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Abstract The asymptotic behaviour of the spectral coefficients of a function pro-
vides a useful diagnostic of its smoothness. On a spherical surface, we consider the
coefficients am

l of fully normalised spherical harmonics of a function that is smooth
except either at a point or on a line of colatitude, at which it has an algebraic sin-
gularity taking the form θp or |θ − θ0|p respectively, where θ is the co-latitude and
p > −1. It is proven that each type of singularity has a signature on the rotationally

invariant energy spectrum, E(l) =
√∑

m(am
l )2 where l and m are the spherical har-

monic degree and order, of l−(p+3/2) or l−(p+1) respectively. This result is extended
to any collection of finitely many point or (possibly intersecting) line singularities of
arbitrary orientation: in such a case, it is shown that the overall behaviour of E(l)

is controlled by the gravest singularity. Several numerical examples are presented to
illustrate the results. We discuss the generalisation of singularities on lines of colati-
tude to those on any closed curve on a spherical surface.

Keywords Spherical harmonics · Singularity · Spectrum · Algebraic decay ·
Darboux’s principle

Mathematics Subject Classification 33C55 · 65D15 · 42B05 · 65M70 · 78M22 ·
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1 Introduction

Spectral methods, or generalised Fourier series, approximate an unknown function
by an expansion in terms of a prescribed set of basis functions which are usually
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orthogonal. The tail of the coefficient spectrum, showing how quickly the coefficients
asymptotically decrease with increasing index, gives an important indication of how
well any finitely truncated approximation is converged. Furthermore, this asymptotic
scaling is often intimately linked with the location of singularities of the function:
empirically determined spectra can therefore provide useful diagnostics about how
and where the solution loses its differentiability, which may otherwise be difficult to
obtain [7].

1.1 Functions in One Dimension

In one dimension, the Fourier basis set is the appropriate choice to represent peri-
odic functions, whereas for non-periodic functions on the canonical interval [−1,1],
Jacobi polynomials are optimal, of which particular examples are the well known
Chebyshev or Legendre polynomials. In all these cases, for functions smooth except
for singularities1 away from the expansion interval in the complex plane, the coef-
ficients are known to exhibit a geometric scaling of the form exp(−μn). Here, the
integer n is the coefficient index and μ > 0 is the location of the closest singularity,
measured either by its imaginary coordinate in the Fourier case or the radial ellip-
tical coordinate in the Jacobi case ([5], [23] pp. 245). If there are no singularities
anywhere except at infinity (for instance, in the case of the exponential function), the
coefficients decay super-geometrically.

Non-periodic functions on [−1,1] (on which we shall now focus) that have sin-
gularities located within the interval have an associated value of μ = 0, and have
spectral coefficients that decay only algebraically with n. In such cases the asymp-
totic scaling is limited not by the location (within this interval) of the singularities,
but instead only by the structure of the most severe, a notion known as known as Dar-
boux’s principle [5]. The idea is simple: define a smooth function g(x) by removing
all singularities of f :

g(x) = f (x) −
∑

i

fi(x),

where fi(x) gives the dependence of the ith singularity. Since the spectra of f de-
pends linearly on each of its constituent parts, and since g is smooth and therefore has
an exponentially decaying spectrum, it follows that the spectra of f is dominated by
the strongest singularity, which has associated the slowest algebraic spectral decay.
This simple argument works well if there is a single gravest singularity; if there are
multiple such, other methods may be required.

Such an algebraic scaling is straightforward to identify in a Chebyshev expansion
of a function f which has only p well behaved derivatives at some x0 ∈ [−1,1]. Up
to a normalisation factor, the coefficients are

an =
∫ 1

−1

f (z)Tn(z)√
1 − z2

dz =
∫ π

0
f (cos θ) cosnθ dθ = 1

2

∫ 2π

0
f (cos θ) cosnθ dθ (1)

1I.e. branch points, fractional powers or poles, although examples of far more exotic singularities may be
found in e.g. [6, 24].
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using the relationship Tn(cos θ) = cosnθ . The rightmost quantity is simply the
Fourier cosine transform of the symmetric function f (cos θ). Integrating by parts
p times we find

|an| = 1

2np

∫ 2π

0
f (p)(cos θ)

{
cos
sin

}
nθ dθ, (2)

the boundary terms vanishing by periodicity. Since the integral is bounded (by apply-
ing Cauchy’s inequality), |an| ≤ C n−p where C is a constant.

Such arguments are very effective at placing algebraic upper bounds on the spec-
tral coefficients, repeatedly integrating by parts until one of two things happen. Either
a discontinuity in some derivative means that a boundary term does not vanish and
so limits the asymptotic decay rate of an (this term rendering inconsequential any
smaller contribution from any remaining integral), or the (p + 1)st derivative ceases
to be integrable and the terms after p integrations define an upper bound. The ex-
tension of this technique from Chebyshev polynomials to the much wider class of
Jacobi polynomials is possible, either directly [20] or using their underlying differen-
tial equation [9]. However, such bounds are not necessarily tight; for example, x1/3

cannot be integrated by parts more than once, but nevertheless has coefficients that de-
cay as n−4/3 by other arguments [5]. Functions that are analytic within [−1,1] have
infinitely many derivatives and allow the above argument to be repeated infinitely
many times: their coefficients an therefore decay to zero faster than any power of n,
that is, they have exponential decay.

All members of the Jacobi polynomial family are known to exhibit exponential
convergence for functions smooth on [−1,1] [23]. However, for functions that pos-
sess singularities on this interval there is no known such theory, general to all Jacobi
polynomials, that provides an algebraic scaling of their coefficients. One complicat-
ing factor is that in certain special cases (in particular, as discussed shortly, singular-
ities at the end points), Legendre and Chebyshev polynomials have coefficients that
scale differently, despite singularities at interior points providing an identical scal-
ing. There are several attempts in the literature to relate theoretically2 Legendre and
Chebyshev coefficients, for instance, by making assumptions on the derivatives of the
function [3, 11]. An alternative and more pragmatic approach is simply to compare
theoretical convergence results for specific basis sets, derived by comparison to the
Fourier case [17, 18], contour integration [10, 16] or by applying asymptotic theory
[22]. Expansions for common types of singularity, for a variety of basis sets, are sum-
marised below [7]. However, before proceeding, we give the following definition:

Definition 1 A function has coefficients an that are said to scale as n−p , denoted
an ∼ n−p , if p is the largest real number for which

lim sup
n→∞

∣∣an np
∣∣ < ∞.

