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Abstract Let Γ denote the parabola y = x2 in the plane. For some simple sets Λ

in the plane we study the question whether (Γ,Λ) is a Heisenberg uniqueness pair.
For example we shall consider the cases where Λ is a straight line or a union of two
straight lines.
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1 Introduction

Let μ denote a finite complex-valued Borel measure in R
2. The Fourier transform of

μ is defined by

μ̂(x, y) =
∫

R2
e−i(xξ+yη)dμ(ξ, η) for (x, y) ∈ R

2.

Let Γ denote the parabola y = x2 in R
2. We assume that suppμ ⊂ Γ and that μ

is absolutely continuous with respect to the arc length measure on Γ . Also let Λ be a
subset of R

2. Following Hedenmalm and Montes-Rodríguez [3] we say that (Γ,Λ) is
a Heisenberg uniqueness pair (or only uniqueness pair) if μ̂(x, y) = 0 for (x, y) ∈ Λ

implies that μ is the zero measure.
The case where Γ is a hyperbola was discussed in [3], and Sjölin [5] and Lev

[4] studied the case where Γ is a circle. For further results see also Canto-Martin,
Hedenmalm, and Montes-Rodríguez [1].
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We shall here let Γ denote the parabola y = x2.
If μ has the above properties it is clear that there exists a measurable function f

on R such that ∫
R

∣∣f (t)
∣∣√1 + 4t2dt < ∞

and
∫

R2 hdμ = ∫
R

h(t, t2)f (t)
√

1 + 4t2dt if h is continuous and bounded in R
2.

Thus we have

μ̂(x, y) =
∫

R

e−i(xt+yt2)f (t)
√

1 + 4t2dt, (x, y) ∈ R
2.

We shall prove the following theorem, where Γ denotes the parabola y = x2.

Theorem 1

(i) Let Λ = L where L is a straight line. Then (Γ,Λ) is a uniqueness pair if and
only if L is parallel to the x-axis.

(ii) Let Λ = L1 ∪ L2, where L1 and L2 are different straight lines. Then (Γ,Λ) is
a uniqueness pair.

(iii) Assume that L1 and L2 are different straight lines, which are not parallel to
the x-axis. Also assume that E1 ⊂ L1, and E2 ⊂ L2 and that E1 and E2 have
positive one-dimensional Lebesgue measure. Set Λ = E1 ∪ E2. Then (Γ,Λ) is
a uniqueness pair.

Remark When we talk about the one-dimensional Lebesgue measure of a subset E

of a straight line L in the plane, we identify L with R.

We also remark that Heisenberg uniqueness pairs are somewhat related to the no-
tion of annihilating pairs (see Havin and Jöricke [2]). To give the definition of this
concept we let S and Σ be subsets of R. Following [2] we say that the pair (S,Σ)

is mutually annihilating if ψ ∈ L2(R), suppψ ⊂ S, supp ψ̂ ⊂ Σ implies that ψ = 0.
Here ψ̂ denotes the Fourier transform of ψ . We refer to [2] for results on annihilating
pairs.

2 Lemmas and Proofs

We let the function f be defined as in the Introduction and set

g(t) = f (t)
√

1 + 4t2, t ∈ R.

Then g ∈ L1(R) and

μ̂(x, y) =
∫

R

e−i(xt+yt2)g(t)dt, (x, y) ∈ R
2. (1)
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We also set T g(x, y) = μ̂(x, y) so that T is a mapping from L1(R) to C(R2). It is
then easy to see that if we set U(x,y) = T g(x,−y), then U satisfies the Schrödinger
equation

i
∂U

∂y
= ∂2U

∂x2
.

We shall use the following theorem, which can be found in Havin and Jöricke [2],
p. 36.

Theorem A Assume that ϕ ∈ L1(R) and that suppϕ is a subset of [0,∞). Also
assume that ∫

R

log
∣∣ϕ̂(x)

∣∣ dx

1 + x2
= −∞.

Then ϕ = 0 almost everywhere.

Here ϕ̂ denotes the Fourier transform of ϕ.
We shall then state and prove three lemmas. We let |E| denote Lebesgue measure

of a set E.

Lemma 1 Assume that g ∈ L1(R) and that E ⊂ R with |E| > 0. Then

∫
R

e−iyt2
g(t)dt = 0 for every y ∈ E (2)

if and only if g is an odd function.

