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Abstract In this paper, we establish an analogue of the classical mean value property
for both the harmonic functions and some general functions in the domain of the
Laplacian on the Sierpinski gasket. Furthermore, we extend the result to some other
p.c.f. fractals with Dihedral-3 symmetry.
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1 Introduction

It is well known that harmonic functions (i.e., solutions of the Laplace equation

�u = 0, where � = ∑d
i=1

∂2

∂x2
i

) possess the mean value property: Namely, if u is

harmonic on a domain Ω ⊂ R
d , then for every closed ball Br(x) ⊂ Ω of a center
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x ∈ Ω and radius r > 0 the average of u over Br(x) equals to the value of x, i.e.,

1

|Br(x)|
∫

Br(x)

u(y)dy = u(x),

where |Br(x)| is the volume of the ball Br(x). There is a similar statement for mean
values on spheres. More generally, if u is not assumed harmonic but �u is a contin-
uous function, then

lim
r→0

1

r2

(
1

|Br(x)|
∫

Br (x)

u(y)dy − u(x)

)

= cn�u(x) (1.1)

for the appropriate dimensional constant cn.
What are the fractal analogs of these results? The analytic theory on p.c.f. fractals

was developed by Kigami [3–5] following the work of several probabilists who con-
structed stochastic processes analogous to Brownian motion, thus obtaining a Lapla-
cian indirectly as the generator of the process. See the book of Barlow [1] for an
account of this development. Since analysis on fractals has been made possible by
the analytic definition of Laplacian, it is natural to explore the properties of these
fractal Laplacians that are natural analogs of results that are known for the usual
Laplacian. As for the fractal analog of the mean value property, we won’t state the
nature of the sets on which we do the averaging here, but will say that if K is a fractal
set and x ∈ K , we investigate whether there is a sequence of sets Bk(x) containing x

with
⋂

k Bk(x) = {x} such that

1

μ(Bk(x))

∫

Bk(x)

u(y)dy = u(x)

for every harmonic function u. Moreover, for general u not assumed harmonic, is
there a formula analogous to (1.1)?

In the present paper, we will mainly deal with the Sierpinski gasket S G . This set
is a key example of fractals on which a well established theory of Laplacian exists
[3–7]. Since the mean value property plays a very important role in the usual theory
of harmonic functions, it is of independent interest to understand the similar property
of harmonic functions on the Sierpinski gasket. We will prove that for each point
x ∈ S G \ V0, (V0 is the boundary of S G .) there is a sequence of mean value neigh-
borhoods Bk(x) depending only on the location of x in S G . {Bk(x)} forms a system
of neighborhoods of the point x satisfying

⋂
k Bk(x) = {x}. On such sequences, we

get the fractal analogs of the mean value properties of both the harmonic functions
and the general functions which belong to the domain of the fractal Laplacian satisfy-
ing some natural continuity assumption. We also investigate the extent to which our
method can be applicable to other p.c.f. self-similar sets, but it seems that it strongly
depends on the symmetric properties of both the geometric structure and the harmonic
structure of the fractals.

The paper is organized as follows: In Sect. 2 we briefly introduce some key notions
from analysis on the Sierpinski gasket. In Sects. 3 and 4, we prove the mean value
property for harmonic functions and general functions on S G respectively. Section 5
contains a further extension of the mean value property to p.c.f. self-similar fractals
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Fig. 1 The first 3 graphs,
Γ0,Γ1,Γ2 in the approximation
to the Sierpinski gasket

with Dihedral-3 symmetry. An interesting open question is to what extent the results
of Sect. 4 can be extended to this class of fractals. See [2] for a related result con-
cerning solutions of divergence form elliptic operators.

2 Analysis on the Sierpinski Gasket

For the convenience of the reader, we collect some key facts from analysis on S G
that we need to state and prove our results. These come from Kigami’s theory of
analysis on fractals, and may be found in [3–5]. An elementary exposition may be
found in [6, 7]. Recall that S G is the attractor of the i.f.s (iterated function system) in
the plane consisting of three homotheties {F0,F1,F2} with contraction ratio 1/2 and
fixed points equal to the three vertices {q0, q1, q2} of an equilateral triangle. Then S G
is the unique nonempty compact set satisfying

S G =
2⋃

i=0

Fi(S G). (2.1)

We refer to the sets Fi(S G) as cells of level one, and by iterating (2.1) we obtain the
splitting of S G into cells of higher level. For a word w = (w1,w2, . . . ,wm) of length
m, the set Fw(S G) = Fw1 ◦ Fw2 ◦ · · · ◦ Fwm(S G) with wi ∈ {0,1,2}, is called an m-
cell. The fractal S G can be realized as the limit of a sequence of graphs Γ0,Γ1, . . .

with vertices V0 ⊆ V1 ⊆ · · · . The initial graph Γ0 is just the complete graph on V0 =
{q0, q1, q2}, which is considered the boundary of S G . See Fig. 1. Note that S G is
connected, but just barely: there is a dense set of points J , called junction points,
defined by the condition that x ∈ J if and only if U \ {x} is disconnected for all
sufficiently small neighborhoods U of x. It is easy to see that J consists of all images
of {q0, q1, q2} under iterates of the i.f.s. The vertices {q0, q1, q2} are not junction
points. All other points in S G will be called generic points. In the S G case, J =
V∗ \V0, where V∗ = ⋃

m Vm. However, it is not true for general p.c.f. self-similar sets.
In all that follows, we assume that S G is equipped with the self-similar probability
measure μ that assigns the measure 3−m to each m-cell.

We define the unrenormalized energy of a function u on Γm by

Em(u) =
∑

x∼my

(u(x) − u(y))2.

The energy renormalization factor is r = 3
5 , so the renormalized graph energy on Γm

is

Em(u) = r−mEm(u),
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and we can define the fractal energy E (u) = limm→∞ Em(u). We define dom E as the
space of continuous functions with finite energy. Then E extends by polarization to a
bilinear form E (u, v) which serves as an inner product in this space.

The standard Laplacian may then be defined using the weak formulation: u ∈
dom� with �u = f if f is continuous, u ∈ dom E , and

E (u, v) = −
∫

f vdμ

for all v ∈ dom0 E , where dom0 E = {v ∈ E : v|V0 = 0}. There is also a pointwise for-
mula (which is proven to be equivalent in [7]) which, for points in V∗ \ V0 computes

�u(x) = 3

2
lim

m→∞ 5m�mu(x),

where �m is a discrete Laplacian associated to the graph Γm, defined by

�mu(x) =
∑

y∼mx

(u(y) − u(x))

for x not on the boundary.
It is not necessary to invoke the measure to define harmonic functions, although it

is true that these are just the solutions of �h = 0. The more direct definition is that

h(x) = 1

4

∑

y∼mx

h(y)

for every nonboundary point and every m. This can be viewed as a mean value prop-
erty of h at the junction points. The space of harmonic functions is 3-dimensional
and the values at the 3 boundary points may be freely assigned. Moreover, there is a
simple efficient algorithm, the “ 1

5 − 2
5 rule”, for computing the values of a harmonic

function exactly at all vertex points in terms of the boundary values. The harmonic
functions satisfy the maximum principle, i.e., the maximum and minimum are at-
tained on the boundary and only on the boundary if the function is not constant. We
call a continuous function h a piecewise harmonic spline of level m if h ◦ Fw is
harmonic for all |w| = m.

