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Abstract Let A be a d × d expansive matrix with |detA| = 2. An A-wavelet is a

function ψ ∈ L2(Rd) such that {2 j
2 ψ(A · −k) : j ∈ Z, k ∈ Z

d} is an orthonormal
basis for L2(Rd). A measurable function f is called an A-wavelet multiplier if the
inverse Fourier transform of f ψ̂ is an A-wavelet whenever ψ is an A-wavelet, where
ψ̂ denotes the Fourier transform of ψ . A-scaling function multiplier, A-PFW multi-
plier, semi-orthogonal A-PFW multiplier, MRA A-wavelet multiplier, MRA A-PFW
multiplier and semi-orthogonal MRA A-PFW multiplier are defined similarly. In this
paper, we prove that the above seven classes of multipliers are equivalent, and obtain
a characterization of them. We then prove that if the set of all A-wavelet multipli-
ers acts on some A-scaling function (A-wavelet, A-PFW, semi-orthogonal A-PFW,
MRA A-wavelet, MRA A-PFW, semi-orthogonal MRA A-PFW), the orbit is arc-
wise connected in L2(Rd), and that if the generator of an orbit is an MRA A-PFW,
the orbit is equal to the set of all MRA A-PFWs whose Fourier transforms have
same module, and is also equal to the set of all MRA A-PFWs with corresponding
pseudo-scaling functions having the same module of their Fourier transforms.
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1 Introduction

We denote by Z the set of integers, by N the set of positive integers, and by Z+ the
set of nonnegative integers. Let A be a d ×d expansive matrix, i.e., an integral matrix
with eigenvalues being greater than 1 in module. Define the dilation operator D and
translation operator Tk on L2(Rd) with k ∈ Z

d respectively by

Df (·) := |detA| 1
2 f (A·) and Tkf (·) := f (· − k) for f ∈ L2(

R
d
)
,

and write fj,k = DjTkf for f ∈ L2(Rd), j ∈ Z and k ∈ Z
d . The Fourier (inverse

Fourier) transform is defined by

f̂ (·) =
∫

Rd

f (x)e−2πi〈x, ·〉dx

(
f̌ (·) =

∫

Rd

f (x)e2πi〈x, ·〉dx

)

for f ∈ L1(Rd) ∩ L2(Rd) and unitarily extended to L2(Rd). Throughout this pa-
per, unless otherwise specified, relations between two measurable sets in R

d , such
as equality or inclusion, are always understood up to a set of zero measure. Simi-
larly, equality or inequality between functions is always understood in the “pointwise
almost everywhere” sense. We work under the following assumption:

Assumption The matrix A is a d × d expansive matrix with |detA| = 2.

Proposition 1.1 ([15, Proposition 2])

(i) f (·+ (A∗)−1ε) = f (·+ (A∗)−1δ) for an arbitrary Z
d -periodic function f , ε and

δ with {0, ε} and {0, δ} being both the sets of representatives of distinct cosets in
Z

d/A∗
Z

d ;
(ii) there exists 1 ≤ k0 ≤ d such that 2〈(A∗)−1ε, ek0〉 is odd for all ε with {0, ε}

being a set of representatives of distinct cosets in Z
d/A∗

Z
d , where A∗ denotes

the transpose of A, and ek0 denotes the vector in R
d with the k0-th component

being 1 and the others being zero.

Definition 1.1 A sequence {Vj }j∈Z of closed subspaces of L2(Rd) is called a mul-
tiresolution analysis (an MRA) for L2(Rd) associated with A if the following condi-
tions are satisfied:

(i) Vj ⊂ Vj+1 for j ∈ Z;
(ii)

⋃
j∈Z

Vj = L2(Rd) and
⋂

j∈Z
Vj = {0};

(iii) f ∈ V0 if and only if Djf ∈ Vj for j ∈ Z;
(iv) there exists ϕ ∈ L2(Rd) such that {Tkϕ : k ∈ Z

d} is an orthonormal basis for V0.

This definition is a natural generalization of one dimensional MRA with A =
2. Some other “generalized” MRAs were introduced in [1, 2, 6, 7, 16, 21] for the
construction of wavelet frames in L2(Rd). The function ϕ in (iv) is called a scaling
function of the MRA. By Theorem 1.1 in [4], the condition

⋂
j∈Z

Vj = {0} in (ii)
is trivial, a special case of which can be obtained by Corollary 4.14 in [8]. By the
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definition, Vj = span{DjTkϕ : k ∈ Z
d } (so we say ϕ generates the MRA), and there

exists a unique m ∈ L2(Td) such that ϕ̂(A∗·) = m(·)ϕ̂(·). It is easy to check that

∣∣m(·)∣∣2 + ∣∣m
(· + (

A∗)−1
ε
)∣∣2 = 1, (1.1)

where {0, ε} is a set of representatives of distinct cosets in Z
d/A∗

Z
d . Let k0 be as in

Proposition 1.1. Define m1 ∈ L2(Td) by

m1(·) = e2πi〈·, ek0 〉μ
(
A∗·)m(· + (

A∗)−1
ε
)
, (1.2)

and ψ ∈ L2(Rd) via its Fourier transform by

ψ̂(·) = m1
((

A∗)−1·)ϕ̂((
A∗)−1·), (1.3)

where μ is an arbitrary Z
d -periodic, unimodular and measurable function. Observe

that
(

m(·) m(· + (A∗)−1ε)

m1(·) m1(· + (A∗)−1ε)

)

is unitary. By the same procedure as in [9, Chap. 2, Proposition 2.13], we can prove
that {Tkψ : k ∈ Z

d} is an orthonormal basis for W0 = V1 	 V0 (the orthogonal com-
plement of V0 in V1), and thus {ψj,k : j ∈ Z, k ∈ Z

d} is an orthonormal basis for
L2(Rd). Such ψ is called an MRA A-wavelet since it is associated with an MRA,
which is independent of the choice of ε by Proposition 1.1.

Let ψ ∈ L2(Rd). ψ is called an A-wavelet if {ψj,k : j ∈ Z, k ∈ Z
d} is an or-

thonormal basis for L2(Rd); is called an A-Parseval frame wavelet (A-PFW) if
{ψj,k : j ∈ Z, k ∈ Z

d} is a Parseval frame for L2(Rd), i.e.,

‖f ‖2 =
∑

j∈Z

∑

k∈Zd

∣∣〈f,ψj,k〉
∣∣2 for f ∈ L2(

R
d
)
.

