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Abstract In this paper we investigate encoding the bit-stream resulting from coarse
Sigma-Delta quantization of finite frame expansions (i.e., overdetermined represen-
tations) of vectors. We show that for a wide range of finite-frames, including random
frames and piecewise smooth frames, there exists a simple encoding algorithm—
acting only on the Sigma-Delta bit stream—and an associated decoding algorithm
that together yield an approximation error which decays exponentially in the number
of bits used. The encoding strategy consists of applying a discrete random operator
to the Sigma-Delta bit stream and assigning a binary codeword to the result. The re-
construction procedure is essentially linear and equivalent to solving a least squares
minimization problem.
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1 Introduction

In the modern era, the first step in signal processing consists of obtaining a digital rep-
resentation of the signal of interest, i.e., quantizing it. This enables one to store, trans-
mit, process, and analyze the signal via digital devices. Sigma-Delta (Σ�) quantiza-
tion was proposed in the 1960’s as a quantization scheme for digitizing band-limited
signals (see, e.g., [18]). Since then, and especially with the advent of very large scale
integration (VLSI) technology, Σ� schemes have seen extensive use in the engi-
neering community for analog-to-digital conversion of, for example, audio signals
(cf. [25]). In the mathematical community, Σ� quantization has seen increasing in-
terest since the work of Daubechies and DeVore [8]. In this paper, we are interested
in efficiently encoding the bit-stream resulting from Σ� quantization of finite-frame
expansions. Here one models the signal as an element in a finite dimensional space,
and its samples as inner products with a spanning set of vectors. The goal is, using
only the samples, to obtain a digital representation of the original signal that allows
its high fidelity reconstruction.

1.1 Overview and Prior Work

For concreteness, let the vectors {fi}Ni=1 ⊂ R
d form a finite frame for Rd . In other

words, suppose there exist constants 0 < A ≤ B < ∞ such that the frame matrix
F ∈R

N×d (with the vectors fi as its rows) satisfies

A‖x‖2
2 ≤ ‖Fx‖2

2 ≤ B‖x‖2
2

for all x ∈ R
d . Thus any full rank matrix is a frame matrix. In the context of data

acquisition, finite frames are useful at modeling the sampling (i.e., measurement)
process. In various applications, the measurement vector can be expressed as

y := Fx ∈R
N. (1)

For example, in imaging applications, “multiplex” systems (see, e.g., [6]) collect lin-
ear combinations of the pixels of interest, thus, their measurement vectors can be
represented using (1). Such systems have been devised using coded apertures (see,
e.g., [20]), as well as digital micro-mirror arrays (e.g., [10]). Indeed, by simply col-
lecting more measurements than the ambient dimension of the image, as is often the
case, and ensuring that F is full rank, we find ourselves in the finite frame setting.
Similarly, systems that acquire finite dimensional signals using filter banks allow their
measurement process to be modeled via (1). For a more in-depth treatment of finite
frames and filter banks, see [11].

In order to allow digital storage and computer processing, including the recovery
of x, one must quantize the finite frame expansion (1). Quantizing the finite frame
expansion of x consists of replacing the entries of the measurement vector y := Fx ∈
R

N with elements from a finite set. Giving these elements binary labels then enables
digital storage and transmission of the quantized measurements. To be precise, let
A ⊂ R be a finite set (the quantization alphabet), and let X be a compact set in R

d .
A quantization scheme is a map

Q : FX �→ AN
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and a reconstruction scheme is an “inverse” map

� : AN �→R
d .

Note that, depending on the practical application, one may require that the quanti-
zation schemes satisfy certain properties. For example, it is often preferred that the
quantization scheme acts progressively on the measurements, i.e., as they arrive, to
avoid storing too many analog quantities. Nevertheless, one seeks quantization and
reconstruction schemes with approximation errors ‖x−�(Q(Fx))‖2 that are as small
as possible for all x ∈ X .

Σ� quantization schemes form an important class of such progressive quantiz-
ers, and there has been much work focusing on their application to the finite frame
setting. In particular, the research on Σ� quantization of finite frame expansions
has focused on the decay of the approximation error as a function of the number
of measurements and has typically considered X = Bd , the Euclidean ball in R

d .
The work of Benedetto, Powell, and Yılmaz [4] first showed that the reconstruction
error associated with 1st order Σ� quantization decays linearly in the number of
measurements. Several results followed, improving on this linear error decay by us-
ing various combinations of specialized frames, higher order quantization schemes,
and different reconstruction techniques. Blum et al. [5] showed that frames with cer-
tain smoothness properties allow for polynomial decay in the Σ� reconstruction
error, provided appropriate alternative dual frames are used for reconstruction. Mo-
tivated by applications in compressed sensing, a similar result [16] was shown for
random frames whose elements are Gaussian random variables. This was followed
by the results of [21] and [22] showing that there exist (deterministic and random)
frames for which higher order Σ� schemes yield approximation errors that behave

like e
−c

√
N
d , where c is a constant. Specifically, in [21, 22] this root-exponential ac-

curacy is achieved by carefully choosing the order of the scheme as a function of the
oversampling rate N/d . For a more comprehensive review of Σ� schemes applied
to finite frames, see [26].

