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Abstract We give formulas relating the Fourier transform of a radial function in R
n

and the Fourier transform of the same function in R
n+1, completing the analysis of

Grafakos and Teschl (J. Fourier Anal. Appl. 19:167–179, 2013) where the case of Rn

and R
n+2 was considered.
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1 Introduction

In a recent article, Grafakos and Teschl [9] studied the relationship between the
Fourier transforms in different dimensions of the same radial function. Indeed, let
f be a “nice enough” function of one variable, say, for instance, f ∈ S(R) and even;
then for each n ∈ N the function f yields a radial function fn ∈ S(Rn) given by
fn(x) = f (|x|). If we now apply the Fourier transform1 F = Fa , a ∈R,

̂φ(u) = Fa

{

φ(x);u
} =

∫

Rn

φ(x)eiax·udx, (1.1)

1In [9] a = −2π , while in this article we take a = 1. The choice a = −1 is also popular. Once the formulas
are known for a particular value of a the formulas for other choices are easy to derive.
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we obtain radial functions gn = ̂fn ∈ S(Rn), that is, gn(x) = Gn(|x|). Naturally,
there is a relationship between Gn and Gk for any n and k; the formula

G′
n(r) = −a2r

2π
Gn+2(r), (1.2)

was obtained in [9], and this of course gives the formula relating Gn and Gk when-
ever n − k is even. Formula (1.2) holds not only for f ∈ S(R) but for more general
functions and, actually, for basically all relevant tempered distributions.

In this article a formula relating Gn and Gn+1 is given, namely,

Gn(r) = a

2π

∫ ∞

0
Gn+1

(
√

r2 + s2
)

ds, (1.3)

which can be iterated to obtain the formula relating Gn and Gk for any n and k.
We show that (1.3) holds not only in S(R) but for many classes of functions and
distributions; however, unlike the case of (1.2), it is not possible to extend the integral
operator in (1.3) as a continuous operator acting on all tempered distributions: the
integral must be convergent, in some sense, at infinity!

The plan of the article is as follows. In Sect. 2 we introduce radial test functions
and distributions and consider the operator Jn,k : Srad(R

n) → Srad(R
k) that trans-

forms a radial test function in dimension n to the same radial function in dimension k.
The operator Jn,k is quite simple, of course, but its extension to radial distributions
is quite interesting, and this we study in Sect. 3, where we show that there are three
types of behavior, namely in the case I where n < k and n − k is even a unique
distributional extension exists, in case II where n > k and n − k is even there are
distributional extensions but they depend on a finite number of parameters, and in
the case III where n − k is odd there are no extensions that can be applied to all
distributions. In the Sect. 3.1 we pay special attention to the case when n or k are 1,
employing the spaces R′

n introduced in [9]. In Sect. 4 we obtain formulas relating
two radial test functions in dimensions n and k that are the Fourier transforms of the
same radial function, obtaining (1.3), and, more generally,

Gn(r) =
(

a

2π

)q

ωq−1

∫ ∞

0
Gn+q

(
√

r2 + s2
)

sq−1ds, (1.4)

where ωq−1 is the surface area of the unit sphere S
q−1 of Rq . In Sect. 5 we extend

these formulas to distributions. We recover the result [9] that in case I (1.2) and its
iterations hold, so that Gn+2q is uniquely determined by any distribution Gn of the
space R′

n[0,∞); in case II we show that Gn−2q is not uniquely determined by Gn, but
that is possible to define continuous operators ˜Zn,n−2q : R′

n[0,∞) → R′
n−2q [0,∞)

that depend on a finite number of parameters; finally we show that in case III for a
given Gn ∈ R′

n[0,∞) there are so many corresponding distributions Gk ∈ R′
k[0,∞)

that it is impossible to define a continuous association Gn �→ Gk . In Sect. 5.4 we give
several illustrations of our formulas.

It must be pointed out that operators like (1.3) or (1.4), or the one that arises from
(1.2) can be written, after a change of variables, as operators of the so-called Erdélyi-
Köber type [3], and thus it is possible to employ the distributional theory for such
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operators [13], [6, Sect. 9.8] in the spaces H ′
μ of Zemanian [14, Chap. 5]. In this

article we preferred to work directly in the spaces R′
n of [9] so that we do not use the

methods of [6, Chap. 9].

2 Spaces and Transforms

In this section we give the notation for the spaces of functions and distributions em-
ployed. We also define several operators needed in our analysis. We have tried to
follow the same notation of [9] when possible.

The spaces S(Rn) and S ′(Rn) are well known.2 The space S(Rn) is a Fréchet
space while we consider the strong dual topology in S ′(Rn). We usually denote
r = |x| the radial variable in R

n. A test function φ ∈ S(Rn) is called radial if it is
a function of r , φ(x) = ϕ(r), for some even function ϕ ∈ S(R); the space of all ra-
dial test functions of S(Rn) is denoted as Srad(R

n). Similarly, we denote as S ′
rad(R

n)

the space of all radial tempered distributions; a distribution f ∈ S ′(Rn) is radial if
f (Ax) = f (x) for any orthogonal transformation of R

n, and this actually means,
as we shall see, that f (x) = f1(r) for some distribution of one variable f1. Notice,
however, that while ϕ is uniquely determined by φ, for a given f there are several
possible distributions f1.

When n = 1 then Srad(R) and S ′
rad(R) become the spaces of even rapidly decreas-

ing test functions and tempered distributions, respectively, and are also denoted as
Seven(R) and S ′

even(R).
Observe that the space S ′

rad(R
n) is naturally isomorphic to the dual space

(Srad(R
n))′, that is to say, if the action of a radial distribution is known in all ra-

dial test functions, then it can be obtained for arbitrary test functions. Indeed, if
f ∈ S ′

rad(R
n) and φ ∈ S(Rn), then

〈

f (x),φ(x)
〉 = 〈

f (x),˜φ(x)
〉

, (2.1)

where ˜φ ∈ Srad(R) is given as

˜φ(x) = φo
(|x|), (2.2)

φo ∈ Seven(R) being defined as

φo(r) = 1

ωn−1

∫

Sn−1
φ(rθ)dσ(θ). (2.3)

Here and in what follows, we denote by S
n−1 the unit sphere of R

n, dσ is the
Lebesgue measure in S

n−1 and ωn−1 = 2πn/2/Γ (n/2) is the surface area of the
sphere. It would be convenient to employ even the value ω0 = 2.

