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Abstract We find a formula that relates the Fourier transform of a radial function
on Rn with the Fourier transform of the same function defined on Rn+2. This formula
enables one to explicitly calculate the Fourier transform of any radial function f (r)

in any dimension, provided one knows the Fourier transform of the one-dimensional
function t �→ f (|t |) and the two-dimensional function (x1, x2) �→ f (|(x1, x2)|). We
prove analogous results for radial tempered distributions.
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1 Introduction

The Fourier transform of a function Φ in L1(Rn) is defined by the convergent integral

Fn(Φ)(ξ) =
∫

Rn

Φ(x)e−2πix·ξ dx .

If the function Φ is radial, i.e., Φ(x) = ϕ(|x|) for some function ϕ on the line, then
its Fourier transform is also radial and we use the notation

Fn(Φ)(ξ) = Fn(ϕ)(r),

where r = |ξ |. In this article, we will show that there is a relationship between
Fn(ϕ)(r) and Fn+2(ϕ)(r) as functions of the positive real variable r .

We have the following result.

Theorem 1.1 Let n ≥ 1. Suppose that f is a function on the real line such that the
functions f (| · |) are in L1(Rn+2) and also in L1(Rn). Then we have

Fn+2(f )(r) = − 1

2π

1

r

d

dr
Fn(f )(r), r > 0. (1)

Moreover, the following formula is valid for all even Schwartz functions ϕ on the real
line:

Fn+2(ϕ)(r) = 1

2π

1

r2
Fn

(
s−n+1 d

ds

(
ϕ(s)sn

))
(r), r > 0. (2)

Using the fact that the Fourier transform is a unitary operator on L2(Rn) we may
extend (1) to the case where the functions f (| · |) are in L2(Rn+2) and in L2(Rn).
Moreover, in Sect. 4 we extend (1) to tempered distributions. Applications are given
in the last section.

Corollary 1.2 Let f (r) be a function on [0,∞) and k some positive integer such the
functions x → f (|x|) are absolutely integrable over Rn for all n with 1 ≤ n ≤ 2k+2.
Then we have

F2k+1(f )(ρ) = 1

(2π)k

k∑
�=1

(−1)�(2k − � − 1)!
2k−�(k − �)!(� − 1)!

1

ρ2k−�

(
d

dρ

)�

F1(f )(ρ)

and

F2k+2(f )(ρ) = 1

(2π)k

k∑
�=1

(−1)�(2k − � − 1)!
2k−�(k − �)!(� − 1)!

1

ρ2k−�

(
d

dρ

)�

F2(f )(ρ).

The corollary can be obtained using (1) by induction on k. The simple details are
omitted. Again, absolute integrability can be replaced by square integrability.
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2 The Proof

The Fourier transform of an integrable radial function f (|x|) on Rn is given by

Fn(f )
(|ξ |) = 2π

∫ ∞

0
f (s)

(
s

|ξ |
) n

2 −1

Jn
2 −1

(
2πs|ξ |) s ds

= (2π)
n
2

∫ ∞

0
f (s)J̃ n

2 −1
(
2πs|ξ |) sn−1 ds,

where J̃ν(x) = x−νJν(x), and Jν is the classical Bessel function of order ν. This
formula can be found in many textbooks, and we refer to, e.g., [3, Sect. B.5] or [10,
Sect. IV.1] for a proof. Moreover, this formula makes sense for all integers n ≥ 1,
even n = 1, in which case

J−1/2(t) =
√

2

π

cos t√
t

.

Let us set

H n
2 −1(f )(r) = (2π)

n
2

∫ ∞

0
f (s)J̃ n

2 −1(2πsr) sn−1 ds.

Then we make use of B.2.(1) in [3], i.e., the identity

d

dr
J̃ν(r) = −rJ̃ν+1(r), (3)

which is also valid when ν = −1/2, since

J1/2(t) =
√

2

π

sin t√
t

.

