holds in R
k−1. For F ⊂ Sk−1 ⊂ R

k with dimH(F) > k − 2, there
exists a hyperplane P such that dimH(P ∩ F) > k − 3 (see, e.g. [12]). Then P ∩ F
determines the lower dimensional sphere P ∩Sk−1. Hence F determines Sk−1 because
there is at least one point in F\(P ∩ F).

Note that all the intersection results above try to determine when the translation set
has positive Lebesgue measure. The following theorem considers when the dilation
set has positive Lebesgue measure.

Theorem 5.4 Suppose that E ⊂ R
d is compact with dimH(E) = s > 1 and � ⊂ R

d

is a smooth hypersurface with nonzero Gaussian curvature. Then for a.e. a ∈ {z ∈
R

d : E ⊂ ⋃
r∈R

�z,r },

L({r ∈ R : dimH(E ∩ �a,r )}) ≥ s − 1}) > 0 (5.1)

In particular, letting � = Sd−1, Theorem 1.3 follows from Theorem 5.4 and
Lemma 5.3.

6 Proof of Theorem 5.4

Without loss of generality, one can assume that � is bounded and on any line passing
through the origin there is at most one point of �.

Let σ denote the surface measure on�. Let {pi } be a partition of unity on� such that
in the support of each pi , � has a local coordinate system ui = (ui

1, . . . , ui
d−1). Thus

there is a well-defined coordinate system for the cone Ci = {r x : x ∈ supp pi , r ∈
R−{0}}. One can also extend pi to Ci by setting pi (r x) = pi (x), x ∈ �. By changing
variables x = r x(ui )+ a on each Ci + a, it follows that

∫

⋃
r �a,r

f (x) dx =
∑

i

∫

Ci +a

pi (x − a) f (x) dx

=
∑

i

∫∫
pi (r x(ui )) f (r x(ui )+ a)|r |d−1φi (u

i ) dui dr

=
∑

i

∫

R

∫

supp pi

pi (x) f (r x + a)|r |d−1φ̃i (x) dσ(x) dr

=
∫

R

∫

�

f (r x + a)|r |d−1ψ(x) dσ(x) dr,

(6.1)

where φi , φ̃i , ψ are smooth cut-off functions.
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Since dimH(E) = s > 1, for every ε > 0, there exists a measure μ on E such that
the (s − ε)-energy Is−ε(μ) < ∞ (see, e.g. [12]). Let q(x) = r x +a. Define measures
σa,r on �a,r and μa,r on E ∩ �a,r by

σa,r = q∗(ψσ),
μa,r = lim

δ→0
μ ∗ ρδ dσa,r ,

(6.2)

where ρδ(x) = δ−dρ( x
δ
), ρ ∈ C∞

0 and
∫
ρ = 1.

Let

g(r) =
{

|r |d−1�(r) if − 1 < r < 1

�(r) otherwise
(6.3)

where � ∈ L1 and � > 0 everywhere.

Lemma 6.1 Under notations above,

∫∫
g(r)Is−1−ε(μa,r ) dr da < ∞. (6.4)

Denote νa,r = g(r)
1
2 μa,r

|r |d−1μa,r (Rd )
, Ga = {r ∈ R : μa,r (R

d) > 0} and H = {z ∈ R
d : E ⊂

⋃
r∈R

�z,r }. From Lemma 6.1, Is−1−ε(μa,r ) < ∞ for a.e. (a, r) ∈ R
d × R. Then by

(6.1), (6.2), for a ∈ H ,

1 = (μ(E))2

=
⎛

⎜
⎝ lim
δ→0

∫

⋃
r �a,r

μ ∗ ρδ(x) dx

⎞

⎟
⎠

2

=
(

lim
δ→0

∫∫
μ ∗ ρδ(r x + a)|r |d−1ψ(x) dσ(x) dr

)2

=
(∫

|r |d−1μa,r (R
d) dr

)2

=
⎛

⎜
⎝

∫

Ga

|r |d−1μa,r (R
d)I

− 1
2

s−1−ε(μa,r )I
1
2

s−1−ε(μa,r ) dr

⎞

⎟
⎠

2

=
⎛

⎜
⎝

∫

Ga

I
− 1

2
s−1−ε(νa,r )g(r)

1
2 I

− 1
2

s−1−ε(μa,r ) dr

⎞

⎟
⎠

2

≤
∫

Ga

I −1
s−1−ε(νa,r ) dr

∫

Ga

g(r)Is−1−ε(μa,r ) dr.