2At least to within a factor of
√

n, although this can be removed by fully normalising the Legendre poly-
nomials.
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This statement defines the envelope curve for the coefficients as C n−p , for
some constant C. For example, the two functional forms of bn = 10n−p and cn =
n−p(1 + sinn) both scale in the same fashion as defined above.

Simple algebraic singularities at interior points x0 ∈ (−1,1) of the form |x −x0|p ,
for p > −1,3 give rise to the scaling an ∼ n−(p+1) for both (fully-normalised) Leg-
endre and Chebyshev expansions. An identical result holds in the periodic case for a
Fourier series, which can be extended to include a singularity of any of the forms

|x − x0|p, sgn(x − x0) |x − x0|p, H(x − x0) |x − x0|p, (3)

which all give rise to same scaling an ∼ n−(p+1), where sgn(x) = x/|x| and the
Heaviside function H(x) = (sgn(x)+ 1)/2. These results may be further generalised
by the multiplication of logarithmic terms: functions of the form |x − x0|p log |x −
x0|q have coefficients that scale as an ∼ n−(p+1) logq n [7, 18]. In this paper we shall
consider the general class of singularities of order p > −1 of the form

(
A + Bsgn(x − x0)

) |x − x0|p. (4)

It can readily be verified that if f has a singularity of this form then

df

dx
∼ p sgn(x − x0)

(
A + Bsgn(x − x0)

) |x − x0|p−1 + 2Bδ(x − x0)|x − x0|p

since d|x|/dx = sgn(x) and dsgn(x)/dx = 2δ(x). If we further demand that p > 0,
then df/dx has a singularity of order p − 1 > −1 of the form (4) and an associated
spectrum an ∼ n−p; the second term on the right is zero everywhere. Thus (4) is the
appropriate generalised form of such singularities, with p giving the severity of the
singularity and (A,B) prescribing the sign change and relative amplitude on either
side of x0.

A subset of singularities of this type are discontinuous integer derivatives. For
example, if the third derivative of a function f has a finite jump at x = x0 ∈ (−1,1),
that is, f ′′′(x) ∼ A + Bsgn(x − x0) then f itself has a third order singularity of the
form (C +Dsgn(x −x0))|x −x0|3. In this paper, we only consider real functions and,
since p may be non-integer, a dependence of |x − x0|p rather than simply (x − x0)

p

is mandatory. We remark that, if p is an even integer and B = 0 (a rather special case)
then the singularity vanishes and the function is becomes analytic at x0; if the function
is otherwise smooth then the spectrum will decrease at a rate that is exponential rather
than algebraic.

For the class of interior singularities of the form (4), both Legendre and Cheby-
shev polynomials have coefficients that scale identically. However, differences in the
scaling emerge when considering singularities of order p at the end points of the
domain x = ±1. Specific end point behaviour is unique to polynomial expansions:
in the periodic case there is no such thing as an end-point: the integral is invariant

3The restriction p > −1 arises in order that the singularity is integrable, and so the integral of the function
against any smooth basis function exists.
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to translations of the interval over which the transform is taken. Singularities of the
form |x ± 1|p as x → ∓1 have associated (fully-normalised) Legendre coefficients
that scale as n−(2p+3/2) [16] but Chebyshev coefficients that scale as n−(2p+1) [7].
Note also that the coefficients decay to zero twice as fast as a singularity of the same
order at an interior point: the exponents being functions of 2p compared to p. In this
sense, interior singularities are twice as severe as those at the end points.

1.2 Functions on a Spherical Surface

The focus of this paper is the extension of these one-dimensional results to a two-
dimensional spherical surface. The basis functions we shall consider are the spherical
harmonics, the natural choice in this geometry which have many optimal properties
such as completeness and the uniform resolution of a function on a spherical surface
[5]. Spherical harmonics,

Ym
l (θ,φ) = P m

l (cos θ)

{
sin
cos

}
mφ (5)

where the integer indices l and m give respectively the degree and order, are each
composed of a single Fourier mode in longitude and an associated Legendre function
in colatitude z = cos θ . We shall adopt the full normalisation

∫ 2π

0

∫ π

0

[
Ym

l (θ,φ)
]2 sin θdθ dφ = 1 (6)

in order to draw parallels with polynomials in one-dimension.
Spherical harmonics satisfy the second order eigenvalue equation

∇2
1Ym

l = −l(l + 1)Ym
l (7)

where ∇2
1 is the surface Laplacian [2]

∇2
1 = 1

sin θ

∂

∂θ
sin θ

∂

∂θ
+ 1

sin2 θ

∂2

∂φ2
.

For a given function f (θ,φ), we consider the properties of the expansion

f (θ,φ) =
∞∑

m=0

∞∑
l=m

am
l Ym

l (θ,φ)

where the sum over sine or cosine dependence in longitude is suppressed. Of pri-
mary interest will be to determine how am

l scales asymptotically as l and m both
become large. The individual coefficients am

l depend on the orientation of the coordi-
nate system and do not, themselves, have any particular physical meaning. However,
the following lemma is fundamental to their utility:
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Lemma 2 The energy spectrum defined by

E(l) =
√∑

m

[
am
l

]2
,

where the sum is taken over all harmonics of the same order, is invariant under arbi-
trary rotations of the coordinate system.

This follows from the invariance under rotations of the subspace of harmonics
(homogeneous polynomials) of degree l, a result well known in quantum theory [e.g.
25]. In the context of geomagnetism, this spectrum (up to a pre-factor) is known
as the Lowes-Mauersberger-Lucke spectrum [2]. We will ultimately be interested in
the spectrum of functions possessing multiple singular structures which may have
arbitrary orientation with respect to one another. Using this lemma, we may calculate
the spectra associated with any single singularity in its natural coordinate system; the
overall spectrum E(l) can then be derived by appealing to the rotational invariance
of each individual spectrum.