In view of (3), it is straightforward to verify that

−1

r

d

dr
H n

2 −1(f )(r) = 2π H n
2
(f )(r) = 2π H n+2

2 −1(f )(r),

provided f is such that interchanging differentiation with the integral defining H n
2 −1

is permissible. For this to happen, we need to have that
∫ ∞

0

∣∣f (s)
∣∣
∣∣∣∣ d

dr

(
J̃ n

2 −1(rs)
)∣∣∣∣sn−1 ds < ∞

and thus it will be sufficient to have
∫ ∞

0

∣∣f (s)
∣∣rs2

∣∣J̃ n
2
(rs)

∣∣sn−1 ds ≤ c

∫ ∞

0

∣∣f (s)
∣∣ rs2

(1 + rs)
n+1

2

sn−1ds < ∞ (4)

since |J̃ n
2
(s)| ≤ c(1 + s)−n/2−1/2. But since f (| · |) is in L1(Rn+2) we have

∫ 1/r

0

∣∣f (s)
∣∣sn+1 ds +

∫ ∞

1/r

∣∣f (s)
∣∣s n+1

2 ds < ∞ (5)
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and this certainly implies (4) for all r > 0. We conclude (1) whenever (5) holds. We
note that the appearance of condition (5) is natural as indicated in [8] (Lemma 25.1).

To prove (2) we argue as follows. We have

H n
2 −1

(
r−n+1 d

dr

(
ϕ(r)rn

))
(r) = (2π)

n
2

∫ ∞

0

d

ds

(
ϕ(s)sn

)
J̃ n

2 −1(2πsr) ds

and integrating by parts the preceding expression becomes

(2π)
n
2 +2

∫ ∞

0
ϕ(s)snsr2J̃ n+2

2 −1(2πsr) ds

which is equal to 2πr2 H n+2
2 −1(ϕ)(r). This proves (2).

Remark 2.1 Note that we have

Hν(f )(r) = 2π

rν
Hν

(
f (s)sν

)
(2πr),

where

Hν(f )(r) =
∫ ∞

0
f (s)Jν(rs)s ds, ν ≥ −1

2
,

is the Hankel transform. This of course ties in with the fact that the Hankel transform
also arises naturally as the spectral transformation associated with the radial part of
the Laplacian −Δ; we refer to [4, Sect. 5] and the references therein for further infor-
mation. Moreover, note that [6] contains the associated recursion from Theorem 1.1
for the Hankel transform, but only for even Schwartz functions. This recursion was
rediscovered in connection with the radial Fourier transform in [9] for the case of
Schwartz functions. See also [5] for related results.

A transference theorem for radial multipliers which exploits the connection be-
tween the Fourier transform of radial functions on Rn and Rn+2 was obtained in [1].
This multiplier theorem is based on an identity dual to (3).

3 Radial Distributions

We denote by S(Rn) the space of Schwartz functions on Rn and by S ′(Rn) the space
of tempered distributions on Rn. A Schwartz function is called radial if for all orthog-
onal transformations A ∈ O(n) (that is, for all rotations on Rn) we have

ϕ = ϕ ◦ A.

We denote the set of all radial Schwartz functions by Srad(Rn). For further back-
ground on radial distributions we refer to Treves [13, Lect. 5]. Observe that in the
one-dimensional case the radial Schwartz functions are precisely the even Schwartz
functions, that is:

Srad(R) = Seven(R) = {
ϕ ∈ S(R) : ϕ(x) = ϕ(−x)

}
.
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Similarly, a distribution u ∈ S ′(Rn) is called radial if for all orthogonal transforma-
tions A ∈ O(n) we have

u = u ◦ A.

This means that

〈u,ϕ〉 = 〈u,ϕ ◦ A〉
for all Schwartz functions ϕ on Rn. We denote by S ′

rad(R
n) the space of all radial

tempered distributions on Rn. We also denote by Sn−1 the (n − 1)-dimensional unit
sphere on Rn and by ωn−1 its surface area.

Given a general, non necessarily radial, Schwartz function there is a natural ho-
momorphism

S
(
Rn

) → Srad(R), ϕ(x) �→ ϕo(r) = 1

ωn−1

∫
Sn−1

ϕ(rθ) dθ

with the understanding that when n = 1, then ϕo(x) = 1
2 (ϕ(x)+ϕ(−x)). Conversely,

given an even Schwartz function on R we can define a corresponding radial Schwartz
function via

Srad(R) → Srad
(
Rn

)
, ϕ(r) �→ ϕO(x) = ϕ

(|x|).
The map ϕ �→ ϕO is a homomorphism; the proof of this fact is omitted since a
stronger statement is proved at the end of this section. Both facts require the fol-
lowing lemma:

Lemma 3.1 Suppose that f is a smooth even function on R. Then there is a smooth
function g on the real line such that

f (x) = g
(
x2)

for all x ∈ R. Moreover, one has for t ≥ 0
∣∣g(k)(t)

∣∣ ≤ C(k) sup
0≤s≤√

t

∣∣f (2k)(s)
∣∣. (6)

Proof By Whitney’s theorem [14], there is a smooth function g on the real line such
that

f (t) = g
(
t2)

for all real t .
To see the last assertion we use the following representation of the remainder in

Taylor’s theorem:

g(k)(t2)

k! = (2t)−2k+1k

(
2k

k

)∫ t

0

(
t2 − s2)k−1 f (2k)(s)

(2k)! ds

= 2−2kk

(
2k

k

)∫ 1

0

(
1 − s2)k−1 f (2k)(st)

(2k)! ds
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from which one easily derives (6). This yields in particular that

g(k)(0)

k! = f (2k)(0)

(2k)!
since

2−2kk

(
2k

k

)∫ 1

0

(
1 − s2)k−1

ds = 2−2kk

(
2k

k

)
Γ (k)Γ (1/2)

Γ (k + 1/2)
= 1.

�

The composition ϕ �→ (ϕo)O = ϕrad gives rise to a homomorphism from
S(Rn) → Srad(Rn) which reduces to the identity map on radial Schwarz functions.
In particular, the map ϕ �→ ϕo defines a one-to-one correspondence between radial
Schwartz functions on Rn and even Schwartz functions on the real line. Moreover, ϕ

is radial if and only if ϕ = ϕrad .

Proposition 3.2 For u ∈ S ′
rad(R

n) and ϕ ∈ S(Rn) we have

〈u,ϕ〉 = 〈
u,ϕrad〉.

Proof By a simple change of variables the formula holds for any u which is a poly-
nomially bounded locally integrable function. Next we fix a tempered distribution
u on Rn and we consider a radial Schwartz function ψ with integral 1 and we set
ψε(x) = ε−nψ(x/ε). Then we notice that the convolution of ψε ∗u converges to u in
S ′(Rn) as ε → 0. Hence, since the claim holds if u is replaced by ψε ∗ u by the first
observation, it remains true in the limit ε → 0. �

In particular, note that a radial distribution is uniquely determined by its action
on radial Schwartz functions. Furthermore, given a distribution u ∈ S ′(Rn) we can
define a radial distribution urad ∈ S ′

rad(R
n) via

〈
urad, ϕ

〉 := 〈
u,ϕrad〉.

Moreover, u is radial if and only if u = urad .
For n ∈ Z+ we denote by Rn = rn−1 Seven(R) the space of functions of the form

ψ(r)rn−1, where ψ is an even Schwartz function on the line. This space inherits the
topology of S(R) and its dual space is denoted by R′

n. Two distributions w1,w2 ∈
S ′(R) are equal in the space R′

n if for all even Schwartz functions ψ on the line we
have: 〈

w1, r
n−1ψ(r)

〉 = 〈
w2, r

n−1ψ(r)
〉
.

Note that in dimension n ≥ 2 we have that all distributions of order n − 2 supported
at the origin equal the zero distribution in the space R′

n. Thus two radial distributions
w1 and w2 are equal in R′

n whenever w1 − w2 is a sum of derivatives of the Dirac
mass at the origin of order at most n − 2.
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One may build radial distributions on Rn starting from distributions in R′
n. Indeed,

given u� in R′
n and ϕ in S(Rn) we define a radial distribution u by setting

〈u,ϕ〉 := ωn−1

2

〈
u�, ϕo(r)rn−1〉.

The converse is the content of the following proposition.

Proposition 3.3 The map Rn → Srad(Rn), ψ(r)rn−1 �→ ψO(x) is a homeomor-
phism and hence for every radial distribution u we can define u� in R′

n via

〈
u�,ψ(r)rn−1〉 := 2

ωn−1

〈
u,ψO

〉
.

Proof It suffices to show the first claim. To this end we will show that for all multi-
indices α and β we have

sup
x∈Rn

∣∣xα∂β
x

(
ψ

(|x|))∣∣ ≤
∑

0≤�,m≤4(|β|+|α|+n)

sup
r>0

∣∣∣∣rm

(
d

dr

)�(
rn−1ψ(r)

)∣∣∣∣.