While the above results progressively improved on the coding efficiency of Σ�

quantization, it remains true that even the root-exponential performance e
−c

√
N
d of

[21, 22] is generally sub-optimal from an information theoretic perspective, including
in the case where X = Bd . To be more precise, any quantization scheme tasked with
encoding all possible points in Bd to within ε-accuracy must produce outputs which,
in the case of an optimal encoder, each correspond to a unique subset of the unit ball
having radius at most ε. Covering each of these subsets with a ball of radius at most
ε then produces an ε-cover of Bd . A simple volume argument now shows that cov-
ering Bd with balls of radius ε requires one to use at least ( 1

ε
)d such ε-balls.1 Thus,

quantizing Bd via an optimal map requires at least d ln c
ε

bits, or, viewed slightly
differently: optimally quantizing Bd with b-bits yields an approximation error of the

form e−c b
d , where c ∈ R

+ is a universal constant. Observing that the number of bits

1Moreover, there exists a covering with no more than ( 3
ε )d elements (see, e.g., [24]).
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that result from a Σ� scheme is proportional to N and that the best known error rates
are root-exponential in N , we conclude that Σ� schemes are sub-optimal.

This fact has been recognized in the mathematical literature on Σ� quantization.
In particular, in the case where d = 1 and the frame F is the N × 1 repetition frame
with Fi1 = 1 for all i ∈ [N ], there has been research seeking upper bounds on the
maximum number of possible Σ� bit-streams (cf. [2, 15, 17]). For example, [17]
showed that asymptotically in N , the number of bit-streams is bounded by O(N2)

for first order single-bit Σ� schemes with certain initial conditions. This indicates
that by losslessly encoding the possible Σ� bitstreams into codewords of length
O(log(N)), one can achieve the desired exponential error rates. However, to do that
one needs to identify the O(N2) achievable sequences from among the 2N potential
ones, which to our knowledge is an unsolved problem. Moreover, to our knowledge,
not much is known about the number of codewords generated by Σ� quantization in
more general settings.

To help remedy this situation, this paper introduces a potentially lossy encoding
stage, consisting of the map

E :AN �→ C,

where C is such that |C| 	 |AN |. Consequently, log2 |C| bits are sufficient for digitally
representing the output of this encoder. To accommodate this additional encoding,
the reconstruction is modified to approximate x directly from C. Thus, we propose a
decoder

� : C �→ R
d,

where both the proposed decoder, �, and the proposed encoding map, E , are linear,
hence computationally efficient.

1.2 Contributions

For stable Σ� quantization schemes, we show that there exists an encoding scheme
E acting on the output Q(Fx) of the quantization, and a decoding scheme �, such
that

εΣ� := max
x∈Bd

∥∥x − �
(
E
(
Q(Fx)

))∥∥
2 ≤ CN−α

bΣ� := ln |C| ≤ C′d lnN,

}
=⇒ εΣ� ≤ exp

(
−c

bΣ�

d

)
.

where α, C, C′, and c are positive constants that depend on the Σ� scheme and d .
More specifically:

1. We show that there exist frames (the Sobolev self-dual frames), for which en-
coding by random subsampling of the integrated Σ� bit-stream (and labeling
the output) yields an essentially optimal rate-distortion tradeoff up to logarithmic
factors of d .

2. We show that random Bernoulli matrices in R
m×d , with m ≈ d , are universal

encoders. Provided one has a good frame for Σ� quantization, such Bernoulli
matrices yield an optimal rate-distortion tradeoff, up to constants.
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3. We show that in both cases above, the decoding can be done linearly and we
provide an explicit expression for the decoder.

These contributions are made explicit in Theorems 3 and 4. Additionally, we note
that Σ� schemes (see Sect. 2) act progressively on the samples y = Fx, and do not
require explicit knowledge of the frame that produced y. Similarly, the Bernoulli en-
coding of the Σ� bit-stream does not require knowledge of the underlying frame.
Nevertheless, and somewhat surprisingly, this encoding method allows the compres-
sion of the Σ�-bitstream in a near optimal manner. It also allows the decoding to
be done linearly via an operator Rm �→ R

d , hence in time proportional to md , as op-
posed to time proportional to Nd needed (in general) for reconstructing a signal from
its unencoded Σ� bitstream. One of the favorable properties of coarse Σ� quantiza-
tion schemes is their robustness to certain errors that can arise in practice due to (for
example) circuit imperfections (cf. [8]). Such imperfections can affect the elements
that implement scalar quantization (i.e., assigning discrete values to continuous ones
by toggling at a threshold), or multiplication. We remark that our methods for com-
pressing the Σ� bit-stream inherit whatever robustness properties the original Σ�

quantizer possesses. In other words, by compressing the bit-stream, we do not lose
any of the desirable properties of Σ� quantization.

1.3 Organization

In Sect. 2, we introduce notation and provide a mathematical overview of Σ� quan-
tization. We also state certain results on random matrices, in particular Johnson-
Lindenstrauss embeddings, which will be useful in the remainder of the paper. In
Sect. 3 we show that random subsampling of the discretely integrated Σ� bit-stream
allows a linear decoder to achieve exponentially decaying reconstruction error, uni-
formly for all x ∈ Bd . This result pertains to a particular choice of frames, the Sobolev
self-dual frames [21], and is contingent on using 1st order Σ� schemes. In Sect. 4
we instead use a Bernoulli matrix for reducing the dimensionality of the integrated
Σ�-bit stream. Here, our result is more general and applies to stable Σ� schemes
of arbitrary order, as well as to a large family of smooth and random frames. Finally,
in Sect. 5 we illustrate our results with numerical experiments.

