
J Fourier Anal Appl (2013) 19:1274–1293
DOI 10.1007/s00041-013-9288-z

Sharp Spectral Multipliers for a New Class
of Grushin Type Operators

Peng Chen · Adam Sikora

Received: 3 October 2012 / Revised: 6 June 2013 / Published online: 20 September 2013
© Springer Science+Business Media New York 2013

Abstract We describe weighted restriction (Plancherel) type estimates and sharp
Hebisch-Müller-Stein type spectral multiplier result for a new class of Grushin type
operators. We also discuss the optimal exponent for Bochner-Riesz summability in
this setting.
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1 Introduction

On the space L2(Rd1 ×R
d2) with the standard Lebesgue measure consider a class of

Grushin type operators defined by the formula

Lσ = −
d1∑

j=1

∂2
x′
j
−

(
d1∑

j=1

∣∣x′
j

∣∣σ
)

d2∑

k=1

∂2
x′′
k

(1)

where exponent σ > 0. In the case σ = 2, the spectral properties of these operators
were studied by Martini and the second author in [29] where sharp spectral multiplier
and optimal Bochner-Riesz summability results were obtained. The aim of this paper
is to obtain analogous results for the class of Grushin operators corresponding to the
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exponent σ = 1. The general strategy of the proof of the sharp spectral multiplier re-
sult for σ = 1 is the same as one described in [29] for σ = 2. However, the proofs of
the two most crucial estimates (Proposition 2.2 and Lemma 3.4 below) are new and
significantly more difficult. The spectral decompositions of operators L1 and L2 have
similar structure, which can be described in substantially explicit way for both oper-
ators. Nevertheless the asymptotic behaviour of “eigenvalues and eigenfunctions” is
quite different and essentially new techniques are required to obtain crucial weighted
estimates for spectral multipliers of operator L1. We use results derived in [16] to
obtain a description of the spectral decomposition of the operator L1 necessary for
the proof of Proposition 2.2 and Lemma 3.4.

The closure of operator Lσ , σ > 0 initially defined on C∞
c (Rd1 × R

d2) is a non-
negative self-adjoint operator and it admits a spectral resolution ELσ (λ) for all λ ≥ 0,
see e.g. [33]. By spectral theorem for every bounded Borel function F : R → C, one
can define the operator

F(Lσ ) =
∫

R

F(λ)dELσ (λ) (2)

which is bounded on L2(Rd1 ×R
d2). This paper is devoted to spectral multipliers that

is we investigate sufficient conditions on function F under which the operator F(L1)

extends to bounded operator acting on spaces Lp(Rd1 × R
d2) for some range of p.

We also study closely related question of critical exponent κ for which the Bochner-
Riesz means (1 − tL1)

κ+ are bounded on Lp(Rd1 × R
d2) uniformly in t ∈ [0,∞).

In the sequel we shall only discuss the Grushin operator L1 which for simplicity we
denote just by L.

The essential motivation and rationale for spectral multiplier results of the type,
which we consider here come from the problem of convergence of eigenfunction ex-
pansion of differential operators. Arguably convergence of eigenfunction expansion
is the most significant issue in harmonic analysis. Initially convergence of the Fourier
series was the question, which defined the research area of Fourier and harmonic
analysis two centuries ago. The problem can be easily formulated and generalised
to the language of spectral theory and spectral resolution of self-adjoint operators.
Verifying some form of convergence of spectral resolutions is a necessary step to val-
idated use of Fourier series and more general eigenfunction expansions in the theory
of Partial Differential Equations (PDE). Both pointwise and Lp norm convergence
is considered in this context, see for example [3, 14, 15] and [38, pp. 386–395].
The celebrated result of Fefferman, see [13], shows that, except of straightforward
case p = 2, in most of the situations one cannot expect direct convergence of eigen-
function expansion in Lp spaces and to obtain positive results one has to consider
Bochner Riesz means or other spectral multipliers. The full description of conver-
gence of Bochner-Riesz means in classical Fourier analysis became one of most in-
triguing open problem in mathematics, see [38, pp. 386–395]. An example of recent
progress can be found in [3].

Convergence of Bochner-Riesz means in Lp space is essentially equivalent with
boundedness of these operators on the same space and we formulate our result this
way, see Theorem 1.2 below. The critical order of Bochner-Riesz summability is
usually expressed in terms of homogeneous (doubling) dimension of the considered
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ambient space which for the standard Laplace operator coincides with the Euclidean
dimension of Rn. In Fourier analysis this problem remains open only for n > 2 and
for p close to 2n/(n + 1), see [3]. However, for more general differential operators
the problem could be nontrivial on whole range of 1 ≤ p ≤ ∞. In fact the results
obtained by Thangavelu, Askey and Wainger shows that the Bochner-Riesz profile
of the harmonic oscillator −d2

x + x2 essentially differs from the standard Laplace
operator and classical Fourier series or transform, see [2, 41]. In most of the cases
full description of Bochner-Riesz profile of general differential operators is an open
problem. Some results of that type were obtained by Christ, Seeger and Sogge see [7,
34, 36, 37].

Our study focuses on one especially intriguing and surprising direction in the the-
ory of spectral multipliers devoted to investigation of sub-elliptic or degenerate opera-
tors. The main idea in this area is that the sharp results are expected to be determined
by the topological dimension of underling ambient space rather than the homoge-
neous dimension of the space. This part of spectral multipliers theory was initiated
by results obtained by Hebisch [21], Müller and Stein [32]. Other examples of papers
devoted to sharp spectral multipliers for sub-elliptic or degenerate operators include
[4, 9, 10, 22, 24, 29].

Almost all sharp results in the theory of Bochner-Riesz summability and spectral
multipliers are based on relevant Stein-Tomas restriction (or discrete restriction) type
estimates see for example [3, 5, 12, 18, 39, 40] or [38, pp. 386–395]. For the stan-
dard Laplace operator (1,2) restriction estimates can be reformulated in terms of L2

norm of the convolution kernel and follows from the Plancherel equality. Again for
more general differential operators obtaining (1,2) restriction estimates (Plancherel
estimates in terminology of [12]) is far from being trivial, see [12]. It turns out that
in the case of sub-elliptic and degenerate operators situation is more complex and the
standard (1,2) restriction estimates, like the ones considered in [27], do not lead to
sharp Bochner-Riesz summability results. Instead one has to consider weighted ver-
sion of such estimates. In our case the required version of (1,2) weighted restriction
estimates which is necessary to obtain sharp spectral multiplier result is described in
Proposition 3.5 below.