First we consider the case |x| ≤ 1. Setting r = |x| ≤ 1 we have

∣∣xα∂β
x

(
ψ

(|x|))∣∣ ≤ Cβ |x||α|
|β|∑
k=0

|x|k∣∣g(k)
(|x|2)∣∣ = Cβ

|β|∑
k=0

∣∣rk+|α|g(k)
(
r2)∣∣

≤ Cβ

|β|∑
k=0

∣∣g(k)
(
r2)∣∣ ≤ Cβ

|β|∑
k=0

C(k) sup
0<s<r

∣∣ψ(2k)(s)
∣∣,

using Lemma 3.1 with ψ(t) = g(t2).
We will make use of the inequality

∣∣ψ(s)
∣∣ ≤ sup

0<t<s

∣∣∣∣
(

d

dt

)M(
tMψ(t)

)
(s)

∣∣∣∣ (7)

which follows by applying the fundamental theorem of calculus M times and of the
identity:

sM dmψ

dsm
(s) =

m∑
�=0

(−1)��!
(

m

�

)(
M

�

)(
d

ds

)m−�(
sM−�ψ(s)

)
(8)

which is valid for M ≥ m and is easily proved by induction.
Applying (7) to ψ(2k)(s) we obtain

∣∣ψ(2k)(s)
∣∣ ≤ sup

0<t<s

∣∣∣∣
(

d

dt

)M(
tMψ(2k)(t)

)
(s)

∣∣∣∣ (9)
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and using (8) for sMψ(2k)(s) with M = 2|β| + n − 1 and m = 2k we deduce that
|ψ(2k)(s)| is pointwise bounded by a sum of derivatives of terms sn−1ψ(s) multi-
plied by powers of s. It follows that sups>0 |ψ(2k)(s)| is controlled by a finite sum of
Schwartz seminorms of the function sn−1ψ(s).

The case |x| ≥ 1 is easier since when |β| �= 0

∣∣∂β
x

(
ψ

(|x|))∣∣ ≤
|β|∑
j=1

∣∣ψ(j)
(|x|)∣∣ Cj,β

|x||β|−j
,

and taking M = max(|α|, |β| + n − 1) we have

sup
|x|≥1

∣∣xα∂β
x

(
ψ

(|x|))∣∣ ≤ Cβ

|β|∑
j=1

sup
s≥1

{
sM

∣∣ψ(j)(s)
∣∣}, (10)

which is certainly controlled by a finite sum of Schwartz seminorms of sn−1ψ(s) in
view of (8). �

Note that if u is given by a function f (x), then u� is given by the function f o(x).
We also remark that the map 1

r
d
dr

is a homomorphism from R′
n to R′

n+1 defined as

the dual map of − d
dr

1
r
.

A related approach defining u� for a given distribution u supported in Rn \ {0}
can be found in [11]. Our approach does not impose restrictions on the support of the
distribution.

4 The Extension to Tempered Distributions

Let u be a radial distribution on Rk and let Fk(u) be the k-dimensional Fourier trans-
form of u.

Theorem 4.1 Given an even tempered distribution v0 on the real line, define radial
distributions vn on Rn and vn+2 on Rn+2 via the identities

〈vn,ϕ〉 =
〈
v0,

1

2
ωn−1r

n−1ϕo

〉
(11)

for all radial Schwartz functions ϕ(x) = ϕo(|x|) on Rn and

〈vn+2, ϕ〉 =
〈
v0,

1

2
ωn+1r

n+1ϕo

〉

for all radial Schwartz functions ϕ(x) = ϕo(|x|) on Rn+2.
Let un = Fn(vn) and un+2 = Fn+2(vn+2). Then the identity

− 1

2πr

d

dr
un� = un+2� (12)

holds on R′
n+2.



