Heisenberg Uniqueness Pairs for the Parabola

Per Sjölin

Received: 31 January 2012 / Revised: 25 September 2012 / Published online: 25 January 2013 © Springer Science+Business Media New York 2013

Abstract Let *Γ* denote the parabola $y = x^2$ in the plane. For some simple sets *Λ* in the plane we study the question whether (Γ, Λ) is a Heisenberg uniqueness pair. For example we shall consider the cases where *Λ* is a straight line or a union of two straight lines.

Keywords Fourier transforms · Heisenberg uniqueness pairs

Mathematics Subject Classification 42B10

1 Introduction

Let μ denote a finite complex-valued Borel measure in \mathbb{R}^2 . The Fourier transform of μ is defined by

$$
\hat{\mu}(x, y) = \int_{\mathbb{R}^2} e^{-i(x\xi + y\eta)} d\mu(\xi, \eta) \quad \text{for } (x, y) \in \mathbb{R}^2.
$$

Let *Γ* denote the parabola $y = x^2$ in \mathbb{R}^2 . We assume that supp $\mu \subset \Gamma$ and that μ is absolutely continuous with respect to the arc length measure on *Γ* . Also let *Λ* be a subset of \mathbb{R}^2 . Following Hedenmalm and Montes-Rodríguez [[3\]](#page-6-0) we say that (Γ, Λ) is a Heisenberg uniqueness pair (or only uniqueness pair) if $\hat{\mu}(x, y) = 0$ for $(x, y) \in \Lambda$ implies that μ is the zero measure.

The case where *Γ* is a hyperbola was discussed in [\[3](#page-6-0)], and Sjölin [\[5](#page-6-1)] and Lev [\[4](#page-6-2)] studied the case where *Γ* is a circle. For further results see also Canto-Martin, Hedenmalm, and Montes-Rodríguez [[1\]](#page-6-3).

P. Sjölin (\boxtimes)

Communicated by Hans G. Feichtinger.

Department of Mathematics, Royal Institute of Technology, 100 44 Stockholm, Sweden e-mail: pers@math.kth.se

We shall here let *Γ* denote the parabola $y = x^2$.

If μ has the above properties it is clear that there exists a measurable function f on $\mathbb R$ such that

$$
\int_{\mathbb{R}} |f(t)| \sqrt{1 + 4t^2} dt < \infty
$$

and $\int_{\mathbb{R}^2} h d\mu = \int_{\mathbb{R}} h(t, t^2) f(t) \sqrt{1 + 4t^2} dt$ if *h* is continuous and bounded in \mathbb{R}^2 . Thus we have

$$
\hat{\mu}(x, y) = \int_{\mathbb{R}} e^{-i(xt + yt^2)} f(t) \sqrt{1 + 4t^2} dt, \quad (x, y) \in \mathbb{R}^2.
$$

We shall prove the following theorem, where *Γ* denotes the parabola $y = x^2$.

Theorem 1

- (i) *Let Λ* = *L where L is a straight line*. *Then (Γ,Λ) is a uniqueness pair if and only if L is parallel to the x-axis*.
- (ii) Let $\Lambda = L_1 \cup L_2$, where L_1 and L_2 are different straight lines. Then (Γ, Λ) is *a uniqueness pair*.
- (iii) *Assume that L*¹ *and L*² *are different straight lines*, *which are not parallel to the x*-axis. Also assume that $E_1 \subset L_1$, and $E_2 \subset L_2$ and that E_1 and E_2 have *positive one-dimensional Lebesgue measure. Set* $\Lambda = E_1 \cup E_2$. *Then* (Γ, Λ) *is a uniqueness pair*.

Remark When we talk about the one-dimensional Lebesgue measure of a subset *E* of a straight line *L* in the plane, we identify *L* with R.

