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Abstract In this paper we consider several variants of the pointwise convergence
problem for the Schrödinger equation, which generalize the previously known results.
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1 Introduction

Let us consider the free Schrödinger equation in R
d × R, d ≥ 1,

i∂tu + �xu = 0,

with initial datum f . Then the solution can be formally written as

u(x, t) = eit�f (x) = (2π)−d

∫
Rd

ei(x·ξ−t |ξ |2)f̂ (ξ) dξ
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where f̂ (ξ) = ∫
Rd e−ix·ξ f (x) dx. The problem which was first considered by Car-

leson [7] is to determine the minimal regularity s for which

lim
t→0

eit�f (x) = f (x) a.e.

whenever f ∈ Hs(Rd). Here Hs is the L2 Sobolev space of order s which is defined
by ‖f ‖2

Hs = ∫ |f̂ (ξ)|2(1 + |ξ |)2s dξ .
For one spatial dimension (d = 1) Carleson showed a.e. convergence for f ∈ Hs

when s ≥ 1/4 and the sharpness was later proven by Dahlberg and Kenig [10] who
showed that the condition s ≥ 1/4 is necessary (also see [28]). In higher dimensions,
d ≥ 2, Sjölin [23] and Vega [28] independently showed convergence for f ∈ Hs , s >

1/2 (also see [6, 9] for earlier results). Results under weaker regularity assumptions
(s < 1/2) had been known for d = 2, which were improved along with the progress of
Fourier restriction estimates for the paraboloid or the sphere (see [2, 14, 18, 26, 27]).
The best known result is convergence for s > 3/8 [14]. For d ≥ 3, progress was very
recently achieved by Bourgain [3]. By making use of multilinear estimates for Fourier
extension operators [1, 4] he showed convergence for s > 1

2 − 1
4d

. Surprisingly, he
also showed that the condition s ≥ 1

2 − 1
d

is necessary. So this gives a new lower
bound for d ≥ 5.

In this note we consider several variants of the pointwise convergence problem.
Notwithstanding recent progresses the problem is still open in higher dimensions
d ≥ 2. It might be premature to consider its variants in higher dimensions. So, we
mainly work with such variants in R

1 (see also [17] for a related problem in the
periodic case).

A natural generalization of the pointwise convergence problem is to ask a.e. con-
vergence along a wider approach region instead of vertical lines. One of such prob-
lems may be the nontangential convergence to the initial data (boundary values). It
is natural to expect that more regularity on the initial data is necessary to guarantee
a.e. existence of the nontangential limit. Since supt,x |eit�f (x)| ≤ ‖f ‖Hs if s > d

2
by Sobolev imbedding, the nontangential convergence follows by the standard argu-
ment if s > d

2 . However it was shown by Sjölin and Sjog̈ren [21] that non-tangential
convergence fails for s ≤ d

2 . They showed that there is an f ∈ Hd/2 such that

lim sup
(y,t)→(x,0)

|x−y|<γ (t),t>0

∣∣eit�f (y)
∣∣ = ∞

for all x ∈ R
d . Here γ is a strictly increasing function with γ (0) = 0. This raises

a question about how the size (or dimension) of the approach region and the regu-
larity which implies pointwise convergence are related. One may also ask a similar
question about the relation between the degree of tangency and regularity when (x, t)

approaches to x tangentially. To investigate these questions we consider some model
problems.

Convergence Along Restricted Directions in R × R Let Θ be a compact set in R.
To measure the dimension of Θ , we use a simple notion of dimension. Let N(Θ,δ)
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be the minimal number of δ-intervals which cover Θ and set

β(Θ) = lim sup
δ→0

logN(Θ,δ)

− log δ
,

which is called upper box counting dimension (for example see [12]). It is useful for
the study of some maximal operators of which boundedness depends on the size of
parameter set (see [11, 20] for related works).

We consider convergence of eit�f (y) to f (x) as (y, t) → (x,0) while y−x ∈ tΘ .
More precisely, we intend to find the optimal regularity s which guarantees

lim
(y,t)→(x,0)

y−x∈tΘ

eit�f (y) = f (x) a.e. (1.1)

whenever f ∈ Hs . Following the usual argument, we consider the associated maxi-
mal operator which is given by

MΘf (x) = sup
(t,θ)∈[0,1]×Θ

∣∣eit�f (x + θt)
∣∣, x ∈ R.

Theorem 1.1 Let Θ be a compact subset of R. If s >
β(Θ)+1

4 , then

‖MΘf ‖L2([−1,1]) ≤ C‖f ‖Hs . (1.2)

Obviously, by translation and dilation the above estimate holds for any finite inter-
val. Once it is established, we have the following result which can be proved by the
usual argument (see [22] for example).

Corollary 1.2 Let Θ be a compact subset of R. Then (1.1) holds whenever f ∈ Hs

with s >
β(Θ)+1

4 .

This seems sharp because so is it when β(Θ) = 1 [21] and β(Θ) = 0 [10] but we
don’t know whether it is sharp or not when 0 < β(Θ) < 1.

Convergence Along Variable Curves R
d × R Let γ be a continuous function such

that

γ : R
d × [−1,1] → R

d , γ (x,0) = x.

Now we consider the pointwise convergence problem along the curve (γ (x, t), t).
That is to say, we want to find the optimal regularity s for which the convergence

lim
t→0

eit�f
(
γ (x, t)

) = f (x) a.e. (1.3)

holds whenever f ∈ Hs . When the curve γ is smooth, precisely, a C1 function, it was
shown in [15] that the boundedness of related maximal operator is essentially equiva-
lent to that of the free Schrödinger operator. However such smoothness condition ex-
cludes the curves which approach (x,0) tangentially to the hyperplane {(x, t) : t = 0}.
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Here, we consider a curve which satisfies Hölder condition of order α, 0 < α ≤ 1,
in t ; ∣∣γ (x, t) − γ

(
x, t ′

)∣∣ ≤ C
∣∣t − t ′

∣∣α (1.4)

and is bilipschitz in x,

C1|x − y| ≤ ∣∣γ (x, t) − γ (y, t)
∣∣ ≤ C2|x − y|. (1.5)

A simple example of such curve is γ (x, t) = x−vtα, v ∈ R
d with v 	= 0. When d = 1,

we can prove the optimal results except for the endpoint cases (see Proposition 1.5).
Let us denote by BR(x) ⊂ R

d the ball (possibly interval) which has center at x

with radius r and by IT (t) the interval which has center at t and length 2T .

Theorem 1.3 Let d = 1 and 0 < α ≤ 1. Suppose that (1.4) and (1.5) hold for x, y ∈
BR(x0) and t, t ′ ∈ IT (t0). Then

∥∥∥ sup
t∈IT (t0)

∣∣eit�f
(
γ (x, t)

)∣∣∥∥∥
L2(BR(x0))

≤ C‖f ‖Hs (1.6)

holds if s > max( 1
2 − α, 1

4 ).

Obviously, (1.6) holds for any continuous function γ if s > 1
2 since the maximal

inequality is true by Sobolev imbedding. With γ (x, t) = x + 1/log(1/t) and the in-
terval (0,1), one can show that this inequality fails if s < 1/2. See Proposition 1.5
below. The following is an immediate consequence of Theorem 1.3.