2One can also work in the spaces D(Rn) and D′(Rn) without much change, but we chose the framework
of S(Rn) and S ′(Rn) because we will study Fourier transforms.
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Definition 2.1 Let k,n be strictly positive integers. The operator

Jn,k : Srad
(

R
n
) → Srad

(

R
k
)

, (2.4)

is defined as follows. If φn ∈ Srad(R
n) then φk = Jn,k(φn) is the radial function given

by φk(x) = φn(|x|w), x ∈ R
k , for any w ∈Sn−1.

Notice that (2.3) yields Jn,1(φn) = φo
n . Also, Jk,qJn,k = Jn,q , and thus φk(x) =

φo
n(|x|). Furthermore, φo

k = φo
n for any n and k. It is convenient to have a formula for

the adjoint operator (Jn,k)
T : S ′

rad(R
k) → S ′

rad(R
n) when applied to “nice” functions.

Proposition 2.2 Let φn ∈ Srad(R
n) and ψk ∈ Srad(R

k). Then

ωn−1
〈

ψk,Jn,k(φn)
〉

S ′(Rk)×S(Rk)
= ωk−1

〈

rk−nJk,n(ψk),φn

〉

S ′(Rn)×S(Rn)
. (2.5)

Therefore

(Jn,k)
T (ψk) =

(

ωk−1

ωn−1

)

rk−nJk,n(ψk). (2.6)

Proof Let φk = Jn,k(φn) and ψn = Jk,n(ψk). Then

∫

Rk

ψk(x)φk(x)dx = ωk−1

∫ ∞

0
ψo

k (r)φo
k (r)rk−1dr

= ωk−1

∫ ∞

0
rk−nψo

n(r)φo
n(r)rn−1dr

= ωk−1

ωn−1

∫

Rn

|x|k−nψn(x)φn(x)dx,

and (2.5) follows. Since 〈(Jn,k)
T (ψk),φn〉 = 〈ψk,Jn,k(φn)〉, we also obtain (2.6). �

Observe that the function |x|k−n is locally integrable in R
n since k ≥ 1, and thus

it defines a regular distribution of S ′
rad(R

n).
It is not always possible to extend the operator Jn,k to all tempered distributions,

that is, as an operator from S ′
rad(R

n) to S ′
rad(R

k), but there is a natural extension to
several classes of radial functions, for instance to the radial continuous functions,
or to the radial distributions whose support does not contain the origin. A related
operator is defined in the ensuing definition.

Definition 2.3 Let Srad(R
n \{0}) be the closed subspace of Srad(R

n) formed by those
radial test functions all of whose derivatives vanish at 0. Denote by S ′

rad(R
n \ {0}) ∼=

(Srad(R
n \ {0}))′ the corresponding dual space. The restriction of the operator Jn,k to
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Srad(R
n) ∩ S ′

rad(R
n \ {0}) admits a continuous3 extension

J 0
n,k : S ′

rad

(

R
n \ {0}) → S ′

rad

(

R
k \ {0}). (2.7)

Actually Proposition 2.2 yields

J 0
n,k(fn) =

(

ωk−1

ωn−1

)

rk−n(Jk,n)
T (fn). (2.8)

Notice that multiplication by rλ is a well defined operation of the space Srad(R
n \{0})

to itself and from S ′
rad(R

n \ {0}) to itself for any λ ∈ C, but it is an operator from
Srad(R

n) to itself or from S ′
rad(R

n) to itself only when λ = 0,2,4, . . . .
Observe also that the distributions of S ′

rad(R
n \ {0}) are naturally defined in

R
n \ {0}, not in R

n. In fact the restriction gives a projection π : S ′
rad(R

n) →
S ′

rad(R
n \ {0}) whose kernel is, exactly, the radial distributions with support {0}. We

may observe at this point that a radial distribution has support at the origin if and only
if it is of the form

∑N
j=0 aj∇2j δ(x) for some N and some constants aj , 0 ≤ j ≤ N ,

where ∇2 is the Laplacian.

3 Extension of Jn,k to Distributions

When k > n and k − n is even then |x|k−n is smooth at the origin, and thus we may
define an extension of Jn,k from S ′

rad(R
n) to S ′

rad(R
k).

Definition 3.1 If k > n and k − n is even, the operator

Jn,k : S ′
rad

(

R
n
) → S ′

rad

(

R
k
)

, (3.1)

the unique continuous extension of Jn,k , is defined as

J n,k(fn) =
(

ωk−1

ωn−1

)

rk−n(Jk,n)
T (fn). (3.2)

We follow the convention introduced by the late Professor Farassat [8] of denoting
distributional operators with an overbar.

We shall show that the operator J n,k can be defined only when k > n and k − n is
even. In order to do so we need the following easy result.

Proposition 3.2 If k > n and k−n is even, the operator Jn,k is onto and has a kernel
of dimension (k − n)/2, consisting of the distributions of the form

(k−n−2)/2
∑

j=0

aj∇2j δ(x), (3.3)

where aj , 0 ≤ j ≤ (k − n − 2)/2, are arbitrary constants.

3We shall usually consider the strong topology on dual spaces, but most results also hold for the weak
topology as well since in spaces of distributions weak and strong convergence of sequences are equivalent
[10, 12].
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Observe that for any k and n we have (Jn,k)
−1 = Jk,n. Hence the last proposition

yields that if k < n and k − n is even then no continuous distributional extension of
Jn,k can exist since if it did it would be the inverse of J k,n, but such an inverse does
not exist. However, continuous distributional operators that are what can be called
generalized extensions of Jn,k do exist.

