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Abstract An explicit form is given for the reassigned Gabor spectrogram of an Her-
mite function of arbitrary order. It is shown that the energy concentration sharply
localizes outside the border of a clearance area limited by the “classical” circle where
the Gabor spectrogram attains its maximum value, with a perfect localization that can
only be achieved in the limit of infinite order.

Keywords Gabor transform · Hermite functions · Time-frequency analysis ·
Reassignment
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1 Motivation

1.1 Why Hermite functions?

Hermite functions form a family of orthonormal functions that are important and
useful in many respects. One can first mention that they are eigenfunctions of the
Fourier transform [7], thus generalizing the well-known relationship which holds for
the Gaussian function, the latter happening to be precisely the first Hermite func-
tion. As a consequence, Hermite functions are also naturally encountered in a va-
riety of “uncertainty” questions constraining a function and its Fourier transform.
They are in particular eigenfunctions of localization operators in the time-frequency
plane, with respect to either elliptic indicator functions in the Wigner representation
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[8, 9] or Gaussian-shaped weightings applied to Gabor transforms [6]. This makes
them particularly useful in the context of multitaper time-frequency analysis [3, 16].
From a more physical perspective, Hermite functions are stationary eigenstates of the
quantum harmonic oscillator [5], with phase-space diagrams that restrict to circles
p2 + q2 = C in the classical limit.

1.2 Why Reassigned Gabor Spectrograms?

This note is concerned with Hermite functions considered as functions of the time
variable, and its purpose is to investigate their localization properties in the time-
frequency plane. This will be done within the specific framework of Gabor spectro-
grams, because they are positive energy distributions with minimum spread [14]. This
will involve furthermore a reassignment step [10, 15] so as to increase localization.
It is known in fact [10] that reassignment allows for a perfect localization in the case
of unimodular linear chirps defined as

c(t) = ei(αt2+βt+γ ); (α,β, γ ∈ R), (1)

and one of the questions to be answered in this note—suggested by observations
reported, e.g., in [4], Chap. 1, Fig. 1.6—is to establish whether such a perfect local-
ization is attained for Hermite functions too (it will be shown in Sect. 3.3 that this is
true only in some asymptotical sense).

2 Hermite, Wigner and Gabor

We consider orthonormal Hermite functions defined as

hk(t) = Ck−1
1√
T

Hk−1(
√

2πt/T )e−π(t/T )2
, (2)

where

Hn(α) = (−1)neα2 dn

dαn
e−α2

, n = 0,1, . . . (3)

is the Hermite polynomial of degree n [1], Cn = 1/
√

2n−1/2n! and T > 0 is some
time scaling parameter.

If we define the Wigner distribution of a square-integrable function x(t) ∈ L2(R)

as

Wx(t,ω) =
∫ +∞

−∞
x

(
t + 1

2
τ

)
x

(
t − 1

2
τ

)
e−iωτ dτ, (4)

we know (see, e.g. [12] and references therein) that

Whk
(t,ω) = vk−1

(
(t/T )2 + (T ω/2π)2), (5)

where vk involves the Laguerre polynomial of order k. In the general case of an
arbitrary T , this expression exhibits an elliptic symmetry which reduces to a circular
one (in the sense that (5) only depends on t2 + ω2) for the specific choice T = √

2π .
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While most of the following results could be derived in the elliptic case, we will
restrict to the circular case from now on.

Turning to Gabor spectrograms (i.e., squared magnitudes of those short-time
Fourier transforms which are based on a Gaussian window, something which is also
sometimes referred to as Husimi functions [13]), we will therefore make the explicit
choice of the unit-energy Gaussian window

g(t) = π− 1
4 e− 1

2 t2
, (6)

which is itself “circular” in the sense that its Wigner distribution reads

Wg(t,ω) = 2 e−(t2+ω2). (7)