Corollary 1.4 Let d = 1 and 0 < α ≤ 1. Suppose that for every x0 ∈ R, there is a
neighborhood V of (x0,0) such that (1.4) holds for (x, t), (x, t ′) ∈ V and (1.5) holds
for all (x, t), (y, t) ∈ V . Then (1.3) holds whenever f ∈ Hs and s > max( 1

2 − α, 1
4 ).

Now we discuss on the necessity of the condition on s in Theorem 1.3. It is sharp
in the sense that there are curves γ satisfying both (1.4) and (1.5) but (1.6) fails if
s < max( 1

2 − α, 1
4 ). In fact, we will show this with γ (x, t) = x − tα (see Proposition

1.5 below). Furthermore, with this particular curves, it also can be shown that for
s < max( 1

2 − α, 1
4 ), there is an f ∈ Hs for which (1.3) fails. This can be done by

making use of Stein’s maximal theorem [24].
In order to show the sharpness of Theorem 1.3, we begin by proving the following

proposition.

Proposition 1.5 Let I be an interval and ν : I → R
d be a continuous function. Sup-

pose that γ (x, t) = x − ν(t) and that there is a point t0 ∈ I and ε > 0 such that
(t0, t0 + ε) ⊂ I and

diam
{
ν(τ): τ ∈ [t0, t]

}
� |t − t0|α

for all t ∈ (t0, t0 + ε). Then (1.6) holds only if s ≥ max( 1
2 − α,0).
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Obviously the above assumption is satisfied with ν(t) = (tα,0, . . . ,0) and s = 0.

Proof of Proposition 1.5 Fix λ � ε−1. Let us consider f which is given by

f̂ (ξ) = eit0|ξ |2ψ
(
λ− 1

2 ξ
)

where ψ ∈ C∞
0 (B(0,1)). Then by rescaling

eit�f
(
γ (x, t)

) = (2π)−dλ
d
2

∫
eiλ(t0−t)|ξ |2eiλ

1
2 γ (x,t)·ξψ(ξ) dξ.

So, it follows that
∣∣eit�f

(
γ (x, t)

)∣∣ ∼ λ
d
2

if |t − t0| ≤ λ−1 and |λ 1
2 γ (x, t)| ≤ c for some sufficiently small c > 0. So,

sup
0≤t≤1

∣∣eit�f
(
γ (x, t)

)∣∣ ∼ λ
d
2

if x is contained in O(λ− 1
2 )-neighborhood of the set {ν(τ) : τ ∈ [t0, t0 + λ−1]} (of

length � λ−α) which has measure � λ− d
2 if α ≥ 1

2 and λ− d−1
2 λ−α if α < 1

2 . Hence
the maximal inequality (1.6) implies

λ
d
2 λ− d−1

4 max
(
λ− 1

4 , λ− α
2
) ≤ Cλ

s
2 λ

d
4 .

Now letting λ → ∞ we get the desired condition. �

To see the necessity of s ≥ 1
4 for (1.6) let us consider γ (x, t) = x − (tα,0, . . . ,0)

and the function f which is given by

f̂ (ξ) = ψ
(
λ− 1

2 (ξ − λe1)
)
.

Here ψ is a smooth bump function compactly supported in a small neighborhood of
the origin and λ � 1. Then by translation and rescaling it is easy to see that

∣∣eit�f
(
γ (x, t)

)∣∣ ∼ λ
d
2

provided that |t | ≤ λ−1 and |λ 1
2 (x1 − tα + 2λt, x̄)| ≤ c for some small c > 0. Here

x = (x1, x̄) ∈ R
×

R
d−1. Hence sup0≤t≤1 |eit�f (γ (x, t))| ∼ λ

d
2 if 0 ≤ x1 ≤ c/100 and

|x̄| ≤ cλ− 1
2 /100. So, the maximal inequality (1.6) implies

λ
d
2 λ− d−1

4 ≤ Cλsλ
d
4 .

Now letting λ → ∞ we get the condition 1
4 ≤ s.
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Schrödinger Equation with Quadratic Potentials Let ω = (ω1, . . . ,ωd) ∈ C1
loc(R)

and set

Hω = 1

2

(
� −

d∑
j=1

ωj (t)x
2
j

)
, x = (x1, x2, . . . , xd).

We now consider the Schrödinger equation with time dependent potential of the form

i∂tu + Hωu = 0, u(x,0) = f (x), (1.7)

with f ∈ Hs(Rd). We denote by eit Hωf the solution of (1.7). Then similarly as
before we are interested in the problem of finding the optimal s for which

lim
t→0

eit Hωf (x) = f (x) a.e. (1.8)

whenever f ∈ Hs(Rd). When the potential is time independent, namely, ω1 = ω2 =
· · · = ωd = 1 (this gives the Hermite Schrödinger operator), it was shown in [15] that
the problem is equivalent to that of the free Schrödinger operator except the endpoint
cases. In what follows we show that such equivalence is also valid for eit Hωf . In
fact, it is a consequence of a more general result that local estimates for eit Hωf and
eit�f are essentially equivalent in the mixed norm space L

q
xLr

t . Both operators can
be related to each other via generalized Mehler’s formula [5, 25], which is also called
lens transform (see Lemma 4.1).

Let c(t) = (c1(t), c2(t), . . . , cd(t)) defined on the interval IT (t0) such that,

c′
j (t) > 0 (1.9)

for all j = 1, . . . , d , and t ∈ IT (t0). We define an auxiliary operator

U c
γ f (x, t) = 1

(2π)d

∫
e
i(γ (x,t)·ξ−∑d

j=1 cj (t)|ξj |2)
f̂ (ξ) dξ.

If c1(t) = c2(t) = · · · = cd(t), by a simple change of variables U c
γ can be transformed

eit�f (γ̃ (x, t)) for some γ̃ . But it does not seem that such transformation is available
in general. The following is concerned about equivalence between local estimates for
U c

γ f and eit�f .

Theorem 1.6 Let q, r ≥ 2, s0 ∈ R, and (x0, t0) ∈ R
d × R. Suppose that γ ∈

Lip(BR(x0)×IT (t0)) satisfies (1.5) for x, y ∈ BR(x0), t ∈ IT (t0), and c ∈ C2(IT (t0))

satisfies (1.9). Then
∥∥eit�f

∥∥
L

q
x(B1(0),Lr

t [0,1]) ≤ C‖f ‖Hs(Rd ) (1.10)

holds for s > s0 if and only if
∥∥U c

γ f
∥∥

L
q
x(BR(x0),L

r
t (IT (t0)))

≤ C‖f ‖Hs(Rd ) (1.11)

holds for s > s0. If we additionally assume that γ ∈ C∞(BR(x0) × IT (t0)) and c ∈
C∞(I T (t0)), then (1.10) and (1.11) are equivalent except for r = ∞.
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When γ is smooth, (1.5) can be replaced by detDxγ (x, t) 	= 0 for all (x, t) ∈
BR(x0) × IT (t0). Such equivalence is also valid for the local estimates in L

q
t Lr

x . If
the signatures of c′

1(t), c
′
2(t), . . . , c

′
d(t) are different, then the equivalence between

(1.10) and (1.11) fails. For example, when d ≥ 2 ‖eit�f ‖L2
xL∞

t (B1×I ) ≤ ‖f ‖Hs fails

if s < 1
2 [19] but ‖eit�f ‖L2

xL∞
t (B×I ) ≤ ‖f ‖Hs is known to be valid for s > 1

2 − 1
4d

[3,
14]. However, from the proof of Theorem 1.6 it is obvious that the same equivalence
remains valid if we replace � by ∂2

x1
+ · · · + ∂2

xm
− ∂2

xm+1
− · · · − ∂2

xd
where m is the

number of positive c′
i (t) and c′

i (t) 	= 0.
If we combine Theorem 1.6 and Lemma 4.1, various estimates [14–16] which

hold for eit�f remain valid for eit Hωf . In particular, from the equivalence between
maximal estimates (see [3, 14]) we have the following.