The close relation between Lp convergence of Bochner-Riesz means and restric-
tion estimates provides another motivation for this research area. It is so because the
restriction type estimates are more directly relevant to the theory of PDE via their
relation to the resolvent of differential operator, Helmholtz equation and Strichartz
estimates, see for example [5, 17, 18, 25].

A more general and possibly more natural problem than the Bochner-Riesz
summability is to consider all possible functions of self-adjoint differential opera-
tors. This idea leads naturally to the subject of spectral multipliers. As we explain it
above spectral multipliers theory investigate sufficient (differentiability) conditions
on function F under which the spectral multiplier F(L), defined initially on L2 ex-
tends to bounded operator acting on Lp spaces for some range of p. Modelled on
celebrated results of Hörmander and Mikhlin [19, 31] conditions on F are most often
expressed in the following form

sup
t>0

‖ηδtF‖Ws
p

< ∞. (3)
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Here η ∈ C∞
c (0,∞) is a non-trivial auxiliary function, Ws

p is Lp Sobolev space of
order s and for a function F : R → C we define δtF (x) = F(tx). For last forty or
so years the theory of spectral multipliers has attracted a lot of attention. A huge
amount of literature is devoted to the problem and we refer readers to [5, 10, 12,
32, 34] for detailed discussion and further relevant references. The optimal Bochner-
Riesz summability problem which we describe above translates to the language of
condition (3) in the following way. In the standard multiplier results the order of
differentiability is required to be larger than half of the homogeneous dimension, see
[35]. In the result, which we discuss here, this required order is reduced to half of
the Euclidean dimension of the ambient space. In addition if one considers p = ∞
in (3) this corresponds to universal Bochner-Riesz summability and the result is not
sharp. To obtain sharp results one has to show that it suffices to impose condition (3)
with order s larger than half of the Euclidean dimension and p = 2. Such result is
at least formally stronger than Bochner-Riesz result so we state it in such terms, see
Theorem 1.1 below.

Example of a spectral multiplier results with L∞ type condition, which is relevant
to our study, can be found in [1]. Then an example of L2 type condition is described
in [6] and [30]. All papers [1, 6, 30] are devoted to invariant operators acting on Lie
groups. In the case of Heisenberg type groups the sharp version of these results were
described in the mentioned above papers [21, 32], which in turn provide model and
rationale for our study.

Our two main results, the sharp spectral multiplier and the corresponding optimal
results for convergence of Bochner-Riesz means, are stated in Theorems 1.1 and 1.2
below. We set D = max{d1 + d2,3d2/2} and as above by Ws

2 we denote L2 Sobolev
space that is ‖F‖Ws

2
= ‖(I − d2

x )s/2F‖2.

Theorem 1.1 Suppose that function F :R → C satisfies

sup
t>0

‖ηδtF‖Ws
2

< ∞

for some s > D/2. Then the spectral multiplier operator F(L) is of weak type (1,1)

and bounded on Lp(Rd1 ×R
d2) for all p ∈ (1,∞). In addition

∥∥F(L)
∥∥

L1→L1,w ≤ C sup
t>0

‖ηδtF‖Ws
2

and
∥∥F(L)

∥∥
Lp→Lp ≤ Cp sup

t>0
‖ηδtF‖Ws

2
.

The above result is sharp if d1 ≥ d2/2, see discussion in Sect. 5 below. A version
of result essentially equivalent to Theorem 1.1 can be expressed in terms of Bochner-
Riesz summability of the operator L. Our approach allows us to obtain the following
result which is again optimal if d1 ≥ d2/2.

Theorem 1.2 Suppose that κ > (D − 1)/2 and p ∈ [1,∞]. Then the Bochner-Riesz
means (1 − tL)κ+ are bounded on Lp(Rd1 ×R

d2) uniformly in t ∈ [0,∞).

Proofs of Theorems 1.1 and 1.2 are concluded in Sect. 4. Similarly as in [29]
the key point of proving Theorems 1.1 and 1.2 is to obtain “weighted Plancherel
estimate” for spectral multipliers of the considered Grushin type operators. A proof
of such estimates is described in Sect. 3 and constitutes a main original contribution
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of this paper to the discussed research area. A part of the proofs of Theorems 1.1 and
1.2 described in Sect. 4 below is essentially the same as in [29]. We repeat the short
argument here for the sake of completeness. To make it easier to compare the results
obtained in [29] and in this paper we try to use the same notation as in [29] whenever
it is possible.

2 Notation and Preliminaries

A more general class of Grushin type operators which includes operators Lσ for
σ > 0 defined above was studied in [33]. In what follows we will need the basic
results concerning the Riemannian distance corresponding to Grushin type operators
and the standard Gaussian bounds for the corresponding heat kernels, which were
obtained in [33]. Recall that the Riemannian distance corresponding to the operator
Lσ (which is often also called the control distance) can be defined by

ρσ (x, y) = sup
ψ∈D

(
ψ(x) − ψ(y)

)

for all x, y ∈ R
d1 ×R

d2 where

D =
{

ψ ∈ W 1,∞(
R

d1 ×R
d2

) :
(

d1∑

j=1

|∂x′
j
ψ |2 +

(
d1∑

j=1

∣∣x′
j

∣∣σ
)

d2∑

k=1

|∂x′′
k
ψ |2

)
≤ 1

}
.

There is a range of the equivalent definitions of the Riemannian distances associated
to the operators Lσ . An important example is a “shortest path” definition originated
in Riemannian geometry. We refer the reader to [23] for a survey and comparison
of various possibilities of the distances corresponding to subelliptic operators. The
relevance of the distance ρσ for the operator Lσ is explained by the fact that this is
optimal distance for which the finite speed of propagation of the corresponding wave
equation or Davies-Gaffney and Gaussian estimates for the heat equation hold. See
[33, Proposition 4.1] for more detailed discussion and further references.

In the sequel we shall need the following estimates for the distance ρ = ρ1 estab-
lished also in [33].