Given this window, we know that the associated Gabor spectrogram

S
(g)
hk

(t,ω) =
∣∣∣∣
∫ +∞

−∞
hk(s)g(s − t)e−iωsds

∣∣∣∣
2

= 1√
π

∣∣∣∣
∫ +∞

−∞
hk(s)e

− 1
2 (s−t)2

e−iωsds

∣∣∣∣
2

(8)

of hk(t) can be equivalently expressed as [9]

S
(g)
hk

(t,ω) = 1

π

∫ ∫ +∞

−∞
Whk

(s, ξ)e−[(s−t)2+(ξ−ω)2]dsdξ, (9)

and it readily follows from (5) and (7) that it enjoys a circular symmetry too. In order
to evaluate explicitly this quantity, it is therefore sufficient to compute

V (t) = S
(g)
hk

(t,0) = 1√
π

∣∣∣∣
∫ +∞

−∞
hk(s)e

− 1
2 (s−t)2

ds

∣∣∣∣
2

(10)

and to deduce from this section at ω = 0 the whole desired spectrogram as

S
(g)
hk

(t,ω) = V
(√

t2 + ω2
)
. (11)

Expressing V (t) (in the circular case where T = √
2π ) as

V (t) = 1

π
√

2π

∣∣∣∣Ck−1

∫ +∞

−∞
Hk−1(s)e

− 1
2 s2

e− 1
2 (s−t)2

ds

∣∣∣∣
2

, (12)

reorganizing the terms in the exponential and making use of the identity ([11],
Eq. 7.374.6) ∫ +∞

−∞
Hn(x)e−(x−y)2

dx = √
πyn2n, (13)

we end up with

V (t) = 1

2k−1(k − 1)! t
2(k−1)e− 1

2 t2
. (14)

It thus follows from (11) that we have

S
(g)
hk

(t,ω) = 1

2k−1(k − 1)!
(
t2 + ω2)k−1

e− 1
2 (t2+ω2) (15)
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and, therefore,

M
(g)
hk

(t,ω) = 1√
2k−1(k − 1)!

(
t2 + ω2) k−1

2 e− 1
4 (t2+ω2), (16)

with M
(g)
hk

(t,ω) the magnitude of the corresponding short-time Fourier (Gabor) trans-
form.

3 Reassignment

3.1 Principle

The starting point of reassignment is to re-express a spectrogram, usually defined as
the squared magnitude of a short-time Fourier transform, as the 2D smoothing of the
Wigner distribution of the signal by that of the window:

S(h)
x (t,ω) =

∫ ∫ +∞

−∞
Wx(s, ξ)Wh(s − t, ξ − ω)

dsdξ

2π
. (17)

This general result [9]—that echoes the special case (9) of the Gabor spectro-
gram which makes use of a Gaussian window—allows for a simple interpretation:
the value of a spectrogram at some given time-frequency point (t,ω) results from the
summing up of all local values of the Wigner distribution within a time-frequency
domain whose extension is controlled by the window. Unless such values would be
symmetrically distributed around it, the geometrical center of this domain has how-
ever no reason to be chosen as the locus where to assign the integrated local energy.
Indeed, a more meaningful location is the centroid (t̂(t,ω), ω̂(t,ω)) of the Wigner
distribution values within the domain, defined as

t̂ (t,ω) = 1

S
(h)
x (t,ω)

∫ ∫ +∞

−∞
s Wx(s, ξ)Wh(s − t, ξ − ω)

dsdξ

2π
; (18)

ω̂(t,ω) = 1

S
(h)
x (t,ω)

∫ ∫ +∞

−∞
ξ Wx(s, ξ)Wh(s − t, ξ − ω)

dsdξ

2π
. (19)

The purpose of reassignment is precisely to move each spectrogram value from
the point (t,ω) where it has been computed to such a centroid:

S(h)
x (t,ω) → Ŝ(h)

x (t,ω) =
∫ ∫ +∞

−∞
S(h)

x (s, ξ)δ
(
t − t̂ (s, ξ),ω − ω̂(s, ξ)

)dsdξ

2π
.