We also remark that Heisenberg uniqueness pairs are somewhat related to the notion of annihilating pairs (see Havin and Jöricke [[2\]](#page-6-4)). To give the definition of this concept we let *S* and *Σ* be subsets of R. Following [[2\]](#page-6-4) we say that the pair (S, Σ) is mutually annihilating if $\psi \in L^2(\mathbb{R})$, supp $\psi \subset S$, supp $\hat{\psi} \subset \Sigma$ implies that $\psi = 0$. Here ψ denotes the Fourier transform of ψ . We refer to [\[2](#page-6-4)] for results on annihilating pairs.

2 Lemmas and Proofs

We let the function *f* be defined as in the Introduction and set

$$
g(t) = f(t)\sqrt{1+4t^2}, \quad t \in \mathbb{R}.
$$

Then $g \in L^1(\mathbb{R})$ and

$$
\hat{\mu}(x, y) = \int_{\mathbb{R}} e^{-i(xt + yt^2)} g(t) dt, \quad (x, y) \in \mathbb{R}^2.
$$
 (1)

We also set $Tg(x, y) = \hat{\mu}(x, y)$ so that *T* is a mapping from $L^1(\mathbb{R})$ to $C(\mathbb{R}^2)$. It is then easy to see that if we set $U(x, y) = Tg(x, -y)$, then *U* satisfies the Schrödinger equation

$$
i\frac{\partial U}{\partial y} = \frac{\partial^2 U}{\partial x^2}.
$$

We shall use the following theorem, which can be found in Havin and Jöricke [[2\]](#page-6-4), p. 36.

Theorem A *Assume that* $\varphi \in L^1(\mathbb{R})$ *and that* supp φ *is a subset of* $[0, \infty)$ *. Also assume that*

$$
\int_{\mathbb{R}} \log |\hat{\varphi}(x)| \frac{dx}{1+x^2} = -\infty.
$$

Then $\varphi = 0$ *almost everywhere.*

Here $\hat{\varphi}$ denotes the Fourier transform of φ .

We shall then state and prove three lemmas. We let |*E*| denote Lebesgue measure of a set *E*.

Lemma 1 *Assume that* $g \in L^1(\mathbb{R})$ *and that* $E \subset \mathbb{R}$ *with* $|E| > 0$. *Then*

$$
\int_{\mathbb{R}} e^{-iyt^2} g(t)dt = 0 \quad \text{for every } y \in E
$$
 (2)

if and only if g is an odd function.

Proof It is obvious that ([2\)](#page-2-0) holds if *g* is odd. We have to prove the converse and assume that [\(2](#page-2-0)) holds. Denoting the integral in ([2\)](#page-2-0) by *I* and performing a change of variable we obtain

$$
I = \int_{-\infty}^{0} e^{-iyt^2} g(t)dt + \int_{0}^{\infty} e^{-iyt^2} g(t)dt
$$

=
$$
\int_{0}^{\infty} e^{-iyt^2} (g(t) + g(-t))dt
$$

=
$$
\int_{0}^{\infty} e^{-iyt^2} F(t)dt,
$$

where $F(t) = g(t) + g(-t)$ for $t \ge 0$. It is clear that $F \in L^1(0, \infty)$ and setting $u = t^2$ we obtain

$$
I = \int_0^\infty e^{-iyu} F(\sqrt{u}) \frac{1}{2\sqrt{u}} du = 0 \text{ for } y \in E.
$$

We have $F(\sqrt{u})/\sqrt{u} \in L^1(0,\infty)$ and we set $\varphi(u) = F(\sqrt{u})\frac{1}{2\sqrt{u}}$ for $u > 0$ and $\varphi(u) = 0$ for $u \le 0$. It follows that $\varphi \in L^1(\mathbb{R})$ and $I = \hat{\varphi}(v) = 0$ for $v \in E$. Since $|E| > 0$ we conclude that

$$
\int_{\mathbb{R}} \log |\hat{\varphi}(x)| \frac{dx}{1+x^2} = -\infty
$$

and Theorem [A](#page-2-1) implies that $\varphi = 0$ almost everywhere. Hence $F(t) = 0$ almost everywhere on $[0, \infty)$. It follows that $g(-t) = -g(t)$ for almost every *t*, i.e. *g* is odd. \Box

