Heisenberg Uniqueness Pairs for the Parabola

Per Sjölin

Received: 31 January 2012 / Revised: 25 September 2012 / Published online: 25 January 2013 © Springer Science+Business Media New York 2013

Abstract Let Γ denote the parabola $y = x^2$ in the plane. For some simple sets Λ in the plane we study the question whether (Γ, Λ) is a Heisenberg uniqueness pair. For example we shall consider the cases where Λ is a straight line or a union of two straight lines.

Keywords Fourier transforms · Heisenberg uniqueness pairs

Mathematics Subject Classification 42B10

1 Introduction

Let μ denote a finite complex-valued Borel measure in \mathbb{R}^2 . The Fourier transform of μ is defined by

$$\hat{\mu}(x, y) = \int_{\mathbb{R}^2} e^{-i(x\xi + y\eta)} d\mu(\xi, \eta) \quad \text{for } (x, y) \in \mathbb{R}^2.$$

Let Γ denote the parabola $y = x^2$ in \mathbb{R}^2 . We assume that $\sup \mu \subset \Gamma$ and that μ is absolutely continuous with respect to the arc length measure on Γ . Also let Λ be a subset of \mathbb{R}^2 . Following Hedenmalm and Montes-Rodríguez [3] we say that (Γ, Λ) is a Heisenberg uniqueness pair (or only uniqueness pair) if $\hat{\mu}(x, y) = 0$ for $(x, y) \in \Lambda$ implies that μ is the zero measure.

The case where Γ is a hyperbola was discussed in [3], and Sjölin [5] and Lev [4] studied the case where Γ is a circle. For further results see also Canto-Martin, Hedenmalm, and Montes-Rodríguez [1].

P. Sjölin (🖂)

Communicated by Hans G. Feichtinger.

Department of Mathematics, Royal Institute of Technology, 100 44 Stockholm, Sweden e-mail: pers@math.kth.se

We shall here let Γ denote the parabola $y = x^2$.

If μ has the above properties it is clear that there exists a measurable function f on $\mathbb R$ such that

$$\int_{\mathbb{R}} \left| f(t) \right| \sqrt{1 + 4t^2} dt < \infty$$

and $\int_{\mathbb{R}^2} h d\mu = \int_{\mathbb{R}} h(t, t^2) f(t) \sqrt{1 + 4t^2} dt$ if *h* is continuous and bounded in \mathbb{R}^2 . Thus we have

$$\hat{\mu}(x, y) = \int_{\mathbb{R}} e^{-i(xt+yt^2)} f(t)\sqrt{1+4t^2} dt, \quad (x, y) \in \mathbb{R}^2.$$

We shall prove the following theorem, where Γ denotes the parabola $y = x^2$.

Theorem 1

- (i) Let $\Lambda = L$ where L is a straight line. Then (Γ, Λ) is a uniqueness pair if and only if L is parallel to the x-axis.
- (ii) Let $\Lambda = L_1 \cup L_2$, where L_1 and L_2 are different straight lines. Then (Γ, Λ) is a uniqueness pair.
- (iii) Assume that L_1 and L_2 are different straight lines, which are not parallel to the x-axis. Also assume that $E_1 \subset L_1$, and $E_2 \subset L_2$ and that E_1 and E_2 have positive one-dimensional Lebesgue measure. Set $\Lambda = E_1 \cup E_2$. Then (Γ, Λ) is a uniqueness pair.

Remark When we talk about the one-dimensional Lebesgue measure of a subset *E* of a straight line *L* in the plane, we identify *L* with \mathbb{R} .

We also remark that Heisenberg uniqueness pairs are somewhat related to the notion of annihilating pairs (see Havin and Jöricke [2]). To give the definition of this concept we let *S* and Σ be subsets of \mathbb{R} . Following [2] we say that the pair (*S*, Σ) is mutually annihilating if $\psi \in L^2(\mathbb{R})$, supp $\psi \subset S$, supp $\hat{\psi} \subset \Sigma$ implies that $\psi = 0$. Here $\hat{\psi}$ denotes the Fourier transform of ψ . We refer to [2] for results on annihilating pairs.

