J Fourier Anal Appl (2013) 19:1020-1028
DOI 10.1007/s00041-013-9281-6

The Poisson Operator for Orthogonal Polynomials
in the Multidimensional Ball

Oscar Ciaurri

Received: 5 September 2012 / Revised: 31 January 2013 / Published online: 24 May 2013
© Springer Science+Business Media New York 2013

Abstract In this paper we define the Poisson operator related to an orthonormal sys-
tem on the multidimensional ball and we analyze some weighted inequalities for this
operator in mixed norm spaces.
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1 Introduction

Let BY denote the unit ball in the Euclidean space RY for d > 2. The classical or-
thogonal polynomials in B? can be defined with respect to the weight function

W, (Ixl) = (1= 1x1?)* 2, w>—1/2, xe BY,

where | - || denotes the usual Euclidean norm. For n > 0, let Vf be the space of d-
dimensional polynomials of degree at most n. There are some different orthonormal
basis for V,‘f (see [8, Chap. 2]). One of them is given by

d, dyn—1 _(n=1/2.n-2j+%2) .
PrtaCy=(Ct) py T R 2)xP = 1) Spaajx),  0<2j <n,
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(a.b)

where p j is the Jacobi polynomial of degree j and order (a, b),

(ch1)? = FG+u+Hrn—j+%
nJ 204+ p+GHjrm—j+p+ G
and {Sg x}o<p<d(x) is an orthonormal basis of homogeneous spherical harmonics of

degree k (we use d (k) to indicate the dimension of this set). The Jacobi polynomials
that we are considering are defined by

—1)J d’/ . .
PP () = %(1 —0) 7140 T (=0 0,

They are orthogonal in the space L2((—=1,1),(1 —x)*(1 + x)?) and verify that
1
/ PP PP @)1 =21+ x)" dax
-1

_s. 0t P (GG a+ DI +b+1)
S Qjda+b+ DM (4a+b+ 1)

The family of polynomials

[Py in=0,0<2j<n0<p<dn—2j)

is orthonormal and complete in L%(B¢, W, (llx)). Moreover these polynomials sat-
isfy the relation

d d.p d—1)\? d,ju
[:’Mpn,’j,ﬂz n+u+ 7 Pn,’j»ﬂ

with

d d 2
ad a d+1
LS ==Af %D g (@“— ”f+z"fa—i) " (% ‘“) g
i=1 ' (=1

Fourier expansions for orthogonal polynomials on the ball and on the simplex have
been widely studied in the last years, see [6] and the references therein. In other do-
mains (parabolic biangles, hexagonal and triangular domains or cylinders), the anal-
ysis of Fourier series is a more recent topic, see [15—17].

Our target in this paper is the analysis of the Poisson operator related to the or-

thonormal system PZ ]“ e This operator is defined in a spectral way by the identity

Ptd’#f — eV Ld.n f

Then for an appropriate function f,

oo [3]1d(n-2j)

d, - -1 d,
PRlf)y=) 3" Y e TG, () Py (),

n=0j=0 B=0
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where
wiph= [ SO OW0 s

Several authors have studied the Poisson operator for different orthonormal systems.
In the case of the simplex (where a product of Jacobi polynomials of different orders
appears) a first approach to the problem was done in [3]. In this setting, the problem
has been analyzed more recently in [11, 12]. In some way, we will follow some of
the ideas used in these papers but properly adapted to our context.

The most adequate spaces to analyze the convergence of the Poisson operator P,d’M
are the mixed norm spaces. Given a non-negative function w, we will consider the
weighted mixed norm spaces

LiaLang B w(lx)) = {/  1F 1z 2, mewpeny < 00}

ang

1 N2 r/2 i 1/p
”f”Lﬁ;dLﬁng(Bd,w(nxn)) = (/0 (/Sdl |f(rx )‘ dx ) r“ w(r) dr) .

These spaces are used in harmonic analysis when spherical harmonics are involved.
For example, they appear in the analysis of the disc multiplier and the Bochner-Riesz
means for the Fourier transform [4, 5, 9, 10, 14]. Mixed norm spaces have been also
used to treat the mean convergence of the Fourier-Bessel expansions in the multidi-
mensional ball [2].

In these spaces, the boundedness of the Poisson operator will be reduced to a
vector-valued inequality for the Poisson operator related to the Jacobi polynomials.
In order to obtain this inequality we will need a very precise control of this operator
in terms of all the parameters involved. The main estimate will be done by means of
an improved version of a result in [13, Lemma 5.8], also used in [12].