Lemma 2 *Let* $g \in L^1(\mathbb{R})$ *and let* γ *and* δ *denote different real numbers. Assume that* $g(u - v)$ *and* $g(u - \delta)$ *are odd as functions of u. Then* $g = 0$ *almost everywhere.*

Proof Using first the fact that $g(u - \gamma)$ is odd and then the fact that $g(u - \delta)$ is odd we obtain

$$
g(u - \gamma) = -g(-u - \gamma) = -g((-u + \delta - \gamma) - \delta) = g(u - \delta + \gamma - \delta) = g(u + \gamma - 2\delta)
$$

for almost every *u*. Hence $g(u) = g(u + 2\gamma - 2\delta)$, that is *g* has period $2\gamma - 2\delta \neq 0$. Since *g* ∈ *L*¹(ℝ) it follows that *g* = 0 almost everywhere. \Box

We shall need one more lemma.

Lemma 3 Assume that $g \in L^1(\mathbb{R})$ *and that* $\hat{\mu}$ *is given by* [\(1](#page-1-0)). Also assume that $E \subset \mathbb{R}$ *and* $|E| > 0$ *. Then the following holds.*

- (i) *Assume* $x_0 \in \mathbb{R}$. *Then* $\hat{\mu}(x_0, y) = 0$ *for* $y \in E$ *if and only if* $e^{-ix_0t}g(t)$ *is odd as a function of t*.
- (ii) *Assume* $\alpha \in \mathbb{R}$ *and* $\alpha \neq 0$. *Then* $\hat{\mu}(x, \alpha x) = 0$ *for* $x \in E$ *if and only if* $g(u \alpha x)$ 1*/*2*α) is odd as a function of u*.
- (iii) *Assume that* α *and* b *are real numbers and* $\alpha \neq 0$ *and* $b \neq 0$. *Then* $\hat{\mu}(x, \alpha x + \beta)$ *b*) = 0 *for x* ∈ *E if* and only *if* the function $h(t) = e^{-ibt^2}g(t)$ has the property *that* $h(u - 1/2\alpha)$ *is odd as a function of u.*

Proof To prove (i) we invoke Lemma [1](#page-2-2) and observe that

$$
\hat{\mu}(x_0, y) = \int_{\mathbb{R}} e^{-iyt^2} e^{-ix_0t} g(t) dt = 0 \quad \text{for } y \in E
$$

if and only if $e^{-ix_0t}g(t)$ is an odd function.

To obtain (ii) we write

$$
\hat{\mu}(x,\alpha x) = \int_{\mathbb{R}} e^{-i(xt+\alpha xt^2)} g(t)dt = \int_{\mathbb{R}} e^{-ix(t+\alpha t^2)} g(t)dt.
$$

However,

$$
t + \alpha t^2 = \alpha \left(t^2 + \frac{1}{\alpha} t \right) = \alpha \left[\left(t + \frac{1}{2\alpha} \right)^2 - \frac{1}{4\alpha^2} \right] = \alpha \left(t + \frac{1}{2\alpha} \right)^2 - \frac{1}{4\alpha}
$$

Birkhäuser

and hence

$$
\hat{\mu}(x,\alpha x) = e^{ix/4\alpha} \int_{\mathbb{R}} e^{-ix\alpha(t+1/2\alpha)^2} g(t)dt.
$$

Setting $u = t + \frac{1}{2\alpha}$ we then obtain

$$
\hat{\mu}(x, \alpha x) = e^{ix/4\alpha} \int_{\mathbb{R}} e^{-ix\alpha u^2} g(u - 1/2\alpha) du
$$

and (ii) follows from an application of Lemma [1.](#page-2-2)