ψ is called a semi-orthogonal A-Parseval frame wavelet (semi-orthogonal A-PFW)
if it is an A-PFW, and 〈ψj,k,ψj ′,k′ 〉 = 0 for k, k′ ∈ Z

d and j , j ′ ∈ Z with j �= j ′;
ψ is called an MRA A-Parseval frame wavelet (MRA A-PFW) if it is an A-PFW,
and there exist an A-refinable function ϕ, a Z

d -periodic measurable function m, a
Z

d -periodic, unimodular and measurable function v such that

ϕ̂
(
A∗·) = m(·)ϕ̂(·), ∣∣m(·)∣∣2 + ∣∣m

(· + (
A∗)−1

ε
)∣∣2 = 1, (1.4)

and

ψ̂(·) = e2πi〈(A∗)−1·, ek0 〉v(·)m((
A∗)−1 · +(

A∗)−1
ε
)
ϕ̂
((

A∗)−1·), (1.5)

where k0 is as in Proposition 1.1. In this case, m is called a low pass filter, and
ϕ is called a pseudo-scaling function. ψ is called a semi-orthogonal MRA A-
Parseval frame wavelet (semi-orthogonal MRA A-PFW) if it is an MRA A-PFW,
and 〈ψj,k,ψj ′,k′ 〉 = 0 for k, k′ ∈ Z

d and j , j ′ ∈ Z with j �= j ′.
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MRA wavelets have many desirable features, but they impose some restrictions.
A natural setting for such a theory is provided by frames (see [9, Chap. 8]). In one di-
mension, this problem was studied in [2, 6, 7]. However, “generalized” MRAs therein

exclude many useful filters, such as m(ξ) = 1+e−6πiξ

2 , since they involve certain re-
strictions and technical assumptions such as semi-orthogonality. MRA PFWs herein
overcome this drawback, and include the filter above. Some results related to MRA
PFWs can be seen in [15, 19, 20].

The construction of wavelets and wavelet frames is an important issue in wavelet
analysis. MRAs and generalized MRAs in [1, 2, 6, 7, 9, 21] provide us with an
approach for the construction of wavelets and wavelet frames. In particular, Bakić,
Krishtal and Wilson in [1] first studied a class of MRA PFWs associated with a
general expansive matrix A with |detA| = 2. Multipliers allow us to obtain new
wavelets (frame wavelets) from one wavelet (frame wavelet). A measurable func-
tion f defined on R

d is called an A-wavelet multiplier (MRA A-wavelet multiplier,
A-PFW multiplier, MRA A-PFW multiplier, semi-orthogonal A-PFW multiplier,
semi-orthogonal MRA A-PFW multiplier, A-scaling function multiplier) if (f ψ̂)∨
is an A-wavelet (MRA A-wavelet, A-PFW, MRA A-PFW, semi-orthogonal A-PFW,
semi-orthogonal MRA A-PFW, A-scaling function) whenever ψ is. The first article
on wavelet multipliers can be dated back to [22] in 1998. It is the first of a series of
reports describing joint results by two groups consisting of 14 members, one led by
Dai and Larson, and the other led by Hernández and Weiss. This article characterized
one dimensional 2-wavelet multipliers, as well as the scaling function multipliers and
low pass filter multipliers, and proved that the set of MRA 2-wavelets is arcwise
connected in L2(R). In 2001, Paluszynski, Šikić, Weiss and Xiao in [19] character-
ized several classes of 2-PFW multipliers, and proved the arcwise connectivity of
several classes of 2-PFW sets in L2(R). However, these two articles are both of one
dimension. In 2002, for A = ( 0 2

1 0

)
,
( 1 1

1 −1

)
, Li (the first author of this paper) in [11]

proved the equivalence between A-wavelet multiplier, A-scaling function multiplier
and MRA A-wavelet multiplier, characterized these three classes of multipliers and
low pass A-filter multipliers, and, in terms of multipliers, proved the arcwise con-
nectivity of the set of a class of wavelets. In 2004, D. Li and Cheng in [12] proved
that the set of MRA A-wavelets is arcwise connected. Using the fact that all 2 × 2
expansive matrices A with |detA| = 2 can be exactly classified as six integrally sim-
ilar classes by [10], in 2010, Z. Li, Dai, Diao and Xin in [18] extended the results
in [11] to general 2 × 2 expansive matrices A with |detA| = 2, they also proved the
arcwise connectivity of the set of MRA A-wavelets. For a general d × d expansive
matrix A with |detA| = 2, in 2010, Z. Li, Dai, Diao and Huang in [17] character-
ized (MRA) A-wavelet multipliers, and proved the arcwise connectivity of the set of
MRA A-wavelets. Recently, Z. Li and Shi in [14] characterized A-PFW multipliers,
and in [13] obtained some conditions for dyadic bivariate wavelet multipliers.

For a general d × d expansive matrix A with |detA| = 2, in this paper, we prove
the equivalence between seven classes of multipliers. The main results of this paper
are as follows.

Theorem 1.1 For a measurable function f defined on R
d , the following are equiva-

lent:
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(1) |f (·)| = 1 a.e. on R
d , and k(·) = f (A∗·)

f (·) is Z
d -periodic.

(2) f is an A-scaling function multiplier.
(3) f is an MRA A-wavelet multiplier.
(4) f is an A-wavelet multiplier.
(5) f is an A-PFW multiplier.
(6) f is a semi-orthogonal A-PFW multiplier.
(7) f is an MRA A-PFW multiplier.
(8) f a semi-orthogonal MRA A-PFW multiplier.