In our first result we show a uniform weighted inequality for the Poisson operator.
To this end we consider weights in the Muckenhoupt A, class. Taking into account
that we will reduce the inequality to an estimate for the Hardy-Littlewood maximal
function on (0, w) we give some definition properly adapted to our setting. A non-
negative locally integrable function w on (0, ) belongs to A,(0,7), 1 < p < oo,

when
1 1 _ 1\t
(—/w)(—/w ”—1) <C, 1<(0,m).
1] J; 1] J;

Being M the usual Hardy-Littlewood maximal function on (0, ), i.e.,

with

M J—
JE)=sup g )

with B, (x) ={y € (0, ) : |[x — y| < r}, it is well known that

00 1/2 0o 1/2
(z Mf,z) (z f,z)
k=0 k=0

|f(y)|dy,

< Cp,w
L?((0,7),w)

; ey

LP((0,7),w)
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for each weight w € A, (0, 7).
With the previous notation, the first result that we prove is the following

Theorem 1 Assume that d > 2, u > 0, 1 < p < 00, and let u be a non-negative
function on (0, 1), and

U($) = (cos¢/2)* 1P (sinp/2)? =1 =P@/2=1/ Dy (sin ¢ /2).

IfU($) € Ap(0, 1), then

d,u
<
j‘>1103|| PO 12, By Wy (xly = Copa P L2 12 B uiely Wiy

rad

As a standard consequence of this, we have

Corollary 2 Assume thatd >2, u >0, 1 < p < 00, and

2d  2u+1 . 2d  2u—+1
maxy ——, < p < min , . 2)
d+1 p+1 d—1 n

Then

rad ang

d,p
fug“ P izt wqreny = Capn Pz 13,50, w,m-
>

Of course, we can also deduce the convergence Ptd’” f— f,t— 0, in the
LP L% (B4, W, (llx|l))-norm in the range of p given in (2).

rad ~ang
Unfortunately, we cannot study the operator sup,. |Ptd’“ f1. The reason is the
following. If we first take the supremum, then we are missing the orthogonality of
the spherical harmonics. Instead of this we prove

Theorem 3 Assume that d > 2, u > 0, 1 < p < 00, and let u be a non-negative
function on (0, 1), and

U($) = u(sind/2)(cos ¢ /2)* 1P (sinp/2)4 1 ~Pd/2=1/2),

IfU(¢p) € Ap(0, 1), then

1 4 5 p/2 1/p
(/ (sup/ |PEf (rx)| dx’) u(r)WM(r)rd_ldr)
0 >0 JSd-1

= Capunall FllLr 12, B uce W, e G)

Note that the left hand side of (3) is bounded below by

ang

d,p
P
fgg” ' fHL:;sz B u(x Wyl
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and above by

sup| P £ |
>0

LY L2 (B4 W, (lIx 1))

therefore Theorem 3 implies Theorem 1.
The proof of Theorem 3 is contained in the next section. We will use two lemmas
which will be proved in the last section.

2 Proof of Theorem 3

Replacing the index n throughout by i =n — 2j, we have

oo d(i) oo

d“f(x) ZZZ —1(i+2j+ut+ 4Gt 2 )at+211ﬁ(f) +2]]ﬁ(x)

i=0 =0 j=0
Each appropriate function defined on B¢ can be written as

oo d(m)

FE =" fam)Spm(x),

m=0 =0

where x = rx’, with x’ € S¢~1, r € (0, 1), and

Fpon) = [ £V Sh () (). @
Moreover
oo d(m) p/2
d—1
||f”Ll{;dL%ng(Bd’w(Hx”)) / (Z Z|fﬂ m(r)i ) w(r)r d}".
m=0 B=0
So, from (4), it is clear that
oo d(i) oo - (12,0442
d — i
PP () = 3030 e Ry (1 e P T T 08, (x)
i=0 =0 ;=0
_ N )
where 77](»“ 1/2i%5 >are the normalized polynomials
(u=1/2,i+%52) 1 (u=1/2i4952) 5
P/ : ( ) ( l+2] ]) pl 2 (2r — 1)

and

1 . —
bih= [ PP ew, @ a.
0
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Now, for a function g defined on (0, 1), we take the operator

00
1/2.i+4=2
d’“g(r) _§ : —t(1+2j+M+ )b (g) p(“ /2,45 )(r).
j=0

Thus the inequality in Theorem 3 will follow from the estimate

oo d(i)
/ (ZZS“"“D Gl ) u(r) W (r)r®= dr
i=0 =0 >0
oo d(i)
SC"’””“’“/ (Z 2| fp(0)| ) w(HYW, (ryr®=" dr. )
_Oﬁ 0

d.pi .
The operator P/"**' can be written as

. 1 _
PR f(r) = / FOK T 0 Wt dv
0

where
w . .
Kl.a’b(v, r) = (vr) Zef’(’“”“*b“)?’;aﬁb)(v)Pj(»a"+b) ).
=0

In this manner, the proof of the inequality (5) will be a consequence of Lemmas 4
and 5. The first one shows an integral expression for the kernel K;' > and the second
one provides an estimate for the integrals appearing in the first lemma.

