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Abstract We prove a weak version of Hardy’s uncertainty principle using properties
of the prolate spheroidal wave functions. We describe the eigenvalues of the sum
of a time limiting operator and a band limiting operator acting on L2(R). A weak
version of Hardy’s uncertainty principle follows from the asymptotic behavior of the
largest eigenvalue as the time limit and the band limit approach infinity. An asymptotic
formula for this eigenvalue is obtained from its well-known counterpart for the prolate
integral operator.
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1 Introduction

The classical Hardy’s uncertainty principle is formulated as follows.

Theorem 1.1 Let a, b,M > 0, and let f be a measurable function on R such that

| f (x)| � M e−ax2/2, (1)
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and
| f̂ (ξ)| � M e−bξ2/2, (2)

for all x, ξ ∈ R. If ab > 1, then f = 0.

Several proofs of this classical theorem are known e.g., [3–5,9]. Typically, they use
methods of complex analysis, and rely on somewhat indirect arguments. Our objective
is to give a new and direct proof with methods of real analysis, however only of the
following weaker result.

Theorem 1.2 Let a, b,M > 0, and let f be a measurable function on R such that

| f (x)| � M e−ax2/2 (3)

and
| f̂ (ξ)| � M e−bξ2/2, (4)

for all x, ξ ∈ R. If ab � 4, then f = 0.

We prove this weak version of Hardy’s uncertainty principle using properties of
the prolate spheroidal wave functions (PSWFs), which appear e.g., in a solution of the
concentration problem for bandlimited functions [7]. First, we describe the spectrum
of the sum of a time limiting operator and a band limiting operator acting on L2(R).
Specifically, we express the spectrum in terms of the eigenvalues of the prolate integral
operator.

Then we derive the weak version of Hardy’s uncertainty principle from the asymp-
totic behavior of the largest eigenvalue of the sum of the time and band limiting
operators as the time limit and the band limit approach infinity. An asymptotic for-
mula for this eigenvalue is obtained from its well-known counterpart for the prolate
integral operator.

Our approach reveals a relationship between Hardy’s uncertainty principle and the
theory of bandlimited functions.

2 Mathematical Preliminaries

The Fourier transform of a function f ∈ L2(R) is a bounded operator on L2(R)

defined as follows:

F f (ξ) = 1√
2π

lim
N→∞

N∫

−N

e−i xξ f (x)dx, (5)

where the limit is taken in L2(R). We also use the notation f̂ for F f .
F is invertible on L2(R), and its bounded inverse, the inverse Fourier transform,

is defined as follows:

F−1g(x) = 1√
2π

lim
N→∞

N∫

−N

eiξ x g(ξ)dξ. (6)
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Consequently,
F−1 = F∗, (7)

i.e., the Fourier transform is a unitary operator on L2(R).
A bounded operator P on a Hilbert space is called idempotent if

P2 = P. (8)

A bounded operator P on a Hilbert space is called an orthogonal projection if it is
idempotent and Hermitian, i.e.,

P2 = P and P∗ = P. (9)

We denote the characteristic function of a set E ⊂ R by χE , i.e.,

χE (x) =
{

1, if x ∈ E,
0, otherwise.

(10)

For a fixed set E ⊂ R, the mapping f �→ χE f is an orthogonal projection on L2(R).
We also denote this projection by χE . In particular, we use the notation χ(−τ,τ ), when
E = (−τ, τ ), τ > 0.

For a fixed ω > 0, we define the operator Sω as follows:

Sω := Fχ(−ω,ω)F∗. (11)

The operator Sω is also an orthogonal projection on L2(R).
The integral kernel of Sω is

Sω f (x) =
∫

R

sinω(x − y)

π(x − y)
f (y)dy. (12)

This kernel is computed explicitly as follows:

k(x, y) = 1

2π

ω∫

−ω
e−i xt eitydt = 1

π

sinω(x − y)

x − y
. (13)

If P is an orthogonal projection, then

(I − P∗)(I − P) = (I − P)2 (14)

= I − 2P + P2 (15)

= I − P. (16)
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Thus for every vector f ,

‖(I − P) f ‖2 = 〈(I − P∗)(I − P) f, f 〉 (17)

= 〈(I − P) f, f 〉. (18)

For a bounded operator T , σ(T ) denotes the spectrum of T . We need the following
well-known lemma, see [2, Prop. 6, p. 16].