2 Lemmas and Proofs

We let the function f be defined as in the Introduction and set

$$g(t) = f(t)\sqrt{1+4t^2}, \quad t \in \mathbb{R}.$$

Then $g \in L^1(\mathbb{R})$ and

$$\hat{\mu}(x, y) = \int_{\mathbb{R}} e^{-i(xt + yt^2)} g(t) dt, \quad (x, y) \in \mathbb{R}^2.$$
(1)

We also set $Tg(x, y) = \hat{\mu}(x, y)$ so that *T* is a mapping from $L^1(\mathbb{R})$ to $C(\mathbb{R}^2)$. It is then easy to see that if we set U(x, y) = Tg(x, -y), then *U* satisfies the Schrödinger equation

$$i\frac{\partial U}{\partial y} = \frac{\partial^2 U}{\partial x^2}.$$

We shall use the following theorem, which can be found in Havin and Jöricke [2], p. 36.

Theorem A Assume that $\varphi \in L^1(\mathbb{R})$ and that $\operatorname{supp} \varphi$ is a subset of $[0, \infty)$. Also assume that

$$\int_{\mathbb{R}} \log |\hat{\varphi}(x)| \frac{dx}{1+x^2} = -\infty.$$

Then $\varphi = 0$ almost everywhere.

Here $\hat{\varphi}$ denotes the Fourier transform of φ .

We shall then state and prove three lemmas. We let |E| denote Lebesgue measure of a set E.

Lemma 1 Assume that $g \in L^1(\mathbb{R})$ and that $E \subset \mathbb{R}$ with |E| > 0. Then

$$\int_{\mathbb{R}} e^{-iyt^2} g(t)dt = 0 \quad \text{for every } y \in E$$
(2)

if and only if g is an odd function.

Proof It is obvious that (2) holds if g is odd. We have to prove the converse and assume that (2) holds. Denoting the integral in (2) by I and performing a change of variable we obtain

$$I = \int_{-\infty}^{0} e^{-iyt^2} g(t)dt + \int_{0}^{\infty} e^{-iyt^2} g(t)dt$$
$$= \int_{0}^{\infty} e^{-iyt^2} (g(t) + g(-t))dt$$
$$= \int_{0}^{\infty} e^{-iyt^2} F(t)dt,$$

where F(t) = g(t) + g(-t) for $t \ge 0$. It is clear that $F \in L^1(0, \infty)$ and setting $u = t^2$ we obtain

$$I = \int_0^\infty e^{-iyu} F(\sqrt{u}) \frac{1}{2\sqrt{u}} du = 0 \quad \text{for } y \in E.$$

We have $F(\sqrt{u})/\sqrt{u} \in L^1(0,\infty)$ and we set $\varphi(u) = F(\sqrt{u})\frac{1}{2\sqrt{u}}$ for u > 0 and $\varphi(u) = 0$ for $u \le 0$. It follows that $\varphi \in L^1(\mathbb{R})$ and $I = \hat{\varphi}(y) = 0$ for $y \in E$. Since

|E| > 0 we conclude that

$$\int_{\mathbb{R}} \log \left| \hat{\varphi}(x) \right| \frac{dx}{1+x^2} = -\infty$$

and Theorem A implies that $\varphi = 0$ almost everywhere. Hence F(t) = 0 almost everywhere on $[0, \infty)$. It follows that g(-t) = -g(t) for almost every *t*, i.e. *g* is odd. \Box

Lemma 2 Let $g \in L^1(\mathbb{R})$ and let γ and δ denote different real numbers. Assume that $g(u - \gamma)$ and $g(u - \delta)$ are odd as functions of u. Then g = 0 almost everywhere.

Proof Using first the fact that $g(u - \gamma)$ is odd and then the fact that $g(u - \delta)$ is odd we obtain

$$g(u-\gamma) = -g(-u-\gamma) = -g((-u+\delta-\gamma)-\delta) = g(u-\delta+\gamma-\delta) = g(u+\gamma-2\delta)$$

for almost every *u*. Hence $g(u) = g(u + 2\gamma - 2\delta)$, that is *g* has period $2\gamma - 2\delta \neq 0$. Since $g \in L^1(\mathbb{R})$ it follows that g = 0 almost everywhere.

We shall need one more lemma.

Lemma 3 Assume that $g \in L^1(\mathbb{R})$ and that $\hat{\mu}$ is given by (1). Also assume that $E \subset \mathbb{R}$ and |E| > 0. Then the following holds.