2 Preliminaries

Below we will denote the set {1,2, . . . , n − 1, n} ⊂ N by [n]. For any matrix
M ∈ R

m×N we will denote the j th column of M by Mj ∈ R
m. Furthermore, for a

given subset S = {s1, . . . , sn} ⊂ [N ] with s1 < s2 < · · · < sn, we will let MS ∈ R
m×n

denote the submatrix of M given by

MS := (Ms1 · · ·Msn).

The transpose of a matrix, M ∈ R
m×N , will be denoted by MT ∈R

N×m, and the sin-
gular values of any matrix M ∈ R

m×N will always be ordered as σ1(M) ≥ σ2(M) ≥
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· · · ≥ σmin(m,N)(M) ≥ 0. We will denote the standard indicator function by

δi,j :=
{

1 if i = j

0 if i �= j,

for i, j ∈ N. Finally, given a frame matrix F , we define its Moore-Penrose pseudo-
inverse to be F † := (F T F )−1FT .

2.1 Sigma-Delta Quantization

Let Bd be the Euclidean unit ball in R
d . Given x ∈ Bd , and a frame matrix F ∈

R
N×d , the simplest Σ� quantization scheme considered herein, in Sect. 3, is the

single bit first order greedy scheme. Given y = Fx, this scheme computes a vector
q ∈ {−1,1}N via the following recursion with initial condition u0 = 0:

qi = sign(yi + ui−1), (2)

ui = yi + ui−1 − qi (3)

for all i ∈ [N ]. To analyze this scheme as well as higher order schemes, it will be
convenient to introduce the difference matrix, D ∈ R

N×N , given by

Di,j :=
⎧
⎨
⎩

1 if i = j

−1 if i = j + 1
0 otherwise.

(4)

We may restate the relationships between x, u, and q resulting from the above scheme
as

Du = Fx − q. (5)

Furthermore, a short induction argument shows that |ui | ≤ 1 for all i ∈ [N ] provided
that |yi | ≤ 1 for all i ∈ [N ].

More generally, for a given alphabet A and r ∈ Z
+ we may employ an r th-order

Σ� quantization scheme with quantization rule ρ : Rr+1 �→ R and scalar quantizer
Q :R �→ A. Such a scheme, with initial conditions u0 = u−1 = · · · = u1−r = 0, com-
putes q ∈ AN via the recursion

qi = Q
(
ρ(yi, ui−1, ui−2, . . . , ui−r )

)
, (6)

ui = yi − qi −
r∑

j=1

(
r

j

)
(−1)jui−j (7)

for all i ∈ [N ]. Here, the scalar quantizer Q is defined via its action

Q(v) = arg min
q∈A

|q − v|.

In this paper, we focus on midrise alphabets of the form

Aδ
K = {±(2n − 1)δ/2 : n ∈ [K]}, (8)
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where δ denotes the quantization step size. For example, when K = 1, we have the
1-bit alphabet Aδ

1 = {± δ
2 }. As before, we may restate the relationships between x, u,

and q as

Dru = Fx − q. (9)

As in the case of the first order scheme, we will ultimately need a bound on ‖u‖∞ :=
maxi∈[N ] |ui | below. Hence, we restrict our attention to stable r th-order schemes.
That is, r th-order schemes for which (6) and (7) are guaranteed to always produce
vectors u ∈ R

N having ‖u‖∞ ≤ Cρ,Q(r) for all N ∈ N, and y ∈ R
N with ‖y‖∞ ≤ 1.

Moreover, for our definition of stability we require that Cρ,Q : N �→ R
+ be entirely

independent of both N and y. Finally, it is important to note that stable r th-order Σ�

schemes with Cρ,Q(r) = O(rr) do indeed exist (see, e.g., [9, 14]), even when A is a
1-bit alphabet. In particular, we cite the following proposition [9] (cf. [21]).

Proposition 1 There exists a universal constant c > 0 such that for any midrise quan-
tization alphabet A = Aδ

L, for any order r ∈ N, and for all η < δ(L− 1
2 ), there exists

an r th order Σ� scheme which is stable for all input signals y with ‖y‖∞ ≤ η. It
has

‖u‖∞ ≤ cCrrr δ

2
, (10)

where

C =
(⌈

π2

(cosh−1 γ )2

⌉
e

π

)
and γ := 2L − 2η

δ
.

In what follows we will need the singular value decomposition of D essentially
computed by von Neumann in [27] (see also [21]). It is D = UΣV T , where

Ui,j =
√

2

N + 1/2
cos

(
2(i − 1/2)(N − j + 1/2)π

2N + 1

)
, (11)

Σi,j = δi,j σj (D) = 2δi,j cos

(
jπ

2N + 1

)
, (12)

and

Vi,j = (−1)j+1

√
2

N + 1/2
sin

(
2ij

2N + 1
π

)
. (13)

Note that the difference matrix, D, is full rank (e.g., see (12)). Thus, we may rear-
range (5) to obtain

u = D−1Fx − D−1q. (14)

More generally, rearranging (9) tells us that

u = D−rFx − D−rq (15)

for any r th-order scheme.
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2.2 Johnson-Lindenstrauss Embeddings and Bounded Orthonormal Systems

We will utilize linear Johnson-Lindenstrauss embeddings [1, 3, 7, 13, 19, 23] of a
given finite set S ⊂ R

N into R
m.