Proposition 2.1 Let ρ be the Riemannian distance corresponding to the Grushin
operator L and let B(x, r) be the ball with centre at x and radius r . Then

ρ(x, y) ∼ ∣∣x′ − y′∣∣ +
{ |x′′−y′′|

(|x′|+|y′|)1/2 if |x′′ − y′′| ≤ (|x′| + |y′|)3/2,

|x′′ − y′′|2/3 if |x′′ − y′′| ≥ (|x′| + |y′|)3/2.
(4)

Moreover the volume of B(x, r) satisfies following estimates

∣∣B(x, r)
∣∣ ∼ rd1+d2 max

{
r,

∣∣x′∣∣}d2/2
, (5)

and in particular, for all λ ≥ 0,
∣∣B(x,λr)

∣∣ ≤ C(1 + λ)Q
∣∣B(x, r)

∣∣ (6)
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where Q = d1 + 3d2
2 is the homogeneous dimension of the considered metric space.

Next, there exist constants b,C > 0 such that, for all t > 0, the integral kernel pt of
the operator exp(−tL) satisfies the following Gaussian bounds

∣∣pt(x, y)
∣∣ ≤ C

∣∣B
(
y, t1/2)∣∣−1

e−bρ(x,y)2/t (7)

for all x, y ∈R
d1 ×R

d2 .

Proof For the proof, we refer readers to [33, Proposition 5.1 and Corollary 6.6]. �

Next, let F : L2(Rd1 ×R
d2) → L2(Rd1 ×R

d2) be the partial Fourier transform in
variables x′′ defined by

Fφ
(
x′, ξ

) = (2π)−d2/2
∫

R
d2

φ
(
x′, x′′)e−iξ ·x′′

dx′′.

Then

FLφ
(
x′, ξ

) = L̃ξFφ
(
x′, ξ

)

where L̃ξ are Schrödinger type operators defined by

L̃ξ = −
d1 +
(

d1∑

j=1

∣∣x′
j

∣∣
)

|ξ |2

acting on L2(Rd1) where ξ ∈ R
d2 . In what fallows we will need the following esti-

mates for the operator L̃ξ , compare [9, 10, 21] and [29].

Proposition 2.2 For all γ ∈ [0,∞) and f ∈ L2(Rd1),

∥∥∥∥∥

(
d1∑

j=1

∣∣x′
j

∣∣
)γ

|ξ |2γ f

∥∥∥∥∥
2

≤ Cγ

∥∥L̃
γ
ξ f

∥∥
2. (8)

Proof Set L̃ = −
d1 + ∑d1
j=1 |x′

j | and next define operator Lx′
i

by the following
formula

Lx′
i
= −∂2

x′
i
+ ∣∣x′

i

∣∣.

By Proposition 3.4 of [16]

∥∥∣∣x′
i

∣∣kf
∥∥

2 ≤ C′
k

∥∥Lk
x′
i
f

∥∥
2

for all positive natural numbers k ∈ N. Hence

∥∥∥∥∥

(
d1∑

j=1

∣∣x′
j

∣∣
)k

f

∥∥∥∥∥

2

2

≤ C

d1∑

j=1

∥∥∣∣x′
j

∣∣kf
∥∥2

2 ≤ Ck

d1∑

j=1

∥∥Lk
x′
j
f

∥∥2
2.
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Note that all Lx′
i

are non-negative self-adjoint operators and commute strongly, that

is, their resolvents commute. Therefore for all �i ∈ Z+, operators
∏n

i=1 L
�i

x′
i

are self-

adjoint and non-negative. Hence

d1∑

j=1

L2k
x′
j
≤

(
d1∑

j=1

Lx′
j

)2k

for all k ∈ N and

∥∥∥∥∥

(
d1∑

j=1

∣∣x′
j

∣∣
)k

f

∥∥∥∥∥

2

2

≤ Ck

d1∑

j=1

∥∥Lk
x′
j
f

∥∥2
2 = Ck

〈
d1∑

j=1

L2k
x′
j
f, f

〉

≤ Ck

〈(
d1∑

j=1

Lx′
j

)2k

f, f

〉
= Ck

∥∥L̃kf
∥∥2

2.

Next, for a function f ∈ C∞
c (Rd1) we define function δtf by the formula δtf (x) =

f (tx). Note that if t = |ξ |−2/3 then

L̃k
ξ =

(
−
d1 +

(
d1∑

j=1

∣∣x′
j

∣∣
)

t−3

)k

= t−2kδt−1L̃
kδt .

Hence

∥∥L̃k
ξ f

∥∥
2 = ∥∥t−2kδt−1L̃

kδtf
∥∥

2

= t−2ktd1/2
∥∥L̃kδtf

∥∥
2

≥ C′′
k t−2ktd1/2

∥∥∥∥∥

(
d1∑

j=1

∣∣x′
j

∣∣
)k

δtf

∥∥∥∥∥
2

= C′′
k |ξ |2k

∥∥∥∥∥

(
d1∑

j=1

∣∣x′
j

∣∣
)k

f

∥∥∥∥∥
2

.

This proves Proposition 2.2 for all γ = k ∈ N. Now in virtue of Löwner-Heinz in-
equality (see, e.g., [8, Sect. I.5]) we can extend these estimates to all γ ∈ [0,∞). �

3 Crucial Estimates

To be able to obtain a required description of spectral decomposition of the oper-
ators L̃ξ we need the following properties of spectral decomposition of operator

A = − d2

dx2 + |x| acting on L2(R) which are essentially based on results from [16].
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Proposition 3.1 Let λn and hn be the n-th eigenvalue and normalised eigenfunction

of the operator A = − d2

dx2 + |x|. Then its spectral decomposition satisfies following
properties:

(i) The operator A has only a pointwise spectrum and its eigenvalues belong to
(1,∞). In particular the first eigenvalue is larger than 1.

(ii) Every eigenvalue of A is simple and the only point of accumulation of the eigen-
value sequence is ∞. Thus {hn}n∈N is a complete orthonormal system of L2(R).