- (i) Assume $x_0 \in \mathbb{R}$. Then $\hat{\mu}(x_0, y) = 0$ for $y \in E$ if and only if $e^{-ix_0t}g(t)$ is odd as a function of t.
- (ii) Assume $\alpha \in \mathbb{R}$ and $\alpha \neq 0$. Then $\hat{\mu}(x, \alpha x) = 0$ for $x \in E$ if and only if $g(u 1/2\alpha)$ is odd as a function of u.
- (iii) Assume that α and b are real numbers and $\alpha \neq 0$ and $b \neq 0$. Then $\hat{\mu}(x, \alpha x + b) = 0$ for $x \in E$ if and only if the function $h(t) = e^{-ibt^2}g(t)$ has the property that $h(u 1/2\alpha)$ is odd as a function of u.

Proof To prove (i) we invoke Lemma 1 and observe that

$$\hat{\mu}(x_0, y) = \int_{\mathbb{R}} e^{-iyt^2} e^{-ix_0t} g(t) dt = 0 \quad \text{for } y \in E$$

if and only if $e^{-ix_0t}g(t)$ is an odd function.

To obtain (ii) we write

$$\hat{\mu}(x,\alpha x) = \int_{\mathbb{R}} e^{-i(xt+\alpha xt^2)} g(t) dt = \int_{\mathbb{R}} e^{-ix(t+\alpha t^2)} g(t) dt.$$

However,

$$t + \alpha t^{2} = \alpha \left(t^{2} + \frac{1}{\alpha} t \right) = \alpha \left[\left(t + \frac{1}{2\alpha} \right)^{2} - \frac{1}{4\alpha^{2}} \right] = \alpha \left(t + \frac{1}{2\alpha} \right)^{2} - \frac{1}{4\alpha}$$

🔇 Birkhäuser

and hence

$$\hat{\mu}(x,\alpha x) = e^{ix/4\alpha} \int_{\mathbb{R}} e^{-ix\alpha(t+1/2\alpha)^2} g(t) dt.$$

Setting $u = t + 1/2\alpha$ we then obtain

$$\hat{\mu}(x,\alpha x) = e^{ix/4\alpha} \int_{\mathbb{R}} e^{-ix\alpha u^2} g(u-1/2\alpha) du$$

and (ii) follows from an application of Lemma 1.

It remains to prove (iii). We have

$$\hat{\mu}(x,\alpha x+b) = \int_{\mathbb{R}} e^{-i(xt+(\alpha x+b)t^2)}g(t)dt = \int_{\mathbb{R}} e^{-i(xt+\alpha xt^2)}e^{-ibt^2}g(t)dt$$
$$= \int_{\mathbb{R}} e^{-i(xt+\alpha xt^2)}h(t)dt,$$

where $h(t) = e^{-ibt^2}g(t)$, and (iii) follows from (ii). Thus Lemma 3 has been proved.

Before proving Theorem 1 we mention the well-known fact that if Λ is a subset of \mathbb{R}^2 and Λ_1 is a translate of Λ , then (Γ, Λ) is a uniqueness pair if and only if (Γ, Λ_1) is a uniqueness pair. This follows from elementary properties of the Fourier transform.

Finally we shall prove Theorem 1.

Proof of Theorem 1 We first prove (i) and assume that *L* is parallel to the *x*-axis. Using the above remark we may assume that *L* is the *x*-axis. We assume that $g \in L^1(\mathbb{R})$ and that

$$\hat{\mu}(x,0) = \int_{\mathbb{R}} e^{-ixt} g(t) dt = 0$$
 for every x.

Hence $\hat{g}(x) = 0$ everywhere and we conclude that g = 0 almost everywhere. It follows that (Γ, L) is a uniqueness pair.

We then assume that L is not parallel to the x-axis. It then follows directly from Lemma 3 that (Γ, L) is not a uniqueness pair.

For example, if *L* is also not parallel to the *y*-axis, we may assume that *L* is the line $y = \alpha x$ where $\alpha \neq 0$. Then take φ as a non-zero odd function in $L^1(\mathbb{R})$ and set $g(t) = \varphi(t + 1/2\alpha)$. It then follows from (ii) in Lemma 3 that $\hat{\mu} = Tg$ vanish on *L* and thus (Γ, L) is not a uniqueness pair.

Thus we have proved (i). We then observe that (ii) follows from (i) and (iii), and therefore it only remains to prove (iii). We suppose that L_1, L_2, E_1, E_2 and Λ have the properties in the statement of (iii) and shall prove that (Γ, Λ) is a uniqueness pair.