J Fourier Anal Appl (2013) 19:167–179 175

Proof We denote by 〈·, ·〉n the action of the distribution on a function in dimension n.
Let ψ(r) be an even Schwartz function on the real line. Then we need to show that

〈
− 1

2πr

d

dr
un�,ωn+1r

n+1ψ(r)

〉
1
= 〈

un+2� ,ωn+1r
n+1ψ(r)

〉
1. (13)

This is equivalent to showing that

1

2π

〈
un�,ωn+1

(
rnψ(r)

)′〉
1 = 〈

un+2� ,ωn+1r
n+1ψ(r)

〉
1. (14)

We introduce the even Schwartz function η(r) = r−n+1(rnψ(r))′ = nψ(r) + rψ ′(r)
on the real line and functions ηO on Rn and ψO on Rn+2 by setting

ψO(x) = ψ
(|x|), ηO(y) = η

(|y|)

for y ∈ Rn and x ∈ Rn+2. Then (14) is equivalent to

1

2π

ωn+1

ωn−1

〈
un�,ωn−1r

n−1η(r)
〉
1 = 〈

un+2� ,ωn+1r
n+1ψ(r)

〉
1 (15)

which is in turn equivalent to

1

2π

ωn+1

ωn−1

〈
Fn(vn), η

O
〉
n

= 〈
Fn+2(vn+2),ψ

O
〉
n+2 (16)

and also to

1

2π

ωn+1

ωn−1

〈
vn,Fn

(
ηO

)〉
n

= 〈
vn+2,Fn+2

(
ψO

)〉
n+2. (17)

We now switch to dimension one by writing (17) equivalently as

1

2π

ωn+1

ωn−1

〈
v0,ωn−1r

n−1 Fn(η)(r)
〉
1 = 〈

v0,ωn+1r
n+1 Fn+2(ψ)(r)

〉
1. (18)

But this identity holds if

1

2π
Fn(η)(r) = r2 Fn+2(ψ)(r),

which is valid as a restatement of (2); recall that η(r) = r−n+1 d
dr

(rnψ(r)). This
proves (13). �

It is straightforward to check that for polynomially bounded smooth functions
all operations coincide with the usual ones. We end this section with a few more
illustrative examples. Let δn be the Dirac mass on Rn.
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Examples

(a) Let vn = δn. One can see that

v0 = 2(−1)n−1

ωn−1(n − 1)!
(

d

dr

)(n−1)

(δ1)

satisfies (11). Acting v0 on rn+1ϕo(r) yields that vn+2 = 0 and thus un+2� = 0.
Also un� = 1; so both sides of (12) are equal to zero.

(b) Let vn+2 = δn+2. Then

v0 = 2(−1)n+1

ωn+1(n + 1)

(
d

dr

)(n+1)

(δ1).

Let � = ∂2
1 + · · · + ∂2

n be the Laplacian. We claim that the distribution

vn = ωn−1

ωn+1

1

n
Δ(δn) (19)

satisfies (11). Then un+2� = 1 and also un� = −r2(2π)2ωn−1/(2nωn+1). Thus (12) is
valid since 2πωn−1 = nωn+1.

It remains to prove that the distribution vn in (19) satisfies (11). For ϕ(x) = ϕo(|x|)
in S(Rn) we have

〈vn,ϕ〉 = 〈
v0,ωn−1r

n−1ϕo(r)
〉 = ωn−1

ωn+1

2

(n + 1)!
〈
δ1,

(
rn−1ϕo(r)

)(n−1)〉
(20)

and one notices that the (n − 1)st derivative of rn−1ϕo(r) evaluated at zero is equal
to 1

2 (n + 1)!(ϕo)′′(0). To compute the value of this derivative we use Lemma 3.1
to write ϕ(x) = ϕo(|x|) = g(|x|2) where g′(0) = 1

2 (ϕo)′′(0). It follows that g′(0) =
1

2n
�(ϕ)(0). Combining these observations yields that the expression in (20) is equal

to

ωn−1

ωn+1

1

n
�(ϕ)(0) =

〈
ωn−1

ωn+1

1

n
�(δn),ϕ

〉
,

which proves the claim.

Remark 4.2 As pointed out in Remark 2.1, the action of the Fourier transform on the
associated function on the reals ϕo is given by the Hankel transform. In particular,
the results in this section also give a natural extension of the Hankel transform (for
half-integer order) to distributions. Of course this coincides with the usual approach,
see [6, 15, 16] and the references therein. To this end observe that the space F used
in [6] is precisely the set of functions on [0,∞) which extend to an even Schwartz
function on R.
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5 Applications

We begin with a simple example. In dimension one we have that the Fourier transform
of sech(π |x|) is sech(π |ξ |). It follows from (1) that in dimension three we have

F3
(
sech

(
π |x|))(ξ) = 1

2|ξ | sech
(
π |ξ |) tanh

(
π |ξ |).

since

d

dr

2

eπr + e−πr
= −2π

eπr − e−πr

(eπr + e−πr)2
= −2π

1

2
sech(πr) tanh(πr).