The Laplacian satisfies the scaling property

�(u ◦ Fi) = 1

5
(�u) ◦ Fi

and by iteration

�(u ◦ Fw) = 1

5m
(�u) ◦ Fw

for Fw = Fw1 ◦ Fw2 ◦ · · · ◦ Fwm .
Although there is no satisfactory analogue of gradient, there is a normal derivative

∂nu(qi) defined at boundary points by

∂nu(qi) = lim
m→∞

∑

y∼mqi

r−m(u(qi) − u(y)),
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the limit existing for all u ∈ dom�. The definition may be localized to boundary
points of cells: for each point x ∈ Vm \V0, there are two cells containing x as a bound-
ary point, hence two normal derivatives at x. For u ∈ dom�, the normal derivatives
at x satisfy the matching condition that their sum is zero. The matching conditions
allow us to glue together local solutions to �u = f .

As is shown in [3, 4, 7], the Dirichlet problem for the Laplacian can be solved
by integrating against an explicitly given Green’s function. Recall that the Green’s
function G(x,y) is a uniform limit of GM(x,y) as M goes to the infinity, with GM

defined by

GM(x,y) =
M∑

m=0

∑

z,z′∈Vm+1\Vm

g(z, z′)ψ(m+1)
z (x)ψ

(m+1)

z′ (y)

and
⎧
⎪⎨

⎪⎩

g(z, z) = 9
50 rm for z ∈ Vm+1 \ Vm,

g(z, z′) = 3
50 rm for z, z′ ∈ Vm+1 \ Vm

with z, z′ ∈ Fw(S G) for |w| = m, and z �= z′,

where ψm
z (x) denotes a piecewise harmonic spline of level m satisfying ψ

(m)
z (x) =

δz(x) for x ∈ Vm.

3 Mean Value Property of Harmonic Functions on SG

Lemma 3.1 (a) Let C be any cell with boundary points p0,p1,p2, and h any har-
monic function. Then

1

μ(C)

∫

C

hdμ = 1

3
(h(p0) + h(p1) + h(p2)).

(b) Let p be any junction point, and C1, C2 the two m-cells containing p. Then

1

μ(C1 ∪ C2)

∫

C1∪C2

hdμ = h(p).

Proof The space of harmonic functions on C is three-dimensional. A simple basis
{h0, h1, h2} is obtained by taking hj (pj ) = 1 and hj (pk) = 0 for k �= j . Noticing
that h0 + h1 + h2 is identically 1 on C, by symmetry,

∫
C

hidμ = 1
3μ(C) for each i.

Hence (a) follows. (b) follows by combining (a) for C = C1 and C = C2 with the
mean value property of h at p. �

Note that (b) gives a trivial solution to the problem of finding mean value neigh-
borhoods for junction points.

Given a point x in S G \V0, consider any cell Fw(S G) (denote it by Cw) containing
the point x, with boundary points Fwqi = pi . Choose the cell Cw small enough, such
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Fig. 2 Cw and its three
neighboring cells. The right part
of the figure refers to the proof
of Lemma 4.1

that it does not intersect V0. Then it must have three neighboring cells C0, C1 and C2
of the same level with Ci intersecting Cw at pi . Denote by Dw the union of Cw and its
three neighbors. See Fig. 2. In this section, we will describe a method to find a subset
B of Dw , containing Cw , such that for any harmonic function h, the mean value of h

over B is equal to its value at x, i.e., MB(h) = h(x) where MB(h) is defined by

MB(h) = 1

μ(B)

∫

B

hdμ.

Then we will call the set B a k level mean value neighborhood of x associated to Cw

where k is the length of w.
Let h be a harmonic function on S G . The harmonic extension algorithm implies

that there exist coefficients {ai(x)} depending only on the relative position of x and
Cw such that

h(x) =
∑

i

ai(x)h(pi).

Moreover, since constants are harmonic we must have
∑

i

ai(x) = 1

and by the maximum principle all ai(x) ≥ 0. Let W denote the triangle in R
3 with

boundary points (1,0,0), (0,1,0) and (0,0,1) and πW the plane in R
3 containing W .

So {(a0(x), a1(x), a2(x))} ∈ W for any x ∈ Cw . However, not every point in W oc-
curs in this way.

On the other hand, given a set B such that Cw ⊂ B ⊂ Dw , by linearity we have

MB(h) =
∑

i

aih(pi) (3.1)

for some coefficients (a0, a1, a2) depending only on the relative geometry of B

and Cw . Again we must have
∑

ai = 1 by considering h ≡ 1. So (a0, a1, a2) ∈ πW .
(Later we will show that (a0, a1, a2) does not have to belong to W for some sets B .)
Thus we have a map, denoted by T from the collection of B’s to πW . If we can
show that the image of the map T covers the triangle W for some reasonable class
of sets B , then we can get a set B over which the mean value property holds for all
harmonic functions. Moreover, if we can prove T is one-to-one, then we get a mean
value neighborhood B of x associated to Cw , that is unique within the collection of
sets we are considering.
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Fig. 3 The relative geometry of
B(c0, c1, c2) and Cw

The above is the basic idea of our method. Hence, the remaining task in this sec-
tion is to find a suitable class B of sets B such that there is a map T from B to πW ,
such that T (B) covers the triangle W . Comparing with the usual mean value neigh-
borhoods (they are just balls in the Euclidean case), it is reasonable to require B to be
as simple as possible. They should be connected, possess some symmetry properties,
depend only on the relative geometry of x and Cw , and be independent of the level of
Cw and the location of Cw .

In the following, we use ρ to denote the distance from p0 to the line containing
p1 and p2, namely, ρ is the length of the height of the minimal equilateral triangle
containing Cw . Call ρ the size of Cw .

Definition 3.1 Let c0, c1, c2 be three real numbers satisfying 0 ≤ ci ≤ 1, denote by
B(c0, c1, c2) the set

B(c0, c1, c2) = Cw ∪ E0 ∪ E1 ∪ E2,

where each Ei is a sub-triangle domain in Ci obtained by cutting Ci symmetrically
with a line at the distance ciρ away from the vertex pi .