Proposition 3.3 If k < n and k − n is even, there are continuous operators

˜Jn,k : S ′
rad

(

R
n
) → S ′

rad

(

R
k
)

, (3.4)

such that if fn ∈ S ′
rad(R

n) then

J k,n
˜Jn,k(fn) = fn, (3.5)

while if fk ∈ S ′
rad(R

k) then there exists g ∈ KerJ k,n such that

˜Jn,kJ k,n(fk) = fk + g. (3.6)

Proof Indeed, since KerJ k,n is finite dimensional, there exist closed subspaces E of
S ′

rad(R
k) such that S ′

rad(R
k) = E ⊕ KerJ k,n. Then the restriction of J k,n to E is a bi-

continuous isomorphism of E to S ′
rad(R

n); if we define ˜Jn,k as i ◦ (J k,n|E)−1, where
i : E → S ′

rad(R
k) is the natural injection, then ˜Jn,k satisfies the required properties,

and, clearly, any operator that satisfies (3.5) and (3.6) should be of this form. �

Notice that if k < n and k −n is even then the operators that satisfy the conditions
of Proposition 3.3 are not unique, since if ˜Jn,k is one such operator, then so is ˜Jn,k +T

for any continuous operator T from S ′
rad(R

n) to the finite dimensional space KerJ k,n.
Observe also that if π : S ′

rad(R
n) → S ′

rad(R
n \ {0}) is the projection, then

π ˜Jn,k = J 0
n,kπ. (3.7)

If f ∈ S ′
rad(R

n) has support suppf ⊂ R
n \ {0} then one can naturally identify f

and π(f ), however, in general, 0 belongs to the support of ˜Jn,k(f ), and thus ˜Jn,k(f )

cannot be identified with J 0
n,k(f ):

˜Jn,k(f ) = J 0
n,k(f ) + hf , (3.8)

for some hf ∈ KerJ k,n if suppf ⊂ R
n \ {0}; it is not possible to construct ˜Jn,k in

such a way that hf = 0 for all f ∈ S ′
rad(R

n) with suppf ⊂ R
n \ {0}.4

We now show that the operator Jn,k does not have any continuous distributional
generalized extensions that satisfy (3.7) if k − n is odd.

Proposition 3.4 If k − n is odd then there are no continuous operators

J : S ′
rad

(

R
n
) → S ′

rad

(

R
k
)

, (3.9)

4A proof can be given following the ideas of the proof of Proposition 3.4.
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such that

πJ = J 0
n,kπ, (3.10)

where π is the restriction to R
n \ {0}.

Proof We shall suppose that such an operator exists and find a contradiction. It is
enough to do it when k = n − 1, since if J satisfies (3.10) for a general pair n, k with
k − n odd then ˜Jk,n−1J or J k,n−1J would be an operator that satisfies (3.10) from
S ′

rad(R
n) to S ′

rad(R
n−1).

Now, condition (3.10) yields that if suppf ⊂ R
n \ {0} then J (f ) is a radial dis-

tribution in R
k equal to the sum of two parts, namely, J 0

n,k(f ), whose support is

contained in R
k \ {0}, plus a distribution of the form

∑N
j=0 aj (f )∇2j δ(x) for some

N and some continuous functionals aj , 0 ≤ j < N . Since the space of radial distri-
butions with support {0} is the LF limit of finite dimensional spaces,5 it follows [4]
that one can choose an N that works for all such distributions f . Hence

r2N+2J (f ) = J 0
n,k

(

r2N+2f
)

, if suppf ⊂ R
n \ {0}. (3.11)

Next we apply this to fε = ε1−n∇2Mδ(r − ε), where M > N + 1. Observe that in
the space S ′

rad(R
n) we have that f0(x) = limε→0+ fε(x) = ωn−1∇2Mδ(x), and, by

continuity,

r2N+2J (f0) = r2N+2 lim
ε→0+ J (fε)

= lim
ε→0+ J 0

n,n−1

(

r2N+2fε

)

= lim
ε→0+ ε1−nr2N+2∇2Mδ(r − ε), (3.12)

but in S ′
rad(R

n−1),

ε1−nr2N+2∇2Mδ(r − ε) ∼ ε−1ε1−(n−1)r2N+2∇2Mδ(r − ε)

∼ ε−1ωn−2|x|2N+2∇2Mδ(x), (3.13)

and it follows that the limit limε→0+ ε1−nr2N+2∇2Mδ(r − ε) in (3.12) does not exist
since |x|2N+2∇2Mδ(x) �= 0. �

It is important to understand what Proposition 3.4 says and what it does not say.
Suppose that k − n is odd. Let fn ∈ S ′

rad(R
n). Then we can consider the restriction

of f to R
n \ {0}, gn = π(fn), and compute gk = J 0

n,k(gn). Are there distributions

Fk ∈ S ′
rad(R

k) whose restriction to R
k \ {0} is gk? The answer is yes, but the problem

is that there are infinitely many. If we were able to choose one such Fk in a continuous
way—as is the case when k − n is even—then an operator that satisfies (3.9) would

5For properties of LF spaces see [10] or [12].
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be constructed, but we cannot do this because there are just too many choices and no
way to choose the “correct” one. This does not mean that for a particular distribution
fn one cannot choose a particular distribution fk , one of the many Fk , in a natural
way. Indeed, if for instance fn is continuous at the origin, then there is a unique Fk

that is continuous at the origin, and that would be our fk . Or, for instance, one can use
analytic continuation techniques to choose the extension Fk that one would call fk .
The example given by fn,λ(x) = |x|λ illustrates these ideas: if �eλ > 0 then fn,λ

is continuous at the origin and thus one can define in a natural way fk,λ(x) = |x|λ
in S ′

rad(R
k); then we can use analytic continuation, since fn,λ is analytic for λ �=

−n,−n−2,−n−4, . . . while fk,λ admits an analytic continuation for λ �= −k,−k −
2,−k − 4, . . . , so that one has the natural association fn,λ → fk,λ for any λ that
satisfies both restrictions; interestingly, if k − n is odd, then fn,−k(x) = |x|−k is a
well defined element of S ′

rad(R
n) but we cannot associate to it a unique natural radial

distribution of S ′
rad(R

k).