By Theorem 1.1, a multiplier f always satisfies

f
((

A∗)n·) = k
((

A∗)n−1·)f ((
A∗)n−1·)

= k
((

A∗)n−1·)k((
A∗)n−2·)f ((

A∗)n−2·)

= · · ·
= k

((
A∗)n−1·)k((

A∗)n−2·) · · · k(
A∗·)k(·)f (·), (1.6)

and

f (·) = k
((

A∗)n−1·)k((
A∗)n−2·) · · · k(

A∗·)k(·)f ((
A∗)n·) (1.7)

for n ∈ Z and some Z
d -periodic, unimodular function k. This shows that a multiplier

f is determined by its values on a set E with {(A∗)nE : n ∈ Z} being a partition of
R

d and a Z
d -periodic, unimodular function k. However, Lemma 2.8 in [1] asserts that

an arbitrary Z
d -periodic, unimodular function must satisfy k(·) = f (A∗·)

f (·) for some
unimodular function f . This allows us to conjecture that (1.6) and (1.7) determine all
multipliers. The following theorem gives a positive answer to this conjecture.

Theorem 1.2 Let k(ξ) be a unimodular, measurable and Z
d -periodic function de-

fined on R
d , let E be a measurable set with {(A∗)nE : n ∈ Z} being a partition of

R
d , and let g(ξ) be a unimodular measurable function defined on E. Define

f (ξ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g(ξ), ξ ∈ E

k((A∗)−1ξ) · · ·k((A∗)−nξ) · g((A∗)−nξ), ξ ∈ (A∗)nE,n ≥ 1

k(ξ)k(A∗ξ) · · ·k((A∗)n−1ξ) · g((A∗)nξ), ξ ∈ (A∗)−nE,n ≥ 1

Then f is any one of seven multipliers in Theorem 1.1. Moreover, any one of seven
multipliers in Theorem 1.1 can be constructed by this way.

Theorem 1.2 holds for A-wavelet multipliers by Theorem 3.2 in [17] if E is an
A-wavelet set. However, by a careful observation to its proof, we find it is enough
to require that {(A∗)nE : n ∈ Z} forms a partition of R

d . So Theorem 1.2 holds for
A-wavelet multipliers. Then we obtain Theorem 1.2 by Theorem 1.1.

Let ψ0 be an A-wavelet (MRA A-wavelet, a semi-orthogonal MRA A-PFW,
MRA A-PFW, a semi-orthogonal A-PFW, A-PFW, A-scaling function). Define

Mψ0 = {
ψ : ψ̂(·) = f (·)ψ̂0(·), f is an A-wavelet multiplier

}
. (1.8)
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Then Mψ0 is a subset of the set of A-wavelets (MRA A-wavelets, semi-orthogonal
MRA A-PFWs, MRA A-PFWs, semi-orthogonal A-PFWs, A-PFWs, A-scaling
functions) by Theorem 1.1. The following theorems concern the arcwise connectivity
of Mψ0 and its characterization.

Theorem 1.3 Let ψ0 be an A-wavelet (MRA A-wavelet, a semi-orthogonal MRA
A-PFW, MRA A-PFW, a semi-orthogonal A-PFW, A-PFW, A-scaling function).
Then Mψ0 is arcwise connected, i.e., for an arbitrary ψ1 ∈ Mψ0 , there exists a contin-
uous mapping θ : [0,1] �→ L2(Rd) such that θ(0) = ψ0, θ(1) = ψ1 and θ(t) ∈ Mψ0

for t ∈ [0,1].

Theorem 1.4 Let ψ0 be an MRA A-PFW with ϕ0 being a corresponding pseudo-
scaling function. Define

Wψ0 = {
ψ : ψ is an MRA A-PFW such that

∣∣ψ̂(·)∣∣ = ∣∣ψ̂0(·)
∣∣},

and

Sψ0 = {
ψ : ψ is an MRA A-PFW associated with a pseudo-scaling function

ϕ satisfying
∣∣ϕ̂(·)∣∣ = ∣∣ϕ̂0(·)

∣∣}.

Then Sψ0 = Mψ0 = Wψ0 .

Remark 1.1 Let ψ0 in Theorems 1.3 and 1.4 be an MRA A-wavelet with ϕ0 being
its scaling function. Define

W̃ψ0 = {
ψ : ψ is an A-wavelet such that

∣∣ψ̂(·)∣∣ = ∣∣ψ̂0(·)
∣∣},

and

S̃ψ0 = {
ψ : ψ is an MRA A-wavelet associated with a scaling function

ϕ satisfying
∣∣ϕ̂(·)∣∣ =∣∣ϕ̂0(·)

∣∣}.

Then S̃ψ0 = Mψ0 = W̃ψ0 , and Mψ0 is arcwise connected. See [22, Theorem 3], [11,
Theorem 1.3] and [17, Lemmas 4.1, 4.2] for details. The most interesting thing is
the fact that these two results were used effectively for showing that the set of MRA
A-wavelets is arcwise connected (see [22, Theorem 4] and [17, Theorem 4.1]). But it
is unresolved that whether the set of MRA A-PFWs is arcwise connected. It is worth
expecting that Theorems 1.3 and 1.4 are helpful for solving this problem.

2 Proof of Theorem 1.1

For ψ ∈ L2(Rd), write

Dψ(·) =
∞∑

j=1

∑

k∈Zd

∣∣ψ̂
((

A∗)j
(· + k)

)∣∣2
,
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Ψj (·) = {
ψ̂

((
A∗)j

(· + k)
) : k ∈ Z

d
}

for j ∈ Z+,

Fψ(·) = span
{
Ψj (·) : j ∈ N

}
.

Lemma 2.1 For ψ ∈ L2(Rd),
∫

Td Dψ(ξ)dξ = ‖ψ‖2.

Lemma 2.2 For an arbitrary ϕ ∈ L2(Rd), ϕ is an A-scaling function if and only if

(1)
∑

k∈Zd |ϕ̂(· + k)|2 = 1 a.e. on R
d ;

(2) limj→∞ |ϕ̂((A∗)−j ·)| = 1 a.e. on R
d ;

(3) there exists a Z
d -periodic measurable function m such that ϕ̂(A∗·) = m(·)ϕ̂(·)

a.e. on R
d .

Taking Ω = R
d in Theorems 1–3 and Lemmas 5, 6 in [15], we have following five

lemmas:

Lemma 2.3 Let ψ be an A-PFW. Then ψ is a semi-orthogonal PFW if and only if
Dψ(·) ∈ Z+ a.e. on R

d .

Lemma 2.4 Let ψ be an A-PFW. Then ψ is an MAR A-PFW if and only if
dimFψ(·) ∈ {0,1} a.e. on R

d .