Just as their counterparts in one dimension discussed above, a function that is
everywhere smooth on a spherical surface has an energy spectrum that converges at an
exponential rate. This cannot be shown quite as tersely as before, since to integrate by
parts (as in (2)), we would need an explicit (closed form) expression for the indefinite
integral of Ym

l with respect to both φ and cos θ . Unfortunately no such form is known
(at least to the author’s knowledge), although single integrals can be evaluated using
recursion [15]. However, by exploiting the fact that spherical harmonics satisfy (7),
we can iteratively integrate by parts twice by using Green’s theorem [21] to show that

∣∣am
l

∣∣2 ≤ (
l(l + 1)

)−2s
∮ ∣∣(∇2

1

)s
f

∣∣2
dΩ (8)

where dΩ is the element of solid angle, so that |am
l | ≤ C l−2s for any integer s (since

for smooth functions all the required derivatives exist), showing that the coefficients
tend to zero faster than any algebraic power. If f has singularities in some derivative
however, as before, this iterative process must terminate and we may show only al-
gebraic convergence, |am

l | ≤ C l−2q , for some integer q > 0. A limiting factor of this
procedure is that only bounds of even-integer exponents arise for am

l . For example,
for a singularity of the form |θ − θ0|5/2 we can use the integration-by-parts argument
just once (since (∇2

1 )2f is not square-integrable), so that |am
l | ≤ C l−2; yet we will

show below that am
l ∼ l−7/2 as l → ∞ for fixed m, leading to E(l) ∼ l−7/2.

On [−1,1], a function can be singular only at a point, but in two-dimensions
functions can also be singular on lines. In N -dimensional space, higher-order gen-
eralisations of points and lines render the landscape of possible singular structures
even more complex. On a spherical surface, we consider singularities of two types:
(i) point singularities and (ii) line singularities. In this paper, the latter type refers to
singularities on lines of constant colatitude θ0, in some rotated coordinate system,
rather than a general closed curve. In the neighbourhood of such a line, a function
which has a singularity of order p takes the form

(
A + Bsgn(θ − θ0)

)|θ − θ0|p g(φ)
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for some real number p > −1 and smooth function g(φ). We will show that, by find-
ing the asymptotic behaviour of the spectral coefficients am

l , the rotationally invariant
spectrum scales as E(l) ∼ l−(p+1). A point singularity at θ = 0 (in some rotated sys-
tem) takes the form θp and has an associated spectrum E(l) ∼ l−(p+3/2). Intuitively,
singularities on an entire curve should be more potent than a singularity of the same
order but isolated at a point and should therefore lead to a slower decay of the energy
spectrum; these results show that indeed this is the case.

By viewing line or point singularities within an appropriately oriented local 2D
Cartesian coordinate system, we will show that there are strong links between the
local Legendre (or Chebyshev or Fourier) spectrum and the global spherical harmonic
energy spectrum. Singular lines of order p are locally equivalent to a singularity also
of order p in only one variable (whose axis is locally perpendicular to the singular
line) and, as such, its Legendre spectrum scales as an ∼ n−(p+1), identical to the
harmonic spectrum E(l) ∼ l−(p+1). Close to a point singularity at θ = 0, |θ |p ≈
|√x2 + y2|p which is a 2D structure in the local Cartesian coordinates (which cannot
be further reduced to a 1D singularity). Indeed, its 2D structure turns out to make it
twice as singular as any particular 1D profile through the singularity: for example,
on the line x = 0, the singularity takes the form |y|p whose Legendre spectra is
an ∼ n−(2p+3/2), whereas the global spectrum is E(l) ∼ l−(p+3/2), equivalent to the
signature of a 1D singularity of order p/2.

Just as in the one-dimensional case, we may consider a finite collection singular
points and (of possibly intersecting) singular lines of arbitrary orientation; as we shall
see, in the spirit of Darboux’s principle, in most cases E(l) depends only on the most
grave. A complication arises when there are multiple gravest singularities since it is
possible that the leading order behaviour of their sum exactly cancels out, leading to a
spectrum that decays faster than expected. Although it is conjectured that such an oc-
currence is not possible, further investigation (and proof) is beyond the scope of this
manuscript. However, a proof is supplied of a slightly weakened from of Darboux’s
principle which holds in all cases: E(l) is bounded by the most grave singularity.

Lastly, we note that aspects of approximation theory somewhat parallel the devel-
opment here. As discussed in Appendix B, the residual in the truncated expansion up
to degree L

∞∑
l=L+1

E(l)2 = R(L)2 =
∫ ∣∣∣∣∣f (θ,φ) −

L∑
l=0

l∑
m=0

am
l Ym

l

∣∣∣∣∣
2

dΩ ≤ C L−2(p+1/2), (9)

if f has a line singularity of order p. If p = 0 then f is discontinuous and there will
be an associated (possibly non-local) Gibbs effect, although this can be removed [4,
13]. This bound for R(L) is entirely consistent with the scaling E(l) ∼ l−(p+1). Since
E converges at only an algebraic rate, R(L) must decay slower than any particular
E(l) (see Appendix B). Note that, should E(l) converge exponentially in l, then R(L)

would be well approximated by E(L+1) and we would anticipate that R(L) ∼ E(L).
The structure of the remainder of the paper is as follows. In the following sec-

tion, we state and prove how algebraic singularities on points and lines translate into
asymptotic scalings for E(l). In Sect. 3 we provide several numerical examples that
illustrate the key concepts, and end with a discussion in Sect. 4.
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2 Main Results

The main results of this paper are stated below.

Theorem 3 A function f is defined to have a line singularity of order p if, in some
rotated coordinate system, within the neighbourhood of a line of colatitude θ = θ0 ∈
(0,π),

f (θ,φ) ∼ (
A + Bsgn(θ − θ0)

) |θ − θ0|p g(φ)

for some smooth g(φ), constants A and B and real p > −1. If we expand

f (θ,φ) =
∑

am
l Ym

l (θ,φ)

where the spherical harmonics have unit squared integral over all solid angle, then if
f is smooth except on the singular line,

am
l ∼ e−αm l−(p+1) as l,m → ∞

with α > 0 and E(l) =
√∑

m(am
l )2 ∼ l−(p+1).