Continuing this process, one can explicitly calculate the Fourier transform of
sech(π |x|) in all odd dimensions.

More sophisticated applications of our formulas appear in computations of func-
tions of the Laplacian −Δ, which arise in numerous applications. For example, in
quantum mechanics the Laplacian −Δ arises as the free Schrödinger operator (cf.,
e.g., [7, 12]) and functions f (−Δ) are defined via the spectral theorem by

f (−Δ)ϕ = K ∗ ϕ, ϕ ∈ S
(
Rn

)
,

where K is the tempered distribution given by the inverse Fourier transform of the
radial function f (4π2|ξ |2), which is assumed polynomially bounded. Knowledge of
the inverse Fourier transform of f (4π2|ξ |2), for ξ ∈ R and ξ ∈ R2, yields explicit
formulas for the kernel K of f (−Δ) in all dimensions.

An important application is the explicit calculation of the n-dimensional kernel
Gn(x) for the resolvent associated with the function f (r) = (r −z)−1, z ∈ C\[0,∞).
In the one-dimensional case, an easy computation shows that

G1(x) = 1

2
√−z

e−√−z|x|.

Hence, by the L2 version of Theorem 1.1 (cf. the discussion right after Theorem 1.1)
the three-dimensional kernel is given by

G3(x) = − 1

2πr

d

dr
G1(r)

∣∣∣∣
r=|x|

= 1

4π |x|e−√−z|x|.

The computation of G5(x),G7(x), . . . requires Theorem 4.1 since the assumptions
of Theorem 1.1 are no longer satisfied. For instance, Theorem 4.1 gives

G5(x) = 1 + |x|√−z

8π2|x|3 e−√−z|x|.

Another interesting situation where our theorem is useful are the spectral pro-
jections associated with the function f (r) = χ[0,E](r), E > 0. Again in the one-
dimensional case the kernel for the resolvent can be easily computed and found to
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be

P1(x) = sin(x
√

E)

πx
.

Thus by Theorem 1.1 the three-dimensional kernel is given by

P3(x) = − 1

2πr

d

dr
P1(r)

∣∣∣∣
r=|x|

= sin(|x|√E) − |x|√E cos(|x|√E)

2π2|x|3 .

Finally, the Fourier transform is a crucial tool in solving constant coefficient linear
partial differential equations (cf., e.g., [2]). Using the above trick one can of course
derive the fundamental solution for the heat (or Schrödinger) equation in three dimen-
sions from the one-dimensional one. However, since the three-dimensional case is no
more difficult than the one-dimensional case we rather turn to the Cauchy problem
for the wave equation

utt − Δu = 0, u(0, x) = ψ(x), ut (0, x) = ϕ(x),

in Rn, whose solution is given by

u(t, x) = cos(t
√−Δ)ψ(x) + sin(t

√−Δ)√−Δ
ϕ(x).

Since the first term can be obtained by differentiating the second (with respect to t)
it suffices to look only at the second and assume ψ = 0. Moreover, since the Fourier
transform of f (x) = sin(aπx)

aπx
is F1(f )(ξ) = |a|−1χ[−1/2,1/2](ξ/a), we obtain

u(t, x) =
∫

R

1

2
χ[−t,t](x − y)ϕ(y) dy,

which is of course just d’Alembert’s formula. In order to apply Theorem 4.1 we use
v0(r) = sin(tr)

r
such that u1 = F−1

1 (v1) as well as u1� are associated with the function
1
2χ[−t,t](x). Hence by Theorem 4.1

〈
F−1

3 (v3), ϕ
〉 = ω2

2

〈
− 1

2πr

d

dr

1

2
χ[−t,t](r), r2ϕo(r)

〉
= ω2

4π
tϕo(t)

and we obtain Kirchhoff’s formula

u(t, x) = t

4π

∫
S2

ϕ(x − tθ) dθ.
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