Proof It is obvious that (2) holds if g is odd. We have to prove the converse and
assume that (2) holds. Denoting the integral in (2) by I and performing a change of
variable we obtain

I =
∫ 0

−∞
e−iyt2

g(t)dt +
∫ ∞

0
e−iyt2

g(t)dt

=
∫ ∞

0
e−iyt2(

g(t) + g(−t)
)
dt

=
∫ ∞

0
e−iyt2

F(t)dt,

where F(t) = g(t)+g(−t) for t ≥ 0. It is clear that F ∈ L1(0,∞) and setting u = t2

we obtain

I =
∫ ∞

0
e−iyuF (

√
u)

1

2
√

u
du = 0 for y ∈ E.

We have F(
√

u)/
√

u ∈ L1(0,∞) and we set ϕ(u) = F(
√

u) 1
2
√

u
for u > 0 and

ϕ(u) = 0 for u ≤ 0. It follows that ϕ ∈ L1(R) and I = ϕ̂(y) = 0 for y ∈ E. Since
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|E| > 0 we conclude that

∫
R

log
∣∣ϕ̂(x)

∣∣ dx

1 + x2
= −∞

and Theorem A implies that ϕ = 0 almost everywhere. Hence F(t) = 0 almost every-
where on [0,∞). It follows that g(−t) = −g(t) for almost every t , i.e. g is odd. �

Lemma 2 Let g ∈ L1(R) and let γ and δ denote different real numbers. Assume that
g(u − γ ) and g(u − δ) are odd as functions of u. Then g = 0 almost everywhere.

Proof Using first the fact that g(u − γ ) is odd and then the fact that g(u − δ) is odd
we obtain

g(u−γ ) = −g(−u−γ ) = −g
(
(−u+δ−γ )−δ

) = g(u−δ+γ −δ) = g(u+γ −2δ)

for almost every u. Hence g(u) = g(u + 2γ − 2δ), that is g has period 2γ − 2δ 	= 0.
Since g ∈ L1(R) it follows that g = 0 almost everywhere. �

We shall need one more lemma.

Lemma 3 Assume that g ∈ L1(R) and that μ̂ is given by (1). Also assume that E ⊂ R

and |E| > 0. Then the following holds.

(i) Assume x0 ∈ R. Then μ̂(x0, y) = 0 for y ∈ E if and only if e−ix0t g(t) is odd as
a function of t .

(ii) Assume α ∈ R and α 	= 0. Then μ̂(x,αx) = 0 for x ∈ E if and only if g(u −
1/2α) is odd as a function of u.

(iii) Assume that α and b are real numbers and α 	= 0 and b 	= 0. Then μ̂(x,αx +
b) = 0 for x ∈ E if and only if the function h(t) = e−ibt2

g(t) has the property
that h(u − 1/2α) is odd as a function of u.

Proof To prove (i) we invoke Lemma 1 and observe that

μ̂(x0, y) =
∫

R

e−iyt2
e−ix0t g(t)dt = 0 for y ∈ E

if and only if e−ix0t g(t) is an odd function.
To obtain (ii) we write

μ̂(x,αx) =
∫

R

e−i(xt+αxt2)g(t)dt =
∫

R

e−ix(t+αt2)g(t)dt.

However,

t + αt2 = α

(
t2 + 1

α
t

)
= α

[(
t + 1

2α

)2

− 1

4α2

]
= α

(
t + 1

2α

)2

− 1

4α
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and hence

μ̂(x,αx) = eix/4α

∫
R

e−ixα(t+1/2α)2
g(t)dt.

Setting u = t + 1/2α we then obtain

μ̂(x,αx) = eix/4α

∫
R

e−ixαu2
g(u − 1/2α)du

and (ii) follows from an application of Lemma 1.
It remains to prove (iii). We have

μ̂(x,αx + b) =
∫

R

e−i(xt+(αx+b)t2)g(t)dt =
∫

R

e−i(xt+αxt2)e−ibt2
g(t)dt

=
∫

R

e−i(xt+αxt2)h(t)dt,

where h(t) = e−ibt2
g(t), and (iii) follows from (ii). Thus Lemma 3 has been

proved. �

Before proving Theorem 1 we mention the well-known fact that if Λ is a subset
of R

2 and Λ1 is a translate of Λ, then (Γ,Λ) is a uniqueness pair if and only if
(Γ,Λ1) is a uniqueness pair. This follows from elementary properties of the Fourier
transform.