Lemma 2.1 Let A and B be bounded operators on a Hilbert space. For λ �= 0,
λ ∈ σ(AB) if and only if λ ∈ σ(B A).

The following lemma has a straightforward proof, which is omitted.

Lemma 2.2 If P is an idempotent bounded operator on a Hilbert space and λ �= 0, 1,
then

(λI − P)−1 = 1

λ
I + 1

λ(λ− 1)
P. (19)

3 Spectrum of χ(−τ,τ) + Sω

In this section, we describe the spectrum of the operator χ(−τ,τ )+ Sω on L2(R), where
τ, ω > 0.

For a fixed c > 0, the integral operator on L2(−1, 1) with the kernel

sin c(x − y)

π(x − y)
(20)

has eigenvalues λ0 > λ1 > · · · > 0 [7,8]. The eigenfunctions are the PSWFs, and the
eigenvalues obey certain asymptotic formulas. We are only interested in the largest
eigenvalue λ0, which has the following asymptotics [8]:

λ0 = 1 − 4
√
π

√
c e−2c

(
1 + O

(
1

c

))
, (21)

when c → ∞.
We show that the eigenvalues of T = χ(−τ,τ ) + Sω, acting on L2(R), can be

expressed in terms of those of the operator with kernel (13), acting not on L2(R), but
rather on L2(−τ, τ ).

To indicate the dependence on c, we write λn(c).

Theorem 3.1 Fix τ, ω > 0 and let T = χ(−τ,τ )+ Sω. If λ ∈ σ(T ) and λ �= 0, 1, then

(λ− 1)2 = λn(ωτ) (22)

for some n.
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Proof In this proof we can assume that τ = 1. The general case follows by a linear
change of variables.

It follows from the assumptions that λI − χ(−1,1) − Sω is singular, and so is the
operator

(λI − Sω)
−1(λI − χ(−1,1) − Sω) = I − (λI − Sω)

−1χ(−1,1) (23)

= I −
(

1

λ
I + 1

λ(1 − λ)
Sω

)
χ(−1,1), (24)

where we used Lemma 2.2 for (λI − Sω)−1. Thus

λ ∈ σ

(
χ(−1,1) + 1

λ− 1
Sωχ(−1,1)

)
(25)

= σ

(
χ(−1,1) + 1

λ− 1
Sωχ

2
(−1,1)

)
. (26)

We use Lemma 2.1 for the operators χ(−1,1) and I + 1
λ−1 Sωχ(−1,1) and the assumption

that λ �= 0, to conclude that

λ ∈ σ
(
χ(−1,1) + 1

λ− 1
χ(−1,1)Sωχ(−1,1)

)
. (27)

It follows that the operator

λI − χ(−1,1) − 1

λ− 1
χ(−1,1)Sωχ(−1,1) (28)

is singular, and so is

I − (λI − χ(−1,1))
−1 1

λ− 1
χ(−1,1)Sωχ(−1,1). (29)

The operator χ(−1,1)Sωχ(−1,1) is Hilbert-Schmidt, and therefore compact, and so is
(λI − χ(−1,1))

−1χ(−1,1)Sωχ(−1,1).
From the spectral theory of compact operators, it follows that 1 is an eigenvalue of

(λI − χ(−1,1))
−1 1

λ− 1
χ(−1,1)Sωχ(−1,1), (30)

i.e., there is an f ∈ L2(R), f �= 0 such that

f − (λI − χ(−1,1))
−1 1

λ− 1
χ(−1,1)Sωχ(−1,1) f = 0 (31)
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or, equivalently

λ f − χ(−1,1) f − 1

λ− 1
χ(−1,1)Sωχ(−1,1) f = 0. (32)

Using (32), we note that χ(−1,1) f �= 0 in L2(R), because λ f �= 0 in L2(R). We now
multiply (32) by χ(−1,1) on the left to obtain