(iii) The eigenvalues λn satisfy the following estimates:

C1

(
3π

4
n

)2/3

≤ λn ≤ C2

(
3π

4
n

)2/3

, (9)

π

2
λ

−1/2
n+1 ≤ λn+1 − λn ≤ π

2
λ

−1/2
n , (10)

where C2 ≥ C1 > 0 are constants.
(iv) For the eigenfunction hn corresponding to the eigenvalue λn,

hn(u) ≤
{

Cλ
− 1

4
n (1 + ||u| − λn|)− 1

4 , u ∈ R,

C exp(−c|u| 3
2 ), u ≥ 2λn.

(11)

Proof (i), (ii) and (iii) are just reformulation of Proposition 2.1, Corollary 2.2, Facts
2.3, 2.7 and 2.8 of [16]. (iv) is an easy consequence of Theorem 2.6 of [16] and
estimates for Airy function (see for example [20], pp. 213–215). �

Now we are able to describe spectral resolutions of Grushin operator L = L1 and
operators L̃ξ defined in Sect. 2. It is interesting to compare it with spectral decompo-
sition of the operator L2 obtained in [29]. From a point of view of obtaining weighted
Plancherel estimates required for the proof of our multiplier results the spectral de-
compositions of L1 and L2 are significantly different even though they share many
common features. We also have to investigate integral kernels of spectral multipliers
of L and L̃ξ . For T = F(L) or T = F(L̃ξ ), by KT we denote the integral kernel of
the operator T , defined by the identity

Tf (x) =
∫

X

KT (x, y)f (y) dy

where X = R
d1 ×R

d2 for L and X = R
d1 for L̃ξ .

In terms of the eigenvalues and eigenfunctions of the operator A = − d2

dx2 + |x|,
one can obtain explicit formula for the integral kernel of the operator F(L), compare
also [29, Proposition 5]. Let λn and hn be the n-th eigenvalue and eigenfunction of

the operator − d2

dx2 + |x| on L2(R). We know that {hn}n∈N is a complete orthonormal

system of L2(R). For all positive integers d1, all n ∈ N
d1 and all ξ ∈ R

d2 , we define
function h̃d1,n : Rd1 →R by the formula

h̃d1,n
(
x′, ξ

) = |ξ |d1/3hn1

(|ξ |2/3x′
1

) · · ·hnd1

(|ξ |2/3x′
d1

)
.
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We are now able to describe the kernel KF(L).

Proposition 3.2 For all bounded compactly supported Borel functions F : R →C

KF(L)(x, y) = (2π)−d2

∫

R
d2

KF(L̃ξ )

(
x′, y′)eiξ(x′′−y′′) dξ

= (2π)−d2

∫

R
d2

∑

n∈Nd1

F

(
d1∑

i=1

|ξ | 4
3 λni

)
h̃d1,n

(
y′, ξ

)

× h̃d1,n
(
x′, ξ

)
eiξ ·(x′′−y′′) dξ

for almost all x = (x′, x′′), y = (y′, y′′) ∈R
d1 ×R

d2 .

Proof We noticed in Sect. 2 that FLφ(x′, ξ) = L̃ξFφ(x′, ξ) where F is the partial
Fourier transform in variables x′′. Next note that for all ξ 
= 0

L̃ξ h̃d1,n
(
x′, ξ

) =
(

d1∑

j=1

|ξ | 4
3 λnj

)
h̃d1,n

(
x′, ξ

)
.

Moreover by Proposition 3.1(ii), the set {h̃d1,n(x′, ξ)}n∈Nd1 is a complete orthonormal
system of L2(Rd1). Hence if G : L2(Rd1 × R

d2) → L2(Nd1 × R
d2) is the isometry

defined by

Gψ(n, ξ) =
∫

R
d1

ψ
(
x′, ξ

)
h̃d1,n

(
x′, ξ

)
dx′,

then

GFLφ(n, ξ) =
d1∑

j=1

|ξ | 4
3 λnj

GFφ(n, ξ)

and

GFF(L)φ(n, ξ) = F

(
d1∑

j=1

|ξ | 4
3 λnj

)
GFφ(n, ξ). (12)

However, the inverse of G is given by

G−1ϕ
(
x′, ξ

) =
∑

n∈Nd1

ϕ(n, ξ)h̃d1,n
(
x′, ξ

)

and inverse of F can be expressed in terms of partial inverse Fourier transform in x′′.
Applying G−1 and F−1 to both sides of equality (12) shows Proposition 3.2. �

Next, for all positive integers d1 and all n ∈ N
d1 we define function Hd1,n : Rd1 →

R by the formula

Hd1,n
(
x′) = h2

n1

(
x′

1

) · · ·h2
nd1

(
x′
d1

)
.
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As a simple consequence of Proposition 3.2 we obtain following estimates.

Proposition 3.3 For all γ ≥ 0 and for every compactly supported bounded Borel
function F :R → C,

∥∥∥∥∥

(
d1∑

i=1

∣∣x′
i

∣∣
)γ

KF(L)(·, y)

∥∥∥∥∥

2

2

≤ Cγ

∫ ∞

0

∣∣F(θ)
∣∣2 ∑

n∈Nd1

θQ/2−γ

N
Q/2−3γ
n

Hd1,n

(
θ1/2y′

N
1/2
n

)
dθ

θ

for almost all y = (y′, y′′) ∈ R
d1 × R

d2 where Nn = ∑d1
i=1 λni

and λni
is the eigen-

value corresponding to eigenfunction hni
.

Proof By Propositions 2.2 and 3.2

∥∥∥∥∥

(
d1∑

i=1

∣∣x′
i

∣∣
)γ

KF(L)(·, y)

∥∥∥∥∥

2

2

=
∫

R
d2

∥∥∥∥∥

(
d1∑

i=1

∣∣x′
i

∣∣
)γ

KF(L̃ξ )

(
x′, y′)

∥∥∥∥∥

2

L2(Rd1 )

dξ

≤
∫

R
d2

|ξ |−4γ
∥∥L̃

γ
ξ KF(L̃ξ )

(
x′, y′)∥∥2

L2(Rd1 )
dξ. (13)

Next note that for all γ ≥ 0 and y′ ∈R
d1

L̃
γ
ξ

(
KF(L̃ξ )

(·, y′)) = KL̃
γ
ξ F (L̃ξ )

(·, y′).