Remark See Fig. 3 for a sketch of B(c0, c1, c2). For example, B(0,0,0) = Cw and
B(1,1,1) = Dw . Denote by

B = {B(c0, c1, c2) : 0 ≤ ci ≤ 1}
the natural 3-parameter family of all such sets. Each member of B contains Cw and
is contained in Dw . Denote by

σ : B �→ Λ

the natural one-to-one projection with σ(B(c0, c1, c2)) = (c0, c1, c2), where Λ =
{(c0, c1, c2) : 0 ≤ ci ≤ 1}.

For each vector (c0, c1, c2) ∈ Λ, there is a unique vector (a0, a1, a2) ∈ πW corre-
sponding to the set B(c0, c1, c2), satisfying (3.1) where B is replaced by B(c0, c1, c2).
This defines a map T from Λ to πW . Then T described above from B to πW is exactly
T = T ◦ σ .
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The following lemma shows that the value T (c0, c1, c2) is independent of the
particular choice of Cw , which benefits from the symmetric properties of the set
B(c0, c1, c2).

Lemma 3.2 T (c0, c1, c2) is independent of the particular choice of Cw .

Proof Let h be a harmonic function. First we consider the integral
∫
Ei

hdμ. Denote

by {si, ti , pi} the boundary points of Ci . By linearity, 1
μ(Cw)

∫
Ei

hdμ can be expressed
as a non-negative linear combination of {h(si), h(ti), h(pi)}, which by symmetry
must have the form

∫

Ei

hdμ = (
mih(pi) + ni

(
h(si) + h(ti)

))
μ(Cw), (3.2)

for some appropriate non-negative coefficients mi,ni . Notice that in (3.2), the coeffi-
cients mi,ni are independent of the location of Ci in S G . Actually, they only depend
on the relative position of Ei in Ci , i.e., mi,ni depend only on ci . Using the mean
value property at pi , namely

4h(pi) = h(pi−1) + h(pi+1) + h(si) + h(ti),

we obtain
∫

Ei

hdμ = (
mih(pi) + ni

(
4h(pi) − h(pi−1) − h(pi+1)

))
μ(Cw)

= (
(4ni + mi)h(pi) − ni

(
h(pi−1) + h(pi+1)

))
μ(Cw).

Notice that the ratio of μ(Ei) to μ(Ci) also depends only on ci . Combined with
Lemma 3.1(a), we see that (a0, a1, a2) = T (c0, c1, c2) is independent of the particular
choice of Cw , depending only on (c0, c1, c2). �

We will show the image of the map T covers the triangle W . More precisely,
T (c0, c1, c2) will fill out a set W̃ which is a bit larger than W . Denote by P0 =
(1,0,0), P1 = (0,1,0) and P2 = (0,0,1) the three boundary points of the triangle W

in R
3 and by O the center point of W .

Lemma 3.3 T (0,0,1) = P2 and T (0,1,1) = Q0 where Q0 = {− 1
9 , 5

9 , 5
9 } is a point

in πW located outside of W .

Proof From Definition 3.1, B(0,0,1) = Cw ∪ C2. Hence by Lemma 3.1(b), for any
harmonic function h, we have MB(0,0,1)(h) = h(p2). This implies T (0,0,1) = P2.
Similarly, B(0,1,1) = Cw ∪ C1 ∪ C2, then for any harmonic function h, still using
Lemma 3.1, we get

MB(0,1,1)(h) = 1

3μ(C)

(∫

Cw∪C1

hdμ +
∫

Cw∪C2

hdμ −
∫

Cw

hdμ

)

= −1

9
h(p0) + 5

9
h(p1) + 5

9
h(p2),

which gives T (0,1,1) = Q0. �
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Fig. 4 A 1/6 region of W̃

surrounded by OQ0, OP2 and
P̂2Q0

Lemma 3.4 T ({(0, c,1) : 0 ≤ c ≤ 1}) is a continuous curve lying outside of W , join-
ing P2 and Q0. (See Fig. 4.)

Proof From Lemma 3.3, by varying c continuously between 0 and 1 we trace a con-
tinuous curve P̂2Q0 joining P2 and Q0. So we only need to prove the curve P̂2Q0
lies outside of W . To prove this, we consider the set B = B(0, c,1) for 0 ≤ c ≤ 1. In
this case

B = Cw ∪ E1 ∪ C2.

Given a harmonic function h, by the proof of Lemma 3.2, we have
∫

E1

hdμ = (
(4n1 + m1)h(p1) − n1

(
h(p0) + h(p2)

))
μ(Cw),

for some appropriate non-negative coefficients m1, n1 depending only on c.
On the other hand, we have

∫

Cw∪C2

hdμ = 2h(p2)μ(Cw),

by Lemma 3.1(b).
Hence

∫

B

hdμ =
∫

E1

hdμ +
∫

Cw∪C2

hdμ

= (−n1h(p0) + (4n1 + m1)h(p1) + (2 − n1)h(p2)
)
μ(Cw).

The coefficient of h(p0) is always less than 0. Moreover, it equals to 0 if and only
if E1 = ∅ (c = 0). Hence T (0, c,1) will always lie on the outside of the triangle W

as c varies between 0 and 1. �

Now we come to the main result of this section.

Theorem 3.1 The map T from B to πW fills out a region W̃ which contains the
triangle W .

Proof We only need to prove the map T from B to πW fills out a 1/6 region sur-
rounded by the line segments OQ0, OP2 and the curve P̂2Q0 as shown in Fig. 4.
Then we will get the desired result by exploiting the symmetry.
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Fig. 5 The 3 shapes of B ∈ B∗
associated to Cw shown in
Fig. 2

Consider a subfamily B1 = {B(0,0, c) : 0 ≤ c ≤ 1} of B. If we restrict the map
T to B1, by varying c continuously between 0 and 1 we trace a curve (it is a line
segment, which follows from the symmetry of E2) in W joining the center O and the
vertex point P2.

Consider another subfamily B2 = {B(0, c, c) : 0 ≤ c ≤ 1} of B. If we restrict the
map T to B2, by varying c continuously between 0 and 1 we trace a curve (it is also
a line segment, which follows from the symmetric effect of E1 and E2) in W joining
the center O and the point Q0 across the boundary line P1P2 with Q0 located outside
of W , where Q0 is the point defined in Lemma 3.3.