Definition 1 Let ε,p ∈ (0,1), and S ⊂ R
N be finite. An m × N matrix M is a linear

Johnson-Lindenstrauss embedding of S into R
m if the following holds with proba-

bility at least 1 − p:

(1 − ε)‖u − v‖2
2 ≤ ‖Mu − Mv‖2

2 ≤ (1 + ε)‖u − v‖2
2

for all u,v ∈ S . In this case we will say that M is a JL(N,m, ε,p)-embedding of S
into R

m.

We will say that a matrix B ∈ {−1,1}m×N is a Bernoulli random matrix iff each
of its entries is independently and identically distributed so that

P[Bi,j = 1] = P[Bi,j = −1] = 1

2

for all i ∈ [m] and j ∈ [N ]. The following theorem is proven in [1].

Theorem 1 Let m,N ∈ N, S ⊂ R
N finite, and ε,p ∈ (0,1). Let B ∈ {−1,1}m×N be

a Bernoulli random matrix, and set B̃ = 1√
m

B . Then, B̃ will be a JL(N,m, ε,p)-

embedding of S into R
m provided that m ≥ 4+2 log|S|(1/p)

ε2/2−ε3/3
ln |S|.

Let D ⊂ R
n be endowed with a probability measure μ. Further, let Ψ =

{ψ1, . . . ,ψN } be an orthonormal set of real-valued functions on D so that
∫

D
ψi(t)ψj (t)dμ(t) = δi,j .

We will refer to any such Ψ as an orthonormal system. More specifically, we utilize
a particular type of orthonormal system:

Definition 2 We call Ψ = {ψ1, . . . ,ψN } a bounded orthonormal system with con-
stant K ∈R

+ if

‖ψk‖∞ := sup
t∈D

∣∣ψ(t)
∣∣ ≤ K for all k ∈ [N ].

For any orthonormal system, Ψ , on D ⊂ R
n with probability measure μ, we may

create an associated random sampling matrix, R′ ∈ R
m×N , as follows: First, select

m points t1, . . . , tm ∈ D independently at random according to μ.2 Then, form the
matrix R′ by setting R′

i,j := ψj (ti ) for each i ∈ [m] and j ∈ [N ]. The following

2So that P[tj ∈ S] = μ(S) for all measurable S ⊆ D and j ∈ [m].
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theorem concerning random sampling matrices created from bounded orthonormal
systems is proven in [12].3

Theorem 2 Let R′ ∈ R
m×N be a random sampling matrix created from a bounded

orthonormal system with constant K . Let S ⊂ [N ] have cardinality |S| = d , and set
R̃′ = 1√

m
R′. Then, for ε ∈ (0,1), we will have

√
1 − ε ≤ σd

(
R̃′S

) ≤ σ1
(
R̃′S

) ≤ √
1 + ε

with probability at least 1 − p provided that m ≥ (8/3)K2ε−2d ln(2d/p).

Note that Theorem 2 also applies to the special case where our orthonormal sys-
tem, Ψ , consists of the N columns of a rescaled unitary matrix U ∈R

N×N (i.e., ψj =√
NUj for all j ∈ [N ]). Here, D = [N ] ⊂ R, ψj (i) = √

NUi,j for all i, j ∈ [N ], and
μ is the discrete uniform measure on [N ]. In this case we will consider the random
sampling matrix, R′, for Ψ to be the product

√
NRU , where R ∈ {0,1}m×N is a

random matrix with exactly one nonzero entry per row (which is selected uniformly
at random). We will refer to any such random matrix, R ∈ {0,1}m×N , as a random
selector matrix.

3 Exponential Accuracy for First Order Sigma-Delta via Random Sampling

In this section we will deal only with first order Sigma-Delta. Hence, given x ∈ Bd ,
the vectors q,u ∈ R

N will always be those resulting from (2) and (3) above. Our
objective in this section is to demonstrate that a small set of sums of the bit stream
produced by the first order scheme considered herein suffices to accurately encode the
vector being quantized. Furthermore, and somewhat surprisingly, the number of sums
we must keep in order to successfully approximate the quantized vector is entirely
independent of N (though the reconstruction error depends on N ). Proving this will
require the following lemma.

Lemma 1 For every x ∈ Bd we will have D−1q ∈ {−N, . . . ,N}N ⊂ Z
N .

Proof Note that qi ∈ {−1,1} for all i ∈ [N ] (see (2)). Furthermore, it is not difficult
to check that

(
D−1)

i,j
=

{
1 if j ≤ i

0 otherwise.

Thus, we have that (D−1q)i ∈ {−i, . . . , i} for all i ∈ [N ]. �

We are new equipped to prove the main theorem of this section.