Corollary 1.7 Suppose ω ∈ C1(−1,1). Then, then (1.8) holds whenever f ∈ Hs(Rd)

and s ≥ 1
4 when d = 1, s > 1

2 − 1
4d

when d ≥ 2.

The equivalence of local estimates is related to the fact that the propagation speed
of Schrödinger waves is not finite. For the wave equation there is no such equivalence
as it can be seen by a simple example. In fact, let ψ ∈ C∞

0 (1,2) and let us consider

f̂ (ξ) = λ−dei|ξ |ψ
(|ξ |/λ)

, γ (x, t) = (t + 1)x,

and λ � 1. Then by making use of asymptotic expansion for Bessel function

it is easy to see that ‖eit
√−�f (γ (·, t))‖Lr

xL
q
t (B1(2e1)×[0,1]) ∼ λ− d−1

2 − 1
r and

‖eit
√−�f ‖Lr

xL
q
t (B1(2e1)×[0,1]) ∼ λ

− d−1
2 − 1

q . Hence this shows that the equivalence
fails unless q = r . On the contrary when the order of propagation speed increases
one can further relax the Lipschitz condition on γ to Hölder conditions. (See Propo-
sition 4.3.)

The paper is organized as follows. In Sect. 2 we show a few preliminary lem-
mas including a temporal localization lemma and in Sect. 3 the proofs of Theo-
rems 1.1 and 1.3 are given. Finally, in Sect. 4 we prove Theorem 1.6 and Corol-
lary 1.7. Throughout the paper C denotes constants which may be different from line
to line.

2 Preliminaries; A Temporal Localization Lemma

Let m ≥ 2 and Q(·, t) be a real valued smooth function satisfying that for |ξ | � 1
∣∣∇ξQ(ξ, t) − ∇ξQ

(
ξ, t ′

)∣∣ ∼ ∣∣t − t ′
∣∣|ξ |m−1, t, t ′ ∈ IT (t0), (2.1)

∣∣∂β
ξ Q(ξ, t) − ∂

β
ξ Q

(
ξ, t ′

)∣∣ ≤ C
∣∣t − t ′

∣∣|ξ |m−|β|, t, t ′ ∈ IT (t0). (2.2)

For a continuous function γ which is defined on BR(x0) × IT (t0) let us set

T Q
γ f (x, t) = 1

(2π)d

∫
ei(γ (x,t)·ξ−Q(ξ,t))f̂ (ξ) dξ.
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The following version of temporal localization is very useful for the proof of the
theorems. This was first observed in [14] for eit�f . A sharp version without ε-loss of
bounds was obtained [15] by making use of wave-packet decomposition (for example
see [13]). Here we provide a simpler proof based on T T ∗ method.

Lemma 2.1 Let λ ≥ 1 and α ∈ R. And let q, r ≥ 2 and J = {J } be a collection of
intervals of length λ1−m such that J ⊂ IT (t0) and

∑
J∈J χJ ≤ 4. Suppose that (2.1)

and (2.2) hold for |β| ≤ max(2, d − 2α + 3). Also suppose that

∥∥T Q
γ f

∥∥
L

q
x(BR(x0),L

r
t (J ))

≤ Cλα‖f ‖2 (2.3)

with C uniform in J ∈ J provided that f̂ is supported in {ξ : |ξ | ∼ λ}. Then, there
exists C = C(B,‖γ ‖L∞(BR(x0)×IT (t0))) such that

∥∥T Q
γ f

∥∥
L

q
x(BR(x0),L

r
t (

⋃
J∈J J ))

≤ Cλα‖f ‖2 (2.4)

whenever f̂ is supported in {ξ : |ξ | ∼ λ}.

Proof For simplicity let us set T = T
Q
γ . Obviously we may assume that the intervals

J are disjoint. Since f̂ is supported in the set {ξ : |ξ | ∼ λ}, with appropriate ψ ∈
C∞

0 (R \ {0}), we may write

Tf (x, t) = 1

(2π)d

∫
ei(γ (x,t)·ξ−Q(ξ,t))f̂ (ξ)ψ

(|ξ |/λ)
dξ.

Let T ∗ denote the adjoint operator of T and set

FJ (x, t) = χJ (t)F (x, t).

Then by duality it is enough to show that if
∥∥T ∗FJ

∥∥
2 ≤ Cλα‖F‖q ′,r ′ (2.5)

for J ∈ J, then ∥∥∥∥
∑
J∈J

T ∗FJ

∥∥∥∥
2
≤ Cλα‖F‖q ′,r ′ . (2.6)

Here ‖ · ‖q,r denotes ‖ · ‖L
q
x(BR(x0),L

r
t (IT (t0)))

. To show (2.6), we may assume that the
intervals {J } are disjoint. Then (2.6) follows from

∣∣∣∣
∑

J,J ′∈J

〈
T ∗FJ ,T ∗FJ ′

〉∣∣∣∣ ≤ Cλ2α‖F‖2
q ′,r ′ . (2.7)

We note that

T T ∗F =
∫ ∫

K
(
x, y, t, t ′

)
F

(
y, t ′

)
dy dt ′,
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where

K
(
x, y, t, t ′

) =
∫

ei((γ (x,t)−γ (y,t ′))·ξ−(Q(ξ,t)−Q(ξ,t ′)))ψ2(|ξ |/λ)
dξ

= λd

∫
eiλm(t−t ′)ϕ(ξ)ψ2(|ξ |)dξ.

Here we set

ϕ(ξ) = 1

λm(t − t ′)
(
λ
(
γ (x, t) − γ

(
y, t ′

)) · ξ − (
Q(λξ, t) − Q

(
λξ, t ′

)))
.

Let us set ‖γ ‖∞ = ‖γ ‖L∞(BR(x0)×IT (t0)). From (2.1) and (2.2) we have

∣∣∇ξ ϕ(ξ)
∣∣ ≥ C − 2λ1−m

∣∣t − t ′
∣∣−1‖γ ‖∞,

∣∣∂β
ξ ϕ(ξ)

∣∣ ≤ C + 2λ1−m
∣∣t − t ′

∣∣−1‖γ ‖∞

for some C > 0. Hence by routine integration by parts (max(2, [d − 2α] + 3) times)
we see that if |t − t ′| ≥ Cλ−m+1(‖γ ‖∞ + 1) for a sufficiently large C,

∣∣K(
x, y, t, t ′

)∣∣ ≤ Cλd
(
1 + λm

∣∣t − t ′
∣∣)−max(2,d−2α+2)

. (2.8)

So we get for dist(J, J ′) ≥ Cλ1−m(‖γ ‖∞ + 1)

∥∥χJ T T ∗(FJ ′)
∥∥∞,∞ ≤ Cλd

(
1 + λm dist

(
J,J ′))−max(2,d−2α+2)‖FJ ′‖1,1.