Fix a number 0 ≤ y ≤ 1. Consider a subfamily Cy = {B(0, c, y) : 0 ≤ c ≤ y} of
B. If we restrict the map T to Cy , by varying c continuously between 0 and y we
trace a curve Γy joining the two points T (0,0, y) and T (0, y, y). The first endpoint
T (0,0, y) lies on the line segment OP2 and the second endpoint T (0, y, y) lies on
the line segment OQ0. (See Fig. 4 for Γy .) When y = 0, the curve Γ0 draws back to
the single center point O . When y = 1, by Lemma 3.4, the curve Γ1 is a continuous
curve located outside of the triangle W . Moreover, P2 is the only common points of
Γ1 and W . Hence if we vary y continuously between 0 and 1, we can fill out the 1/6
region surrounded by the line segments OQ0, OP2 and the curve P̂2Q0. �

Remark In the proof of the above theorem, we actually only consider those sets B

in B which are contained in the union of Cw and subsets of only two neighbors. See
Fig. 5. Of course, the map T restricted to this subfamily is one-to-one, which can be
easily seen from the proof. Hence instead of B, the map T is one-to-one from B∗
onto W̃ , where

B∗ = {B(0, c1, c2) : 0 ≤ ci ≤ 1} ∪ {B(c0,0, c2) : 0 ≤ ci ≤ 1}
∪ {B(c0, c1,0) : 0 ≤ ci ≤ 1}.

Based on the discussion in the beginning of this section, we then have

Theorem 3.2 For each point x ∈ S G \V0, there exists a system of mean value neigh-
borhoods Bk(x) with

⋂
k Bk(x) = {x}.

Proof Let k0 be the smallest value of k such that there exists a k level cell Cw con-
taining x but not intersecting V0. (k0 depends on the location of x in S G .) Then
by using Theorem 3.1 we can find a sequence of words w(k) of length k (k ≥ k0)
and a sequence of mean value neighborhoods Bk(x) associated to Cw(k) . Obvi-
ously, {Bk(x)}k≥k0 will form a system of neighborhoods of the point x satisfying⋂

k≥k0
Bk(x) = {x}. �
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4 Mean Value Property of General Functions on SG

In this section, we extend the mean value property to more general functions on S G .
Given a point x in S G \ V0 and a cell Cw = Fw(S G) containing x, for each mean
value neighborhood B of x associated to Cw , we assign a constant cB to B . We want

MB(u) − u(x) ≈ cB�u(x)

for u in dom�. More precisely, let {Bk(x)}k≥k0 be the system of mean value neigh-
borhoods of the point x; we want

lim
k→∞

1

cBk(x)

(
MBk(x) − u(x)

) = �u(x) (4.1)

for appropriate functions in the domain of �, which is the desired fractal analog
of (1.1).

For this purpose, let v be a function on S G satisfying �v ≡ 1. For each point x in
S G \ V0, and each mean value neighborhood B of x, define cB by

cB = MB(v) − v(x).

Note that the result is independent of which v, because any two such functions differ
by a harmonic function and the equality MB(h) − h(x) = 0 always holds for any
harmonic function h. So we can choose

v(x) = −
∫

G(x,y)dμ(y),

which vanishes on the boundary of S G . Here G is Green’s function.
We will prove that cB is controlled by the size of Cw . More precisely, we will

prove:

Theorem 4.1 Let x ∈ S G \ V0 and B be a k level mean value neighborhood of x.
Then

c0
1

5k
≤ cB ≤ c1

1

5k

for some constant c0, c1 which are independent of x.

To prove Theorem 4.1, we need the explicit expression for the function v. Recall
from Sect. 2 that v(x) is the uniform limit of vM(x) for

vM(x) = −
∫

GM(x,y)dμ(y).

Interchanging the integral and summation,

vM(x) = −
M∑

m=0

∑

z,z′∈Vm+1\Vm

g(z, z′)
∫

ψ
(m+1)

z′ (y)dμ(y)ψ(m+1)
z (x).
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Notice that for each z ∈ Vm+1 \ Vm, ψ
(m+1)
z is a piecewise harmonic spline of

level (m + 1) satisfying ψ
(m+1)
z (y) = δz(y) for y ∈ Vm+1. More precisely, ψ

(m+1)
z

is supported in the two (m + 1)-cells meeting at z. If Fτ (S G) is one of these cells
with vertices z, z1 and z2, then ψ

(m+1)
z + ψ

(m+1)
z1 + ψ

(m+1)
z2 restricted to Fτ (S G) is

identically 1. Thus
∫

Fτ (S G)

(ψ(m+1)
z + ψ(m+1)

z1
+ ψ(m+1)

z2
)dμ = μ(Fτ (S G)) = 1

3m+1
.

By symmetry all three summands have the same integral, so
∫
Fτ (S G)

ψ
(m+1)
z dμ =

1
3m+2 . Together with the contribution from the other (m + 1)-cell we find for each
z ∈ Vm+1 \ Vm,

∫

ψ(m+1)
z (y)dμ(y) = 2

3m+2
. (4.2)

Hence

vM(x) = −2

9

M∑

m=0

1

3m

∑

z,z′∈Vm+1\Vm

g(z, z′)ψ(m+1)
z (x).

Substituting the exact value of g(z, z′) (see Sect. 2 and details in [7] p. 50) into it, we
get

vM(x) = −2

9

M∑

m=0

1

3m

( ∑

|w|=m

∑

z,z′∈Fw(V0)\Fw(V1)

g
(
z, z′)ψ(m+1)

z (x)

)

= −2

9

M∑

m=0

1

3m

( ∑

|w|=m

∑

z∈Fw(V0)\Fw(V1)

(
9

50
rm + 2

3

50
rm

)

ψ(m+1)
z (x)

)

= − 1

15

M∑

m=0

1

5m
φm(x)

for

φm(x) =
∑

z∈Vm+1\Vm

ψ(m+1)
z (x).

Thus

v(x) = − 1

15

∞∑

m=0

1

5m
φm(x).

Remark The function v is invariant under Dihedral-3 symmetry.

This is a direct corollary of the fact that each φm(x) is invariant under D3 symme-
try.
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Due to the above remark, we may assume that Dw associated to Cw has a fixed
shape as shown in Fig. 2 without loss of generality. We now show that although cB

depends on the relative position of x in Cw , it does not depend on the location of x

or Cw in S G .

Lemma 4.1 Let x, x′ be two distinct points in S G \ V0. Let Cw and Cw′ be two k

and k′ level neighboring cells of x and x′ respectively. Denote by B and B ′ two mean
value neighborhoods of x and x′ respectively. If B and B ′ have the same shapes (the
same relative locations associated to Cw and Cw′ respectively), then

cB = 5k′−kcB ′ .

In particular, if B and B ′ have the same levels and same shapes, then cB = cB ′ .