Hence

∥∥L̃
γ
ξ KF(L̃ξ )

(
x′, y′)∥∥2

L2(Rd1 )
≤ ∥∥KL̃

γ
ξ F (L̃ξ )

(
x′, y′)∥∥2

L2(Rd1 )

≤
∑

n∈Nd1

∣∣∣∣∣

(
d1∑

i=1

|ξ | 4
3 λni

)γ

F

(
d1∑

i=1

|ξ | 4
3 λni

)∣∣∣∣∣

2

× ∣∣h̃d1,n
(
y′, ξ

)∣∣2

≤ C|ξ | 2d1
3 + 8γ

3
∑

n∈Nd1

N
2γ
n

∣∣F
(|ξ | 4

3 Nn
)∣∣2

Hd1,n
(|ξ | 2

3 y′).

(14)

Now substituting (14) to (13) and simple change of variables proves Proposi-
tion 3.3 �

The following lemma is a version of Lemma 9 of [29]. However the proof is more
complex and requires a new approach especially when d1 ≥ 2. It is the most essential
part of the proof of our main spectral multiplier results.
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Lemma 3.4 For all ε > 0 there exists a constant C > 0 which does not depend on
x′ ∈R

d1 such that

∑

n∈Nd1

max{1, |x′|}2ε

N
d1/2+3ε
n

Hd1,n

(
x′

N
1/2
n

)
< C < ∞ (15)

where Nn = ∑d1
i=1 λni

and λni
is the eigenvalue corresponding to eigenfunction hni

.

Proof We split the sum into two parts,

∑

n∈Nd1

max{1, |x′|}2ε

N
d1/2+3ε
n

Hd1,n

(
x′

N
1/2
n

)

≤
( ∑

N
3/2
n ≤|x′|/(2d1)

+
∑

N
3/2
n >|x′|/(2d1)

)
max{1, |x′|}2ε

N
d1/2+3ε
n

Hd1,n

(
x′

N
1/2
n

)
. (16)

Part 1: N
3/2
n ≤ |x′|/(2d1). By Proposition 3.1 λni

≥ 1 so Nn > 1. Hence this part is

empty unless |x′| > 1. Note that

|x′|∞
N

1/2
n

≥ |x′|
d1N

1/2
n

≥ 2Nn

where |x′|∞ = max{x′
1, . . . , x

′
d1

}. By (11) for every natural number N ≤ |x′|/(2d1)

∑

(N−1)2/3<Nn≤N2/3

Hd1,n

(
x′

N
1/2
n

)
≤ C exp

(−c
∣∣x′∣∣ 3

2∞/N
1
2
) ≤ C exp

(−c
∣∣x′∣∣ 3

2 /N
1
2
)
.

Thus

∑

N
3/2
n ≤|x′|/(2d1)

max{1, |x′|}2ε

N
d1/2+3ε
n

Hd1,n

(
x′

N
1/2
n

)

≤
∑

N≤|x′|/(2d1)

∑

(N−1)2/3<Nn≤N2/3

max{1, |x′|}2ε

N
d1/2+3ε
n

Hd1,n

(
x′

N
1/2
n

)

≤ C
∑

N≤|x′|/2

∣∣x′∣∣2ε
N−d1/3−2ε exp

(−c
∣∣x′∣∣ 3

2 /N
1
2
)

≤ C
∑

N∈N
sup
t≥2N

t4ε/3 exp(−ct) ≤ C. (17)

Part 2: N
3/2
n > |x′|/(2d1). Again by (11)
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Hd1,n

(
x′

N
1/2
n

)
=

d1∏

i=1

h2
ni

(
x′
i

N
1/2
n

)

≤ C

d1∏

i=1

λ
− 1

2
ni

(
1 +

∣∣∣∣
|x′

i |
N

1/2
n

− λni

∣∣∣∣

)− 1
2

.

Hence

∑

N
3/2
n >|x′|/(2d1)

max{1, |x′|}2ε

N
d1/2+3ε
n

Hd1,n

(
x′

N
1/2
n

)

≤ C
∑

N
3/2
n >|x′|/(2d1)

max{1, |x′|}2ε

N
d1/2+3ε
n

d1∏

i=1

λ
− 1

2
ni

(
1 +

∣∣∣∣
|x′

i |
N

1/2
n

− λni

∣∣∣∣

)− 1
2

. (18)

Next, define function g : [1,∞)d1 → R+ by the formula

g(μ) = g(μ1, . . . ,μd1) = max{1, |x′|}2ε

N
d1/2+3ε
μ

d1∏

i=1

μ
− 1

3
i

(
1 +

∣∣∣∣
|x′

i |
N

1/2
μ

− μ
2/3
i

∣∣∣∣

)− 1
2

where Nμ = ∑d1
i=1 μ

2/3
i . Note that g(μ1, . . . ,μd1) > 0 and there exists a constant

C > 0 such that
∣∣∇g(μ1, . . . ,μd1)

∣∣ ≤ Cg(μ1, . . . ,μd1)

when μ = (μ1, . . .μd1) ∈ [1,∞)d1 and Nμ = ∑d1
i=1 μ

2/3
i ≥ (|x′|/(2d1))

2/3. By the
above estimate for the gradient of g

e−C|μ−μ̄| ≤
∣∣∣∣
g(μ)

g(μ̄)

∣∣∣∣ ≤ eC|μ−μ̄|

for all μ, μ̄ in the region described above. Hence

g(μ1, . . . ,μd1) ≤ C

∫
∏d1

i=1[μi,μi+1]
g(ξ1, . . . , ξd1)dξ1 . . . dξd1 . (19)

Set μni
= λ

3/2
ni

. By (18),

∑

N
3/2
n >|x′|/(2d1)

max{1, |x′|}2ε

N
d1/2+3ε
n

Hd1,n

(
x′

N
1/2
n

)
≤

∑

N
3/2
n >|x′|/(2d1)

g(μn1 , . . . ,μnd1
). (20)

However , by (10) and mean value theorem for each 1 ≤ i ≤ d1,

μni
− μni−1 = λ

3/2
ni

− λ
3/2
ni−1 ≥ 3π

4
λ

−1/2
ni

λ
1/2
ni−1
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≥ 3π

4

(
λ

3/2
ni−1

π
2 + λ

3/2
ni−1

)1/2

≥ 3π

8
> 1 (21)

which means that for all n ∈ N
d1 , cubes

∏d1
i=1[μni

,μni
+ 1] are mutually disjoint.