Theorem 4 A function f has a point singularity of order −1 < p �= 0 at θ = 0 if

f (θ,φ) ∼ θp.

If f is otherwise smooth, then

E(l) = a0
l ∼ l−(p+3/2) as l → ∞.

By invariance of E(l) under rotations (Lemma 2), a point singularity anywhere on
the spherical surface has such an energy spectrum.

Note that, as for any function f single valued at θ = 0, f (0, φ) cannot depend on
longitude so we may consider only the axisymmetric case. The special case p = 0 is
specifically excluded above since there is no singularity.

It is also useful to remark that, despite appearances, even the innocuous looking
function f (θ) = θ = cos−1 z is not smooth at θ = 0. This can be identified in, for
example, the fact that its gradient, ∇θ = eθ (φ), is multivalued at θ = 0.

Corollary 5 (Darboux’s principle) Suppose a function is smooth except for a finite
number of point and line singularities of arbitrary orientation, the most grave of
which has associated a spectral signature of l−p . Then the overall behaviour of E(l)

is

(i) E(l) ∼ l−p if there is a single gravest singularity (i.e. it is governed by the most
grave) or

(ii) E(l) ∼ l−q with q > p if there are multiple gravest singularities (i.e. it is
bounded by the most grave).
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The caveat in (ii) arises since it is possible that spectra associated with different
singularities, each decaying as l−p , could cancel at leading order, leaving a signature
which decays faster than expected (although bounded by l−p).

2.1 Outline of Proof for Line Singularities

Here we provide an outline of the proof of Theorem 1; much more detail can be found
in Appendix A. Consider a function f (θ,φ) that has a single line singularity of order
p which, in an appropriately rotated coordinate system, takes the form

f (θ,φ) ∼ (
A + Bsgn(θ − θ0)

) |θ − θ0|p g(φ)

in the neighbourhood of a line of colatitude θ = θ0 ∈ (0,π), for some smooth g(φ),
constants A and B and real p > −1. We exploit the fact that the variables are sepa-
rated in order to first transform in φ and then θ . In longitude, the structure is smooth
and so am

l , for fixed l, converges exponentially fast in m. In latitude, we integrate by
parts 2s times, where −1 ≤ p − 2s ≤ 1 (i.e. until integration by parts breaks down).
This produces the bound |am

l | ≤ C e−αm l−2s , where C is a constant and 0 < α, which
is then tightened by exploiting the asymptotic structure of P m

l for large l, to

am
l ∼ e−αm l−(p+1) as l,m → ∞.

The energy spectra

E(l) =
√∑

m

(
am
l

)2 ∼ l−(p+1)

follows immediately.
This argument immediately extends to any finite number of singular lines which

are all lines of colatitude with respect in the same coordinate system. The transform
in longitude again must produce an exponentially decaying spectrum, and it only
remains to transform in colatitude. By appealing to Darboux’s principle in 1D, the
overall spectrum is dominated by the gravest singularity. A further extension of this
result to a finite number of arbitrarily oriented singular lines is given in Sect. 2.3.

2.2 Derivation of the Spectrum of Point Singularities

We consider a point singularity at θ = 0, in the neighbourhood of which

f (θ,φ) ∼ θp

where p > −1. The axisymmetric spherical harmonic coefficients are given by an
expansion in (fully normalised) Legendre polynomials

a0
l =

∫ π

0
θp Pn(cos θ) sin θdθ =

∫ 1

−1

[
cos−1 z

]p
Pn(z)dz, (10)

on changing variable to z = cos θ . In order to derive the scaling, we make recourse to
the known result (proven in [16]):
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Lemma 6 The (fully normalised) Legendre coefficients of a function possessing an
end point singularity of the form |x ± 1|p scale as

an ∼ n−(2p+3/2).

Although (10) is written in algebraic form, it is not immediately apparent what
order the singularity takes in the variable z, since cos−1 is itself singular at the end
points. As discussed in Appendix A, by smoothness of cos−1 z at interior points, if
any function h(θ) has a singularity of order p at θ ∈ (0,π), then so does h(cos−1 z)

at cos θ0 ∈ (−1,1). That is, the change of variable simply effects a coordinate stretch
and leaves invariant the order of the singularity. However, at the end points z = ±1,
cos−1 has infinite slope and alters the nature of the singularity. Let us consider the
behaviour of cos−1 z close to z = 1. Let ε = 1−z, 0 < ε  1; since cos ε ∼ 1− ε2/2,
then cos ε1/2 ∼ 1 − ε/2 and so

[
cos−1(1 − ε)

]p ∼ (2ε)p/2.

Thus within a neighbourhood of z = 1, the singularity in (10) is of order p/2 rather
than p; applying Lemma 6 gives a0

l = E(l) ∼ l−(p+3/2).

2.3 The Extension to a Finite Collection of Singularities

We now consider a function which has a finite number of (possibly intersecting) line
and point singularities of arbitrary orientation. Key to the derivations above for a
single singularity treated in isolation was that, after an appropriate rotation of the
coordinate system, we were able to exploit separation of variables to integrate first
in φ and then in θ . However, this breaks down when f has two or more singular
structures (lines or points) which are arbitrarily orientated. Nevertheless, by exploit-
ing knowledge of the spectra of each component part, we will show that a weak form
of Darboux’s principle still applies: the gravest singularity (point or line) bounds the
energy spectra.

Consider the case of a function with two singularities: f (θ,φ) = fa(θ,φ) +
fb(θ,φ), where fa(θ,φ) and fb(θ,φ) are individually smooth except on either a
line or point. Let the spherical harmonic coefficients of fa and fb be am

l and bm
l

respectively, and suppose their energy spectra scale as

Ea(l) ∼ l−ka , Eb(l) ∼ l−kb .