Proof Dw can be decomposed into a union of a k level cell D
(1)
w and a (k − 1) level

cell D
(2)
w as shown in Fig. 2. Denote by q the junction point connecting D

(1)
w and

D
(2)
w . Similarly, Dw′ can also be written as a union of a k′ cell D

(1)

w′ and a (k′ − 1)

cell D
(2)

w′ with a junction point q ′ connecting them.

Let τ be the linear function mapping Dw onto Dw′ . Suppose D
(1)
w = Fα(S G) and

D
(2)
w = Fβ(S G) where α and β are the corresponding words of D

(1)
w and D

(2)
w re-

spectively. Similarly, denote by α′ and β ′ the corresponding words of D
(1)

w′ and D
(2)

w′ .

Hence we can write τ as τ(z) = Fα′ ◦ F−1
α (z) if z ∈ D

(1)
w , and τ(z) = Fβ ′ ◦ F−1

β (z) if

z ∈ D
(2)
w . In particular, τ(q) = q ′ and τ(x) = x′.

Consider the function (v ◦ Fα − 5k′−kv ◦ Fα′) defined on S G . Noting that |α| = k

and |α′| = k′, using the scaling property of �(see details in [7], p. 33), we have

�(v ◦ Fα − 5k′−kv ◦ Fα′) = r |α| 1

3|α| �v ◦ Fα − 5k′−kr |α′| 1

3|α′| �v ◦ Fα′ = 0,

which shows that the difference between v ◦ Fα and 5k′−kv ◦ Fα′ is a harmonic func-
tion. Hence the difference between v and 5k′−kv ◦ τ on D

(1)
w is harmonic. A similar

discussion will show that the difference between v and 5k′−kv ◦ τ on D
(2)
w is also har-

monic. Since the matching condition on normal derivatives of (v − 5k′−kv ◦ τ) at q

holds obviously, we have proved that �(v − 5k′−kv ◦ τ) = 0 on Dw , i.e., the function
(v − 5k′−kv ◦ τ) is harmonic on Dw .

By the definition cB = MB(v) − v(x) and cB ′ = MB ′(v) − v(x′). Notice that for
the second equality, by changing variables we can write cB ′ = MB(v ◦ τ) − v ◦ τ(x).
Hence

cB − 5k′−kcB ′ = MB(v − 5k′−kv ◦ τ) − (v − 5k′−kv ◦ τ)(x) = 0,

since (v − 5k′−kv ◦ τ) is a harmonic function on Dw . �
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Proof of Theorem 4.1 (Estimate of cB from above.) From Lemma 4.1, since cB

depends only on the relative geometry of B and Cw and the size of Cw , but not on
the location of Cw , we may assume that Dw is contained in a (k − 2) level cell C in
S G without loss of generality.

By the definition of cB , we may write

cB = MB(v) − v(x) = lim
M→∞

(
1

μ(B)

∫

B

vMdμ − vM(x)

)

.

Substituting the exact formula of vM into it, we get

cB = − 1

15

∞∑

m=0

1

5m
(MB(φm) − φm(x)),

for

φm =
∑

z∈Vm+1\Vm

ψ(m+1)
z .

Notice that each φm is a piecewise harmonic spline of level m + 1. So when m +
1 ≤ k − 2, φm is harmonic in the cell C, which yields that MB(φm) − φm(x) = 0. So
the first k − 2 terms in the infinite series of v will contribute 0 to cB . Hence

cB = − 1

15

∞∑

m=k−2

1

5m
(MB(φm) − φm(x)).

It is easy to see that this implies

|cB | ≤ 1

15

∞∑

m=k−2

1

5m

1

μ(B)

∫

B

|φm(y) − φm(x)|dμ(y).

Then by the maximum principle, we finally get

|cB | ≤ 1

15

∞∑

m=k−2

1

5m
= 25

12
· 1

5k
.

(Estimate of cB from below.) Without loss of generality, we assume that x is located
in the 1/3 region of Cw as shown in Fig. 6, i.e., x is contained in the triangle Tp1,p2,o,
where o is the geometric center of Cw . Then by the proof of Theorem 3.1, B is a
subset of the union of Cw and two of its neighbors C1 and C2. Hence we can write
B = Cw ∪ E1 ∪ E2, where Ei = B ∩ Ci .

Claim 1 Let B̃ = F0(S G) ∪ Ẽ1 ∪ Ẽ2, where Ẽi is a triangle obtained by cutting
Fi(S G) symmetrically with a line below the top vertex Fiq0. (See Fig. 7.) If B̃ and B

have the same shapes, then

cB = 51−kcB̃ .
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Fig. 6 A 1/3 region of Cw

Fig. 7 A sketch of B̃

This is a direct corollary of Lemma 4.1.
We only need to prove that cB̃ for B̃ defined in Claim 1 has a positive lower

bound. For simplicity of notation, in all that follows, we write B instead of B̃ . In
other words, we only need to consider B whose associate cell Cw is F0(S G). In this
setting, pi = F0qi , C1 = F1(S G) and C2 = F2(S G).

We write v = − 1
15 ṽ where ṽ is the non-negative function defined by

ṽ =
∞∑

m=0

1

5m
φm.

For each M ≥ 0, denote by

ṽM =
M∑

m=0

1

5m
φm

the partial sum of the first M + 1 terms of ṽ. Then ṽM converges to ṽ uniformly as
M → ∞.

We have the following three claims on ṽ.

Claim 2 0 ≤ ṽ ≤ 1 on S G and ṽ takes constant 1 along the maximal inner upside-
down triangle contained in S G .

Proof Consider the partial sum function ṽM . Obviously, ṽM is a (M +1)-level piece-
wise harmonic function on S G . For convenience, denote by ∇ the maximal inner
upside-down triangle contained in S G . We divide the vertices VM+1 into three parts,
V ′

M+1, V ′′
M+1 and V ′′′

M+1, where V ′
M+1 consists of those vertices lying along ∇ , V ′′

M+1
consists of those vertices at distance 2−(M+1) from ∇ , and V ′′′

M+1 consists of the re-

main vertices. Then by using the “ 1
5 − 2

5 ” rule, an inductive argument shows that
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ṽM ≡ 1 on V ′
M+1, ṽM ≡ 1 − 1

5M on V ′′
M+1, and ṽM ≤ 1 − 1

5M on V ′′′
M+1. Since ṽ is

the uniform limit of ṽM and V ′
M+1 goes to ∇ as M goes to the infinity, we then have

0 ≤ ṽ ≤ 1 on S G and ṽ ≡ 1 on ∇ . �

Claim 3 For each x contained in the triangle Tp1,p2,o, ṽ(x) ≥ 24
25 .