Since F may be assumed to be supported in the closure of BR(x0) × IT (t0), it
follows that if dist(J, J ′) ≥ Cλ1−m(‖γ ‖∞ + 1)

∥∥χJ T T ∗(FJ ′)
∥∥

q,r
≤ Cλd

(
1 + λm dist

(
J,J ′))−max(2,d−2α+2)‖F‖q ′,r ′ .

Since 〈T ∗FJ ,T ∗FJ ′ 〉 = 〈FJ ,χJ T T ∗FJ ′ 〉, by Hölder’s inequality and using the above
∑

J,J ′∈J:dist(J,J ′)≥Cλ1−m(‖γ ‖∞+1)

∣∣〈T ∗FJ ,T ∗FJ ′
〉∣∣

≤
∑

J,J ′∈J:dist(J,J ′)≥Cλ1−m(‖γ ‖∞+1)

Cλd
(
1 + λm dist

(
J,J ′))−max(2,d−2α+2)

× ‖FJ ‖q ′,r ′‖FJ ′ ‖q ′,r ′ .

Since dist(J, J ′) ≥ Cλ1−m(‖γ ‖∞ + 1), for any J ′
∑

J∈J:dist(J,J ′)≥Cλ1−m(‖γ ‖∞+1)

Cλd
(
1 + λm dist

(
J,J ′))−max(2,d−2α+2) ≤ Cλ2αλ−1.

By Schur’s test

∑
J,J ′∈J:dist(J,J ′)≥Cλ1−m(‖γ ‖∞+1)

∣∣〈T ∗FJ ,T ∗FJ ′
〉∣∣ ≤ Cλ2α−1

(∑
J

‖FJ ‖2
q ′,r ′

)
.
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Since 1 ≤ q ′, r ′ ≤ 2 and J are disjoint, (
∑

J ‖FJ ‖2
q ′,r ′) ≤ ‖(∑J |FJ |2) 1

2 ‖2
q ′,r ′ =

‖∑
J FJ ‖2

q ′,r ′ . Therefore,

∑
J,J ′∈J:dist(J,J ′)≥Cλ1−m(‖γ ‖∞+1)

∣∣〈T ∗FJ ,T ∗FJ ′
〉∣∣ ≤ Cλ2α−1

∥∥∥∥
∑
J

FJ

∥∥∥∥
2

q ′,r ′
. (2.9)

Now, by Hölder’s inequality and (2.5) we have |〈T ∗FJ ,T ∗FJ ′ 〉| ≤ Cλ2α ×
‖FJ ‖q ′,r ′‖FJ ′‖q ′,r ′ . Hence,

∑
J,J ′∈J:dist(J,J ′)<Cλ1−m(‖γ ‖∞+1)

∣∣〈T ∗FJ ,T ∗FJ ′
〉∣∣

≤ Cλ2α
∑

J,J ′∈J:dist(J,J ′)<Cλ1−m(‖γ ‖∞+1)

‖FJ ‖q ′,r ′‖FJ ′‖q ′,r ′

≤ C
(‖γ ‖∞ + 1

)
λ2α

(∑
J

‖FJ ‖2
q ′,r ′

)
≤ C

(‖γ ‖∞ + 1
)
λ2α

∥∥∥∥
∑
J

FJ

∥∥∥∥
2

q ′,r ′
.

Combining this with (2.9), we get the desired inequality (2.7). This completes the
proof. �

In general, Lemma 2.1 does not hold with f ∈ Lp,α , p 	= 2 and it is valid only
for local estimates. Lemma 2.1 also provides a simple proof of the local smoothing
estimate ∥∥eitP f

∥∥
L2

x,t (B1(0)×(0,1))
≤ C‖f ‖

H
− m−1

2
.

(See [8, 23, 28].) Here eitP (D)f is a solution to the dispersive equation (4.7)
and P satisfies (4.6). In fact, by Lemma 2.1, Littlewood-Paley decomposition and
Plancherel’s theorem, it is enough to show that

∥∥eitP f
∥∥

L2
x,t (B1×(0,λ1−m))

≤ Cλ− m−1
2 ‖f ‖2

if f̂ is supported in {ξ : |ξ | ∼ λ}, but this is obvious from Plancherel’s theorem and
integration in the interval (0, λ1−m).

Let χ be a smooth function such that suppχ ⊂ {|ξ | ∼ 1} and
∑

k∈Z
χ(2−k·) = 1.

Let us set χ0 = ∑0
k=−∞ χ(2−k·) = 1−∑∞

k=1 χ(2−k·). As usual, for k ≥ 0, we define
the projection operators Pk by

P̂kf = χ
(
2−k·)f̂ , k ≥ 1, and P̂0f = χ0f̂ .

When γ is smooth, it is possible to put together estimates for U c
γ Pλf without any

loss.

Lemma 2.2 Let γ be a continuous function defined on BR(x0) × IT +ε(t0), ε > 0.
Suppose that ∂tγ is bounded and smooth in t , that is, γ (x, ·) ∈ C∞ and suppose that
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|∂tQ(ξ, t)| ∼ |ξ |m for |ξ | � 1, m > 1. If 1 < r < ∞, then for N > 0 and x ∈ BR(x0),∥∥∥∥
∑
k≥0

T Q
γ Pkf (x, ·)

∥∥∥∥
Lr

t (IT (t0))

≤ C

∥∥∥∥
(∑

k≥1

∣∣T Q
γ Pkf (x, ·)∣∣2

) 1
2
∥∥∥∥

Lr
t (IT +ε (t0))

+ CN‖f ‖H−N(Rd ).

Proof Let ψ be a smooth cutoff function which ψ ≡ 1 on IT (t0) and supported in
IT +ε(t0). For a fixed x ∈ B1, define T̃

Q
γ f by

T̃ Q
γ f (t) = ψ(t)T Q

γ f (x, t).

Since ‖T Q
γ P0f ‖∞ � ‖f ‖H−N for any N , it is sufficient to show that

∥∥∥∥
∑
k≥1

T̃ Q
γ Pkf

∥∥∥∥
Lr

t (IT (t0))

≤ C

∥∥∥∥
(∑

k≥1

∣∣T̃ Q
γ Pkf

∣∣2
) 1

2
∥∥∥∥

Lr
t (R)

+ CN‖f ‖H−N(Rd ).

Let ψ̃ be a smooth function which ψ̃ ≡ 1 on {τ−1
0 ≤ |τ | ≤ τ0} and supported

on {(2τ0)
−1 ≤ |τ | ≤ 2τ0} for some τ0 > 0 and for k ≥ 1, define P̃k by ̂̃PkF =

ψ̃(2−kτ )F̂ (τ ). By Minkowski’s inequality
∥∥∥∥
∑
k≥1

T̃ Q
γ Pkf

∥∥∥∥
Lr

t (IT (t0))

≤
∥∥∥∥
∑
k≥1

P̃mkT̃
Q
γ Pkf

∥∥∥∥
Lr

t (R)

+
∑
k≥1

∥∥(1 − P̃mk)T̃
Q
γ Pkf

∥∥
Lr

t (IT (t0))

= I + II.

For I , by applying Littlewood-Paley theorem in t , we obtain

I ≤ C

∥∥∥∥
(∑

k≥1

∣∣T̃ Q
γ Pkf (x, ·)∣∣2

) 1
2
∥∥∥∥

Lr
t (R)

≤ C

∥∥∥∥
(∑

k≥1

∣∣T Q
γ Pkf (x, ·)∣∣2

) 1
2
∥∥∥∥

Lr
t (IT +ε (t0))

for some C > 0. So it suffices to show

II ≤ CN‖f ‖H−N(Rd ).