Lemma 2.5 Let ψ be an A-PFW. Then ψ is a semi-orthogonal MAR A-PFW if and
only if Dψ(·) ∈ {0,1} a.e. on R

d .

Lemma 2.6 For an A-PFW ψ , the following are equivalent:

(i) ψ is a semi-orthogonal A-PFW;
(ii)

∑
k∈Zd |ψ̂(· + k)|2 = χ

U
(·) a.e. on R

d , where U = {ξ ∈ R
d : ∑

k∈Zd |ψ̂(ξ +
k)|2 > 0};

(iii) ‖ψ‖2 = ∑
k∈Zd |〈ψ, Tkψ〉|2;

(iv)
∑

k∈Zd ψ̂((A∗)j (· + k))ψ̂(· + k) = 0 a.e. on R
d for j ∈ N.

Lemma 2.7 Let ψ be an A-PFW. Define

Hn(·) =
∞∑

j=0

〈
Ψn(·),Ψj (·)

〉
�2(Zd )

ψ̂
((

A∗)j ·) a.e. on R
d for n ∈ N.

Then

Hn(·) = Hn−1
(
A∗·) + 〈

Ψn(·),Ψ0(·)
〉
�2(Zd )

ψ̂(·)

a.e. on R
d for 1 < n ∈ N.
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Lemma 2.8 Let {ψj,k : j ∈ Z, k ∈ Z
d} be a Bessel sequence in L2(Rd) with Bessel

bound B . Then

∞∑

j=1

∑

k∈Zd

∣∣ψ̂
((

A∗)n
(· + k)

)∣∣∣∣ψ̂
((

A∗)j
(· + k)

)∣∣∣∣ψ̂
((

A∗)j ·)∣∣

≤ B

√
Dψ(·) a.e. on R

d for n ∈ Z+.

Proof Since {ψj,k : j ∈ Z, k ∈ Z
d} is a Bessel sequence in L2(Rd) with Bessel

bound B , we have

∞∑

j=1

∣∣ψ̂
((

A∗)j ·)∣∣2 ≤ B,
∑

k∈Zd

∣∣ψ̂(· + k)
∣∣2 ≤ B.

Then, by Cauchy-Schwartz inequality,

∞∑

j=1

∑

k∈Zd

∣∣ψ̂
((

A∗)n
(· + k)

)∣∣∣∣ψ̂
((

A∗)j
(· + k)

)∣∣∣∣ψ̂
((

A∗)j ·)∣∣

≤
( ∞∑

j=1

∣
∣ψ̂

((
A∗)j ·)∣∣2

) 1
2
( ∞∑

j=1

( ∑

k∈Zd

∣
∣ψ̂

((
A∗)n

(· + k)
)∣∣ · ∣∣ψ̂((

A∗)j
(· + k)

)∣∣
)2

) 1
2

≤ √
B ·

( ∞∑

j=1

∑

k∈Zd

∣∣ψ̂
((

A∗)n
(· + k)

)∣∣2 ·
∑

k∈Zd

∣∣ψ̂
((

A∗)j
(· + k)

)∣∣2

) 1
2

= √
B ·

( ∑

k∈Zd

∣∣ψ̂
((

A∗)n · +k
)∣∣2

) 1
2
( ∞∑

j=1

∑

k∈Zd

∣∣ψ̂
((

A∗)j
(· + k)

)∣∣2

) 1
2

≤ B

√
Dψ(·).

The proof is completed. �

The following two lemmas are borrowed from [3] and [5]:

Lemma 2.9 For ψ ∈ L2(Rd), ψ is an A-PFW if and only if

∑

j∈Z

∣∣ψ̂
((

A∗)j ·)∣∣2 = 1,

∞∑

j=0

ψ̂
((

A∗)j ·)ψ̂((
A∗)j

(· + k)
) = 0

(
k ∈ Z

d \ A∗
Z

d
)

a.e. on R
d .

Lemma 2.10 Let ψ be an A-PFW. Then ψ is an A-wavelet if and only if ‖ψ‖ = 1.
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Lemma 2.11 Let ψ be a semi-orthogonal A-PFW. Then

χ
U

((
A∗)n·)ψ̂((

A∗)n·) =
∞∑

j=1

〈
Ψn(·),Ψj (·)

〉
�2(Zd )

ψ̂
((

A∗)j ·) (2.1)

a.e. on R
d for n ∈ N, where U is defined as in Lemma 2.6.

Proof By Lemmas 2.6 and 2.7, we have

Hn(·) =
∞∑

j=1

〈
Ψn(·),Ψj (·)

〉
�2(Zd )

ψ̂
((

A∗)j ·) for n ∈ N, (2.2)

Hn(·) = Hn−1(A
∗·) for 1 < n ∈ N, and thus Hn(·) = H1((A

∗)n−1·) for n ∈ N. So, to
finish the proof, we only need to prove that H1(·) = χ

U
(A∗·)ψ̂(A∗·). By Lemmas 2.8

and 2.9,

H1(·) =
∑

k∈Zd

ψ̂
(
A∗(· + k)

) ∞∑

j=1

ψ̂
((

A∗)j
(· + k)

)
ψ̂

((
A∗)j ·)

=
∑

k∈Zd

ψ̂
(
A∗(· + k)

) ∞∑

j=0

ψ̂
((

A∗)j (
A∗ · +A∗k

))
ψ̂

((
A∗)j+1·)

=
∑

k∈Zd

ψ̂
(
A∗ · +k

) ∞∑

j=0

ψ̂
((

A∗)j (
A∗ · +k

))
ψ̂

((
A∗)j+1·).

Interchanging the order of summation, we obtain H1(·) = χ
U
(A∗·)ψ̂(A∗·) by

Lemma 2.6. The proof is completed. �

When ψ is an A-PFW, and Dψ(·) = 1, we have ψ is an A-wavelet and thus

ψ̂
((

A∗)n·) =
∞∑

j=1

〈
Ψn(·),Ψj (·)

〉
�2(Zd )

ψ̂
((

A∗)j ·) for n ∈ N

by Lemmas 2.1, 2.10 and 2.11. Then, by standard arguments in [9], we can prove the
following lemma:

Lemma 2.12 For ψ ∈ L2(Rd), ψ is an MRA A-wavelet if and only if ψ is an A-
PFW, and Dψ(·) = 1 a.e. on R

d .
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Lemma 2.13 Given measurable functions f and g defined on R
d , let g(·) �= 0 a.e.

on R
d , and let

∑

j∈Z

∣∣f
((

A∗)j ·)∣∣2n∣∣g
((

A∗)j ·)∣∣2 = 1,

∑

j∈Z

∣∣g
((

A∗)j ·)∣∣2 = 1 a.e. on R
d for n ∈ N.