Proof For τ = (0,1,1), (0,1,2), (0,2,1) and (0,2,2), by using the harmonic exten-
sion algorithm, namely, the “ 1

5 − 2
5 ” rule, we get that

ṽ(Fτ q0) = ṽ2(Fτ q0) =
2∑

m=0

1

5m
φm(Fτ q0) = 1 · 4

5
+ 1

5
· 3

5
+ 1

25
· 1 = 24

25
,

where 4
5 , 3

5 and 1 are the values of φ0, φ1 and φ2 at Fτq0 respectively. Also, for those
τ , by Claim 2, we have

ṽ(Fτ q1) = ṽ2(Fτ q1) = ṽ(Fτ q2) = ṽ2(Fτ q2) = 1.

Notice that for each point x in the triangle Tp1,p2,o, x is contained in one of the four
3-level cells F011(S G), F012(S G), F021(S G) and F022(S G). Since ṽ2 is harmonic in
each such cell, by using the maximal principle, we get that

ṽ2(x) ≥ 24

25
.

Hence ṽ(x) ≥ 24
25 since each term in the infinite series of ṽ is non-negative. �

Claim 4 MB(̃v) ≤ 17
18 .

Proof First of all we prove that
∫

F0(S G)

ṽ(y)dμ(y) = 5

18
.

We need to compute
∫
F0(S G)

φm(y)dμ(y) for each non-negative integer m. For each
m ≥ 0,

∫

F0(S G)

φm(y)dμ(y) = 1

3
· 3m+1 · 2

3m+2
= 2

9
,

by using (4.2) and the fact that φm = ∑
z∈Vm+1\Vm

ψ
(m+1)
z . Hence

∫

F0(S G)

ṽ(y)dμ(y) = 2

9

∞∑

m=0

1

5m
= 5

18
.

By our assumption, the mean value neighborhood B can be written as

B = F0(S G) ∪ E1 ∪ E2,
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where Ei = B ∩ Ci . Hence we have

MB(̃v) = 1

μ(B)

(∫

F0(S G)

ṽ(y)dμ(y) +
∫

E1

ṽ(y)dμ(y) +
∫

E2

ṽ(y)dμ(y)

)

≤ 1

μ(B)

(∫

F0(S G)

ṽ(y)dμ(y) +
∫

E1

1 · dμ(y) +
∫

E2

1 · dμ(y)

)

= 5/18 + μ(E1) + μ(E2)

1/3 + μ(E1) + μ(E2)
,

where the inequality follows from Claim 2. Since 0 ≤ μ(E1) + μ(E2) ≤ 2
3 ,

5
18 +x
1
3 +x

is

increasing in x ≥ 0,

5/18 + μ(E1) + μ(E2)

1/3 + μ(E1) + μ(E2)
≤ 5/18 + 2/3

1/3 + 2/3
= 17

18
.

Hence we always have

MB(̃v) ≤ 17

18
. �

Now we turn to estimate cB . Obviously,

cB = MB(v) − v(x) = − 1

15

(
MB(̃v) − ṽ(x)

)
.

By Claims 3 and 4, we notice that MB(̃v) − ṽ(x) ≤ 17
18 − 24

25 = − 7
450 . Hence

cB ≥ 1

15
· 7

450
> 0. �

On the other hand, given a point x and Cw = Fw(S G) a k level neighborhood of x,
for any u ∈ dom�, we write

u = h(k) + (�u(x))v + R(k)

on Cw , where h(k) is a harmonic function defined by

h(k) + (�u(x))v|∂Cw = u|∂Cw .

It is not hard to prove the following estimate:

Lemma 4.2 Let u ∈ dom� with g = �u satisfying the following Hölder condition

|g(y) − g(x)| ≤ cγ k (0 < γ < 1)

for all y ∈ Cw . Then the remainder satisfies

R(k) = O

((
γ

5

)k)

on Cw (hence also on Bk(x)).
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Proof It is easy to check that �R(k)(y) = �u(y) − �u(x) and R(k)(y) vanishes on
the boundary of Cw . Hence R(k) is given by the integral of �u(y) − �u(x) on Cw

against a scaled Green’s function. Noticing that the scaling factor is ( 1
5 )k and

|�u(y) − �u(x)| ≤ cγ k,

we then get the desired result. �

This looks like a Taylor expansion remainder estimate of u at x. See more details
on this topic in [8].

Remark If we require u ∈ dom�2, then the remainder R(k) satisfies

R(k) = O

((
3

5
· 1

5

)k)

on Cw(hence also on Bk(x)). The reason is that in this case �u satisfies the Hölder
condition that |�u(y) − �u(x)| ≤ c( 3

5 )k for all y ∈ Cw , because �2u is assumed
continuous, see [8], Theorem 8.4.

Using the above lemma and Theorem 4.1, we then have the following main result
of this section.

Theorem 4.2 Let u ∈ dom� with g = �u satisfying the Hölder condition |g(y) −
g(x)| ≤ cγ k for some γ with 0 < γ < 1, for all x, y belonging to the same k level
cell. Then

lim
k→∞

1

cBk(x)

(MBk(x)(u) − u(x)) = �u(x).

Proof Using Taylor expansion of u and noticing that MBk(x)(h
(k)) − h(k)(x) = 0,

MBk(x)(v) − v(x) = cBk(x), we have

1

cBk(x)

(
MBk(x)(u) − u(x)

) − �u(x) = 1

cBk(x)

(
MBk(x)

(
R(k)

) − R(k)(x)
)

= 1

cBk(x)

O

((
γ

5

)k)

= O
(
γ k

)
.

Hence letting k → ∞, we get the desired result. �

5 p.c.f. Fractals with Dihedral-3 Symmetry

The results for S G should extend to other p.c.f. fractals which possess symmetric
properties of both the geometric structure and the harmonic structure. We assume
that a regular harmonic structure is given on a p.c.f. self-similar fractal K . The reader
is referred to [4, 7] for exact definitions and any unexplained notations. We assume
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Fig. 8 The first 2 graphs,
Γ0,Γ1 in the approximation to
the hexagasket

Fig. 9 The graph of the V1
vertices of the level 3 Sierpinski
gasket

now that �V0 = 3 and all structures possess full D3 symmetry. This means there exists
a group G of homeomorphisms of K isomorphic to D3 that acts as permutations on
V0, and G preserves the harmonic structures and the self-similar measure.

Assume that the fractal K is the invariant set of a finite iterated function system of
contractive similarities. We denote these maps {Fi}i=1,...,N with N ≥ 3. Let ri denote
the i-th resistance renormalization factor and μi denote the i-th weight of the self-
similar measure μ on K . In general, it is not necessary that all ri ’s and all μi ’s be
the same, but here we must have r0 = r1 = · · · = rN and μ0 = μ1 = · · · = μN from
the above Dihedral-3 symmetry assumption. We denote V0 = {q0, q1, q2} the set of
boundary points.