Let us first consider the case with ka < kb: that is, there is a single gravest singularity
(associated with ka in this case). By linearity, the spherical harmonic coefficients of
f are am

l + bm
l and the energy spectrum is

Ea+b(l)
2 =

l∑
m=0

(
am
l + bm

l

)2 =
l∑

m=0

(
am
l

)2 + (
bm
l

)2 + 2am
l bm

l . (11)
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By Cauchy’s inequality,

l∑
m=0

am
l bm

l ≤
√√√√

l∑
m=0

(
am
l

)2
l∑

m=0

(
bm
l

)2 ≤ C l−(ka+kb), (12)

where C is a constant, a term bounded by a singularity intermediate between those
of fa and fb (and so has no influence asymptotically relative to ka). It follows from
(11) that

Ea+b(l) ∼ l−ka (13)

is governed by the gravest of the two singularities.
The case of ka = kb is more difficult, as the bound (12) then scales in the same

fashion as the two other terms in (11). If this bound happens to be tight, it is con-
ceivable that a rather special cancellation takes effect at leading order so that Ea+b(l)

decays faster than l−ka . If such a cancellation were to arise, the scaling of the total
energy would not be given by (13) but governed by a higher-order term in the asymp-
totic series of the terms in (11). Any resulting scaling of Ea+b(l) will, of course, be
bounded above by l−ka , since each term in (11) is similarly bounded. It is clear that
this weak version of Darboux’s principle can be extended to a finite collection of
arbitrarily orientated singular lines or arbitrarily located singular points.

Such a delicate cancellation would, if it occurred, be equivalent to the notion that,
in the spectral signature, the sum of two singular functions would not be “as singu-
lar” as either of its constituents. It is conjectured below that such an occurrence is
not possible. If this supposition is true, then the stronger form of Darboux’s prin-
ciple in Corollary 5(i) would hold in general, irrespective of the number of gravest
singularities.

Conjecture 7 Suppose that f = ∑
i fi , where the sum is over a finite set of functions

fi , each possessing a single singularity on the spherical surface of either point or
line type, having associated a spectral signature of l−p . Then the energy spectrum of
f decays as E ∼ l−p .

A thorough investigation of this issue is beyond the scope of this manuscript, and
indeed is almost certainly tied to a rigorous proof of Darboux’s principle in 1D (which
has only yet been proven for Taylor series and not for generalised expansions [5]).

Whether or not the special cancellation arises is really a question of the unique-
ness of the leading order behaviour of the spectrum of a singularity. Note that for
the simple case of the cancellation between two spectra (each associated with a dis-
tinct singularity), it is not sufficient that they possess the same asymptotic scaling:
am
l ∼ bm

l , but moreover that the coefficients of the leading order behaviour must be
identical. That is, if the complete description of the dominant spectral signatures of
the singularities were determined to be ha(l) l−ka , i.e. |am

l (l) − ha(l) l−ka | = o(l−ka )

for some function ha at fixed m (and similarly for fb), it would have to be the case
that ha(l) + hb(l) = 0 for all l > L for some L. The sum am

l + bm
l would then lose

its l−ka leading-order behaviour and scale according to a faster-decaying term in its
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asymptotic series. It is argued below that such an occurrence is unlikely; but no proof
is provided and the conjecture remains an open question.

Consider the case of two line or two point singularities of different orientation but
of the same order. On the spherical surface, since the singularities are related by a
rotation, it follows that a = Mb where a and b are vectors of the coefficients am

l and
bm
l , and M represents the rotation in spectral space (such a matrix always exists as,

for fixed truncation, the set of spherical harmonics is closed under rotations). For a
rotation of arbitrary angle, the matrix M mixes up the order and degree of the coef-
ficients, and for any given l and m, as empirical tests show, in general bm

l bears little
resemblance to am

l , let alone has the same asymptotic scaling. Thus barring the triv-
ial rotation (where M is the identity matrix) the required cancellation is seemingly
unlikely. Singularities on two lines which are parallel reduces (after transforming in
longitude) to the usual 1D application of Darboux’s theorem in latitude, generally
believed to be valid. Lastly, as demonstrated by example (Fig. 1) in the next section,
the functions ha and hb related to the spectral signature of a point and line singularity
respectively are very different: ha(l) is close to a constant, whereas hb(l) has consid-
erably more structure. Thus it would seem unlikely that two singularities could ever
be arranged to effect this special cancellation.

3 Examples

We now present some examples which illustrate the scaling laws derived above. The
spherical harmonic coefficients of any given function can be computed numerically
using an FFT in the longitudinal direction and Gaussian-quadrature in the latitudinal
direction; having found the coefficients, it is straightforward to compute the energy
spectrum E(l). To ensure numerical accuracy, we increase the resolution of the trans-
forms and the number of abscissae used until the coefficients converge.

As a first example, Fig. 1 shows the spectra of an axisymmetric point and line
singularity of orders 1 and 3/2 respectively:

f1(θ) = 100 θ cos θ, f2(θ) = cos θ |θ − 1|3/2

both of which give E(l) ∼ l−5/2. In each case, the (converged) spectra have been
computed up to degree 400 using 1000 Gaussian quadrature points. We have delib-
erately included a factor of 100 in f1 for graphical purposes. Note that although the
spectrum for f1 fits almost exactly an algebraic form for all l plotted, for f2, E(l)

only gives the scaling of the envelope. Because of chance cancellations, some coef-
ficients are smaller than the scaling law suggests. It is worth remarking that, because
of the vast difference in spectral structure, it is unlikely that any two similar such
singularities have spectra that sum to zero (to leading order).

The identical scaling of the spectra of the given point and line singularity is illus-
trative of a more general fact: if only the asymptotic spectral scaling of a function is
given as l−k , it is not possible to discriminate between a causal point singularity of
order lk−3/2 or a line singularity of order lk−1.
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Fig. 1 A comparison of the
spherical harmonic spectra E(l)

of a point singularity of order 1
and a line singularity of order
3/2 as defined in the text; in
both cases E(l) ∼ l−5/2

Fig. 2 The energy spectrum
E(l) of a function which has
two line singularities of order
p = 4/3: on the lines of
intersection between the planes
z = 0 and y = 0 with the unit
spherical surface centred at the
origin. The dashed line confirms
that the envelope scales as l−7/3

A second example illustrates intersecting line singularities. We consider the func-
tion

∣∣∣∣θ − π

2

∣∣∣∣
4/3

+
∣∣∣∣cos−1(sin θ cosφ) − π

2

∣∣∣∣
4/3

=
∣∣∣∣cos−1 z − π

2

∣∣∣∣
4/3

+
∣∣∣∣cos−1 y − π

2

∣∣∣∣
4/3

where we have expressed the dependence in Cartesian coordinates on the right, as-
suming that the spherical surface is of unit radius. The first term has a singularity
on the equatorial line cos θ = z = 0 of order p = 4/3, the line of intersection of the
plane z = 0 and a spherical surface. The second term is simply the first term rotated
by π/2 about the x-axis: the line of intersection of the plane y = sin θ cosφ = 0 and
the spherical surface. Figure 2 confirms the envelope slope of l−7/3, computed using
maximum spherical harmonic degree and order of 400 and 1500 abscissae in both
latitude and longitude.