We now observe that

(1 − P̃mk)T̃
Q
γ Pkf (x, t) =

∫∫
χ

(
2−kξ

)(
1 − ψ̃

(
2−mkτ

))
K(x, ξ, τ )f̂ (ξ)eiτ t dτ dξ,

(2.10)
where

K(x, ξ, τ ) = 1

(2π)d+1

∫
ψ(t)ei(γ (x,t)·ξ−Q(ξ,t)−tτ ) dt.
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Since τ ≤ 2mkτ−1
0 or τ ≥ 2mkτ0 for k ≥ 1 and |ξ | ≤ 2k+2 and |∂tγ | ≤ C, we observe

that for sufficiently large τ0, |∂t (γ (x, t) · ξ − Q(ξ, t) − tτ )| ≥ C max(2mk, |τ |). By
integration by parts, we obtain, for N > 0,

∣∣K(x, ξ, τ )
∣∣ ≤ CN

(
1 + 2mk|τ |)−N

.

Putting this in (2.10) and integrating, we get for any N > 0

∣∣(1 − P̃mk)T̃
Q
γ Pkf (t)

∣∣ ≤ CN 2−mNk

∫ ∣∣χ(
2−kξ

)
f̂ (ξ)

∣∣dξ ≤ CN ′2−2Nk+ d
2 k‖Pkf ‖2.

Choosing sufficiently large N , by Hölder’s inequality and Plancherel’s theorem, we
see that ∥∥(1 − P̃mk)T̃

Q
γ Pkf

∥∥
Lr(IT (t0))

≤ CN2−k‖f ‖H−N(Rd ).

Hence we get the desired inequality. �

3 Proofs of Theorems 1.1 and 1.3

In this section we prove Theorems 1.1 and 1.3. The argument here is basically
a modification of T T ∗ argument and it is incorporated with temporal localization
(Lemma 2.1) which can be applied after frequency localization.

Proof of Theorem 1.1 Let Pλ be the projection operator which is given by Pλf =
(ψ(·/λ)f̂ )∨ with ψ ∈ C∞

0 ((−2,− 1
2 ) ∪ ( 1

2 ,2)). In order to prove Theorem 1.1 it is
enough to show that

‖MΘPλf ‖L2[−1,1] ≤ C

√
N

(
Θ,λ−1/2

)
λ

1
4 ‖f ‖2. (3.1)

In fact, from the definition of β(Θ) it follows that N(Θ,λ−1/2) � λ
β(Θ)

2 +ε for any
ε > 0. Hence we have

‖MΘPλf ‖L2[−1,1] ≤ Cλ
β(Θ)+1

4 +ε‖f ‖2.

By Littlewood-Paley decomposition, triangle inequality and direct summation we get
(1.2) whenever s >

β(Θ)+1
4 .

It remains to show (3.1). Let Ω1, Ω2, . . . denote N(Θ,λ−1/2) intervals of length

λ− 1
2 which covers Θ . Then by Cauchy–Schwarz’s inequality it follows that

MΘPλf (x) = sup
(t,θ)∈I×Θ

∣∣eit�Pλf (x + θt)
∣∣

≤
( ∑

1≤k≤N(Θ,λ−1/2)

sup
(t,θ)∈I×Ωk

∣∣eit�Pλf (x + θt)
∣∣2

) 1
2

.

Hence, to get (3.1) it is sufficient to show the following. �
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Lemma 3.1 If Ω is an interval of length λ− 1
2 , then

‖MΩPλf ‖L2[−1,1] ≤ Cλ
1
4 ‖f ‖2.

Proof of Lemma 3.1 Let us set

χ(x, t, θ) = χ[−1,1]×[0,1]×Ω(x, t, θ)

and

Tf (x, θ, t) = χ(x, t, θ)

∫
ei(−t |ξ |2+(x+tθ)·ξ)ψ(ξ/λ)f (ξ) dξ.

By Plancherel’s Theorem the estimate is equivalent to

‖Tf ‖L2
xL∞

θ,t
≤ Cλ

1
4 ‖f ‖2.

We consider the adjoint operator of T which is given by

T ∗F(ξ) = ψ(ξ/λ)

∫∫∫
ei(t ′|ξ |2−(y+t ′ϑ)·ξ)χ

(
y, t ′, ϑ

)
F

(
y, t ′, ϑ

)
dy dt ′ dϑ.

Then by duality (T T ∗ argument) it is enough to show that

∥∥T T ∗∥∥
L2

xL∞
θ,t

≤ Cλ
1
2 ‖F‖L2

xL1
θ,t

. (3.2)

We now note that

T T ∗F(x, t, θ) = χ(x, t, θ)

∫∫∫
Kλ

(
t, t ′, x, y, θ,ϑ

)
χ

(
y, t ′, ϑ

)
F

(
y, t ′, ϑ

)
dy dt ′ dϑ

where

Kλ

(
t, t ′, x, y, θ,ϑ

) = χ(x, t, θ)χ
(
y, t ′, ϑ

)
λ

×
∫

ei(λ2(t ′−t)|ξ |2+λ(x−y+θt−ϑt ′)·ξ)ψ2(ξ) dξ.

Since |x|, |y|, t, t ′, θ,ϑ � 1, |∇ξ (λ
2(t ′ − t)|ξ |2 +λ(x − y + θt −ϑt ′) · ξ)| ≥ Cλ2|t −

t ′| if |t − t ′| ≥ Cλ−1 for some large C. Hence, by integration by parts it follows that

∣∣Kλ

(
t, t ′, x, y, θ,ϑ

)∣∣ ≤ Cλ−N
(
1 + λ

∣∣t − t ′
∣∣)−N

if |t − t ′| ≥ Cλ−1. So, the operator is localized at scale of λ−1 in time. By a standard
localization argument it is enough to show that

∥∥T T ∗F
∥∥

L2
xL∞

θ L∞
t (J )

≤ Cλ
1
2 ‖F‖L2

xL1
θL1

t (J ).

Here J ⊂ Ω is an interval of length ∼ λ−1. (For example see the proof of
Lemma 2.1.) Let us set

χ̃(x, t, θ) = χJ (t)χ(x, t, θ)
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and

K̃λ

(
t, t ′, x, y, θ,ϑ

) = χ̃ (x, t, θ)χ̃
(
y, t ′, ϑ

)
λ

×
∫

ei(λ2(t ′−t)|ξ |2+λ(x−y+θt−ϑt ′)·ξ)ψ2(ξ) dξ.

Then we are reduced to show that
∥∥∥∥
∫

K̃λ

(
t, t ′, x, y, θ,ϑ

)
F

(
y, t ′, ϑ

)
dy dt ′

∥∥∥∥
L2

xL∞
θ,t

≤ Cλ
1
2 ‖F‖L2

xL1
θ,t

.