Examples (i) The Sierpinski gasket S G . In this case all ri = 3/5 and all μi = 1/3.
(ii) The hexagasket, or fractal Star of David, can be generated by 6 maps with

simultaneously rotate and contract by a factor of 1/3 in the plane. Thus V0 consists
of 3 points of an equilateral triangle, and V1 consists of the vertices of the Star of
David, as shown in Fig. 8. Although the same geometric fractal can be constructed
by using contractions which do not rotate, this gives rise to a different self-similar
structure (in particular with �V0 = 6). Our choice of self-similar structure destroys the
D6 symmetry of the geometric fractal, but it has the advantage of easier computation.
In this case, all ri = 3/7 and all μi = 1/6. Note that in this example there exist points
in V1 that are not junction points.

(iii) The level 3 Sierpinski gasket S G 3, obtained by taking 6 contractions of ratio
1/3 as shown in Fig. 9. Here we have all ri = 7/15 and μi = 1/6. Note that all
seven vertices in V1 \V0 are junction points, but the one in the middle intersects three
1-cells. In a similar manner we could define S Gn for any value of n ≥ 2.
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We prove that there are results analogous to Theorem 3.1, which yield the exis-
tence of mean value neighborhoods associated to K .

Given a point x in K \ V0, consider any cell FwK = Cw with boundary points
p0,p1,p2 containing the point x. Without losing of generality, we may require that
the cell Cw does not intersect V0. For each i, denote by Ci,1, . . . ,Ci,li the neighboring
cells of Cw of the same size, intersecting Cw at pi , where li is the number of such
cells. It is possible that li = 0 for some i since pi may be a non-junction point. If
this is true, the matching condition says that the normal derivative of any harmonic
function h must be zero at this point, which yields that the value of h at this point is
the mean value of the values of h at the other two boundary points of Cw . In other
words, the restriction of all global harmonic functions in Cw is two dimensional.
Denote by Dw the union of Cw and all its neighboring cells, i.e.,

Dw = Cw ∪
⋃

i,j

Ci,j .

Two cells Cw and Cw′ are said to have the same neighborhood type if they have
the same relative geometry with respect to Dw and Dw′ respectively. It is obvious
that there only exist finitely many distinct types. For example, for S G , all cells have
exactly only one neighborhood type. For S G 3, the number of the finite types is 3. For
S Gn (n ≥ 4), the number of the finite types becomes 4. For the hexagasket gasket,
the number of the finite types is 2.

Let h be a harmonic function on K . Given a set B containing Cw , define

MB(h) = 1

μ(B)

∫

B

hdμ

the mean value of h over B . We are interested in an identity

MB(h) =
∑

i

aih(pi) (5.1)

for some coefficients (a0, a1, a2) satisfying
∑

ai = 1. Notice that this is true for S G .
In that setting, a harmonic function is uniquely determined by its values on the bound-
ary of any given cell Cw because the harmonic extension matrix associated with Cw

is invertible. However, in the general case, the harmonic extension matrices may not
be invertible. So we can not prove (5.1) for every set B simply by linearity. However,
it will suffice to show that the equality (5.1) holds for certain specified sets B .

Consider a set B which is a subset of Dw , containing Cw . Then B must be made
up of four parts, i.e.,

B = Cw ∪ E0 ∪ E1 ∪ E2

where Ei = B ∩ Ci with Ci = ⋃li
j=1 Ci,j . It is possible that Ci may be empty since

pi may be a nonjunction point. We can also subdivide each Ei into li small pieces,
i.e., Ei = ⋃

j Ei,j for Ei,j = Ei ∩ Ci,j . For each i, we require that Ei,1, . . . ,Ei,li

be of the same size and shape. Moreover, in analogy with the S G case, we require
that each Ei,j to be a symmetric (under the reflection symmetry that fixes pi ) cutoff
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sub-triangle of Ci,j , containing pi as one of its vertex points. This means that there is
a straight line Li,j , symmetric under the reflection symmetry fixing pi , cutting Ci,j

into two parts, and Ei,j is the one containing pi . For each Ei,j , define the distance be-
tween pi and the line Li,j the size of Ei,j . Of course, for each fixed i, Ei,1, . . . ,Ei,li

have the same sizes. We call the common value the size of Ei . Suppose the size of
every Ci,j is ρ. (Of course, they are all equal.) Then for each i, the size of Ei is
ciρ where the coefficient 0 ≤ ci ≤ 1. Hence we can write the set B = B(c0, c1, c2).
(If pi is a nonjunction point, then ci should always be 0.) For example, suppose
that the boundary points of Cw consist of junction points, then B(0,0,0) = Cw and
B(1,1,1) = Dw . Denote by

B = {B(c0, c1, c2) : 0 ≤ ci ≤ 1}
the family of all such sets. Then we can show that the formula (5.1) holds for each
B ∈ B.

Proposition 5.1 Let B ∈ B, then for any harmonic function h, we have (5.1) for some
coefficients (a0, a1, a2) independent of h. Moreover,

∑
i ai = 1.

Proof Each B ∈ B can be written as B = Cw ∪ E0 ∪ E1 ∪ E2. Given a harmonic
function h on K , for fixed i, we first consider the integral

∫
Ei

hdμ. Obviously,

∫

Ei

hdμ =
∑

j

∫

Ei,j

hdμ.

For each 1 ≤ j ≤ li , denote by {zi,j ,wi,j ,pi} the boundary points of Ci,j . Since
each Ei,j is contained in Ci,j , 1

μ(Cw)

∫
Ei,j

hdμ can be expressed as a linear combina-
tion of h(pi), h(zi,j ) and h(wi,j ) with non-negative coefficients independent of the
harmonic function h. Since the set Ei,j is symmetric under the reflection symmetry
fixing pi , the two coefficients with respect to h(zi,j ) and h(wi,j ) must be equal. In
other words, we can write

∫

Ei,j

hdμ = (mi,j h(pi) + ni,j h(zi,j ) + ni,j h(wi,j ))μ(Cw)

for mi,j , ni,j ≥ 0. Moreover, since for each fixed i, Ei,j are in the same relative
position associated to Ci,j for different j ’s,

∫
Ei,j

hdμ can be expressed as a linear
combination of h(pi), h(zi,j ), h(wi,j ) with the same coefficients for different j ’s.
Hence we can write

∫

Ei

hdμ = (mih(pi) + ni

∑

j

(h(zi,j ) + h(wi,j )))μ(Cw),

for suitable coefficients mi,ni ≥ 0. The mean value property at the point pi says that

∑

j

(h(zi,j ) + h(wi,j )) = (2li + 2)h(pi) − (h(pi−1) + h(pi+1)).
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Combining the above two equalities, we get

∫

Ei

hdμ = ((mi + 2lini + 2ni)h(pi) − nih(pi−1) − nih(pi+1))μ(Cw).