(6.5)
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Therefore,

∫

H

⎛

⎜
⎝

∫

Ga

I −1
s−1−ε(νa,r )dr

⎞

⎟
⎠

−1

da ≤
∫

H

∫

Ga

g(r)Is−1−ε(μa,r ) dr da

≤
∫∫

g(r)Is−1−ε(μa,r ) dr da

< ∞.

(6.6)

It follows that for a.e. a ∈ H ,
∫

Ga
I −1
s−1−ε(νa,r )dr > 0. Hence for a.e. a ∈ H ,

L1(Ga) > 0 and for a.e. r ∈ Ga , Is−1−ε(νa,r ) < ∞. As a consequence, dimH(E ∩
�a,r ) ≥ s − 1 − ε for a.e. r ∈ Ga (see, e.g. [12]). Since Ga is independent of ε, by
choosing a sequence ε j → 0, Theorem 5.4 follows.

7 Proof of Lemma 6.1

From the the well-known equality Iα(μ) = cα,d
∫ |μ̂(ξ)||ξ |−d+α dξ (see, e.g. [12])

and Plancherel,

∫∫
g(r)Is−1−ε(μa,r ) dr da

= cα,d

∫∫∫
g(r)

∣∣μ̂ ∗ σ̂a,r (ξ)
∣∣2 |ξ |−d−1+s−ε dξ dr da

= cα,d

∫∫∫
g(r)

∣∣
∣∣

∫
μ̂(η)ψ̂σ (r(ξ − η))e−2π ia·(ξ−η) dη

∣∣
∣∣

2

|ξ |−d−1+s−ε dξ dr da

= cα,d

∫∫ (∫ ∣∣∣∣

∫
μ̂(η)ψ̂σ (r(ξ − η))e2π ia·η dη

∣∣∣∣

2

da

)

g(r)|ξ |−d−1+s−ε dξ dr

= cα,d

∫∫ (∫ ∣∣μ̂(a)ψ̂σ (r(ξ − a))
∣∣2

da

)
g(r)|ξ |−d−1+s−ε dξ dr

= cα,d

∫∫ (∫ ∣∣ψ̂σ (r(ξ − a))
∣∣2

g(r) dr

)
|μ̂(a)|2|ξ |−d−1+s−ε da dξ.

(7.1)
Since� is smooth with nonzero Gaussian curvature everywhere, by stationary phase

(see, e.g. [14]) and the construction of g (see (6.3)),

∫
|ψ̂σ (r(ξ − a))|2g(r) dr � |ξ − a|−(d−1).

Thus, to prove Lemma 6.1, it suffices to show

∫∫
|μ̂(a)|2|ξ − a|−(d−1)|ξ |−d−1+s−ε da dξ < ∞. (7.2)
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For each a �= 0, let ξ = |a|ζ , then

∫
|ξ − a|−(d−1)|ξ |−d−1+s−ε dξ = |a|−d+s−ε

∫
|ζ − a

|a| |
−(d−1)|ζ |−d−1+s−ε dζ.

When ε is small, 1 < s−ε < d, then
∫ |ζ− a

|a| |−(d−1)|ζ |−d−1+s−ε dζ < ∞ uniformly

because a
|a| ∈ Sd−1 which is compact. Hence

∫∫
|μ̂(a)|2|ξ − a|−(d−1)|ξ |−d−1+s−ε da dξ �

∫
|μ̂(a)|2|a|−d+s−ε da

< ∞,

(7.3)

which proves (7.2) and completes the proof of Lemma 6.1.
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