(20)

3.2 Explicit Form

In its original formulation [15], reassignment was computed from the phase informa-
tion contained in the complex-valued short-time Fourier transform with window h(t).
It has then been shown (see [10] and references therein) that a more efficient identi-
fication of the centroids coordinates could be achieved by a suitable combination of
two additional short-time Fourier transforms based on the companion windows t.h(t)



J Fourier Anal Appl (2013) 19:285–295 289

and dh(t)/dt [10]. More recently [2], a third possibility has been proposed for Gabor
spectrograms, which derives reassignment shifts from the magnitude of the Gabor
transform. This reads

t̂ (t,ω) = t + ∂

∂t
logM

(g)
hk

(t,ω); (21)

ω̂(t,ω) = ω + ∂

∂ω
logM

(g)
hk

(t,ω), (22)

leading, in the present case (16), to

t̂ (t,ω) = t

2
+ (k − 1)

t

t2 + ω2
; (23)

ω̂(t,ω) = ω

2
+ (k − 1)

ω

t2 + ω2
. (24)

Based on (15), it is easy to check that the Gabor spectrogram attains its maximum
value for coordinates (tm,ωm) such that

t2
m + ω2

m = 2(k − 1). (25)

For k = 1, this reduces to a single point—namely the origin (0,0) of the plane—
but, for k > 1, this corresponds to circles which happen to be fixed points of the
reassignment operator. For any point on concentric circles of the form

t2 + ω2 = 2ρ(k − 1), ρ > 0, (26)

we get

t̂2 + ω̂2 = (
t2
m + ω2

m

) (ρ + 1)2

4ρ
, (27)

evidencing the fact that reassigned values are themselves located on circles which are
concentric to the “classical” one given by (25), but do not identify to it as long as
ρ �= 1. Reassignment does not lead therefore to a perfect localization.

It is worth noticing that the factor K(ρ) = (ρ + 1)2/4ρ which appears in the
above expression (27) is such that K(1/ρ) = K(ρ), allowing to consider all spectro-
gram values to be reassigned by varying ρ from 1 to +∞. It furthermore satisfies
K(ρ) ≥ 1, with K(1) = 1. This means that, for a given order k, the reassigned values
all lie in the domain

D = {
(t,ω) | t2 + ω2 ≥ t2

m + ω2
m = 2(k − 1)

}
, (28)

i.e., outside a clearance area limited by the “classical” circle where the Gabor spec-
trogram attains its maximum value.

Going back to (24), we readily get

ω̂(t,ω)

t̂(t,ω)
= ω

t
, (29)

justifying that reassignment is operated radially in the time-frequency plane. Using
again the circular symmetry argument, reassigning the Gabor spectrogram amounts
therefore to evaluate
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Fig. 1 Solutions (31) of the reassignment equations for positive times. The dashed, full and dotted lines
correspond to the solutions referred to respectively as s1(t), s+(t) and s−(t) in the text, with the Hermite
function order increasing from 1 to 33 when going from left to right. The locus of fixed points for the
reassignment operators has been superimposed as the dashed-dotted line

Ŝ(h)
x (t,ω) =

∫ ∫ +∞

−∞
Sh

x (s, ξ)δ
(√

t2 + ω2 − t̂
(√

s2 + ξ2
))dsdξ

2π

=
∫ +∞

0
V (s) δ

(
r − t̂ (s)

)
s ds =: V̂ (r), (30)

with r = √
t2 + ω2 and V (t) as in (14).