Lastly, as addressed in the discussion, we speculate that the results pertaining to
the spectral signature of a line singularity may be generalised to any closed curve on
the spherical surface. To demonstrate that this a reasonable assertion, we present a
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Fig. 3 The spectrum E(l) of f3
which has a nonlinear line
singularity of order p = 5/2 on
the intersection of the surface
1/2 + ay − z3 = 0 with the unit
spherical surface centred at the
origin, for a = 1/2 and a = 5.
The dashed line confirms that,
for both choices of a, the
envelope scales as l−7/2

third example of the function

f3(θ,φ) = |1/2 + a sin θ cosφ − cosn θ |5/2,

where n ≥ 0 and for some real a. If n = 1, then the singularity occurs on the inter-
section of the plane 1/2 + ay − z = 0 with the spherical surface, that is, on a line of
colatitude in some coordinate system (if a = 0 then this is simply the line θ = π/3).
We consider the nonlinear case n = 3: the curve 1/2 + ay − z3 is the intersection
of a cubic plane curve with the spherical surface and is therefore closed. Figure 3
shows that E(l) ∼ l−7/2 when a = 1/2 and a = 5; for these restricted cases we there-
fore verify the proposed extension to Theorem 1. It is worth remarking that when
constructing such examples some care must be taken to avoid introducing unwanted
non-regular behaviour at the poles (at which the coordinate system is singular); in this
case it is achieved by ensuring all variables have an explicit Cartesian representation.

4 Discussion

In this paper we have discussed the spherical harmonic signature of either line or
point (or both) singularities, of specified order, of an otherwise smooth function. Line
singularities are more grave than point singularities of the same order, a fact that is
entirely consistent with the fact that line and point singularities are topologically
distinct. The results in this paper have been proved using a mixture of asymptotic
analysis and recourse to standard results. A more formal treatment of this work is
almost certainly possible, perhaps by extending the analysis of [22] to associated
Legendre functions and spherical harmonics.

We speculate that the spectral signature of a singularity defined on a line of co-
latitude (in some coordinate system) may be extended to that of a singularity on any
closed curve on the spherical surface, since such a curve can be smoothly mapped
to a line of colatitude. In Sect. 3 we provided a numerical example that shows the
validity of this assertion in the given case. Such a generalisation may be intuitive but
a proof does not appear to be straightforward. On the interval [−1,1], if f (x) has a
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singularity of order p at g(x0), then f (g(x)) has a singularity of order p at x0, if g is
a smooth (possibly nonlinear) bijective function on [−1,1] (see Appendix A). Since
f (x) and f (g(x)) have singularities of the same order, it follows that they possess the
same asymptotic scaling of (say) Legendre polynomial coefficients. This statement is
equivalent to showing that

∫ 1

−1
Pn(x)f (x)dx ∼

∫ 1

−1
Pn(x)f

(
g(x)

)
dx =

∫ 1

−1
Pn

(
g−1(y)

)
f (y)J (y)dy

where y = g(x) and J is the associated Jacobian of transformation. To prove this
assertion, the key problem is that, in the variable y, although f now appears un-
transformed, Pn(g

−1(y)) are no longer Legendre polynomials and we cannot say
anything further about how the integral scales with n. The same issue occurs on a
spherical surface: the smooth mapping that connects any closed curve with a line of
colatitude corrupts the spherical harmonics, and the results that we have derived can-
not be directly applied. However, in both one and two dimensions, crude estimates of
the scalings may still be obtained using integration by parts.

One powerful application of spectral methods, as pointed out in the introduction,
is the ability to use the rate of decay of the spectrum to probe any singular behaviour
of the function. However, such a procedure is, in the most general case, plagued with
non-uniqueness. Firstly, with knowledge of only the asymptotic scaling of the spec-
trum E(l) ∼ l−k , it is not possible to discriminate between the cause being a point
singularity of order lk−3/2 or a line singularity of order lk−1. It is worth remarking
that such a degeneracy is a generic issue; for example, in atmospheric turbulence it is
not possible to say definitively which are the controlling singularities [12], there be-
ing two distinct scalings in the energy spectrum of n−3 and n−5/3 on different ranges
of the spatial wavenumber n. Secondly, only a weakened form of Darboux’s princi-
ple could be proven here, so that the overall spectral slope supplies only a bound on
any individual component singularities. This bound will not be tight if two or more
singularities have spectra which sum together in such a way that a delicate cancel-
lation takes place at leading order, leaving the total spectrum decaying faster than
expected. However, this circumstance is conjectured never to arise, so that the overall
spectral slope is precisely that stemming from any gravest singularity. Further work
on this subject is beyond the present scope, and may be advanced by the derivation
of a formal proof of Darboux’s principle in 1D.

Lastly, it is worth highlighting a particular example in which much can be
learned from the energy spectrum (which is, in fact, the motivating example for this
manuscript). Low-viscosity flow in a rotating spherical shell leads to shear layers on
the tangent cylinder, the axial cylinder of fluid that is tangent to the inner spherical
boundary [19]. In the absence of viscosity, such shear layers become formal discon-
tinuities. The spherical harmonic spectrum of such solutions will have a signature
dictated by the order of the singularities on the tangent cylinder, which are lines of
colatitude on any spherical surface. In this physical system it is likely that these are
the only singularities present, so it is possible, assuming that Darboux’s principle
holds in the stronger form, to discern the order of the line singularities solely from
the spectrum.