3The specific form of the lower bound used for m below is taken from Theorem 12.12 of [12].
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Theorem 3 Let ε,p ∈ (0,1), and R ∈ {0,1}m×N be a random selector matrix. Then,
there exists a frame F ∈ R

N×d such that

∥∥x − (
RD−1F

)†
RD−1q

∥∥
2 ≤

√
2π√

1 − ε

(
d

3
2

N

)

for all x ∈ Bd ⊂ R
d with probability at least 1 −p, provided that m ≥ (16/3)ε−2d ×

ln(2d/p). Here, q is the output of the first order Σ� quantization scheme (2) and (3),
applied to Fx. Furthermore, RD−1q can always be encoded using b ≤ m(log2 N +1)

bits.

Proof Let U,Σ,V ∈R
N×N be defined as in (11), (12), and (13), respectively. Define

F ∈R
N×d to be the (renormalized) last d columns of U ,

F :=
√

N

2d
(UN−d+1 · · ·UN). (16)

We refer to the frame corresponding to F as the 1st order Sobolev self-dual frame.
Denoting the ith row of F by fi ∈R

d , we note that (11) implies that

‖y‖∞ = ‖Fx‖∞ ≤ max
i∈[N ] ‖fi‖2‖x‖2 ≤

√
N

2d

√
2d

N + 1/2
· ‖x‖2 ≤ 1 (17)

for all x ∈ Bd . Now, apply the random selector matrix, R, to (14) to obtain

Ru = RD−1Fx − RD−1q.

Since our goal is to obtain an upper bound on
∥∥(

RD−1F
)†

Ru
∥∥

2 = ∥∥x − (
RD−1F

)†
RD−1q

∥∥
2 (18)

and since ‖Ru‖2 is easily controlled (see the discussion after (5)), it behooves us to
study RD−1F ∈ R

m×d . Observe that

D−1F =
√

N

2d
V Σ−1UT(UN−d+1 · · ·UN) =

√
N

2d

(
(V)N−d+1 · · · (V)N

)
Σ̃, (19)

where Σ̃ ∈R
d×d has

Σ̃i,j = δi,j

σN−d+j (D)
.

Let S = {N − d + 1, . . . ,N} ⊂ [N ]. Then,

RD−1F =
√

N

2d
RVSΣ̃ =

√
m

2d

(√
NRV√

m

)

S
Σ̃.

Applying Theorem 2 now tells us that
√

m

2d
·

√
1 − ε

σN−d+1(D)
≤ σd

(
RD−1F

) ≤ σ1
(
RD−1F

) ≤
√

m

2d
·
√

1 + ε

σN(D)
(20)
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with probability at least 1 − p, provided that m ≥ (16/3)ε−2d ln(2d/p).
Whenever (20) holds we may approximate x ∈ Bd by

x̂ := (
RD−1F

)†
RD−1q,

and then use (18) to estimate the approximation error as

‖x − x̂‖2 = ∥∥(
RD−1F

)†
Ru

∥∥
2 ≤

√
2d

m
· σN−d+1(D)√

1 − ε
‖Ru‖2.

Using (12) and recalling that |ui | ≤ 1 for all i ∈ [N ] since |yi | ≤ 1 for all i ∈ [N ] (see
(17)), we obtain

‖x − x̂‖2 ≤ 2
√

2d√
1 − ε

· cos

(
(N − d + 1)π

2N + 1

)

≤ 2
√

2d√
1 − ε

·
(

π

2
− (N − d + 1)π

2N + 1

)

≤
√

2π√
1 − ε

(
d

3
2

N

)
.

Finally, Lemma 1 tells us that RD−1q can always be encoded using b ≤
m(log2 N + 1) bits. �

Remark 1 Theorem 3 provides the desired exponentially decaying rate-distortion
bounds. In particular, by choosing the smallest integer m ≥ (16/3)ε−2d ln(2d/p),
the rate is

R= m(log2 N + 1),

and the distortion is

D =
√

2πd3/2

N
√

1 − ε
.

Expressing the distortion in terms of the rate, we obtain

D(R) = 2
√

2πd3/2

√
1 − ε

· 2−R/m = C1(ε) · d3/2 exp

(
− R

C2(ε)d ln(2d/p)

)
. (21)

Above, C1(ε) = 2π ·
√

2
1−ε

and 16
3 ln 2·ε2 + 1

d ln 2·ln(2d/p)
≥ C2(ε) ≥ 16

3 ln 2·ε2 .

Theorem 3 demonstrates that only O(logN)-bits must be saved and/or transmit-
ted in order to achieve O(1/N)-accuracy (neglecting other dependencies). Moreover,
from a practical point of view the use of random sampling matrices is appealing as
they allow for the O(logN) bits to be computed “on the fly” and with minimal cost.
However, the first order scheme we consider herein has deficiencies that merit addi-
tional consideration. Primarily, the first order scheme (2) and (3) must still be exe-
cuted before its output bitstream can be compressed. Hence, utilizing the compressed
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sigma delta encoding described in this section has an O(N) “cost” associated with it
(as the N -dimensional vector Fx must be acquired and quantized). This cost may be
prohibitive for some applications. Compared to the first order scheme we considered
here, higher order schemes can allow the same reconstruction accuracy with a smaller
number of measurements. Hence, we will consider results for higher order schemes
(and more general frames) in the next section.

4 Exponential Accuracy for General Frames and Orders via Bernoulli
Random Matrices

In this section we will deal with a more general class of stable r th-order Sigma-Delta
schemes. Hence, given x ∈ Bd , the vectors q,u ∈ R

N will always be those resulting
from (6) and (7) above. The main result of this section will require the following
lemma, which is essentially proven in [3].