3.1 The Cases when n = 1 or k = 1

Our results on the distributional extension of Jn,k hold even when n = 1 or k = 1,
but there is a better approach in such cases. Following [9], we shall denote by Rn =
rn−1Seven(R). If A is a subspace of S(R) we shall denote by A[0,∞) the space
of restrictions of elements of A to [0,∞), and by p the restriction map, p(Φ) =
Φ|[0,∞). In general p is not an isomorphism of A onto A[0,∞), for instance when
A = S(R), but sometimes p is an isomorphism, as when A = Rn, in particular when
A = R0 = Seven(R); in those cases the transpose pT : A′[0,∞) → A′ is also an
isomorphism.

Any radial distribution f ∈ S ′
rad(R

n) gives an element f♦ ∈R′
n by the formula

〈

f (x),φ(x)
〉

S ′(Rn)×S(Rn)
= ωn−1

2

〈

f♦(r),φo(r)rn−1〉

R′
n×Rn

, (3.14)

and, conversely, any element of S ′
rad(R

n) is of this form [9].

Proposition 3.5 The operator pJn,1 : Srad(R
n) → Rn[0,∞) has a unique continu-

ous extension

Jn,1 : S ′
rad

(

R
n
) →R′

n[0,∞), (3.15)

given by F = Jn,1(f ) = (pT )−1f♦, that is

〈

F(r),φo(r)rn−1〉

R′
n[0,∞)×Rn[0,∞)

= 1

ωn−1

〈

f (x),φ(x)
〉

S ′(Rn)×S(Rn)
. (3.16)

The operator Jn,1 is an isomorphism and its inverse J1,n = J
−1
n,1 is the unique

continuous extension of J1,np
−1 : Seven[0,∞) → Srad(R

n) as an operator from
R′

n[0,∞) to S ′
rad(R

n).

It is interesting that one has a natural injection Rk[0,∞) → Rn[0,∞) when k−n

is even and k > n, and this gives a projection R′
n[0,∞) →R′

k[0,∞); this projection
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is exactly Jk,1Jn,kJ1,n; it has a kernel of finite dimension and has many generalized
inverses R′

k[0,∞) →R′
n[0,∞), which are precisely of the form Jn,1 ˜Jk,nJ1,k . On the

other hand, Proposition 3.4 immediately yields that if k − n is odd then there are no
continuous operators H from R′

k[0,∞) to R′
n[0,∞) such that H(f )|(0,∞) = f |(0,∞)

for all f ∈ R′
k[0,∞).

Notice that while Seven[0,∞) is naturally imbedded in R′
n[0,∞) for any n, the

space Seven(R) can be imbedded in R′
n only when n is odd, since the elements of R′

n

are even distributions when n is odd, but they are odd distributions when n is even.
Therefore it is easier to work in the spaces R′

n[0,∞) instead of in the spaces R′
n.

On the other hand, we can also define an operator Jn : S ′[0,∞) → S ′
rad(R

n) as
Jn(f ) = J1,n(g), where g = f |Rn[0,∞) ∈ R′

n[0,∞). The operator Jn is onto, but has
a non trivial kernel, since Jn(δ

(q)(r)) = 0 when 0 ≤ q < n−1, or when n−q is even.

4 Fourier Transforms

Let φn ∈ Srad(R
n) and φk = Jn,k(φn) ∈ Srad(R

k). Let ψn = ̂φn and ψk = ̂φk be their
corresponding Fourier transforms and let Ψn = pJn,1(ψn) and Ψk = pJk,1(ψk). Our
aim is to find a formula for the operator Zn,k : Seven[0,∞) → Seven[0,∞) that sends
Ψn to Ψk , that is,

Zn,k = pJk,1FJn,kF−1J1,np
−1. (4.1)

We will also consider the related operator Zn,k : Srad(R
n) → Srad(R

k) given by
Zn,k(ψn) = ψk , that is,

Zn,k = FJn,kF−1. (4.2)

Let us start with the operator Zn+1,n.

Proposition 4.1 If Ψn,Ψn+1 = Zn,n+1(Ψn) ∈ Seven[0,∞) then

Ψn(r) = a

π

∫ ∞

0
Ψn+1

(
√

r2 + s2
)

ds. (4.3)

Proof It is enough to do the proof when a = 1. Let φn ∈ Srad(R
n). Let us define

h ∈ S ′(Rn+1) as

h(x, xn+1) = φn(x)δ(xn+1), (x, xn+1) ∈ R
n ×R. (4.4)

Then

̂h(u, un+1) =
∫

Rn

∫ ∞

−∞
φn(x)δ(xn+1)e

i(x·u+xn+1un+1)dxn+1dx

=
∫

Rn

φn(x)eix·udx

= ̂φn(u) = ψn(u) = Ψn

(|u|). (4.5)
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On the other hand, we also have that

h(x, xn+1) = φn+1(x, xn+1)δ(xn+1), (4.6)

and thus

̂h(u, un+1) = 1

(2π)n+1
̂φn+1 ∗ ̂δ(xn+1)

= 1

(2π)n+1
ψn+1(u, un+1) ∗ (2π)nδ(u)

= 1

2π

∫ ∞

−∞
ψn+1(u, un+1 − s)ds. (4.7)

Hence if r = |u|,
Ψn(r) = Ψn

(|u|) =̂h(u,0)

= 1

2π

∫ ∞

−∞
ψn+1(u, s)ds

= 1

2π

∫ ∞

−∞
Ψn+1

(

√

|u|2 + s2
)

ds

= 1

π

∫ ∞

0
Ψn+1

(
√

r2 + s2
)

ds, (4.8)

as required. �

Let us consider an illustration.