It remains to prove (iii). We have

$$
\hat{\mu}(x, \alpha x + b) = \int_{\mathbb{R}} e^{-i(xt + (\alpha x + b)t^2)} g(t) dt = \int_{\mathbb{R}} e^{-i(xt + \alpha xt^2)} e^{-ibt^2} g(t) dt
$$

$$
= \int_{\mathbb{R}} e^{-i(xt + \alpha xt^2)} h(t) dt,
$$

where $h(t) = e^{-ibt^2}g(t)$, and (iii) follows from (ii). Thus Lemma [3](#page-3-0) has been \Box

Before proving Theorem [1](#page-1-1) we mention the well-known fact that if *Λ* is a subset of \mathbb{R}^2 and Λ_1 is a translate of Λ , then (Γ, Λ) is a uniqueness pair if and only if *(Γ,Λ*1*)* is a uniqueness pair. This follows from elementary properties of the Fourier transform.

Finally we shall prove Theorem [1](#page-1-1).

Proof of Theorem [1](#page-1-1) We first prove (i) and assume that *L* is parallel to the *x*-axis. Using the above remark we may assume that *L* is the *x*-axis. We assume that $g \in$ $L^1(\mathbb{R})$ and that

$$
\hat{\mu}(x,0) = \int_{\mathbb{R}} e^{-ixt} g(t) dt = 0 \quad \text{for every } x.
$$

Hence $\hat{g}(x) = 0$ everywhere and we conclude that $g = 0$ almost everywhere. It follows that *(Γ,L)* is a uniqueness pair.

We then assume that *L* is not parallel to the *x*-axis. It then follows directly from Lemma [3](#page-3-0) that *(Γ,L)* is not a uniqueness pair.

For example, if *L* is also not parallel to the *y*-axis, we may assume that *L* is the line $y = \alpha x$ where $\alpha \neq 0$. Then take φ as a non-zero odd function in $L^1(\mathbb{R})$ and set $g(t) = \varphi(t + 1/2\alpha)$. It then follows from (ii) in Lemma [3](#page-3-0) that $\hat{\mu} = Tg$ vanish on *L* and thus *(Γ,L)* is not a uniqueness pair.

Thus we have proved (i). We then observe that (ii) follows from (i) and (iii), and therefore it only remains to prove (iii). We suppose that L_1, L_2, E_1, E_2 and Λ have the properties in the statement of (iii) and shall prove that *(Γ,Λ)* is a uniqueness pair.

We first study the case where L_1 and L_2 intersect. Performing a translation we may assume that the point of intersection is the origin. First assume that L_1 and L_2 are the lines $y = \alpha_1 x$ and $y = \alpha_2 x$, where α_1 and $\alpha_2 \neq 0$. We assume that $\hat{\mu}$ is given by [\(1](#page-1-0)) and that $\hat{\mu}$ vanishes on $\Lambda = E_1 \cup E_2$. It then follows from (ii) in Lemma [3](#page-3-0) that $g(u - 1/2\alpha_1)$ $g(u - 1/2\alpha_1)$ $g(u - 1/2\alpha_1)$ and $g(u - 1/2\alpha_2)$ are odd. Lemma 2 then implies that $g = 0$ almost everywhere.

We then treat the case where L_1 is the *y*-axis and L_2 is the line $y = \alpha x$ with $\alpha \neq 0$. Assuming that $\hat{\mu}$ vanishes on *Λ* we conclude from (i) and (ii) in Lemma [3](#page-3-0) that *g* and $g(u - 1/2\alpha)$ $g(u - 1/2\alpha)$ $g(u - 1/2\alpha)$ are odd. We then invoke Lemma 2 to conclude that $g = 0$ almost everywhere.