(2.3)

Then |f (·)| = 1 a.e. on R
d .

Proof Suppose |f (·)| > 1 on some set E with positive measure. Then |f (·)|2n|g(·)|2
≤ 1 a.e. on E by (2.3), which implies that |g(·)|2 ≤ |f (·)|−2n → 0 as n → ∞ a.e.
on E. This is a contradiction. So

∣∣f (·)∣∣ ≤ 1 a.e. on R
d . (2.4)

By (2.3), we also have
∑

j∈Z

∣∣g
((

A∗)j ·)∣∣2(1 − ∣∣f
((

A∗)j ·)∣∣2n) = 0.

It follows that |f (·)| = 1 a.e. on R
d by (2.4) and the fact that g �= 0 a.e. on R

d . The
proof is completed. �

Lemma 2.14 For an arbitrary multiplier f of (3)–(8) in Theorem 1.1, |f (·)| = 1 a.e.
on R

d .

Proof Choose ψ as one MRA A-wavelet satisfying ψ̂(·) �= 0 a.e. on R
d ([1, Exam-

ple 5.14]). Then (f nψ̂)∨ is an A-PFW for every n ∈ N by Theorem 1.1. So
∑

j∈Z

∣∣f
((

A∗)j ·)∣∣2n∣∣ψ̂
((

A∗)j ·)∣∣2 = 1,
∑

j∈Z

∣∣ψ̂
((

A∗)j ·)∣∣2 = 1 a.e. on R
d

by Lemma 2.9. This implies that |f (·)| = 1 a.e. on R
d by Lemma 2.13. The proof is

completed. �

Lemma 2.15 For an arbitrary A-scaling function multiplier f , |f (·)| = 1 a.e. on R
d .

Proof Choose ϕ as one A-scaling function satisfying ϕ̂(·) �= 0 a.e. on R
d ([1, Exam-

ple 5.14]). Then (f nϕ̂)∨ is an A-scaling function for every n ∈ N. So
∑

k∈Zd

∣∣f (· + k)
∣∣2n∣∣ϕ̂(· + k)

∣∣2 = 1,
∑

k∈Zd

∣∣ϕ̂(· + k)
∣∣2 = 1 a.e. on R

d (2.5)

by Lemma 2.2. It follows that
∑

k∈Zd

∣∣ϕ̂(· + k)
∣∣2(1 − ∣∣f (· + k)

∣∣2n) = 0, (2.6)
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∣∣ϕ̂(·)∣∣2 ≤ ∣∣f (·)∣∣−2n (2.7)

a.e. on R
d . Suppose |f (·)| > 1 on some set E with positive measure. Then |ϕ̂(·)|2 ≤

|f (·)|−2n → 0 as n → ∞ a.e. on E, which is a contradiction. So |f (·)| ≤ 1 a.e. on
R

d . This leads to |f (·)| = 1 a.e. on R
d by (2.6) and the fact that ϕ̂ �= 0 a.e. on R

d .
The proof is completed. �

Proof of Theorem 1.1 By Lemmas 2.14 and 2.15, we may as well assume that
|f (·)| = 1 a.e. on R

d . Then (1), (3), (4) and (5) are equivalent by [17, Theorem 3.1,
Corollary 3.1] and [14, Theorem 3.2], and

D
(f ψ̂)∨(·) = Dψ(·) a.e. on R

d for ψ ∈ L2(
R

d
)
. (2.8)

Suppose f is an arbitrary one of (6)–(8), and ψ is an MRA A-wavelet. Then (f ψ̂)∨
is an A-PFW, and Dψ(·) = 1 by Lemma 2.12. So D

(f ψ̂)∨(·) = 1 a.e. on R
d by (2.8).

This implies that (f ψ̂)∨ is an MRA A-wavelet by Lemma 2.12, and thus (3) holds.
To finish the proof, next we prove that (1) and (2) are equivalent, and that (1) implies
every one of (6)–(8).

(1)⇒(2): Suppose (1) holds, and ϕ is an A-scaling function satisfying ϕ̂(A∗·) =
m(·)ϕ̂(·) for some Z

d -periodic function m. Then we have

f
(
A∗·)ϕ̂(

A∗·) = k(·)m(·)f (·)ϕ̂(·), (2.9)

and k(·)m(·) is Z
d -periodic by (1), and

∑

k∈Zd

∣∣f̂ (· + k)
∣∣2∣∣ϕ̂(· + k)

∣∣2 = 1, lim
j→∞

∣∣f
((

A∗)−j ·)∣∣∣∣ϕ̂((
A∗)−j ·)∣∣ = 1 (2.10)

by (1) and Lemma 2.2. So (f ϕ̂)∨ is an A-scaling function by (2.9), (2.10) and
Lemma 2.2, and thus f is an A-scaling function multiplier.

(2)⇒(1): Suppose f is an A-scaling function multiplier, and ϕ is an A-scaling
function satisfying ϕ̂(·) �= 0 a.e. on R

d ([1, Example 5.14]). Then ϕ1 = (f ϕ̂)∨ is
an A-scaling function satisfying ϕ̂1(·) �= 0 a.e. on R

d . So there exists Z
d -periodic

functions m and m1 satisfying

ϕ̂
(
A∗·) = m(·)ϕ̂(·), ϕ̂1

(
A∗·) = m1(·)ϕ̂1(·),

which implies that

ϕ̂1
(
A∗·) = f

(
A∗·)m(·)ϕ̂(·) = f

(
A∗·)m(·)f (·)ϕ̂1(·).

Therefore,

k(·) = f (A∗·)
f (·) = m1(·)

m(·) ,

which is Z
d -periodic by periodicity of m and m1.