In the present situation, the equation t̂ (s) = t has one solution s1(t) = 2t when
k = 1. When k > 1, it has two real-valued solutions s±(t), provided that t2 > 2(k−1).
Considering only the case where t ≥ 0, those solutions (which are displayed in Fig. 1)
read

s±(t) = t ±
√

t2 − 2(k − 1), (31)

thus leading to

V̂ (r) = V
(
s+(r)

)
s+(r) J+(r) + V

(
s−(r)

)
s−(r) J−(r), (32)

with

J±(s) =
∣∣∣∣ dt̂

ds

(
s±(s)

)∣∣∣∣
−1

= s2±(s)

|s2±(s) − 2(k − 1)| , (33)

whence the final result

Ŝ
(g)
hk

(t,ω) = 1

2k−1(k − 1)! V̂
(√

t2 + ω2
)
1D(t,ω). (34)
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Fig. 2 Wigner distribution,
spectrogram and reassigned
Gabor spectrogram of Hermite
function of order 2

It has to be remarked (cf. Fig. 1) that, except in the Gaussian case k = 1 for which
the unique solution s1(t) = 2t is such that (∂s/∂t)(0) = 2, Eq. (31) has its two distinct
solutions that both converge to the fixed point t = √

2(k − 1) with an infinite slope.
As a result, the summing up of the reassigned values accumulating on the border of
the domain D diverges. This will be studied further in the next section.

3.3 Asymptotics

The limit behaviour of the expression (34) when k > 1 can be evaluated in two ways.
Given a fixed order, we can first characterize more precisely the divergence of the
reassigned spectrogram in the vicinity of the critical circle t2 +ω2 = 2(k−1). Writing
t = √

2(k − 1) + θ , we get

V̂ (t) ∼ [2(k − 1)]k+ 1
2√

θ
e−(k−1)e−2

√
k−1

√
θ , θ → 0+. (35)

Combining this approximation with (34) and considering in a second step that
k → +∞, Stirling’s formula allows for some further simplification that ends up with

1

2k−1(k − 1)! V̂ (t) ∼
√

k − 1√
θ

e−2
√

k−1
√

θ , k → +∞. (36)

We see therefore that, for Hermite functions of growing order k, the width of
the decaying exponential involved in (36) goes to zero as k is increased while its
amplitude diverges to infinity, but in such a way that the overall integral of the right-
hand side of (36) is unity. This justifies that, asymptotically,

Ŝ
(g)
hk

(t,ω)
k→∞−→ δ

(
t2 + ω2 − 2(k − 1)

)
. (37)
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Fig. 3 Radial half-sections of the Gabor spectrogram (dashed line) and reassigned Gabor spectrogram
(full line) of Hermite function of order 2. Top: theory (with approximation (36) in dotted line); bottom:
from Fig. 2

Fig. 4 Wigner distribution,
spectrogram and reassigned
Gabor spectrogram of Hermite
function of order 7

This asymptotic regime, where k 	 1, corresponds to a sharper and sharper en-
ergy localization on circles whose area A(k) = 2π(k − 1) becomes larger and larger
as compared to the minimum (Heisenberg) area A(1) = 2, in accordance with the
interpretation of such circles as “classical” trajectories in phase-space.
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Fig. 5 Radial half-sections of the Gabor spectrogram (dashed line) and reassigned Gabor spectrogram
(full line) of Hermite function of order 7. Top: theory (with approximation (36) in dotted line); bottom:
from Fig. 4

Fig. 6 Wigner distribution,
spectrogram and reassigned
Gabor spectrogram of Hermite
function of order 18

3.4 Examples

Three examples supporting those computations are given in Figs. 2 to 7 (all time-
frequency distributions are computed on a 256 × 256 grid).



294 J Fourier Anal Appl (2013) 19:285–295

Fig. 7 Radial half-sections of the Gabor spectrogram (dashed line) and reassigned Gabor spectrogram
(full line) of Hermite function of order 18. Top: theory (with approximation (36) in dotted line); bottom:
from Fig. 6

4 Concluding Remarks

This note has made precise the way reassigned Gabor spectrograms localize the en-
ergy of Hermite functions in the time-frequency plane. It has been shown that a sharp
localization is achieved on circles, tending to be perfect in the limit of infinite order.
This asymptotic result can be viewed as a complement to the one stating that uni-
modular linear chirps have perfectly localized reassigned spectrograms. This how-
ever leaves open the question of whether those two types of waveforms are the only
ones to guarantee such a perfect (asymptotic) localization.
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