Note again that by Proposition 3.1 λni
≥ 1 so Nn > 1. Hence by (19), (20) and (21)

∑

N
3/2
n >|x′|/(2d1)

max{1, |x′|}2ε

N
d1/2+3ε
n

Hd1,n

(
x′

N
1/2
n

)

≤ C

∫

Nμ>max{(|x′|/(2d1))
2/3,1}

g(μ1, . . . ,μd1)dμ1 . . . dμd1 .

Using the changes of variables μi = ξ
3/2
i we get

∑

N
3/2
n >|x′|/(2d1)

max{1, |x′|}2ε

N
d1/2+3ε
n

Hd1,n

(
x′

N
1/2
n

)

≤ C

∫

Nξ >max{(|x′|/(2d1))
2/3,1}

[
max{1, |x′|}2ε

N
d1/2+3ε
ξ

N
d1
4

ξ

d1∏

i=1

ξ
− 1

2
i

∣∣∣∣x′
i

∣∣ − ξiN
1
2
ξ

∣∣− 1
2

]

× dξ
3
2

1 . . . dξ
3
2
d1

≤ C

∫

Nξ >max{(|x′|/(2d1))
2/3,1}

[
max{1, |x′|}2ε

N
d1/4+3ε
ξ

d1∏

i=1

∣∣∣∣x′
i

∣∣ − ξiN
1
2
ξ

∣∣− 1
2

]

× dξ1 . . . dξd1 = I (22)

where Nξ = ∑d1
i=1 ξi . To estimate this integral we use the following decomposition

{
ξ : Nξ ≥ max

{(∣∣x′∣∣/(2d1)
)2/3

,1
}}

=
d1⋃

j=1

Ej =
d1⋃

j=1

{
ξ : Nξ ≥ max

{(∣∣x′∣∣/(2d1)
)2/3

,1
}
,Nξ/d1 ≤ ξj ≤ Nξ

}
.

Now on each of set Ej we introduce new coordinates

ν1 = ξ1, . . . , νj−1 = ξj−1, νj = Nξ , νj+1 = ξj+1, . . . , νd1 = ξd1 .

Then

I ≤ C

d1∑

j=1

∫ ∞

max{(|x′|/(2d1))
2/3,1}

max{1, |x′|}2ε

ν
d1/4+3ε
j
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×
∫

Sj

∏

i 
=j

∣∣∣∣x′
i

∣∣ − νiν
1
2
j

∣∣− 1
2
∣∣∣∣x′

j

∣∣ − ν̄j ν
1
2
j

∣∣− 1
2 dν1 . . . dνd1 (23)

where ν̄j = νj − ∑
i 
=j νi and Sj = {ν : νj /d1 ≤ ν̄j ≤ νj ,0 ≤ νi ≤ νj ,∀i 
= j}.

Next we split the integral into two parts: νj > max{(2d1|x′|)2/3,1} and (|x′|/
(2d1))

2/3 ≤ νj ≤ (2d1|x′|)2/3. Note that if νj ≥ (2d1|x′|)2/3 and νj /d1 ≤ ν̄j ≤ νj

then
∣∣∣∣x′

j

∣∣ − ν̄j ν
1
2
j

∣∣− 1
2 ≤ Cν

−3/4
j .

Note also that there exists a constant C such that for all A,N > 0

∫ N

0
|A − x|−1/2dx ≤ CN1/2.

Hence for νj > max{(2d1|x′|)2/3,1},
∫

Sj

∏

i 
=j

∣∣∣∣x′
i

∣∣ − νiν
1
2
j

∣∣− 1
2
∣∣∣∣x′

j

∣∣ − ν̄j ν
1
2
j

∣∣− 1
2 dν1 . . . dνj−1dνj+1 . . . dνd1

≤ Cν
−3/4
j

∏

i 
=j

∫ νj

0

∣∣∣∣x′
i

∣∣ − νiν
1
2
j

∣∣− 1
2 dνi

≤ Cν
−3/4
j ν

d1−1
4

j ≤ Cν
d1/4−1
j

and

∫ ∞

max{(2d1|x′|)2/3,1}
max{1, |x′|}2ε

ν
d1/4+3ε
j

∫

Sj

∏

i 
=j

∣∣∣∣x′
i

∣∣ − νiν
1
2
j

∣∣− 1
2
∣∣∣∣x′

j

∣∣ − ν̄j ν
1
2
j

∣∣− 1
2 dν1 . . . dνd1

≤ C

∫ ∞

max{(2d1|x′|)2/3,1}
max{1, |x′|}2ε

ν
d1/4+3ε
j

ν
d1/4−1
j dνj

≤ C

∫ ∞

max{(2d1|x′|)2/3,1}
max{1, |x′|}2ε

ν1+3ε
j

dνj ≤ C. (24)

If we assume now that (|x′|/(2d1))
2/3 ≤ νj ≤ (2d1|x′|)2/3 then by the change of

variables νiν
1
2
j = ui one gets

∫

Sj

∏

i 
=j

∣∣∣∣x′
i

∣∣ − νiν
1
2
j

∣∣− 1
2
∣∣∣∣x′

j

∣∣ − ν̄j ν
1
2
j

∣∣− 1
2 dν1 . . . dνj−1dνj+1 . . . dνd1

≤ Cν
1−d1

2
j

∫

[0,ν
3/2
j ]d1−1

∣∣∣∣x′
i

∣∣ − ui

∣∣− 1
2

∣∣∣∣
∣∣x′

j

∣∣ +
∑

i 
=j

ui − ν
3
2
j

∣∣∣∣
− 1

2

du
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where du = du1 · · ·duj−1duj+1 · · ·dud1 . Hence,