(1)⇒(6): Suppose (1) holds, and ψ is a semi-orthogonal A-PFW. Then Dψ(·) ∈
Z+ by Lemma 2.3, and (f ψ̂)∨ is an A-PFW by the equivalence between (1) and (5).
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Since |f (·)| = 1, we have Dψ(·) = D
(f ψ̂)∨(·), and thus D

(f ψ̂)∨(·) ∈ Z+. So (f ψ̂)∨
is a semi-orthogonal A-PFW by Lemma 2.3, and thus (6) holds.

(1)⇒(7): Suppose (1) holds, and ψ is an MRA A-PFW. Then (f ψ̂)∨ is an A-PFW
by the equivalence between (1) and (5). Write

F
(f ψ̂)∨(·) = span

{
Ψ̃j (·), j ∈ N

}
,

where

Ψ̃j (·) = {
f ψ̂

((
A∗)j

(· + k)
) : k ∈ Z

d
}

for j ∈ N.

By Lemma 2.4, to prove (7) we only need to prove that dimF
(f ψ̂)∨(·) ∈ {0,1}. By

Lemma 2.4, we have dimFψ(·) ∈ {0,1}. So there exist functions j0 : R
d → N and

cj : R
d → C with j ∈ N such that Ψj (·) = cj (·)Ψj0(·)(·), i.e.,

ψ̂
((

A∗)j
(· + k)

) = cj (·)ψ̂
((

A∗)j0(·)(· + k)
)

for j ∈ N and k ∈ Z
d .

By (1), we also have

f
((

A∗)j
(· + l)

) = k
((

A∗)j−1
(· + l)

)
k
((

A∗)j−2
(· + l)

) · · · k(· + l)f (· + l)

= k
((

A∗)j−1·)k((
A∗)j−2·) · · ·k(·)f (· + l)

= f
((

A∗)j ·)f (·)f (· + l) (2.11)

for j ∈ N and l ∈ Z
d , which implies that

f
((

A∗)j
(· + k)

)
f

((
A∗)j0(·)(· + k)

) = f
((

A∗)j ·)f ((
A∗)j0(·)·)

for j ∈ N and k ∈ Z
d . It follows that

Ψ̃j (·) = {
f

((
A∗)j

(· + k)
)
cj (·)ψ̂

((
A∗)j0(·)(· + k)

) : k ∈ Z
d
}

= {
cj (·)f

((
A∗)j

(· + k)
)
f

((
A∗)j0(·)(· + k)

)
(f ψ̂)

((
A∗)j0(·)(· + k)

) : k ∈ Z
d
}

= cj (·)f
((

A∗)j ·)f ((
A∗)j0(·)·)Ψ̃j0(·)

for j ∈ N, and thus dimF
(f ψ̂)∨ ∈ {0,1}.

(1)⇒(8): Suppose (1) holds, and ψ is a semi-orthogonal MRA A-PFW. Then
Dψ(·) ∈ {0,1} by Lemma 2.5, (f ψ̂)∨ is an A-PFW by the equivalence between (1)
and (5). Since |f (·)| = 1, we have D

(f ψ̂)∨ = Dψ , and thus D
(f ψ̂)∨(·) ∈ {0,1}. So

(f ψ̂)∨ is a semi-orthogonal MRA A-PFW by Lemma 2.5. Therefore (8) holds. The
proof is completed. �
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3 Proof of Theorems 1.3 and 1.4

Lemma 3.1 Let ψ be an MRA A-PFW, and let ϕ be a corresponding pseudo-scaling
function. Then

∣∣ϕ̂(·)∣∣2 =
∞∑

j=1

∣∣ψ̂
((

A∗)j ·)∣∣ a.e. on R
d . (3.1)

Proof By the definition of MRA A-PFW, |ϕ̂(A∗·)|2 +|ψ̂(A∗·)|2 = |ϕ̂(·)|2. It follows
that

∣∣ϕ̂(·)∣∣2 = ∣∣ϕ̂
((

A∗)n·)∣∣2 +
n∑

j=1

∣∣ψ̂
((

A∗)j ·)∣∣2
,

and thus

∣∣ϕ̂
((

A∗)n·)∣∣2 = ∣∣ϕ̂(·)∣∣2 −
n∑

j=1

∣∣ψ̂
((

A∗)j ·)∣∣2 (3.2)

for n ∈ N. Observe that {∑n
j=1 |ψ̂((A∗)j ·)|2} is an increasing sequence. It follows

that limn→∞ |ϕ̂((A∗)n·)|2 exists, and thus

∫

Rd

lim
n→∞

∣∣ϕ̂
((

A∗)n
ξ
)∣∣2

dξ = lim
n→∞

∫

Rd

∣∣ϕ̂
((

A∗)n
ξ
)∣∣2

dξ

= lim
n→∞ 2−n

∫

Rd

∣∣ϕ̂(ξ)
∣∣2

dξ

= 0.

So limn→∞ |ϕ̂((A∗)n·)|2 = 0, which implies (3.1) by (3.2). The proof is completed. �

Lemma 3.2 Let ϕ be a pseudo-scaling function. Define

E = {
ξ ∈ R

d : ϕ̂(ξ) �= 0
}
, Δ0 = E, Δn = (

A∗)n
E \ (

A∗)n−1
E for n ≥ 1.

Then {Δn : n ≥ 0} is a partition of R
d .

Proof Suppose ψ and m are respectively an MRA A-PFW and a low pass filter
corresponding to ϕ, and they are related as in (1.4) and (1.5). By (1.5), we have
supp(ψ̂) ⊂ A∗E, where supp(f ) = {ξ ∈ R

d : f̂ (ξ) �= 0} for a measurable function f .
It follows that

supp(ψ̂j,k) ⊂ (
A∗)j+1

E for j ∈ Z and k ∈ Z
d . (3.3)

Since ψ is an A-PFW, {ψ̂j,k : j ∈ Z, k ∈ Z
d} is a Parseval frame for L2(Rd). If⋃

j∈Z
(A∗)jE �= R

d , then, by (3.3), there exists a set S with positive and finite mea-
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sure such that

S ∩
(⋃

j∈Z

⋃

k∈Zd

supp(ψ̂j,k)

)
= ∅.