Example 4.2 Let us take φn(x) = e−t |x|2 where t > 0. Then ψn(u) = (π/t)n/2e−|u|2/4t

and Ψn(r) = (π/t)n/2e−r2/4t , an expression that equals

1

2π

∫ ∞

−∞
Ψn+1

(
√

r2 + s2
)

ds = 1

2π

∫ ∞

−∞
(π/t)(n+1)/2e−(r2+s2)/4tds

= π(n−1)/2

2t (n+1)/2
e−r2/4t

∫ ∞

−∞
e−s2/4tds,

and this yields the well known formula
∫ ∞
−∞ e−s2/4tds = 2

√
πt .

If we iterate the (4.3) we can express Ψn in terms of Ψn+q , for q > 0.

Proposition 4.3 If Ψn,Ψn+q = Zn,n+q(Ψn) ∈ Seven[0,∞) then

Ψn(r) =
(

a

2π

)q

ωq−1

∫ ∞

0
Ψn+q

(
√

r2 + s2
)

sq−1ds, (4.9)
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Proof Indeed, (4.3) yields

Ψn(r) =
(

a

2π

)q ∫ ∞

−∞
· · ·

∫ ∞

−∞
Ψn+q

(√

r2 + s2
1 + · · · s2

q

)

dsq · · ·ds1, (4.10)

and using polar coordinates (s1, . . . , sq) = s = sv, |v| = 1, we obtain

Ψn(r) =
(

a

2π

)q ∫ ∞

0

∫

Sq−1
Ψn+q

(
√

r2 + s2
)

sq−1dσ(v)ds

=
(

a

2π

)q

ωq−1

∫ ∞

0
Ψn+q

(
√

r2 + s2
)

sq−1ds,

that is, (4.9). �

Formula (4.9) allows us to find formulas for certain integrals over Sk−1.

Example 4.4 The integral
∫

Sk−1
v

2p1
1 · · ·v2pk

k dσ(v) = 2Γ (p1 + 1/2) · · ·Γ (pk + 1/2)

Γ (p1 + · · · + pk + k/2)
, (4.11)

where (p1, . . . , pk) ∈ N
k , appears in several computations involving the potential of

an inverse-square field [1, Appendix A], [5, (3.13)]. We can obtain this and similar
integrals in the following way. Since

Zn+q1+···+qk,n = Zn+q1,n · · ·Zn+q1+···+qk,n+q1+···+qk−1 ,

we obtain

ωq1+···+qk−1

∫ ∞

0
Ψn+q1+···+qk

(
√

r2 + s2
)

sq1+···+qk−1ds

= ωq1−1 · · ·ωqk−1

×
∫ ∞

0
· · ·

∫ ∞

0
Ψn+q1+···+qk

(
√

r2 + s2
1 · · · + s2

k

)

s
q1−1
1 · · · sqk−1

k ds1 · · ·dsk,

so that
∫

S
k−1+

v
q1−1
1 · · ·vqk−1

k dσ(v) = ωq1+···+qk−1

ωq1−1 · · ·ωqk−1
, (4.12)

if qj ≥ 1, where S
k−1+ = {v ∈ S

k−1 : vj ≥ 0,1 ≤ j ≤ k}. This yields, of course, the
integral

∫

Sk−1 |v1|q1−1 · · · |vk|qk−1dσ(v), equal to 2−k the integral in (4.12), and thus
(4.11). The particular case

∫ π/2

0
cosq1−1 θ sinq2−1 θdθ = ωq1+q2−1

ωq1−1ωq2−1
= Γ (q1/2)Γ (q2/2)

2Γ ((q1 + q2)/2)
, (4.13)

follows from (4.12) when k = 2.
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Next we give formulas to obtain Ψn from Ψn−q , for q > 0. We start with the case
when q is even and recover the formula for Zn,n−2 from [9].

Proposition 4.5 If Ψn,Ψn−2 = Zn,n−2(Ψn) ∈ Seven[0,∞) then

Ψn(r) = − 2π

a2r
Ψ ′

n−2(r). (4.14)

Proof Let us employ (4.9) with q = 2 to obtain

Ψn−2(r) = a2

2π

∫ ∞

0
Ψn

(
√

r2 + s2
)

sds. (4.15)

Differentiation of this relation gives (4.14):

Ψ ′
n−2(r) = a2

2π

∫ ∞

0

Ψ ′
n(

√
r2 + s2)rs√
r2 + s2

ds

= a2r

2π
Ψn

(
√

r2 + s2
)∣

∣

∞
s=0

= −a2r

2π
Ψn(r),

since Ψn ∈ S(R). �

Let us use the notation

L = − 2π

a2r

d

dr
. (4.16)

Notice that L sends Seven[0,∞) to itself.

Proposition 4.6 If Ψn,Ψn−2p = Zn,n−2p(Ψn) ∈ Seven[0,∞), p > 0, then

Ψn(r) = Lp
(

Ψn−2p(r)
)

. (4.17)

We can also express Ψn in terms of Ψn−q when q > 0 is odd.

Proposition 4.7 If Ψn,Ψn−2p+1 = Zn,n−2p+1(Ψn) ∈ Seven[0,∞), p > 0, then

Ψn(r) = a

π
Lp

∫ ∞

0
Ψn−2p+1

(
√

r2 + s2
)

ds. (4.18)

In particular

Ψn(r) = − 2

ar

d

dr

∫ ∞

0
Ψn−1

(
√

r2 + s2
)

ds. (4.19)

Proof We just need to combine (4.17) and (4.3). �
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5 Distributional Formulas

We shall now consider the extension of the operators Zn,k and the operators Zn,k

to distributions. As it was the case with the operators Jn,k , there are three cases,
according to whether n − k is even and positive, even and negative, or odd.

5.1 Case I: k − n Even, k > n

Since the operator Jn,k has a unique distributional extension J n,k we immediately
obtain from (4.2) the following results.