J Fourier Anal Appl (2012) 18:1146–1166 1161

Acknowledgements This work was supported by NERC grant NE/G014043/1 and benefitted from dis-
cussions with Rainer Hollerbach, Matt Daws, Evy Kersalé, Jitse Niesen, Andy Jackson, Frank Lowes and
Avraham Sidi. Comments from two anonymous reviewers helped improve the manuscript.

Appendix A: The Spectral Signature of Line Singularities

Consider a function f (θ,φ) that has a single line singularity of order p which, in an
appropriately rotated coordinate system, takes the form

f (θ,φ) ∼ (
A + Bsgn(θ − θ0)

) |θ − θ0|p g(φ) (14)

in the neighbourhood of a line of colatitude θ = θ0 ∈ (0,π), for some smooth g(φ),
constants A and B and real p > −1. We will show that the asymptotic form of the
spherical harmonic coefficients takes the form

am
l ∼ e−αm l−(p+1) as l,m → ∞,

with 0 < α, from which the energy spectra

E(l) =
√∑

m

(
am
l

)2 ∼ l−(p+1)

follows.
Before embarking on a proof, we first show that if f (θ,φ) has a singularity of

order p on θ = θ0, and if θ = h(z) is a smooth invertible (possibly nonlinear) function
with θ0 = h(z0), then f (h(z),φ) has a singularity of order p on the line z = z0. That
is, this smooth coordinate transformation leaves invariant the order of the singularity.
Close to z = z0, θ = h(z) ∼ h(z0) + (z − z0)h

′(z0) and so θ − θ0 ∼ (z − z0)h
′(z0). It

follows that, provided h′(z0) is finite,

f
(
h(z),φ

) ∼ (
C + Dsgn(z − z0)

) |z − z0|p g(φ),

and so f (h(z),φ) has a singularity of order p as z → z0. If h′(z0) is not finite, then
the singularity in the independent variable z may take a different form from that in θ

(see Sect. 2.2).
To prove the result required, it is marginally easier to work with the transformed

coordinate z = cos θ . The singularity in θ of order p, as defined above, translates into
a singularity of the same order in z since the inverse cosine function, away from its
end points, is smooth. The associated Legendre functions satisfy the Sturm-Liouville
equation (where z = cos θ )

LmP m
l (z) = l(l + 1)P m

l (z),

where

Lmu = − d

dz

((
1 − z2)d u

dz

)
+ m2

1 − z2
u(z).
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For a given spherical harmonic order m, let us transform first in azimuth

fm(θ) =
∫ 2π

0
f (θ,φ)

{
sin
cos

}
mφ dφ. (15)

By assumption, g is smooth and so fm decays exponentially fast in m as e−αm, α > 0.
It only remains to transform fm in colatitude. Since our spherical harmonics are fully
normalised,

am
l =

∫ 1

−1
P m

l (z)fm(z)dz = 1

l(l + 1)

∫ 1

−1
LmP m

l (z)fm(z)dz. (16)

Let the (unique) integer s be such that

−1 < p′ ≤ 1, p′ = p − 2s.

Under the assumptions on f , we can integrate by parts twice, s times [9], to find that

am
l = 1

[l(l + 1)]s
∫ 1

−1
Ls

mfm(z)P m
l (z)dz. (17)

We now exploit the asymptotic behaviour of associated Legendre functions in the
open interval (−1,1) [1]:

P m
l (cos θ) ∼

(
π2(δm0 + 1)

2
sin θ

)−1/2

cos
(
(l + 1/2)θ − π/4 + mπ/2

) + O
(
l−1)

(18)
which, in accordance with (6), are normalised such that

∫ 1

−1

[
P m

l (z)dz
]2

dz ∼ (
π(δm0 + 1)

)−1
. (19)

Provided that Ls
mfm is integrable (as we shall justify shortly), and noting from (18)

that P m
l (cos θ) sin θ is bounded for l � 1, it follows that

|am
l | ≤ 1

[l(l + 1)]s
∫ π

0

∣∣Ls
mfm(cos θ)

∣∣ ∣∣P m
l (cos θ) sin θ

∣∣dθ ≤ C l−2s . (20)

The function Ls
mfm has an (integrable) singularity of order −1 < p−2s at z = cos θ0.

The only other place where it might fail to be integrable is at the end points, z = ±1,
due to repeated multiplications by the factor 1/(1 − z2) in Ls

m. However, fm is not
just any function: since f is smooth away from the singular line, fm must behave as
sinm θ as θ → 0,π [5] and in fact the end points present no trouble. Indeed, writing
fm(z) = (1 − z2)m/2 w(z) for some w(z),

Lm

[(
1 − z2)m/2

w(z)
]

= (
1 − z2)m/2[(

z2 − 1
)
w′′(z) + 2(1 + k)zw′(z) + m(m + 1)w(z)

]
, (21)
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so that Lmfm also has an mth order zero; iterating, we see that Ls
mfm(z) does as well

and so remains regular at z = ±1.
To tighten the bound on am

l from l−2s (20), we now use (18) again. In view of
the quasi-trigonometric form of (18), one might be tempted to apply directly the
Fourier convergence theory, summarised in the introduction, to (14). However, this
is not possible, due primarily to the error term in (18), swamping any scaling that
decays more rapidly than O(l−1). We therefore only use (18) to tighten the scaling
we already have.

We divide the remaining analysis into two cases depending on the sign of p′. Let
us denote Ls

mfm(z) = qm(z), where qm(z) has a zero of order m at z = ±1 and a
singularity of order −1 < p′ ≤ 1 at cos θ0.

Case I: −1 < p′ ≤ 0
Direct substitution of (18) into (17) gives

(l(l + 1))s am
l

C
∼

∫ π

0
qm(cos θ)

√
sin θ cos

(
(l + 1/2)θ − π

4
+ mπ

2

)
dθ + O

(
l−1),

(22)
where C = (π2(δm0 + 1)/2)−1/2. Formally, since the asymptotic expansion is valid
only away from the end points, we should restrict attention to the interval [−1 +
ε,1 − ε] for some 0 < ε  1, modifying the limits of integration in (22). However, in
view of the non-singular nature of the integrand in (22) near the end points, we may
take ε to be so small so that the error incurred by altering the interval to [−1,1] can
be neglected. The function qm(cos θ)

√
sin θ is smooth except for (i) a zero of order

m + 1/2 at θ = 0 and (ii) a singularity at θ0 of order p′ ≤ 0. Since the singularity (ii)
is more potent than (i), it therefore dominates the spectrum. Furthermore, noting that
the above is just a (shifted) cosine transform, we may appeal to the Fourier results
summarised in the introduction to see that, for some α > 0,

am
l ∼ e−αm l−2s (l + 1/2)−(p′+1) ∼ e−αm l−(p+1).