Finally we shall prove Theorem 1.

Proof of Theorem 1 We first prove (i) and assume that L is parallel to the x-axis.
Using the above remark we may assume that L is the x-axis. We assume that g ∈
L1(R) and that

μ̂(x,0) =
∫

R

e−ixt g(t)dt = 0 for every x.

Hence ĝ(x) = 0 everywhere and we conclude that g = 0 almost everywhere. It fol-
lows that (Γ,L) is a uniqueness pair.

We then assume that L is not parallel to the x-axis. It then follows directly from
Lemma 3 that (Γ,L) is not a uniqueness pair.

For example, if L is also not parallel to the y-axis, we may assume that L is the
line y = αx where α 	= 0. Then take ϕ as a non-zero odd function in L1(R) and set
g(t) = ϕ(t + 1/2α). It then follows from (ii) in Lemma 3 that μ̂ = T g vanish on L

and thus (Γ,L) is not a uniqueness pair.
Thus we have proved (i). We then observe that (ii) follows from (i) and (iii), and

therefore it only remains to prove (iii). We suppose that L1,L2,E1,E2 and Λ have
the properties in the statement of (iii) and shall prove that (Γ,Λ) is a uniqueness pair.

We first study the case where L1 and L2 intersect. Performing a translation we
may assume that the point of intersection is the origin. First assume that L1 and L2
are the lines y = α1x and y = α2x, where α1 and α2 	= 0. We assume that μ̂ is given
by (1) and that μ̂ vanishes on Λ = E1 ∪E2. It then follows from (ii) in Lemma 3 that
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g(u − 1/2α1) and g(u − 1/2α2) are odd. Lemma 2 then implies that g = 0 almost
everywhere.

We then treat the case where L1 is the y-axis and L2 is the line y = αx with
α 	= 0. Assuming that μ̂ vanishes on Λ we conclude from (i) and (ii) in Lemma 3 that
g and g(u − 1/2α) are odd. We then invoke Lemma 2 to conclude that g = 0 almost
everywhere.

It remains to study the case where L1 and L2 are parallel lines. First suppose that
these lines are parallel to the y-axis. We may assume that L1 is the line x = 0 and
L2 the line x = x0 where x0 	= 0. We also assume that μ̂ is given by (1) and that μ̂

vanishes on Λ = E1 ∪ E2. It follows from (i) in Lemma 3 that the functions g and
e−ix0t g(t) are odd. Hence

g(−t) = −g(t) and eix0t g(−t) = −e−ix0t g(t).

We conclude that

−eix0t g(t) = −e−ix0t g(t)

and

ei2x0t g(t) = g(t).

We obtain (
ei2x0t − 1

)
g(t) = 0

for almost every t . It is clear that ei2x0t = 1 only for t = πn/x0 where n is an integer.
We conclude that g = 0 almost everywhere.

We shall finally study the case where L1 and L2 are two parallel lines which
are not parallel to the coordinate axes. We may assume that L1 is the line y = αx

and L2 the line y = αx + b where α 	= 0 and b 	= 0. We assume again that μ̂ is
given by (1) and that μ̂ vanishes on Λ. According to (ii) in Lemma 3 it follows that
g(u−1/2α) is odd. Setting h(t) = e−ibt2

g(t) we also conclude from (iii) in Lemma 3
that h(u − 1/2α) is odd. Setting γ = 1/2α we then have g(−u − γ ) = −g(u − γ )

and h(−u − γ ) = −h(u − γ ) for almost every u.
The above equality for h can be written

e−ib(u+γ )2
g(−u − γ ) = −e−ib(u−γ )2

g(u − γ ).

Using the fact that g(u − γ ) is odd we obtain

−e−ib(u+γ )2
g(u − γ ) = −e−ib(u−γ )2

g(u − γ )

and

eib(u−γ )2−ib(u+γ )2
g(u − γ ) = g(u − γ ).

Hence (
eib(u−γ )2−ib(u+γ )2 − 1

)
g(u − γ ) = 0
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and (
e−ib4uγ − 1

)
g(u − γ ) = 0.

It is clear that e−ib4uγ = 1 only for u = 2πn/4bγ , where n is an integer, and we
conclude that g = 0 almost everywhere. The proof of the theorem is complete. �
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