It is obvious that χ
S

does not belong to the closed linear span of {ψ̂j,k : j ∈ Z, k ∈
Z

d}, which contradicts the fact that {ψ̂j,k : j ∈ Z, k ∈ Z
d} is a Parseval frame for

L2(Rd). So
⋃

j∈Z
(A∗)jE = R

d . Also by the refinable property of ϕ, we have E ⊂
A∗E. Thus

(
A∗)j

E ⊂ (
A∗)j+1

E for j ∈ Z and
∞⋃

j=0

(
A∗)j

E = R
d .

This easily leads to the lemma. The proof is completed. �

Proof of Theorem 1.3 Choose E such that {(A∗)jE : j ∈ Z} is a partition of R
d .

Suppose ψ1 ∈ Mψ0 . Then there exists an A-wavelet multiplier f such that ψ̂1 = f ψ̂0.
Define a function λ on E such that f (ξ) = e2πiλ(ξ) and 0 ≤ λ(ξ) < 1 for ξ ∈ E.
Since f is an A-wavelet multiplier, there exists a Z

d -periodic real function β such
that f (A∗ξ)

f (ξ)
= e2πiβ(ξ). Extend λ to R

d in the following way:

λ(ξ) =
{

λ((A∗)−1ξ) + β((A∗)−1ξ), ξ ∈ (A∗)j+1E, j ≥ 0;
λ(A∗ξ) − β(ξ), ξ ∈ (A∗)jE, j < 0.

Then f (ξ) = e2πiλ(ξ) for a.e. ξ ∈ R
d . Define θ : [0,1] → L2(Rd) by

θ(t) = (ft ψ̂0)
∨ for t ∈ [0,1]

where ft (ξ) = e2πitλ(ξ). Then

θ(0) = ψ0, θ(1) = ψ1, (3.4)

and ft is an A-wavelet multiplier by Theorem 1.1. It follows that

θ(t) ∈ Mψ0 for 0 ≤ t ≤ 1. (3.5)

Observe that |θ̂ (t)(ξ) − θ̂ (s)(ξ)|2 ≤ 4|ψ̂0(ξ)|2 for 0 ≤ t, s ≤ 1. By Lebesgue domi-
nated theorem and Plancheral theorem, we have limt→s ‖θ(t) − θ(s)‖2 = 0, and thus
θ is continuous. This implies that Mψ0 is arcwise connected by (3.4) and (3.5). The
proof is completed. �

Proof of Theorem 1.4 By Theorem 1.1 and Lemma 3.1, we have Mψ0 ⊂ Wψ0 = Sψ0 .
Now we prove that Sψ0 ⊂ Mψ0 . Suppose ψ ∈ Sψ0 with ϕ being a corresponding
pseudo-scaling function, m and m0 are respectively low pass filters corresponding to
ϕ and ϕ0, and v and v0 are unimodular Z

d -periodic functions such that

ψ̂(·) = e2πi〈(A∗)−1·, ek0 〉v(·)m((
A∗)−1 · +(

A∗)−1
ε
)
ϕ̂
((

A∗)−1·), (3.6)
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ψ̂0(·) = e2πi〈(A∗)−1·, ek0 〉v0(·)m0
((

A∗)−1 · +(
A∗)−1

ε
)
ϕ̂0

((
A∗)−1·). (3.7)

To prove that ψ ∈ Mψ0 , we only need to prove that there exists an A-wavelet multi-
plier f such that

ψ̂(·) = f (·)ψ̂0(·). (3.8)

Since ϕ̂(A∗·) = m(·)ϕ̂(·), ϕ̂0(A
∗·) = m0(·)ϕ̂0(·), and |ϕ̂(·)| = |ϕ̂0(·)|, we have

∣∣m0(·)
∣∣2 ∑

k∈Zd

∣∣ϕ̂0(· + k)
∣∣2 =

∑

k∈Zd

∣∣m0(· + k)
∣∣2∣∣ϕ̂0(· + k)

∣∣2

=
∑

k∈Zd

∣∣ϕ̂0
(
A∗(· + k)

)∣∣2

=
∑

k∈Zd

∣∣ϕ̂
(
A∗(· + k)

)∣∣2

=
∑

k∈Zd

∣∣m(· + k)
∣∣2∣∣ϕ̂(· + k)

∣∣2

= ∣∣m(·)∣∣2 ∑

k∈Zd

∣∣ϕ̂(· + k)
∣∣2

.

This implies that

∣∣m0(·)
∣∣ = ∣∣m(·)∣∣ on

{
ξ ∈ R

d :
∑

k∈Zd

∣∣ϕ̂0(ξ + k)
∣∣2

> 0

}
. (3.9)

Next we divide two cases to construct an A-wavelet multiplier f satisfying (3.8).
Case 1. {ξ ∈ R

d : ϕ̂0(ξ) �= 0} = R
d .

In this case, ϕ̂1(·)
ϕ̂0(·) is an unimodular function, and |m0(·)| = |m(·)| �= 0 by (3.9) and

refinable property of ϕ and ϕ0. Put

f (ξ) := m((A∗)−1ξ + (A∗)−1ε)ϕ̂((A∗)−1ξ)

m0((A∗)−1ξ + (A∗)−1ε)ϕ̂0((A∗)−1ξ)
· v(ξ)

v0(ξ)
.

Then |f (·)| = 1, and ψ̂(·) = f (·)ψ̂0(·). By refinable property of ϕ0, ϕ1 and the fact
that |m0(·)| = |m(·)| �= 0, we have

f (A∗·)
f (·) = m(· + (A∗)−1ε)m0((A∗)−1 · +(A∗)−1ε)m((A∗)−1·)

m0(· + (A∗)−1ε)m((A∗)−1 · +(A∗)−1ε)m0((A∗)−1·)
· v(A∗·)v0(·)
v0(A∗·)v0(·)

= m(· + (A∗)−1ε)

m0(· + (A∗)−1ε)
· m((A∗)−1·)m((A∗)−1 · +(A∗)−1ε)

m0((A∗)−1·)m0((A∗)−1 · +(A∗)−1ε)
· v(A∗·)v0(·)
v0(A∗·)v(ξ)

.