Lemma 2 Let ε,p ∈ (0,1), {v1, . . . ,vd} ⊂ R
N , and B ∈ {−1,1}m×N be a Bernoulli

random matrix. Set B̃ = 1√
m

B . Then,

(1 − ε)‖x‖2 ≤ ‖B̃x‖2 ≤ (1 + ε)‖x‖2

for all x ∈ span{v1, . . . ,vd} with probability at least 1 − p, provided that

m ≥ 4d ln(12/ε) + 2 ln(1/p)

ε2/8 − ε3/24
.

Proof Combine Theorem 1 with the proof of Lemma 5.1 and the subsequent discus-
sion in [3]. �

In addition to considering more general r th-order quantization schemes, we will
also consider a more general class of frames, F ∈ R

N×d . More specifically, we will
allow any frame matrix which adheres to the following definition.

Definition 3 We will call a frame matrix F ∈R
N×d an (r,C,α)-frame if

1. ‖Fx‖∞ ≤ 1 for all x ∈ Bd , and
2. σd(D−rF ) ≥ C · Nα .

Roughly speaking, the first condition of Definition 3 ensures that the frame F

is uniformly bounded, while the second condition can be interpreted as a type of
smoothness requirement. We are now properly equipped to prove the main theorem
of this section.

Theorem 4 Let ε,p ∈ (0,1), B ∈ {−1,1}m×N be a Bernoulli random matrix, and
F ∈ R

N×d be an (r,C,α)-frame with r ∈ N, α ∈ (1,∞), and C ∈ R
+. Consider q,

the quantization of Fx via a stable r th-order scheme with alphabet A2μ
A and stability

constant Cρ,Q(r) ∈ R
+ (see (6), (7), (8) and the subsequent discussion). Then, the

following are true.
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(i) The reconstruction error (i.e., the distortion) satisfies

∥∥x − (
BD−rF

)†
BD−rq

∥∥
2 ≤ Cρ,Q(r) · N1−α

C · (1 − ε)

for all x ∈ Bd ⊂ R
d with probability at least 1 − p, provided that m ≥

4d ln(12/ε)+2 ln(1/p)

ε2/8−ε3/24
.

(ii) BD−rq can always be encoded using b ≤ m[(r + 1) log2 N + log2 A + 1] bits.

Proof Apply a Bernoulli random matrix, B ∈ {−1,1}m×N , to (15) and then renor-
malize by m−1/2 to obtain

B̃u = B̃D−rFx − B̃D−rq, (22)

where B̃ = 1√
m

B . Considering B̃D−rF ∈ R
m×d , we note that Lemma 2 guarantees

that B̃ is an near-isometry on span{D−rF1, . . . ,D
−rFd}. Thus,

(1 − ε) · C · Nα ≤ σd

(
B̃D−rF

)
(23)

with probability at least 1 − p, provided that m ≥ 4d ln(12/ε)+2 ln(1/p)

ε2/8−ε3/24
.

Given that (23) holds, we may approximate x ∈ Bd using BD−rq ∈ μZm by

x̂ := 1√
m

(
B̃D−rF

)†
BD−rq = (

B̃D−rF
)†

B̃D−rq,

and then use (22) to estimate the approximation error as

‖x − x̂‖2 = ∥∥(
B̃D−rF

)†
B̃u

∥∥
2 = ∥∥(

BD−rF
)†

Bu
∥∥

2 ≤ N−α

C · (1 − ε)
‖B̃u‖2.

Noting that ‖u‖∞ ≤ Cρ,Q(r) since ‖Fx‖∞ ≤ 1 (by definition of (r,C,α)-frames),
we obtain

‖x − x̂‖2 ≤ N−α

C · (1 − ε)
‖B̃u‖2 ≤ Cρ,Q(r) · N1−α

C · (1 − ε)
.

Finally, a short argument along the lines of Lemma 1 tells us that BD−rq ∈ μZm

will always have ‖BD−rq‖∞ ≤ 2μA · Nr+1. Thus, BD−rq can be encoded using
b ≤ m[(r + 1) log2 N + log2 A + 1] bits. Note that μ does not influence the number
of required bits. �

Remark 2 Theorem 4 also provides the desired exponentially decaying rate-distortion
bounds. In particular, by choosing the smallest integer m ≥ 4d ln(12/ε)+2 ln(1/p)

ε2/8−ε3/24
, the

rate is

R= m
[
(r + 1) log2 N + log2 A + 1

]
,
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and the distortion is

D = Cρ,Q(r) · N1−α

C · (1 − ε)
.

Expressing the distortion in terms of the rate, we obtain

D(R) = Cρ,Q(r) · (2A)(α−1)/(r+1)

C · (1 − ε)
· 2−(R(α−1)/m(r+1))

≤ C̄ρ,Q(A, ε,α, r) · exp

(
− R

d · C3(ε,p)

)
. (24)

Above, C̄ρ,Q(A, ε,α, r) = Cρ,Q(r)·(2A)(α−1)/(r+1)

C·(1−ε)
and 4(r+1) ln(12/εp)

ln 2·(α−1)(ε2/8−ε3/24)
+ 1

d
≥

C3(ε,p) > 0.