This follows from Schur’s test and the estimates
∫

sup
θ,t,ϑ,s

∣∣K̃λ

(
t, t ′, x, y, θ,ϑ

)∣∣dy,

∫
sup

θ,t,ϑ,s

∣∣K̃λ

(
t, t ′, x, y, θ,ϑ

)∣∣dx ≤ Cλ
1
2 . (3.3)

We now claim that

∣∣K̃λ

(
t, t ′, x, y, θ,ϑ

)∣∣ � λ
(
1 + λ|x − y|)− 1

2 (3.4)

provided that |x − y| ≥ Cλ− 1
2 for some large constant C > 0. Since t, t ′ ∈ J ⊂ [0,1]

and θ,ϑ ∈ Ω we have tθ − t ′ϑ = O(λ− 1
2 ) because J , Ω are intervals of length

∼ λ−1, λ− 1
2 , respectively. So, if |x−y| ≥ Cλ− 1

2 , then |x−y+θt −ϑt ′| ∼ |x−y|. On
the other hand, if |λ2(t − t ′)| � λ|x − y| or |λ2(t − t ′)| � λ|x − y|, by integration by
parts it follows that |K̃λ(t, t

′, x, y, θ,ϑ)| ≤ λ(1+λ|x−y|)−N . Hence we may assume
that |λ2(t − t ′)| ∼ λ|x − y|. Then by Van der Corput’s lemma |K̃λ(t, t

′, x, y, θ,ϑ)| ≤
Cλ(1 + λ2|t ′ − t |)− 1

2 . So, we get (3.4).
Since |K̃λ| � λ, by (3.4)

∫ ∣∣K̃λ

(
t, t ′, x, y, θ,ϑ

)∣∣dx ≤ Cλ

(∫ Cλ
− 1

2

0
dx + λ− 1

2

∫ 1

0
|x − y|− 1

2 dx

)
� λ

1
2 .

Hence we get the desired estimates (3.3). This completes the proof. �

Proof of Theorem 1.3 By changing variables (x, t) → (x0 + Rx, t0 − T + 2T t), we
may assume that BR(x0) = [−1,1] and IT (t0) = [0,1]. We set

Uγ f (x, t) = eit�f
(
γ (x, t)

)
,

and

U∗
γ f (x) = sup

0≤t≤1

∣∣eit�f
(
γ (x, t)

)∣∣.

By Littlewood-Paley decomposition it is sufficient to show that for s ≥ max( 1
2 −α, 1

4 )

∥∥U∗
γ Pλf

∥∥
L2

xL∞
t ([−1,1]×[0,1]) ≤ Cλs‖f ‖2,
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where as before Pλ is the projection operator to the set {|ξ | ∼ λ}. Let J be an interval
of length λ−1 contained in [0,1]. By Lemma 2.1, it is enough to show

∥∥U∗
γ Pλf

∥∥
L2

xL∞
t ([−1,1]×J )

≤ Cλs‖f ‖2

with C independent of J . By T T ∗ argument it suffices to show that

∥∥∥∥
∫

K
(
x, y, t, t ′

)
F

(
y, t ′

)
dy dt ′

∥∥∥∥
L2

xL∞
t ([−1,1]×J )

≤ Cλ2s‖F‖L2
xL1

t ([−1,1]×J ) (3.5)

where

K
(
x, y, t, t ′

) =
∫

ei((γ (x,t)−γ (y,t ′))·ξ+(t ′−t)|ξ |2)ψ2(ξ/λ)dξ

and ψ ∈ C∞
0 ((−2,− 1

2 ) ∪ ( 1
2 ,2)). Changing of variables ξ → λξ , we have

K
(
x, y, t, t ′

) = λ

∫
ei(λ(γ (x,t)−γ (y,t ′))·ξ+λ2(t ′−t)|ξ |2)ψ2(ξ) dξ. �

Lemma 3.2 Let J ⊂ [0,1] be an interval of sidelength λ−1. Suppose that γ :
[0,1] → R satisfies (1.4) and (1.5). Then, if |x − y| ≥ Cλ−α for some large C, then
for t, t ′ ∈ J

∣∣K(
x, y, t, t ′

)∣∣ ≤ Cλ
(
1 + λ|x − y|)− 1

2 . (3.6)

Proof Let us set

ϕ(ξ) = λ
(
γ (x, t) − γ

(
y, t ′

)) · ξ + λ2(t ′ − t
)|ξ |2.

Since t, t ′ ∈ J , from the conditions (1.4) and (1.5) we observe that

γ (x, t) − γ
(
y, t ′

) = (
γ (x, t) − γ

(
x, t ′

)) + (
γ
(
x, t ′

) − γ
(
y, t ′

))
,∣∣γ (x, t) − γ

(
x, t ′

)∣∣ �
∣∣t − t ′

∣∣α = O
(
λ−α

)
,∣∣γ (

x, t ′
) − γ

(
y, t ′

)∣∣ ∼ |x − y|.
(3.7)

So, we separately consider three cases:

|x − y| � λ
∣∣t − t ′

∣∣, |x − y| � λ
∣∣t − t ′

∣∣, |x − y| ∼ λ
∣∣t − t ′

∣∣.
For the first case |x − y| � λ|t − t ′|, we have | d

dξ
ϕ| � λ|x − y| because |x − y| ≥

Cλ−α . Hence, by non stationary phase method (integration by parts), we get for
any N

∣∣K(
x, y, t, t ′

)∣∣ ≤ C
λ

(1 + λ|x − y|)N .



J Fourier Anal Appl (2012) 18:972–994 987

If |x − y| � λ|t − t ′|, then we see that | d
dξ

ϕ(ξ)| � λ2|t − t ′| because ψ is supported
away from zero. Integration by parts gives the bound

∣∣K(
x, y, t, t ′

)∣∣ ≤ C
λ

(1 + λ2|t − t ′|)N ≤ C
λ

(1 + λ|x − y|)N .

For the last case |x − y| ∼ λ|t − t ′|, | d2

dξ2 ϕ| � λ2|t − t ′|. Hence by van der Corput’s
lemma we obtain that

∣∣K(
x, y, t, t ′

)∣∣ ≤ Cλ
1

(1 + λ2|t − t ′|)1/2
∼ λ

(1 + λ|x − y|)1/2
.

Combining these three cases we get the desired (3.6). �

Lemma 3.3 Assume that J ⊂ [0,1] be an interval of sidelength λ−1and γ : [0,1] →
R satisfies (1.4) and (1.5). Then, for t, t ′ ∈ J

∣∣K(
x, y, t, t ′

)∣∣ ≤ C max

(
λ1/2

|x − y|1/2
, |x − y|− 1

2α

)
. (3.8)

Proof Here we use the same notation as in the proof of Lemma 3.2. We first consider
two cases |x − y| � |t − t ′|α, |x − y| � |t − t ′|α , separately. If |x − y| � |t − t ′|α , we

use the fact that | d2

dξ2 ϕ| � λ2|t − t ′| and van der Corput’s lemma to obtain

∣∣K(
x, y, t, t ′

)∣∣ � λ
1

(1 + λ2|t − t ′|)1/2
≤ ∣∣t − t ′

∣∣−1/2 � |x − y|−1/2α.

Now we consider the case |x − y| � |t − t ′|α . Then, recalling (3.7), we see that
∣∣∣∣ d

dξ
ϕ(ξ)

∣∣∣∣ = ∣∣λ(
γ (x, t) − γ

(
y, t ′

)) + 2λ2(t ′ − t
)
ξ
∣∣ � λ|x − y| − O

(
λ2

∣∣t − t ′
∣∣).

Thus if |x − y| � λ|t − t ′|, then | d
dξ

ϕ| ≥ λ|x − y|. So it follows from integration by

parts that |K(x,y, t, t ′)| ≤ λ
(1+λ|x−y|)N . And if λ|t − t ′| � |x − y|, then by van der

Corput’s lemma again we have

∣∣K(
x, y, t, t ′

)∣∣ ≤ λ1/2

|x − y|1/2
.