On the other hand, by the linearities and symmetries of both the harmonic structure
and the self-similar measure,

∫

Cw

hdμ = μ(Cw)

3
(h(p0) + h(p1) + h(p2)).

Since the ratio of μ(Ei,j ) to μ(Cw) depends only on ci , we have proved that
MB(h) can be viewed as a linear combination of the values of h on the boundary
points of Cw , i.e.,

MB(h) =
∑

i

aih(pi),

where the combination coefficients are independent of h. Moreover, we must have∑
ai = 1 by considering h ≡ 1. �

Remark 1 This means that MB(h) is a weighted average of the values h(p0), h(p1)

and h(p2). Moreover, if one of the boundary points, for example p2, is a nonjunction
point, then by the fact that h(p2) = 1

2 (h(p0) + h(p1)), we have

MB(h) = a0h(p0) + a1h(p1) + 1

2
a2(h(p0) + h(p1)) = ã0h(p0) + ã1h(p1)

for ã0 = a0 + 1
2a2 and ã1 = a1 + 1

2a2. We also have ã0 + ã1 = 1. Hence in this case,
we can also view MB(h) as a weighted average of the values of h(p0) and h(p1).

Remark 2 The proof of Proposition 5.1 shows that (a0, a1, a2) depends only on the
neighborhood type of Cw and the relative position of B associated to Cw , and does
not depend on the particular choice of Cw . In other words, if we consider a cell
Cw with a given neighborhood type, then for each set B ∈ B with the expression
B = B(c0, c1, c2), the coefficients (a0, a1, a2) of B depend only on (c0, c1, c2).

The following is the main result in this section.

Theorem 5.1 Given a point x ∈ K \V0, let Cw be a cell containing x, not intersecting
V0, and let Dw be the union of Cw and its neighboring cells of the same size. Then
there exists a mean value neighborhood B of x satisfying Cw ⊂ B ⊂ Dw . Moreover,
for each point x ∈ K \ V0, there exists a system of mean value neighborhoods Bk(x)

with
⋂

k Bk(x) = {x}.

Proof We need to classify the distinct neighborhood types into three cases according
to the number of nonjunction points in the set of boundary points of Cw .
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Case 1 All boundary points of Cw are junction points.

This case is similar to what we have described in the S G setting. Let W denote the
triangle in R

3 with boundary points P0 = (1,0,0),P1 = (0,1,0) and P2 = (0,0,1)

and πW the plane containing W . Notice that from Proposition 5.1, (a0, a1, a2) ∈ πW

for each B . We use T to denote the map from B to πW . From Remark 2 of Proposition
5.1, the map T is uniquely determined by the neighborhood type of Cw . Let B∗ be a
subfamily contained in B defined by

B∗ = {B(0, c1, c2) : 0 ≤ ci ≤ 1} ∪ {B(c0,0, c2) : 0 ≤ ci ≤ 1}
∪ {B(c0, c1,0) : 0 ≤ ci ≤ 1},

i.e., those elements B in B which have the decomposition form B = Cw ∪ E1 ∪ E2
or B = Cw ∪ E0 ∪ E2, or B = Cw ∪ E0 ∪ E1. Then we have

Claim 1 The map T from B to πW fills out a region W̃ which contains the triangle
W . Moreover, T is one-to-one from B∗ onto W̃ .

Proof The proof is similar to the S G case. The only difference is the line segments
OQ0 and OP2 described in the proof of Theorem 3.1 may become continuous curves
ÔQ0 and ÔP2 in the general setting. �

Case 2 There is one nonjunction point (for example, p2) among the boundary points
of Cw .

In this case, there is no neighboring cell intersecting Cw at the point p2. Hence E2
will always be empty. So B = {B(c0, c1,0) : 0 ≤ ci ≤ 1} for this case.

As shown in Remark 1 of Proposition 5.1, for any harmonic function h on K ,
B ∈ B, MB(h) is a weighted average of h(p0) and h(p1), i.e.,

MB(h) = a0h(p0) + a1h(p1)

with a0, a1 independent of h, satisfying a0 + a1 = 1. Let I denote the line segment in
R

2 with endpoints P0 = (1,0),P1 = (0,1) and ρI the line containing I . Notice that
from Remark 1 of Proposition 5.1, (a0, a1) ∈ ρI for each B . We still use T to denote
the map from B to ρI . From Remark 2 of Proposition 5.1, the map T is uniquely de-
termined by the neighborhood type of Cw . We may write T (B(c0, c1,0)) = (a0, a1)

for each set B(c0, c1,0). We will show the image of the map T covers the line seg-
ment I . Similar to Case 1, let B∗ be a subfamily contained in B defined by

B∗ = {B(c0,0,0) : 0 ≤ c0 ≤ 1} ∪ {B(0, c1,0) : 0 ≤ c1 ≤ 1},
i.e., those elements B in B which have the decomposition form B = Cw ∪ E0 or
B = Cw ∪ E1. Then we have

Claim 2 The map T from B to ρI fills out the line segment I . Moreover, T is a
one-to-one map on B∗.
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Proof The proof is similar to Case 1. Denote by O = ( 1
2 , 1

2 ) the midpoint of I . We
only prove the map T from B to ρI fills out half of the line segment I . Then we will
get the desired result by symmetry.

Let h be a harmonic function on K . We consider T ({(B(c,0,0)) : 0 ≤ c ≤ 1}).
When c = 0, B(0,0,0) = Cw and MCw(h) = 1

3 (h(p0) + h(p1) + h(p2)). Combining
this with the fact that

h(p2) = 1

2
(h(p0) + h(p1)),

we get

MCw(h) = 1

2
(h(p0) + h(p1)).

Hence T (B(0,0,0)) is the midpoint O of I . When c = 1, B(1,0,0) = Cw ∪ C0, and
an easy calculation gives that MCw∪C0 = h(p0). Hence T (B(1,0,0)) is the endpoint
P0. So if we vary c continuously between 0 and 1, we can fill out the line segment
joining O and P0, which is half of I . �

Case 3 There are two nonjunction points (for example, p1 and p2) among the
boundary points of Cw .

In this case, let h be any harmonic function on K . By the matching condition on
both points p1 and p2, h must be constant on the whole cell Cw . Hence for every
point x ∈ Cw , we could view Cw itself as the mean value neighborhood of x.

Hence the proof of Theorem 5.1 is completed by using a same argument as that of
Theorem 3.2. �

We should mention here that the result can also be extended to some other p.c.f.
fractals including the 3-dimensional Sierpinski gasket. However, it seems that some
strong symmetric conditions of both the geometric and the harmonic structures
should be required.
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