Proposition 5.1 If k −n is even, k > n then the operator Zn,k : Srad(R
n) → Srad(R

k)

has a unique continuous extension Zn,k : S ′
rad(R

n) → S ′
rad(R

k). The operator Zn,k is
onto and has a kernel of dimension q = (k − n)/2, formed by the distributions of the
form

∑q−1
j=0 aj |x|2j .

Observe that the operator L defined in (4.16) can be considered as an operator
from R′

n[0,∞) to R′
n+2[0,∞). Then we have the ensuing result [9].

Proposition 5.2 If k − n is even, k > n then the operator Zn,k : Seven[0,∞) →
Seven[0,∞), has a unique continuous extension Zn,k : R′

n[0,∞) → R′
k[0,∞). Ac-

tually,

Zn,k = L(k−n)/2. (5.1)

The operator Zn,k is onto and has a kernel of dimension q = (k − n)/2, formed by

the distributions of the form
∑q−1

j=0 aj r
2j .

In particular,

Zn,n+2 = L, (5.2)

which means that if G ∈ R′
n[0,∞), H ∈ R′

n+2[0,∞) and H = L(G), then g =
J1,n(G) and h = J1,n+2(H) are the Fourier transforms of the same radial function,
F , one in dimension n and the other in dimension n + 2:

g = F(fn), h = F(fn+2), fn = Jn(F ), fn+2 = Jn+2(F ). (5.3)

5.2 Case II: k − n Even, k < n

If q = (n − k)/2 > 0, then the operator Zn,k given by Zn,n−2q(Ψn) = Ψn−2q ,

Ψn−2q(r) =
(

a

2π

)2q

ω2q−1

∫ ∞

0
Ψn

(
√

r2 + s2
)

s2q−1ds, (5.4)

sends Seven[0,∞) to itself but it does not have a continuous extension from R′
n[0,∞)

to R′
k[0,∞). However, a continuous extension into a related space can be con-

structed.
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Definition 5.3 The space Rk,q [0,∞) consists of those elements Φ ∈ Rk[0,∞) that
satisfy

μ2j (Φ) =
∫ ∞

0
r2jΦ(r)dr = 0, 0 ≤ j ≤ q − 1. (5.5)

The space Rk,q [0,∞) is a subspace of codimension q of Rk[0,∞).
Observe that since k < n the operator Zk,n : R′

k[0,∞) → R′
n[0,∞) is onto, and

has a kernel of dimension q , generated by the distributions r2j , 0 ≤ j ≤ q − 1.

The adjoint operator Z
T

k,n : Rn[0,∞) → Rk[0,∞) is injective and has an image
of codimension q , namely Rk,q [0,∞); therefore we can define an inverse opera-

tor W : Rk,q [0,∞) → Rn[0,∞), WZ
T

k,n = I . Hence the adjoint WT : R′
n[0,∞) →

R′
k,q [0,∞) is well defined, continuous, and coincides with Zn,n−2q in Seven[0,∞).

Definition 5.4 The operator ˜Z0
n,n−2q :R′

n[0,∞) → R′
k,q [0,∞), is defined as

〈

˜Z0
n,n−2q(F ),Φ

〉 = 〈

F,W(Φ)
〉

, (5.6)

for F ∈R′
n[0,∞) and Φ ∈Rk,q [0,∞), where

W
{

Φ(r); s} =
(

a

2π

)2q

ω2q−1s

∫ s

0

(

s2 − r2)q−1
Φ(r)dr. (5.7)

It is interesting to observe that if Φ ∈Rk[0,∞) then W {Φ(r); s} is a well defined
smooth function in [0,∞), which has the behaviour of the elements of Rn[0,∞) as
s → 0+, but which at infinity has a development of the form χ + Ψ , where Ψ is of
rapid decay while χ is a polynomial that depends linearly on μ2j , 0 ≤ j ≤ q − 1.
Hence W {Φ(r); s} belongs to Rn[0,∞) exactly when Φ ∈ Rk,q [0,∞).

Proposition 5.5 The operator Zn,n−2q : Seven[0,∞) → Seven[0,∞), given by the
integral (5.4) has a unique continuous extension ˜Z0

n,n−2q : R′
n[0,∞) →R′

k,q [0,∞),

that is, if Φ ∈ Rk,q [0,∞), F ∈ R′
n[0,∞), and {Ψ {j}

n }∞j=1 is a sequence of
Seven[0,∞) that converges to F in R′

n[0,∞) then the limit

lim
j→∞

∫ ∞

0
Ψ

{j}
n−2q(r)Φ(r)dr, (5.8)

exists, independently of the sequence, and equals 〈˜Z0
n,n−2q(F ),Φ〉.

Since the space Rk,q [0,∞) has finite codimension, there will exist operators
˜Zn,n−2q : R′

n[0,∞) → R′
k[0,∞) such that ˜Zn,n−2q(F )|Rk,q [0,∞) = ˜Z0

n,n−2q(F ) for
all F ∈ R′

n[0,∞). These operators are all of the following form,
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〈

˜Zn,n−2q(F ),Φ
〉 =

〈

˜Z0
n,n−2q(F ),Φ −

q−1
∑

j=0

μ2j (Φ)ϑj

〉

+
q−1
∑

j=0

μ2j (Φ)〈F,Ωj 〉, (5.9)

for Φ ∈ Rk[0,∞). Here ϑ1, . . . , ϑq−1 ∈ Rk[0,∞) satisfy μ2j (ϑl) = δjl , while
Ω1, . . . ,Ωq−1 ∈ Rn[0,∞) are arbitrary. This form of the operators ˜Zn,n−2q can be
obtained from the following general result from linear algebra.

Lemma 5.6 Let E,F , and G be locally convex topological vector spaces. Let E0 =
{x ∈ E : 〈x∗

j , x〉 = 0,1 ≤ j ≤ q} be a subspace of finite codimension of E, where
x∗

1 , . . . , x∗
q ∈ E′ are linearly independent.