Lemmad Fora,b > —1/2 andi > 0, we have the identity

I'(i +a+ b+ 2)sinht
2itatbt2gp Mg +1/2)C(b+i+1/2)

1 1
—1/2 i+b—1/2
x/ f firarpir v, x, ) (1= x2) 72 (1= y2) 7 ax ay,
—1J-1

K" (,r) = (vr)’

where

1
(cosht — x+/T — V2T — 2 — yyr)+1’

Lemma$S Fory,A> —1/2and A > B > 0 it is verified that

Hltv,rx,y) =

/1 (1 —x2)yr-1/2 Ty +1/9re+1/2) 2v+1/2
L A—Boy P T TG ) BP(A— B

Lemma 5 is an improved version of Lemma 5.8 in [13]. The improvement of our
version lies on the control over all the constants involved in the estimate.
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By Lemma 4 and applying Lemma 5 twice (firstly with y =i +b, A =a + 1,
A =cosht — x+/1 —v24/1 —r2, and B = vr, and secondly with y =a, A = 1/2,
A =cosht —vr, and B =+/1 — v2v/1 — r2), we deduce the following estimate

1 sinh ¢

1
KM () < —— ;
' 27 (vr)bH/2(V1 — 0241 = r2)at1/2 cosht — vr — /1 — 02/ 1 — 2

for a,b > —1/2 and i > 0. Now, with the changes of variable v =sin¢/2 and r =
sinf/2 and taking the function gg;(¢) = (sing/2)¥/>~1/2(cosp/2)" f4.:(sing/2),
the vector-valued inequality (5) follows from
2 p/2
) U(p)do
oo d(i)

/‘” gp,i(6)sinht 20
0
- p/2
< Ca.pop /0 (Z Z|g,3,,»<¢)|2> U$)do. ©)

cosht — 1 + 2(sin ¢T4))2
i—0 =0

oo d(i)

[(Z2w

i=0 =0 >

with U (¢) = (cos ¢ /2)* P (sin ¢p /2)4~1=P@/2=1/2) yy (sin ¢ /2).
Finally, (6) is a consequence of the pointwise inequality

sup
t>0

n 0) sinh1
f §@)sinbr__ de' < CMg®) ™
0 cosht — 14 2(sin ¢T)2

and the vector-valued inequality (1). The estimate in (7) follows by using the bounds

sinh ¢ <C t
cosht—l—i—2(sin#)2 2+ ¢ -6

forO<t<T,withT > 1, and

sinh ¢

S C1
cosht — 1 +2(sin 23%)2

fort>T.
3 Proof of Lemmas 4 and 5

Proof of Lemma 4 In order to obtain the expression for the kernel, we will apply the
product formula due to Dijksma and Koornwinder [7]

PP (202 = 1) pP (27 — 1)

_ Ta+b+DIk+a+DI'k+b+1)
Cgk!Ttk+a+b+ DI (a+1/2)T(b+1/2)
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//C“+b+] \/l—r +yvr)

x (1 —xz)a_l/z(l — y2)b_1/2 dxdy

valid for a, b > —1/2, here C,f is the Gegenbauer polynomial of degree n and order
. Thus, we have

K1) — ri+a+b+1)
i 2l (a+ 1/ (b +i+1/2)

1 1
—1/2 i+b—1/2
x/ / Sivasb i1t v, x,y) (1= 2272 (1= y2) 7 P dxay,
-1J-1

with
o
Sy(t,v,r,x,y) = Ze*f@k“)(zk + M) Ch(xv 1 — vV 1 —r2 + yor).
k=0
Now recall the identity [1, 1.27]

A1 —2z%)
(1 —2xz +z2)*+1°

Z(n +0)CHx)" =

n=0

Izl <1, A >0.

On the other hand, note that Gegenbauer polynomials of even (respectively, odd)
orders are even (respectively, odd) functions. Hence, we get

Asinht
it v, %, 3) = g (fult,vor 6, 9) + filt,v,r —x, =),

By the symmetry of the integrals defining K ;’b we conclude that

I'i+a+ b+ 2)sinht
2itatb 2 Ma+1/2)C(b+i+1/2)

1 1
—1/2 i+b—1/2
X/ / firarpr1 @ v, rx, (1 =x2) 72 (1 =32 axay,
—-1J-1

O

b _
K" (v, r) =

Proof of Lemma 5 Denote

1 _ v2yy-12
1 Y

ka = —( *) dx.
’ _1 (A = Bx)r i+l

We have

1 L 2\y—1/2 1 —x)yr-1/2
(I —x9)” el (I—x)
bra=2 ) A gy =2 2/0 A= By
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With the change of variable 1 — x = ¢, we obtain

—-1/2
I )L<2y+1/2/ =1 "
= 0 (A— B+ Bryr+itl

ov+1/2 1 712
= dt.
(A — Byr+i+l /0 (1 + Loy it

Finally, we conclude with the change of variable %t = z. Indeed,

dz

oy+1/2 A28 =12
Iyy = BYH12(A — By+1/2 /0 (1 + )7 +rtl

v+1/2 00 7712
= BY+1/2(A — B)A+1/2 fo (14 z)r+atl
B 2v+1/2 Ty +1/2F (A +1/2)

= By+l/2(A _ B))‘+1/2 F()/ +A+1) . O

dz
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