Remark 3 The choice of Bernoulli matrices in Theorem 4 is motivated by two prop-
erties. First, one can encode their action on the integrated Σ� bit-stream in a lossless
manner. Second, Bernoulli matrices (of appropriate size) act as near isometries on
span{D−rF1, . . . ,D

−rFd}. In fact, any encoding matrix drawn from a distribution
satisfying the above two properties would work for compressing the Σ� bit-stream.
For example, [1] also studied other discrete random matrices (whose entries are ±1
with probability 1/6 each, and 0 with probability 2/3) and showed that they serve as
Johnson-Lindenstrauss embeddings.

It is informative to compare the rate-distortion bounds resulting from Theorems 3
and 4 in the case of the first order Sigma-Delta scheme (and frame) considered by
Theorem 3. If we define F ∈ R

N×d as per (16) we can see, by considering (17)
and (19), that it will be a (1, d−3/2(

√
2π)−1,3/2)-frame. Furthermore, the first order

scheme considered by Theorem 3 has A = 1 and Cρ,Q(1) = 1. Hence, we see that
(24) becomes

D(R) = 23/4πd3/2

1 − ε
· 2−R/4m ≤ 23/4πd3/2

1 − ε
· 2−R(

ε2−ε3/3
128·d ln(12/ε)+64 ln(1/p)

)

in this case. Comparing this expression to (21) we can see that the dependence on d

has been improved (i.e., by a log factor) in the denominator of the exponent. However,
we have sacrificed some computational simplicity for this improvement since BD−1q
will generally require more effort to compute then RD−1q in practice.

Importantly, though, Theorem 4 also enables one to obtain near-optimal rate-
distortion bounds. Moreover, fixing the desired distortion, fewer samples N may now
be used than in Theorem 3 (hence less computation for quantization and encoding)
via the use of higher order quantization schemes. As a result, we will be able to use

(r,C,α)-frames having only O(N
1

α−1 ) rows below while still achieving O(1/N) ac-
curacy (ignoring dependences on other parameters such as d , etc.). This represents a
clear improvement over the first order scheme we have considered so far for all α > 2,
provided such (r,C,α) frames exists. In the next section we will briefly survey some
examples of currently known (r,C,α)-frames, for general r ∈ N, which are suitable
for use with the type of stable r th-order sigma delta schemes considered herein.
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4.1 Examples of (r,C,α)-frames

In this section we briefly survey some (r,C,α)-frames that can by utilized in concert
with Theorem 4 above.

Example 1 Sobolev self-dual frames [21]: Our first example of a family of (r,C,α)-
frames represents a generalization of the frame utilized by Theorem 3 to higher
orders. Let UDr = (U1 · · ·UN) be the matrix of left singular vectors of Dr , cor-
responding to a decreasing arrangement of the singular values. Then, we refer
to F(r) = (UN−d+1 · · ·UN) as the (r th-order) Sobolev self-dual frame. F(r) is an
(r,C,α)-frame with C = π−r (d + 2r)−r and α = r (see [21], Theorem 8).

For these frames, with fixed r , using the Σ� schemes of Proposition 1 and a
Bernoulli encoding matrix, the exponent in the rate-distortion expression D(R) be-
haves like − r−1

r+1
R
d

. Specifically, considering Example 1 with r = 1 we see that (16),

when unnormalized, is a (1,π−1(d + 2)−1,1)-frame instead of a (1, d−3/2(
√

2π)−1,

3/2)-frame. Hence, the bound provided for the unscaled matrix by Example 1 with
r = 1 is weaker than the result for the rescaled matrix, whenever d is significantly
smaller than N . What prevents us from rescaling F when r ≥ 2 is that we have insuf-
ficient information regarding the left singular vectors of Dr .

Example 2 Harmonic frames: A harmonic frame, F ∈ R
N×d , is defined via the fol-

lowing related functions:

F0(t) = 1√
2
, (25)

F2j−1(t) = cos(2πjt), j ≥ 1, and (26)

F2j (t) = sin(2πjt), j ≥ 1. (27)

We then define Fj,k =
√

2
d

·Fj ′(k/N), where j ′ = j −d mod 2 for all k ∈ [N ] and j ∈
[d + d mod 2]. In addition to Sobolev self-dual frames, we note that harmonic frames
also yield general (r,C,α)-frames. For sufficiently large N , a harmonic frame is an
(r,C,α)-frame with C = C1e

r/2r−(r+C2) and α = r + 1/2 (see [21], Lemma 17).
Here, C1 and C2 are constants that possibly depend on d . For this example, with
fixed r , using the Σ� schemes of Proposition 1 and a Bernoulli encoding matrix, the
exponent in the rate-distortion expression D(R) behaves like − r−1/2

r+1
R
d

.

Example 3 Frames generated from piecewise-C1 uniformly sampled frame path:
Note that the example above is a special case of a smooth frame [5]. As one might
expect, more general classes of smooth frames also yield (r,C,α)-frames. One such
class of frames consists of those generated from piecewise-C1 uniformly sampled
frame paths, as defined in [5]. For convenience, we reproduce the definition below.

Definition 4 A vector valued function E : [0,1] �→ R
d given by E(t) = [E1(t),

E2(t), . . . ,Ed(t)] is a piecewise-C1 uniformly sampled frame path if
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(1) for all n ∈ [d], En : [0,1] �→R is piecewise-C1,
(2) the functions En are linearly independent, and
(3) there exists an N0 such that for all N ≥ N0, the matrix F with entries Fij =

Ej (i/N) is a frame matrix.