Hence we have the desired bounds. �

Now we prove (3.5). We break the interval [−1,1] into essentially intervals of side
length Cλ−α so that [−1,1] = ⋃

Ik . So we bound the square of the left hand side of
(3.5) by

∑
k

∥∥∥∥
∑
k′

∫
χIk

(x)K
(
x, y, t, t ′

)
χIk′ (y)F

(
y, t ′

)
dy dt ′

∥∥∥∥
2

L2
xL∞

t (Ik×J )

,
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which is again bounded by the sum of

2
∑

k

∥∥∥∥
∫

χIk
(x)K

(
x, y, t, t ′

)
χĨk

(y)F
(
y, t ′

)
dy dt ′

∥∥∥∥
2

L2
xL∞

t (Ik×J )

, (3.9)

2
∑

k

∥∥∥∥
∑
k′�k

∫
χIk

(x)K
(
x, y, t, t ′

)
χIk′ (y)F

(
y, t ′

)
dy dt ′

∥∥∥∥
2

L2
xL∞

t (Ik×J )

, (3.10)

where we say k � k′ if the distance between the two intervals Ik and Ik′ is bigger than
4Cλ−α and Ĩk is an interval containing Ik and of length slightly bigger than 2Cλ−α .

We handle the case 1
2 ≤ α ≤ 1 first. In this case we need to show (3.5) with s = 1

4 .
We first deal with (3.9), which is easier. Note that |K| ≤ Cλ and the length of interval
Ik ∼ λ−α . Hence it follows that

∫
sup

t,t ′∈J

∣∣χIk
(x)K

(
x, y, t, t ′

)
χĨk

(y)
∣∣dx,

∫
sup

t,t ′∈J

∣∣χIk
(x)K

(
x, y, t, t ′

)
χĨk

(y)
∣∣dy ≤ Cλ1−α.

Schur’s test gives the bound

∥∥∥∥
∫

χIk
(x)K

(
x, y, t, t ′

)
χĨk

(y)F
(
y, t ′

)
dy dt ′

∥∥∥∥
2

L2
xL∞

t (Ik×J )

≤ Cλ2(1−α)‖Fk‖2
L2

xL1
t
,

where Fk(x, t) = χĨk
(x)F (x, t). Now using the disjoint of the supports, we get

(3.9) ≤ Cλ2(1−α)
∑

k

‖Fk‖2
L2

xL1
t
≤ Cλ2(1−α)‖F‖2

L2
xL1

t
≤ Cλ‖F‖2

L2
xL1

t
.

Now we consider (3.10). Since dist(Ik, Ik′) ≥ Cλ−α if k 	= k′, from Lemma 3.2
we see that∣∣∣∣

∑
k′�k

∫
χIk

(x)K
(
x, y, t, t ′

)
χIk′ (y)F

(
y, t ′

)
dy dt ′

∣∣∣∣

≤ χIk
(x)

∫ ∣∣K(
x, y, t, t ′

)∣∣
∣∣∣∣
∑
k′�k

χIk′ (y)F
(
y, t ′

)∣∣∣∣dy dt ′

≤ CχIk
(x)

∫
λ
(
1 + λ|x − y|)− 1

2

∣∣∣∣
∑
k′�k

χIk′ (y)F
(
y, t ′

)∣∣∣∣dy dt ′

≤ CχIk
(x)

∫
λ
(
1 + λ|x − y|)− 1

2
∣∣F (

y, t ′
)∣∣dy dt ′.

Hence (3.10) is bounded by

∥∥∥∥
∫

λ
(
1 + λ|x − y|)− 1

2
∣∣F (

y, t ′
)∣∣dy dt ′

∥∥∥∥
2

L2
xL∞

t ([−1,1]×J )

.
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Since ‖λ(1 + λ| · |)− 1
2 ‖L1[−2,2] ≤ Cλ

1
2 . Hence by Schur’s test again we get

(3.10) ≤ Cλ‖F‖2
L2

xL1
t
.

Combining the above two estimate for (3.9) and (3.10), we get (3.5) with s = 1
4 .

Now we consider the case 0 < α < 1/2. Note that
∫ 1
−1 min(|x −y|− 1

2α , λ) � λ1−2α

when 0 < α < 1/2. Hence by (3.8) and the fact that |K| ≤ Cλ implies

∫ 1

−1
sup

t,t ′∈J

∣∣K(
x, y, t, t ′

)∣∣dx,

∫ 1

−1
sup

t,t ′∈J

∣∣K(
x, y, t, t ′

)∣∣dy � max
(
λ

1
2 , λ1−2α

)
.

Using Schur’s test again, we obtain
∥∥∥∥
∫

K
(
x, y, t, t ′

)
F

(
y, t ′

)
dy dt ′

∥∥∥∥
L2

xL∞
t ([−1,1]×J )

≤ C max
(
λ

1
2 , λ1−2α

)‖F‖L2
xL∞

t ([−1,1]×J ).

This completes the proof of Theorem 1.3.

4 Time Dependent Quadratic Potentials; Proof of Theorem 1.6

We begin by recalling the following result in [25] (Lemma 1 in [25] and also see
Lemma 3.3 in [5]) which generalizes Mehler’s formula to (1.7) with ω ∈ C1

loc .1 If
ω ∈ C1

loc , there exists T > 0 such that for t ∈ (−T ,T )

eit Hωf =
(

d∏
j=1

2πiτj (t)

)− 1
2 ∫

Rd

e
i
2 φ(x,y,t)f (y) dy,

where

φ(x, y, t) =
d∑

j=1

(
aj (t)x

2
j − 2bj (t)xj yj + dj (t)y

2
j

)
,

and τj , aj , bj , and dj are given by

τ ′′
j + ωj (t)τj = 0; τj (0) = 0, τ ′

j (0) = 1, (4.1)

aj = τ ′
j /τj , bj = 1/τj ,

dj = τ−1
j

((
τ ′
j

)−1 −
∫ t

0
ωj

(
t ′
)(

τ ′
j

(
t ′
))−2

dt ′
)

. (4.2)

Using this we have the following lemma which relates eit Hωf to eit�f .

1In fact, it remains valid for locally Lipschitz continuous function ω. See Lemma 3.3 in [5].
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Lemma 4.1 Let ω ∈ C1
loc . There is a T > 0 such that

eitHωf (x, t) = ε(x, t)U c
γ f (x, t), (x, t) ∈ R

d × [−T ,T ],

|ε(x, t)| ∼ 1, and c ∈ C2[−T ,T ] satisfies c(t) = (t, t, . . . , t, t) + O(t2) and

γ (x, t) = (
γ1(t)x1, γ2(t)x2, . . . , γd(t)xd

)
, γj (t) = 1 + O(t).

Proof By completing square and using the fundamental solution to the free Schröd-
inger equation we see

eit Hω = e

i
2

∑d
j=1(aj − b2

j

d2
j

)x2
j

∏d
j=1(2πiτj (t))1/2

∫
Rd

e
i
2

∑d
j=1 dj (t)(yj − bj (t)

dj (t)
xj )2

f (y)dy

= e

i
2

∑d
j=1(aj − b2

j

d2
j

)x2
j

∏d
j=1(τj (t)dj (t))1/2

1

(2π)d

∫
Rd

e
i(

∑d
j=1

bj (t)

dj (t)
xj ξj −∑d

j=1
1

2dj (t)
|ξj |2)

f̂ (ξ) dξ.