Case II: 0 < p′ ≤ 1
We cannot use the same argument as above as not only might the zero of order

m + 1/2 at θ = 0 have a stronger influence than the singularity at θ0, but l−(p′+1) <

l−1 and the dominating error term means that we cannot do better than the bound
l−2s−1. Instead we integrate (17) by parts once (rather than twice) to find

(
l(l + 1)

)s
am
l = 1

l(l + 1)

∫ 1

−1

(
1 − z2) dqm(z)

dz

dP m
l (z)

dz
dz

+ m2

l(l + 1)

∫ 1

−1

qm(z)P m
l (z)

1 − z2
dz

the boundary term vanishing as both qm and dP m
l /dz are nonsingular at z = ±1 and

everywhere continuous. Now we use the recurrence [1, 8.5.4]

(
1 − z2)dP m

l

dz
= Q(l) (l + m)P m

l−1 − lzP m
l ∼ l

(
P m

l−1 − zP m
l

)
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if l � m, which has been adjusted to take into account the normalisation (19) by
inserting the algebraic factor Q(l), where Q(l) → 1 as l → ∞. It follows that, when
l � m:

(
l(l + 1)

)s
am
l ∼ 1

(l + 1)

∫ 1

−1

dqm(z)

dz

(
P m

l−1 − zP m
l

)
dz

+ m2

l(l + 1)

∫ 1

−1

qm(z)P m
l (z)

1 − z2
dz.

Since dqm/dz has a singularity of order p′ − 1 with −1 < p′ − 1 ≤ 0, it follows that
by appealing to case I, the first integral (without the prefactor) scales as l−((p′−1)+1).
The second integral (without the prefactor) scales algebraically in l with exponent
either −(p′ + 1) or −1 (from the error term in (18)), which ever is the greater.
Since p′ > 0 then the entire second term scales as l−3. Note that despite the factor
of (1 − z2) in the denominator, this integral always exists: if m = 0 then it is trivially
zero; if m > 0 then both P m

l and qm behave like (1 − z2)m/2 as z → ±1 and so the

integrand is everywhere finite. Since the entire first term scales as l−(p′+1), it follows
that am

l ∼ e−αm l−2s−p′−1 = e−αm l−(p+1), α > 0.
The entire analysis can be generalised to the case with singularities of the form

(A + Bsgn(θ − θ0))|θ − θ0|p log |θ − θ0|q , by applying standard Fourier results [5,
18]. In such a case, am

l ∼ e−αm l−(p+1) logq l, α > 0.
Lastly, we show that the energy spectra, binned per degree l, takes the form

E(l) =
√∑

m

(
am
l

)2 ∼ l−(p+1)

as l → ∞ when am
l ∼ e−αmf (l) for some dependence f (l). Since the sum over m

converges exponentially, its sum scales independently of l:

E(l)2 ∼ f 2(l)

l∑
m=0

e−2αm ∼ f 2(l)
1 − e−2αl

1 − e−2α
∼ f 2(l),

and the result follows.

Appendix B: Application of Approximation Theory

We summarise here some relevant results from approximation theory that somewhat
parallel the development given in the paper. For ease of explanation, we frame most of
the discussion in terms of a Legendre polynomial representation in 1D. We consider
on the interval [−1,1]

R(N)2 =
∫ 1

−1

(
u(x) − PNu

)2
dx =

∞∑
n=N+1

a2
n, (23)
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a measure of the residual incurred in approximating u by its truncated expansion in
(fully normalised) Legendre polynomials to degree N , PN = ∑N

n=0 anPn(x). Let us
define

‖f ‖2
Hm =

m∑
r=0

∫ 1

−1

(
drf

dxr

)2

dx,

the Sobolev norm of f involving derivatives of up to degree m. It may be shown that

R(N) ≤ CN−m‖u‖Hm (24)

for any m for which ‖u‖2
Hm exists [8, 9], placing algebraic bounds on R(N) depend-

ing on the differentiability of u. Using space interpolation, it is possible to extend this
bound to non-integer values of m, which may also be generalised to approximations
in other orthogonal polynomials.

Of relevance here is to consider a function u with a singularity of the form
|x − x0|p , for some real p > −1. In the introduction of this paper, we summarised
results that showed that aN ∼ N−(p+1). It is of interest to investigate what the com-
parable bound on R(N) would be. It is straightforward to see that the (p + 1/2)

derivative of u (using the interpolation between integer derivatives) has a singularity
of the form |x − x0|−1/2 which is not square-integrable, although u has a finite Hm

norm for any m < p + 1/2. Taking the supremum of these values (assuming C is
independent of m) leads to R(N) ≤ C N−(p+1/2).

This bound for R(N) is entirely consistent with that for aN ∼ N−(p+1). Since aN

converges at only an algebraic rate, aN/aN+1 → 1 as N → ∞ from which it fol-
lows that aN/aN+n → 1 for any integer n > 0 and so all an, n > N , asymptotically
“equally contribute” to the residual. Thus R(N) must decay slower than any partic-
ular an. Note that, should an converge exponentially in n, then R(N) would be well
approximated by aN+1 and we would anticipate that R(N) ∼ aN .

These one-dimensional results have exact counterparts for functions defined on a
spherical surface. It may be shown that

R(L) =
√√√√

∮ ∣∣∣∣∣f (θ,φ) −
L∑

l=0

l∑
m=0

am
l Ym

l

∣∣∣∣∣
2

dΩ ≤ CL−m‖f ‖Hm

where Hm is defined in an analogous manner [14]. For functions which have singu-
larities on lines of colatitude of the form |θ − θ0|p , we may therefore infer the bound
R(L) ≤ C L−(p+1/2).
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