λχ(−1,1) f − χ(−1,1) f − 1

λ− 1
χ(−1,1)Sωχ(−1,1) f = 0, (33)

and, consequently,

(λ− 1)2χ(−1,1) f − χ(−1,1)Sωχ(−1,1) f = 0. (34)

Thus χ(−1,1) f is an eigenfunction of the operator with kernel sinω(x−y)
π(x−y) on L2(−1, 1)

with eigenvalue (λ− 1)2.
Thus

(λ− 1)2 = λn(ω) (35)

for some n. �

Remark 3.2 Only Theorem 3.1 is used in the proof of Theorem 1.2. However, we
devote the rest of this section to a complete description of the spectrum of the operator
T = χ(−τ,τ ) + Sω.

In this proof we can again assume that τ = 1. The general case follows by a linear
change of variables.

We can show that if (λ − 1)2 = λn(ω), then there exists an eigenfunction for T
with eigenvalue λ.

It follows from Slepian’s theory that 0 < λn(ω) < 1. We write

f = ψn + (λ− 1)ψ̃n, (36)

where ψn is the nth PSWF and ψ̃n is the extension of ψn to R, i.e.,

Sωψn = λn(ω)ψ̃n (37)

and
χ(−1,1)ψ̃n = ψn . (38)

We multiply (36) by χ(−1,1) to get

χ(−1,1) f = ψn + (λ− 1)ψn = λψn . (39)
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Moreover,

(λI − Sω)
−1χ(−1,1) f =

(
1

λ
I + 1

λ(λ− 1)
Sω

)
λψn (40)

= ψn + 1

λ− 1
λnψ̃n (41)

= ψn + (λ− 1)ψ̃n (42)

= f, (43)

where we used the assumption that λn = (λ− 1)2.
Finally,

χ(−1,1) f = (λI − Sω) f, (44)

or, equivalently,
χ(−1,1) f + Sω f = λ f. (45)

Thus all numbers of the form 1 ± √
λn(ω), n = 0, 1, . . . are eigenvalues of T .

The point λ = 1 is also in the spectrum σ(T ), as an accumulation point of the
eigenvalues.

It remains to consider λ = 0. To prove that T is singular, we consider the sequence
of functions

fn(x) = einx e−(x−n)2 , x ∈ R. (46)

It is clear that
‖ fn‖ = ‖ f0‖ > 0, n = 0, 1, . . . , (47)

but
|T fn| → 0 (48)

in L2(R).
Thus we have shown that σ(T ) consists of the eigenvalues of T of the form 1 ±√
λn(ω), n = 0, 1, . . . , and the two additional points λ = 0 and λ = 1.
The spectrum of the sum of two orthogonal projections was described in [1] in a

somewhat different setting.

4 Proof of the Theorem 1.2

In this section, we present the proof of Theorem 1.2.

Proof of Theorem 1.2 In this proof, we assume that

a = b = 2. (49)

The general case follows by a linear change of variables.
For a fixed τ > 0, we consider the restriction χ(−τ,τ ) f of f to the interval (−τ, τ ).

The decay of f at infinity in (3) gives an estimate on f − χ(−τ,τ ) f in the L2-norm.
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Specifically,

‖ f − χ(−τ,τ ) f ‖2 =
∫

|x |>τ
| f (x)|2dx (50)

� M2
∫

|x |>τ
(e−ax2/2)2dx (51)

= 2M2

∞∫

τ

e−ax2
dx (52)

� 2M2

∞∫

τ

x

τ
e−ax2

dx (53)

= M2

aτ
e−aτ 2

. (54)

Similarly, (4) implies that for a fixed ω > 0,

‖ f − Sω f ‖2 � M2

bω
e−bω2

. (55)

Setting τ = ω, using (18), and combining (49), (54) and (55), yields

‖ f − χ(−τ,τ ) f ‖2 + ‖ f − Sω f ‖2 = (56)

= 〈(I − χ(−τ,τ )) f, f 〉 + 〈(I − Sω) f, f 〉 (57)