It remains to study the case where L_1 and L_2 are parallel lines. First suppose that these lines are parallel to the *y*-axis. We may assume that L_1 is the line $x = 0$ and *L*₂ the line $x = x_0$ where $x_0 \neq 0$. We also assume that $\hat{\mu}$ is given by [\(1](#page-1-0)) and that $\hat{\mu}$ vanishes on $\Lambda = E_1 \cup E_2$. It follows from (i) in Lemma [3](#page-3-0) that the functions *g* and $e^{-ix_0t}g(t)$ are odd. Hence

$$
g(-t) = -g(t)
$$
 and $e^{ix_0t}g(-t) = -e^{-ix_0t}g(t)$.

We conclude that

$$
-e^{ix_0t}g(t) = -e^{-ix_0t}g(t)
$$

and

$$
e^{i2x_0t}g(t) = g(t).
$$

We obtain

$$
(e^{i2x_0t}-1)g(t)=0
$$

for almost every *t*. It is clear that $e^{i2x_0t} = 1$ only for $t = \pi n/x_0$ where *n* is an integer. We conclude that $g = 0$ almost everywhere.

We shall finally study the case where L_1 and L_2 are two parallel lines which are not parallel to the coordinate axes. We may assume that L_1 is the line $y = \alpha x$ and L_2 the line $y = \alpha x + b$ where $\alpha \neq 0$ and $b \neq 0$. We assume again that $\hat{\mu}$ is given by [\(1](#page-1-0)) and that $\hat{\mu}$ vanishes on Λ . According to (ii) in Lemma [3](#page-3-0) it follows that $g(u-1/2\alpha)$ is odd. Setting $h(t) = e^{-ibt^2}g(t)$ we also conclude from (iii) in Lemma [3](#page-3-0) that $h(u - 1/2\alpha)$ is odd. Setting $\gamma = 1/2\alpha$ we then have $g(-u - \gamma) = -g(u - \gamma)$ and $h(-u - \gamma) = -h(u - \gamma)$ for almost every *u*.

The above equality for *h* can be written

$$
e^{-ib(u+\gamma)^{2}}g(-u-\gamma) = -e^{-ib(u-\gamma)^{2}}g(u-\gamma).
$$

Using the fact that $g(u - \gamma)$ is odd we obtain

$$
-e^{-ib(u+\gamma)^{2}}g(u-\gamma) = -e^{-ib(u-\gamma)^{2}}g(u-\gamma)
$$

and

$$
e^{ib(u-\gamma)^2 - ib(u+\gamma)^2}g(u-\gamma) = g(u-\gamma).
$$

Hence

$$
(e^{ib(u-\gamma)^2 - ib(u+\gamma)^2} - 1)g(u-\gamma) = 0
$$

and

$$
(e^{-ib4u\gamma}-1)g(u-\gamma)=0.
$$

It is clear that $e^{-ib4u\gamma} = 1$ only for $u = 2\pi n/4b\gamma$, where *n* is an integer, and we conclude that $g = 0$ almost everywhere. The proof of the theorem is complete. \Box

References

- 1. Canto-Martin, F., Hedenmalm, H., Montes-Rodríguez, A.: Perron-Frobenius operators and the Klein-Gordon equation. J. Eur. Math. Soc. (to appear)
- 2. Havin, V., Jöricke, B.: The Uncertainty Principle in Harmonic Analysis. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3), vol. 28. Springer, Berlin (1994)
- 3. Hedenmalm, H., Montes-Rodríguez, A.: Heisenberg uniqueness pairs and the Klein-Gordon equation. Ann. Math. (2) **173**(3), 1507–1527 (2011)
- 4. Lev, N.: Uniqueness theorems for Fourier transforms. Bull. Sci. Math. **135**(2), 134–140 (2011)
- 5. Sjölin, P.: Heisenberg uniqueness pairs and a theorem of Beurling and Malliavin. Bull. Sci. Math. **135**(2), 125–133 (2011)