∫ (2d1|x′|)2/3

(|x′|/(2d1))
2/3

max{1, |x′|}2ε

ν
d1/4+3ε
j

∫

Sj

∏

i 
=j

∣∣∣∣x′
i

∣∣ − νiν
1
2
j

∣∣− 1
2
∣∣∣∣x′

j

∣∣ − ν̄j ν
1
2
j

∣∣− 1
2 dν1 . . . dνd1

≤ C

∫ (2d1|x′|)2/3

(|x′|/(2d1))
2/3

ν
2−3d1

4
j

∫

[0,ν
3/2
j ]d1−1

∣∣∣∣x′
i

∣∣ − ui

∣∣− 1
2

∣∣∣∣
∣∣x′

j

∣∣ +
∑

i 
=j

ui − ν
3
2
j

∣∣∣∣
− 1

2

dudνj

≤ C
∣∣x′∣∣

2−3d1
6

∫

[0,2d1|x′|]d1−1

∏

i 
=j

∣∣∣∣x′
i

∣∣ − ui

∣∣− 1
2

×
∫ (2d1|x′|)2/3

(|x′|/(2d1))
2/3

∣∣∣∣
∣∣x′

j

∣∣ +
∑

i 
=j

ui − ν
3
2
j

∣∣∣∣
− 1

2

dνjdu

≤ C
∣∣x′∣∣

2−3d1
6

∣∣x′∣∣1/6 ∏

i 
=j

∫ 2d1|x′|

0

∣∣∣∣x′
i

∣∣ − ui

∣∣− 1
2 dui

≤ C
∣∣x′∣∣

2−3d1
6

∣∣x′∣∣1/6∣∣x′∣∣(d1−1)/2

≤ C.

Now (22), (23), (24) and the above estimates yield

∑

N
3/2
n >|x′|/(2d1)

max{1, |x′|}2ε

N
d1/2+3ε
n

Hd1,n

(
x′

N
1/2
n

)
≤ C.

�

Next, for all R > 0 we define the weight function wR : (Rd1 ×R
d2)2 → R+ by the

formula

wR(x, y) = min
{
R,

∣∣y′∣∣−1}∣∣x′∣∣.

The estimates obtained in this section can be summarised in the following proposi-
tion.

Proposition 3.5 For all γ ∈ [0, d2/4) and all bounded compactly supported Borel
functions F : R →C,
∥∥∥∥∥

∣∣∣∣∣

d1∑

i=1

∣∣x′
i

∣∣
∣∣∣∣∣

γ

KF(L)(·, y)

∥∥∥∥∥

2

2

≤ Cγ

∫ ∞

0

∣∣F(λ)
∣∣2

λ(d1+d2)/2 min
{
λd2/4−γ ,

∣∣y′∣∣2γ−d2/2}dλ

λ

for almost all y = (y′, y′′) ∈ R
d1 × R

d2 . In particular, for all R > 0, if suppF ⊆
[R2,4R2], then

ess sup
y∈Rd1 ×R

d2

∣∣B
(
y,R−1)∣∣1/2∥∥wR(·, y)γ KF(L)(·, y)

∥∥
2 ≤ Cγ ‖δR2F‖L2,

where the constant Cγ does not depend on R.
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Proof We obtain the first inequality by Proposition 3.3 and Lemma 3.4 with ε =
d2/4 − γ . Next if we assume that suppF ⊆ [R2,4R2], then in virtue of the definition
of the weight wR and estimate (5), the first inequality implies the second one. �

4 The Multiplier Theorems

In the following section we show that Theorems 1.1 and 1.2 are straightforward con-
sequence of Proposition 3.5. The argument is essential the same as in Sect. 5 of [29]
with an obvious adjustment of exponents in some calculations and we quote it here
for sake of completeness. An alternative proof based on the wave equation technique
can be obtain by a simple modification of the proof of [10, Lemma 3.4].

Proposition 4.1 For all R > 0, α ≥ 0, β > α, and for all functions F : R → C such
that suppF ⊆ [−4R2,4R2],

ess sup
y∈Rd1 ×R

d2

∣∣B
(
y,R−1)∣∣1/2∥∥(

1 + Rρ(·, y)
)α

KF (·, y)
∥∥

2 ≤ Cα,β‖δR2F‖
W

β∞
, (25)

where the constant Cα,β does not depend on R. If in addition β > α + Q/2, then

ess sup
y∈Rd1×R

d2

∥∥(
1 + Rρ(·, y)

)α
KF (·, y)

∥∥
1 ≤ Cα,β‖δR2F‖

W
β∞
, (26)

where again Cα,β does not depend on R.

Proof Note that the heat kernel of the operator L satisfies Gaussian bounds (7) so
Proposition 4.1 is a straightforward consequence of [12, Lemmas 4.3 and 4.4]. �

Recall that the homogeneous dimension of the ambient space is given by
Q = d1 + 3d2/2.

Lemma 4.2 Suppose that 0 ≤ γ < min{d1/2, d2/4} and β > Q/2 − γ . For all
y ∈ R

d1 ×R
d2 and R > 0,

∫

R
d1×R

d2

(
1 + wR(x, y)

)−2γ (
1 + Rρ(x, y)

)−2β
dx ≤ Cγ,β

∣∣B
(
y,R−1)∣∣. (27)

Moreover, for all x, y ∈ R
d1 ×R

d2 and R > 0,

wR(x, y) ≤ C
(
1 + Rρ(x, y)

)
. (28)

Proof By the homogeneity properties of the distance ρ and the weights wR , we
only prove the case R = 1. For other case, one just dilate them by δt (x

′, x′′) =
(tx′, t3/2x′′). By (4),

min
{
1,

∣∣y′∣∣−1}∣∣x′∣∣ ≤ 1 + ∣∣x′ − y′∣∣ ≤ C
(
1 + ρ(x, y)

)
,
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which proves (28).
Because of the translation invariance, to prove (27), it is enough to consider the

case y′′ = 0. By (5) it suffices to show that

∫

R
d1×R

d2

(
1 + |x′ − y′|

1 + |y′|
)−2γ (

1 + ρ(x, y)
)−2β

dx ≤ Cγ,β

(
1 + ∣∣y′∣∣)d2/2

.

Again we split the integral into two parts, according to the asymptotic behaviour (4).
In the region X1 = {x ∈ R

d1 ×R
d2 : |x′′| ≥ (|x′| + |y′|)3/2}, we choose β1 and β2 in

such a way that β = β1 + β2, β1 > d1/2 − γ and β2 > 3d2/4. Then

∫

X1

(
1 + |x′ − y′|

1 + |y′|
)−2γ (

1 + ρ(x, y)
)−2β

dx

≤ C
(
1 + ∣∣y′∣∣)2γ

∫

R
d1

(
1 + ∣∣x′ − y′∣∣)−2(γ+β1) dx′

∫

R
d2

(
1 + ∣∣x′′∣∣2/3)−2β2 dx′′

≤ Cγ,β

(
1 + ∣∣y′∣∣)d2/2

.