(1) There exist w1, . . . ,wq ∈ E such that 〈x∗
j ,wl〉 = δjl , for 1 ≤ j, l ≤ q .

(2) If Z0 : E0 → F is a continuous linear map, then it has continuous linear exten-
sions Z : E → F , all of which are of the form

Z(x) = Z0

(

x −
q

∑

j=1

〈

x∗
j , x

〉

wj

)

+
q

∑

j=1

〈

x∗
j , x

〉

aj , (5.10)

where a1, . . . , aq ∈ F are arbitrary.
(3) If T : G → E′

0 is a continuous linear operator then there exist continuous oper-
ators ˜T : G → E′ such that ˜T (z)|E0 = T (z) for all z ∈ G, where the dual spaces
have both the strong topology (or both the weak topology), and all such operators
are of the form

〈

˜T (z), x
〉 =

〈

T (z), x −
q

∑

j=1

〈

x∗
j , x

〉

wj

〉

+
q

∑

j=1

〈

x∗
j , x

〉〈

b∗
j , z

〉

, (5.11)

where b∗
1, . . . , b∗

q ∈ G′ are arbitrary.

Naturally, one can also construct the operators ˜Zn,n−2q by employing the operators
˜Jn,n−2q from the Proposition 3.3.

Proposition 5.7 Any operator ˜Zn,n−2q constructed as in (5.9) is of the form

˜Zn,n−2q = pJn−2q,1F˜Jn,n−2qF−1
J1,np

−1, (5.12)

where ˜Jn,n−2q satisfies the conditions of Proposition 3.3.

We can also define operators ˜Zn,k : S ′
rad(R

n) → S ′
rad(R

k) in case II,

˜Zn,k = F˜Jn,kF−1, (5.13)
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which are generalized inverses of the distributional operator Zk,n, namely,
Zk,n

˜Zn,k(fn) = fn, while ˜Zn,kZk,n(fk) = fk + g, where g ∈ KerZk,n. Of course,
any operator constructed as in (5.9) is of the form ˜Zn,k = pJk,1˜Zn,kJ1,np

−1.

5.3 Case III: n − k Odd

Let us start with some definitions.

Definition 5.8 Let Srad,0(R
n) be the subset of radial test functions whose moments

of all orders vanish, φ ∈ Srad(R
n) belongs to Srad,0(R

n) if and only

∫

Rn

xαφ(x)dx = 0, ∀α ∈N
n, (5.14)

and let S ′
rad,0(R

n) = (Srad,0(R
n))′ be the corresponding dual space.

Notice that φ ∈ Srad(R
n) belongs to Srad,0(R

n) if and only

∫

Rn

|x|2j φ(x)dx = 0, ∀j ∈ N. (5.15)

Definition 5.9 The space Rn,∞[0,∞) consists of those elements Φ ∈Rn[0,∞) that
satisfy

μ2j (Φ) =
∫ ∞

0
r2jΦ(r)dr = 0, ∀j ∈N. (5.16)

The spaces Rn,∞[0,∞) and Srad,0(R
n) as well as the dual spaces R′

n,∞[0,∞)

and S ′
rad,0(R

n) are naturally isomorphic; we shall denote by J0
n,1 : S ′

rad,0(R
n) →

R′
n,∞[0,∞) this isomorphism and its inverse by J0

1,n = (J0
n,1)

−1. Furthermore, both
the Fourier transform and its inverse are isomorphisms of Srad,0(R

n) to Srad(R
n \{0})

and isomorphisms of the corresponding dual spaces.
Employing the operator J 0

n,k : S ′
rad(R

n \ {0}) → S ′
rad(R

k \ {0}) given in Defini-
tion 2.3 we can define the following operators.

Definition 5.10 The operator Z0
n,k : S ′

rad,0(R
n) → S ′

rad,0(R
k) is defined as

Z
0
n,k = FJ 0

n,kF−1. (5.17)

The operator Z0
n,k :R′

n,∞[0,∞) → R′
k,∞[0,∞) is defined as

Z0
n,k = J

0
k,1FJ 0

n,kF−1
J

0
1,n = J

0
k,1Z

0
n,kJ

0
1,n. (5.18)

The operators Z0
n,k and Z0

n,k are distributional versions of Zn,k and Zn,k for any
integers n and k.
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Proposition 5.11 The operator Zn,k : Srad(R
n) → Srad(R

k) has a unique continu-
ous extension as an operator from S ′

rad,0(R
n) to S ′

rad,0(R
k), namely Z0

n,k . The oper-
ator Zn,k : Seven[0,∞) → Seven[0,∞) has a unique extension as an operator from
R′

n,∞[0,∞) to R′
k,∞[0,∞), namely Z0

n,k .

Let us denote by π the canonical projection from S ′
rad(R

n) to S ′
rad,0(R

n). Then in
case I, we have

πZn,k = Z
0
n,kπ, (5.19)

while in case II,

π˜Zn,k = Z
0
n,kπ, (5.20)

for any generalized inverse operator ˜Zn,k . Similarly, if we now denote by π the pro-
jection of R′

n[0,∞) onto R′
n,∞[0,∞), then

πZn,k = Z0
n,kπ, (5.21)

in case I, and

π˜Zn,k = Z0
n,kπ, (5.22)

for any of the operators ˜Zn,k in case II. On the other hand, Proposition 3.4 immedi-
ately yields the following result.

Proposition 5.12 If k − n is odd then there are no continuous operators Z :
S ′

rad(R
n) → S ′

rad(R
k) such that

πZ = Z
0
n,kπ, (5.23)

where π is the canonical projection from S ′
rad(R

n) to S ′
rad,0(R

n). There are no con-
tinuous operators Z :R′

n[0,∞) → R′
k[0,∞) such that

πZ = Z0
n,kπ, (5.24)

where π is the projection of R′
n[0,∞) onto R′

n,∞[0,∞).