We first study the case where L_1 and L_2 intersect. Performing a translation we may assume that the point of intersection is the origin. First assume that L_1 and L_2 are the lines $y = \alpha_1 x$ and $y = \alpha_2 x$, where α_1 and $\alpha_2 \neq 0$. We assume that $\hat{\mu}$ is given by (1) and that $\hat{\mu}$ vanishes on $\Lambda = E_1 \cup E_2$. It then follows from (ii) in Lemma 3 that $g(u - 1/2\alpha_1)$ and $g(u - 1/2\alpha_2)$ are odd. Lemma 2 then implies that g = 0 almost everywhere.

We then treat the case where L_1 is the y-axis and L_2 is the line $y = \alpha x$ with $\alpha \neq 0$. Assuming that $\hat{\mu}$ vanishes on Λ we conclude from (i) and (ii) in Lemma 3 that g and $g(u - 1/2\alpha)$ are odd. We then invoke Lemma 2 to conclude that g = 0 almost everywhere.

It remains to study the case where L_1 and L_2 are parallel lines. First suppose that these lines are parallel to the *y*-axis. We may assume that L_1 is the line x = 0 and L_2 the line $x = x_0$ where $x_0 \neq 0$. We also assume that $\hat{\mu}$ is given by (1) and that $\hat{\mu}$ vanishes on $A = E_1 \cup E_2$. It follows from (i) in Lemma 3 that the functions *g* and $e^{-ix_0t}g(t)$ are odd. Hence

$$g(-t) = -g(t)$$
 and $e^{ix_0t}g(-t) = -e^{-ix_0t}g(t)$.

We conclude that

$$-e^{ix_0t}g(t) = -e^{-ix_0t}g(t)$$

and

$$e^{i2x_0t}g(t) = g(t).$$

We obtain

$$\left(e^{i2x_0t}-1\right)g(t)=0$$

for almost every *t*. It is clear that $e^{i2x_0t} = 1$ only for $t = \pi n/x_0$ where *n* is an integer. We conclude that g = 0 almost everywhere.

We shall finally study the case where L_1 and L_2 are two parallel lines which are not parallel to the coordinate axes. We may assume that L_1 is the line $y = \alpha x$ and L_2 the line $y = \alpha x + b$ where $\alpha \neq 0$ and $b \neq 0$. We assume again that $\hat{\mu}$ is given by (1) and that $\hat{\mu}$ vanishes on Λ . According to (ii) in Lemma 3 it follows that $g(u-1/2\alpha)$ is odd. Setting $h(t) = e^{-ibt^2}g(t)$ we also conclude from (iii) in Lemma 3 that $h(u - 1/2\alpha)$ is odd. Setting $\gamma = 1/2\alpha$ we then have $g(-u - \gamma) = -g(u - \gamma)$ and $h(-u - \gamma) = -h(u - \gamma)$ for almost every u.

The above equality for h can be written

$$e^{-ib(u+\gamma)^2}g(-u-\gamma) = -e^{-ib(u-\gamma)^2}g(u-\gamma).$$

Using the fact that $g(u - \gamma)$ is odd we obtain

$$-e^{-ib(u+\gamma)^2}g(u-\gamma) = -e^{-ib(u-\gamma)^2}g(u-\gamma)$$

and

$$e^{ib(u-\gamma)^2 - ib(u+\gamma)^2}g(u-\gamma) = g(u-\gamma).$$

Hence

$$\left(e^{ib(u-\gamma)^2 - ib(u+\gamma)^2} - 1\right)g(u-\gamma) = 0$$

and

$$\left(e^{-ib4u\gamma}-1\right)g(u-\gamma)=0.$$

It is clear that $e^{-ib4u\gamma} = 1$ only for $u = 2\pi n/4b\gamma$, where *n* is an integer, and we conclude that g = 0 almost everywhere. The proof of the theorem is complete.

References

- 1. Canto-Martin, F., Hedenmalm, H., Montes-Rodríguez, A.: Perron-Frobenius operators and the Klein-Gordon equation. J. Eur. Math. Soc. (to appear)
- 2. Havin, V., Jöricke, B.: The Uncertainty Principle in Harmonic Analysis. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3), vol. 28. Springer, Berlin (1994)
- 3. Hedenmalm, H., Montes-Rodríguez, A.: Heisenberg uniqueness pairs and the Klein-Gordon equation. Ann. Math. (2) **173**(3), 1507–1527 (2011)
- 4. Lev, N.: Uniqueness theorems for Fourier transforms. Bull. Sci. Math. 135(2), 134–140 (2011)
- Sjölin, P.: Heisenberg uniqueness pairs and a theorem of Beurling and Malliavin. Bull. Sci. Math. 135(2), 125–133 (2011)