In the region X2 = {x ∈ R
d1 ×R

d2 : |x′′| < (|x′| + |y′|)3/2}, instead, we choose β1
and β2 in such a way that β = β̃1 + β̃2, β̃1 > d1/2 + d2/4 − γ and β̃2 > d2/2. Then
the integral over X2 is estimated by

∫

R
d1×R

d2

(
1 + |x′ − y′|

1 + |y′|
)−2γ (

1 + ∣∣x′ − y′∣∣)−2β̃1

(
1 + |x′′|

(|x′| + |y′|)1/2

)−2β̃2

dx

≤ Cγ,β

∫

R
d1

(
1 + |u|

1 + |y′|
)−2γ (

1 + |u|)−2β̃1
(∣∣u + y′∣∣ + ∣∣y′∣∣)d2/2

du

≤ Cγ,β

((
1 + ∣∣y′∣∣)2γ

∫

R
d1

(
1 + |u|)−2ν

du + ∣∣y′∣∣d2/2
∫

R
d1

(
1 + |u|)−2β̃1 du

)
,

where ν = β̃1 + γ − d2/4 > d1/2. The conclusion follows. �

Proposition 4.3 For all R > 0, α ≥ 0, β > α, γ ∈ [0, d2/4), and for all functions
F :R → C such that suppF ⊆ [R2,4R2],

ess sup
y∈Rd1 ×R

d2

∣∣B
(
y,R−1)∣∣1/2∥∥(

1 + Rρ(·, y)
)α(

1 + wR(·, y)
)γ

KF(L)(·, y)
∥∥

2

≤ Cα,β,γ ‖δR2F‖
W

β
2
,

where the constant Cα,β,γ does not depend on R.

Proof The estimate (25), together with (28) and a Sobolev embedding, immediately
implies Proposition 4.3 in the case β > α + d2/2 + 1/2. On the other hand, in the
case α = 0, Proposition 4.3 follows from Proposition 3.5 for all β > 0. We obtain
now Proposition 4.3 for the whole range of exponents by interpolation (see [11] and
also [12, Lemma 4.3] for similar methods). �



J Fourier Anal Appl (2013) 19:1274–1293 1291

For the purpose of the next statement we set D = Q − min{d1, d2/2} = max{d1 +
d2,3d2/2}.

Corollary 4.4 For all R > 0, α ≥ 0, β > α + D/2, and for all functions F : R → C

such that suppF ⊆ [R2,4R2],
ess sup

y∈Rd1×R
d2

∥∥(
1 + Rρ(·, y)

)α
KF(L)(·, y)

∥∥
1 ≤ Cα,β‖δR2F‖

W
β
2
, (29)

where the constant Cα,β does not depend on R. In particular, under the same hy-
potheses,

ess sup
y∈Rd1 ×R

d2

∫

R
d1×R

d2\B(y,r)

∣∣KF(L)(x, y)
∣∣dx ≤ Cα,β(1 + rR)−α‖δR2F‖

W
β
2
. (30)

Proof Corollary 4.4 follows from Proposition 4.3, together with (27) and Hölder’s
inequality. �

We are finally able to prove our main results.

Proofs of Theorems 1.1 and 1.2 To prove Theorem 1.1 we can follow the lines of
the proof of [12, Theorem 3.1], where the inequality (4.18) there is replaced by our
(30). Next we can use that same argument as in [12, Sect. 6] to conclude the proof of
Theorem 1.2, see also [29]. �

5 Final Remarks

Now we shall show that, if d1 ≥ d2/2, then the result in Theorem 1.1 is sharp. More
precisely, if d1 ≥ d2/2 and s < D/2 = (d1 + d2)/2, then the weak type (1,1) esti-
mates in Theorem 1.1 cannot hold. Indeed, if we consider the functions Ht(λ) = λit ,
then, for t > 1, and any η ∈ C∞

c (R+)

‖ηHt‖Ws
2

∼ t s .

On the other hand, we make the following observation.

Proposition 5.1 Suppose that L is the Grushin operator acting on X = R
d1 × R

d2 .
Then the following lower bounds holds:

∥∥Ht(L)
∥∥

L1→L1,w = ∥∥Lit
∥∥

L1→L1,w ≥ C
(
1 + |t |)(d1+d2)/2

for all t > 0.

Proof Because the Grushin operator is elliptic on X0 = {x ∈R
d1 ×R

d2 : x′ 
= 0}, one
can use the same argument as in [35] to prove that, for all y ∈ X0,

∣∣pt(x, y) − ∣∣y′∣∣−d2(4πt)−(d1+d2)/2e−ρ(x,y)2/4t
∣∣ ≤ Ct1/2t−(d1+d2)/2
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for all x in a small neighbourhood of y and all t ∈ (0,1). Here pt = Kexp(−tL) is the
heat kernel corresponding to the Grushin operator. The rest of the argument is the
same as in [35], so we skip it here. �

To show that Theorems 1.1 and 1.2 are sharp one can also use the results described
in [26].

Finally we would like to mention a few natural open problems related to the sharp
spectral multiplier results, which we prove in this paper. First such problem is to
extend Theorem 1.1 to the class of all operators Lσ defined by (1) for all σ > 0.
Especially intuitions coming from interpolation techniques suggest the results de-
scribed in Theorem 1.1 above and in [29, Theorem 1] can be extended at least for
all 1 < σ < 2. However we want to point out that it seems that interpolation ap-
proach including Stein’s complex interpolation cannot be used here. Another inter-
esting question, which arises is to obtain possible precise description of the spectral
decompositions of operators Lσ . Third interesting problem is to remove the condition
d1 ≥ d2/2 from the Theorem 1.1. That is to show that half of the Euclidean dimension
(d1 + d2)/2 is the critical exponent for L1 spectral multiplier for all values of d1 and
d2. At this point it worth to mention that in the resent paper [28] similar restriction is
removed from [29, Theorem 1] and it is shown that for σ = 2 half of the Euclidean
dimension of the considered ambient space is the critical exponent for all values of d1
and d2. In this situation, it is a natural question whether the analogue of Theorem 1.1
can be obtained for all values of σ > 0 and dimensions d1, d2.
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