= 〈(2I − χ(−τ,τ ) − Sω) f, f 〉 (58)

� M2

ω
e−2ω2

. (59)

The operator T ′ = 2I − χ(−τ,τ ) − Sω is Hermitian. According to Theorem 3.1, its
smallest eigenvalue λmin satisfies

λmin � 2 − (1 + √
λ0) = 1 − √

λ0. (60)

Consequently,

(1 − √
λ0)‖ f ‖2 � λmin‖ f ‖2 (61)

� 〈(2I − χ(−τ,τ ) − Sω) f, f 〉 (62)

� M2

ω
e−2ω2

. (63)
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The eigenvalue λ0 satisfies (21). Thus, since c = ωτ = ω2, we obtain

λ0 = 1 − 4
√
π ω e−2ω2

(
1 + O

(
1

ω2

))
. (64)

We recall the elementary formula

√
1 − x = 1 − x/2 + O(x2), as x → 0. (65)

Substituting (64) and (65) into (63) we obtain

2
√
π ω e−2ω2‖ f ‖2

(
1 + O

(
1

ω2

))
� M2

ω
e−2ω2

. (66)

Letting ω → ∞, we deduce that ‖ f ‖ = 0. �

4.1 Alternative Proof

A reviewer of this paper has remarked that an alternative proof is possible based on
the following result proved in [6, p. 68].

Theorem 4.1 If ‖ f ‖ = 1,

α =

⎛
⎜⎜⎝

T
2∫

− T
2

| f (t)|2dt

⎞
⎟⎟⎠

1
2

, (67)

β =
⎛
⎝

�∫

−�
| f̂ (ξ)|2dξ

⎞
⎠

1
2

, (68)

then

arccosα + arccosβ � arccos
√
λ0

( 1
2�T

)
. (69)

We present an outline of an alternative proof of Theorem 1.2. Let us assume that
‖ f ‖ = 1. It follows from (49) and (54) that

‖χ(−τ,τ ) f ‖2 = ‖ f ‖2 − ‖ f − χ(−τ,τ ) f ‖2 � 1 − M2

2τ
e−2τ 2

. (70)

Consequently, for all sufficiently large τ ’s,

‖χ(−τ,τ ) f ‖ �
(

1 − M2

2τ
e−2τ 2

) 1
2

� 1 − M2

2τ
e−2τ 2

, (71)
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and

arccos ‖χ(−τ,τ ) f ‖ � arccos

(
1 − M2

2τ
e−2τ 2

)
. (72)

We recall that as x → 0+,

arccos(1 − x) = √
2x (1 + O(x)) . (73)

Combining (72) and (73), we conclude that for every sufficiently large τ ,

arccos ‖χ(−τ,τ ) f ‖ � 2M√
τ

e−τ 2
. (74)

Similarly, for every sufficiently large ω,

arccos ‖Sω f ‖ � 2M√
ω

e−ω2
. (75)

Combining (74) and (75), and setting τ = ω, we obtain

arccos ‖χ(−ω,ω) f ‖ + arccos ‖Sω f ‖ � 4M√
ω

e−ω2
. (76)

Setting � = ω and T = 2ω in (69), we obtain

arccos
√
λ0(ω2) � arccos ‖χ(−ω,ω) f ‖ + arccos ‖Sω f ‖. (77)

Consequently,

arccos
√
λ0(ω2) � 4M√

ω
e−ω2

. (78)

Substituting (64) into (65), we obtain

√
λ0(ω2) = 1 − 2

√
π ω e−2ω2

(
1 + O

(
1

ω2

))
. (79)

Substituting (79) into (73), we obtain

arccos
√
λ0(ω2) = 2 4

√
π

√
ω e−ω2

(
1 + O

(
1

ω2

))
. (80)

Combining (78) and (80), we arrive at the contradiction

2 4
√
π

√
ω e−ω2

(
1 + O

(
1

ω2

))
� 4M√

ω
e−ω2

. (81)

Our proof of Theorem 1.2 uses some techniques similar to those in [6], e.g., a linear
combination of the time and the frequency limiting operators is already considered in
[6, equation (6)].
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