This implies that f (A∗·)
f (·) is Z

d -periodic by Z
d -periodicity of m, m0, v and v0, and

the fact that Z
d = A∗

Z
d + {0, ε}. Therefore, f is a multiplier satisfying (3.8) by

Theorem 1.1.
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Case 2. {ξ ∈ R
d : ϕ̂0(ξ) �= 0} �= R

d .
Define

μ(ξ) =
{

m(ξ)
m0(ξ)

if m0(ξ)
∑

k∈Zd |ϕ̂0(ξ − (A∗)−1ε + k)|2 �= 0,

1 otherwise.

For ξ satisfying m0(ξ)
∑

k∈Zd |ϕ̂0(ξ − (A∗)−1ε + k)|2 �= 0, there exists kξ ∈ Z
d such

that

m0(ξ)ϕ̂0
(
ξ − (

A∗)−1
ε + kξ

) �= 0.

Then

ψ̂
(
A∗ξ − ε + A∗kξ

) = e2πi〈ξ−(A∗)−1ε, ek0 〉v
(
A∗ξ

)
m(ξ)ϕ̂

(
ξ − (

A∗)−1
ε + kξ

)
,

ψ̂0
(
A∗ξ − ε + A∗kξ

) = e2πi〈ξ−(A∗)−1ε, ek0 〉v0
(
A∗ξ

)
m0(ξ)ϕ̂0

(
ξ − (

A∗)−1
ε + kξ

)

by (3.6) and (3.7). Observe that |ψ̂(A∗ξ − ε + A∗kξ )| = |ψ̂0(A
∗ξ − ε + A∗kξ )|

due to the fact that ψ ∈ Sψ0 = Wψ0 . It follows that |m(ξ)ϕ̂(ξ − (A∗)−1ε + kξ )| =
|m0(ξ)ϕ̂0(ξ − (A∗)−1ε + kξ )|, which implies that |m(ξ)| = |m0(ξ)| �= 0 since |ϕ̂| =
|ϕ̂0|. So m(ξ)

m0(ξ)
is unimodular, and thus μ is. It is obvious that μ is Z

d -periodic. So μ

is unimodular and Z
d -periodic.

To obtain an A-wavelet multiplier f satisfying (3.8), we only need to construct a
measurable function t such that

∣∣t (ξ)
∣∣ = 1, (3.10)

ϕ̂0(ξ) = t (ξ)ϕ̂(ξ), (3.11)

μ(ξ) = t
(
A∗ξ

)
t (ξ). (3.12)

Indeed, if (3.10)–(3.12) hold, define f (ξ) = μ((A∗)−1ξ + (A∗)−1ε)t ((A∗)−1ξ) ·
v(ξ)
v0(ξ)

. Then f is unimodular, and

f (A∗ξ)

f (ξ)
= μ

(
ξ + (

A∗)−1
ε
)
μ

((
A∗)−1

ξ + (
A∗)−1

ε
)
μ

((
A∗)−1

ξ
) · v(A∗ξ)v0(ξ)

v0(A∗ξ)v(ξ)
,

which implies that f (A∗ξ)
f (ξ)

is Z
d -periodic. So f is a wavelet multiplier by Theo-

rem 1.1. It is easy to check that

f (ξ)ψ̂0(ξ) = e2πi〈(A∗)−1ξ, ek0 〉v(ξ)μ
((

A∗)−1
ξ + (

A∗)−1
ε
)
m0

((
A∗)−1

ξ + (
A∗)−1

ε
)

× ϕ̂
((

A∗)−1
ξ
)
. (3.13)

When m0((A
∗)−1ξ + (A∗)−1ε)ϕ̂((A∗)−1ξ) = 0, we have f (ξ)ψ̂0(ξ) = 0 by (3.13).

We also have ψ̂0(ξ) = 0 by (3.7), which implies that ψ̂(ξ) = 0 due to the fact that ψ ∈
Sψ0 = Wψ0 . So ψ̂(ξ) = f (ξ)ψ̂0(ξ). When m0((A

∗)−1ξ + (A∗)−1ε)ϕ̂((A∗)−1ξ) �= 0,
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we have

μ
((

A∗)−1
ξ + (

A∗)−1
ε
)
m0

((
A∗)−1

ξ + (
A∗)−1

ε
) = m

((
A∗)−1

ξ + (
A∗)−1

ε
)

by the definition of μ, which implies that ψ̂(ξ) = f (ξ)ψ̂0(ξ) by (3.13). Therefore
(3.8) holds.

Next we construct t satisfying (3.10)–(3.12) to finish the proof. Replacing ϕ in
Lemma 3.2 by ϕ0, we get a partition {Δn : n ≥ 0} of R

d . Define t by

t (ξ) = ϕ̂0(ξ)

ϕ̂(ξ)
if ξ ∈ Δ0, t (ξ) = μ

((
A∗)−1

ξ
)
t
((

A∗)−1
ξ
)

if ξ ∈ Δn, n ≥ 1.

It is obvious that t satisfies (3.10) and (3.12). Now we prove that t satisfies (3.11)
by induction. It is obvious that (3.11) holds when ξ ∈ Δ0. Suppose (3.11) holds for
ξ ∈ Δn. Let ξ ∈ Δn+1. When ϕ̂0(ξ) = 0, we have ϕ̂(ξ) = 0 since |ϕ̂| = |ϕ̂0|. When
ϕ̂0(ξ) �= 0, we have

ϕ̂0(ξ) = m0
((

A∗)−1
ξ
)
t
((

A∗)−1
ξ
)
ϕ̂
((

A∗)−1
ξ
)
,

and |m0((A
∗)−1ξ)| = |m((A∗)−1ξ)| �= 0 by (3.9). So m0((A

∗)−1ξ) = m((A∗)−1ξ) ×
μ((A∗)−1ξ) by the definition of μ and its unimodular property. It follows that

ϕ̂0(ξ) = m
((

A∗)−1
ξ
)
μ

((
A∗)−1

ξ
)
t
((

A∗)−1
ξ
)
ϕ̂
((

A∗)−1
ξ
)

= m
((

A∗)−1
ξ
)
t (ξ)ϕ̂

((
A∗)−1

ξ
)

= t (ξ)ϕ̂(ξ).

Therefore, (3.11) holds. The proof is completed. �
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