In this case, we say that the frame F is generated from a piecewise-C1 uniformly
sampled frame path.

For any piecewise-C1 uniformly sampled frame path, there is an N0 ∈ N such that
for all N > N0, any frame generated from the frame path is an (r,C,α)-frame for
some C (possibly depending on r and d) and α = r + 1/2 (see [5], Theorem 5.4 and
its proof). Here, again, with fixed r , using the Σ� schemes of Proposition 1 and a
Bernoulli encoding matrix, the exponent in the rate-distortion expression D(R) be-
haves like − r−1/2

r+1
R
d

. Example 3 deals with smooth frames of a fairly general type,
albeit at the cost of less precision in specifying C. Perhaps more surprisingly, decid-
edly non-smooth frames also yield (r,C,α)-frames in general. In particular, we may
utilize Bernoulli random matrices as both our bit stream compression operator, and
our (r,C,α)-frame.

Example 4 Bernoulli and Sub-Gaussian frames: Let γ ∈ [0,1]. Then, there exists
constant c1 and c2, such that with probability exceeding 1 − 2e−c1N

1−γ dγ
, a frame

F whose entries are ± 1√
d

Bernoulli random variables is an (r,C,α)-frame, provided

N ≥ (c2r)
1

1−γ d . Here C = d−γ (r−1/2)−1/2 and α = 1/2+γ (r −1/2). See [22, Propo-
sition 4.1] for a proof.

In fact, Bernoulli frames are a special case of a more general class of frames whose
entries are sub-Gaussian random variables. These more general types of random ma-
trices also serve as (r,C,α)-frames.

Definition 5 If two random variables η and ξ satisfy P(|η| > t) ≤ KP(|ξ | > t) for
some constant K and all t ≥ 0 then we say that η is K-dominated by ξ .

Definition 6 We say that a matrix is sub-Gaussian with parameter c, mean μ, and
variance σ 2 if its entries are independent and e-dominated by a Gaussian random
variable with parameter c, mean μ, variance σ 2.

Let γ ∈ [0,1]. Then, there exists a constant c1 > 0 such that, with probability ex-
ceeding 1 − 3e−c1N

1−γ dγ
, a random sub-Gaussian frame matrix F with mean zero,

variance 1/N , and parameter c will be a (r,C,α)-frame whenever N
d

≥ (c2r)
1

1−γ

where c2 depends only on c. Here C = d−γ (r−1/2) and α = γ (r − 1/2). See
[22, Propositions 4.1 and 4.2] for a proof. Consequently, using the Σ� schemes
of Proposition 1 together with a Bernoulli encoding matrix and a Sub-Gaussian
frame results in the exponent of the rate-distortion expression, D(R), behaving like

− γ ·r− 1
2 (γ+2)

r+1
R
d

.
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Fig. 1 (left) The maximum and (right) mean �2-norm error (in log10 scale) plotted against the number of
bits per dimension (b/d). Here we use a 1st order greedy Σ� scheme to quantize and a random selector
matrix to encode

Fig. 2 (left) The maximum and (right) mean �2-norm error (in log10 scale) plotted against the number
of bits per dimension (b/d). Here we use a third order Σ� scheme to quantize and a Bernoulli matrix to
encode

5 Numerical Experiments

In this section we present numerical experiments to illustrate our results. To illus-
trate the results of Sect. 3, we first generate 5000 points uniformly from Bd , with
d = 2,6, and 10. We then compute, for various N , the 1-bit 1st order greedy Σ�-
quantization of Fx, where F is an N × d Sobolev self-dual frame. RD−1q, where
R is an m × N random selector matrix with m = 10d is then employed to recover an
estimate x̂ = (RD−1F)†RD−1q of x. In Fig. 1 we plot (in log scale) the maximum
and mean of ‖x̂ − x‖2 over the 5000 realizations of x versus the induced bit-rate.

Our second experiment is similar (see Fig. 2), albeit we now use a third order 1-bit
Σ� quantizer according to the schemes of [9] to quantize the harmonic frame expan-
sion of vectors in Bd , with d = 2,6, and 10. Here, we use a d × m Bernoulli matrix,
with m = 5d to encode BD−1q and subsequently obtain x̂ = (BD−1F)†BD−1q. As
before, we plot the maximum and mean of ‖x̂ − x‖2 over the 5000 realizations of x
versus the induced bit-rate.

For our third experiment, we fix d = 20 and use the Σ� schemes of [9] with
r = 1,2, and 3 to quantize the Bernoulli frame coefficients, and we use Bernoulli
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Fig. 3 The maximum �2-norm error (in log10 scale) plotted against the number of bits per dimension
(b/d). Here d = 20 and Σ� schemes with r = 1,2 and 3 are used to quantize the frame coefficients.
A Bernoulli matrix is used for encoding

matrices with m = 5d to encode. In Fig. 3 we show the maximum error versus the
bit-rate. Note the different slopes corresponding to r = 1,2, and 3. This observation
is in agreement with the prediction (see the discussion around Example 4) that the
exponent in the rate-distortion expression D(R) is a function of r .
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