Let us consider the case of Zn+1,n, that is, Ψn = Zn+1,n(Ψn+1) where

Ψn(r) = a

π

∫ ∞

0
Ψn+1

(
√

r2 + s2
)

ds. (5.25)

What Proposition 5.12 tell us is that we cannot extend in a canonical, continuous
way the formula (5.25) if we want to replace Ψn+1 by Gn+1 ∈R′

n+1[0,∞) and Ψn by
Gn ∈ R′

n[0,∞). There are some subclasses of R′
n+1[0,∞) for which the formula can

be extended, yielding an element of R′
n[0,∞): we need to require Gn+1 to be not too

big at infinity so that the integral makes sense, but we cannot do it for all distributions
Gn+1 ∈R′

n+1[0,∞). In particular, if Gn+1 has compact support, then Zn+1,n(Gn+1)

can be obtained from the integral formula; more generally, if Gn+1 is an ordinary
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function of r for r > A for some A and Gn+1(r) = O(rα) for some α < −1, then
the integral would be convergent, yielding a canonical Zn+1,n(Gn+1). Actually it is
enough to ask that the order relation Gn+1(r) = O(rα), for some α < −1, holds in
the Cesàro sense.6

5.4 Illustrations

We shall now give several examples of the formulas. We shall take a = 1.

Example 5.13 Let us consider the distribution fn ∈ S ′
rad(R

n) given by fn(x) = e−t |x|,
and let gn = ̂fn, gn(x) = Gn(|x|). We have that

G1(r) =
∫ ∞

−∞
e−t |x|+irxdr = 2t

t2 + r2
. (5.26)

Thus

G2(r) = −2

r

d

dr

∫ ∞

0
G1

(
√

r2 + s2
)

ds

= −4t

r

d

dr

∫ ∞

0

ds

t2 + r2 + s2

= 2tπ
(

t2 + r2)−3/2
. (5.27)

Applying (5.1) to G1 we obtain Gn for n odd, and applying (5.1) to G2 we obtain Gn

for n even; the result is

Gn(r) = 2nπ
n−1

2 Γ

(

n + 1

2

)

t
(

t2 + r2)−(n+1)/2
, (5.28)

as obtained by other methods [11, Chap. 6, Example 14].

Example 5.14 Take fn(x) = |x|λ, gn = ̂fn where λ is not an integer; since gn is radial
and homogeneous of degree λ − n, we obtain gn(x) = Gn(|x|) = Cn

λ |x|−λ−n, for a
certain constant Cn

λ . Employing the integral formula (5.25) for �eλ > 2n we obtain

Cn
λr−λ−n = 1

π

∫ ∞

0
Cn+1

λ

(

r2 + s2)−(λ−n−1)/2ds, (5.29)

or

Cn
λ

Cn+1
λ

= 1

π

∫ ∞

0

(

1 + v2)−(λ−n−1)/2dv = Γ (λ+n
2 )

2
√

πΓ (λ+n+1
2 )

, (5.30)

6See [2, 7] for the theory of order relation in the Cesàro sense for distributions.
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and since C1
λ = 2λ+1√πΓ (λ+1

2 )/Γ (−λ
2 ), we obtain the well known result [11,

Chap. 6, Eq. (64)]

Cn
λ = 2λ+nπn/2Γ (λ+n

2 )

Γ (−λ
2 )

, (5.31)

initially for �eλ > 2n and for all non-integral λ by analytic continuation.

Example 5.15 Take fn(x) = δ(|x| − 1), gn = ̂fn so that [11] gn(x) = Gn(|x|) =
(2π)n/2J(n−2)/2(|x|)|x|−(n−2)/2, where Jν is the Bessel function of the first kind.
Then replacing n − 2 by m, our formulas yield the integral representation

Jm/2(r) = rm/2

(2π)q/2
ωq−1

∫ ∞

0

J(m+q)/2(
√

r2 + s2)sq−1

(r2 + s2)(m+q)/4
ds. (5.32)

Example 5.16 This example illustrates the problems with the distributional extension
of Zn,k and Zn,k when n − k is odd. Consider the distribution G1(r) = α, a constant;
clearly one cannot compute Z1,2(G1) because it is given in terms of a divergent in-
tegral. However one may proceed as follows. Let F(r) = αδ(r) + βδ′(r), a distri-
bution of S ′[0,∞). Then we obtain corresponding radial distributions fn ∈ S ′

rad(R
n)

given by f1(x) = αδ(x), f2(x) = −2πβδ(x), fn(x) = 0 if n ≥ 3. Thus if gn = ̂fn,
gn(x) = Gn(|x|), we obtain g1 = α, g2 = −2πβ , gn = 0 for n ≥ 3. Thus, since they
are the Fourier transforms of the same radial function, in dimensions 1 and 2, one
could think that Z1,2(α) = −2πβ , and, similarly, that Z1,2(α) = −2πβ; however, of
course, this is absurd, since α and β are arbitrary constants.

A summary is in order. In case I, if gn ∈ S ′
rad(R

n), corresponding to Gn ∈
R′

n[0,∞), gn(x) = Gn(|x|), then there is a unique radial distribution gk ∈ S ′
rad(R

k),
corresponding to Gk ∈ R′

k[0,∞), such that gn and gk are the Fourier transform
of the same radial distribution, in their corresponding dimensions; the associations
gn �−→ gk and Gn �−→ Gk are given by the operators Zn,k : S ′

rad(R
n) → S ′

rad(R
k)

and Zn,k : R′
n[0,∞) → R′

k[0,∞), respectively. In case II, for a given gn, or Gn,
there are many possible gk and Gk , but they depend on a finite number of param-
eters, and for each set of such parameters we obtain a continuous operator, ˜Zn,k or
˜Zn,k . In case III, for each gn, or Gn, there are so many possible gk and Gk , that it
is impossible to have a continuous association gn �−→ gk or Gn �−→ Gk . A useful
analogy is the following: case I is like multiplying elements of S ′[0,∞) by xq for
some q ∈ N, case II is like multiplying by x−q for some q ∈ N, q ≥ 1, while case III
is like multiplication with xα for some α ∈ R \Z.
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