Now we set

ε(x, t) = e

i
2

∑d
j=1(aj − b2

j

d2
j

)x2
j

d∏
j=1

(
τj (t)dj (t)

)− 1
2 ,

cj (t) = 1

2dj (t)
= 1

2
τj

((
τ ′
j

)−1 −
∫ t

0
ωj

(
t ′
)(

τ ′
j

(
t ′
))−2

dt ′
)−1

,

γj (t) = bj (t)
(
dj (t)

)−1 =
((

τ ′
j

)−1 −
∫ t

0
ωj

(
t ′
)(

τ ′
j

(
t ′
))−2

dt ′
)−1

.

Since ω ∈ C1
loc , it follows from (4.1) that τj ∈ C3 locally. Using the second equation

above, we see that cj ∈ C2 locally. From (4.1), τj (t) = t + O(t2) and τ ′
j (t) = 1 +

O(t). Hence it is easy to see |ε(x, t)| ∼ 1 because τj (t)dj (t) ∼ 1 by (4.2) if t is
sufficiently small. The other properties are easy to check. So, we omit the details. �

Proof of Corollary 1.7 Now assuming Theorem 1.6 we prove Corollary 1.7. By
Lemma 4.1 it is sufficient to show

∥∥∥ sup
0≤t≤T

U c
γ f

∥∥∥
L2(B1(x0))

≤ C‖f ‖Hs

for any x0 ∈ R
d . Now it is easy to see that γ , c in Lemma 4.1 satisfy the assump-

tions in Theorem 1.6. Hence the above estimate holds for s > s0 if ‖ sup0≤t≤T eit� ×
f ‖L2(B1(0)) ≤ C‖f ‖Hs0 which is valid for s0 ≥ 1

4 when d = 1, s0 > 1
2 − 1

4d
when

d ≥ 2 (see [3, 14]). This proves Corollary 1.7 except the endpoint case s = 1
4 when
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d = 1, which can be proven by following the argument in [22]. The details are omit-
ted. �

Proof of Theorem 1.6 We only prove that (1.10) implies (1.11). The converse also
can be shown similarly. To begin with, we first establish the following equivalence
of the estimates over intervals of length ∼λ−1, which will be combined to get the
desired estimate by making use of Lemma 2.1. �

Lemma 4.2 Let λ � 1 and q, r ≥ 1. Suppose that γ and c satisfy the assumptions
in Theorem 1.6. Let J ⊂ IT (t0) be an interval of length ∼ λ−1 and assume that f̂ is
supported in {ξ : |ξ | ∼ λ}. Then the followings are equivalent:

∥∥eit�f
∥∥

L
q
x(B1(0),Lr

t [0,λ−1]) ≤ Cλs‖f ‖L2, (4.3)
∥∥U c

γ f
∥∥

L
q
x(BR(x0),L

r
t (J ))

≤ Cλs‖f ‖L2 . (4.4)

Proof First we prove the implication from (4.3) to (4.4). Let t∗ ∈ J . For simplicity
let us set Ξ = (|ξ1|2, . . . , |ξd |2). By rescaling ξ → λξ we have

U c
γ f (x, t) = λd

∫
1
2 ≤|ξ |<2

ei(λγ (x,t)·ξ−λ2c(t)·Ξ)f̂ (λξ) dξ

= λd

∫
1
2 ≤|ξ |<2

eiΨ (x,t,ξ)ei(λγ (x, t∗)·ξ−(t−t∗)λ2c′(t∗)·Ξ)e−iλ2c(t∗)·Ξ f̂ (λξ) dξ,

where

Ψ (x, t, ξ) = λ
(
γ (x, t) − γ (x, t∗)

) · ξ − λ2(
c(t) − c(t∗) − (t − t∗)c′(t∗)

) · Ξ.

Since t∗ ∈ J and length of J is O(λ−1), it is easy to see that |∂β
ξ Ψ | = O(1) uniformly

in x, t because γ ∈ Lip(BR(x0) × IT (t0)) and c ∈ C2(I T (t0)). So we may expand
eiΨ (x,t,ξ) into Fourier series on [−π,π]d so that eiΨ (x,t,ξ) = ∑

k∈Zd Ck(x, t)eik·ξ
with |Ck(x, t)| ≤ C(|k| + 1)−N for large N . Hence we have

U c
γ f (x, t) = λd

∑
k∈Zd

Ck(x, t)

∫
1
2 ≤|ξ |<2

eik·ξ ei(λγ (x,t∗)·ξ−(t−t∗)λ2c′(t∗)·Ξ)

× e−iλ2c(t∗)·Ξ f̂ (λξ) dξ

=
∑
k∈Zd

Ck(x, t)

∫
λ/2≤|ξ |<2λ

ei(γ (x,t∗)·ξ−tc′(t∗)·Ξ)f̂t∗,λ,k(ξ) dξ

with ‖ft∗,λ,k‖2 = ‖f ‖2. Now, recalling (1.9), we make change of variables ξi →
|c′

i (t∗)|−
1
2 ξi to get

∥∥U c
γ f

∥∥
L

q
x(BR(x0),L

r
t (J ))

≤
∑

k

C
(|k| + 1

)−N∥∥eit�f̃k

(
γ (x, t∗)

)∥∥
L

q
x(BR(x0),L

r
t (J ))
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with f̃k which is Fourier supported in {ξ : |ξ | ∼ λ} and ‖f̃k‖2 ∼ ‖f ‖2. Since γ (x, t∗)
is independent of t and bilipschitz in x, changing variables in x we get

∥∥U c
γ f

∥∥
L

q
x(BR(x0),L

r
t (J ))

≤
∑

k

C
(|k| + 1

)−N∥∥eit�f̃k

∥∥
L

q
x(BCR(γ (x0,t∗),Lr

t (J ))
.

We now use the assumption (4.3) which is translation invariant. So, by (1.10), trans-
lation and mild dilation it follows that

∥∥U c
γ f

∥∥
L

q
x(BR(x0),L

r
t (J ))

≤
∑

k

C
(|k| + 1

)−N
λs

∥∥f̃ k
∥∥

2 ≤ Cλs‖f ‖2.

This completes the proof of the implication (4.3) → (4.4). The converse can be
proven similarly. We omit the details. �

Let λ � T −1. We split the interval IT (t0) into a union of disjoint intervals J of
length ∼ λ−1. Trivially (1.10) implies (4.3). Hence, by Lemma 4.2 we get for each J

∥∥U c
γ f

∥∥
L

q
x(BR(x0),L

r
t (J ))

≤ Cλs‖f ‖2

provided that f̂ ∈ {ξ : |ξ | ∼ λ}. By Lemma 2.1, it follows that
∥∥Uc

γ f
∥∥

L
q
x(BR(x0),L

r
t (IT (t0)))

≤ Cλs‖f ‖2 (4.5)

if f̂ ∈ {ξ : |ξ | ∼ λ}. Since (1.10) holds for s > s0, so does (4.5). Also note that (1.11)
is trivial when f̂ is supported in {ξ : |ξ | � 1}. Hence, summation along dyadic pieces
gives (1.11).

If we additionally have smoothness for γ and c, we may use Lemma 2.2. In fact,
since we are assuming that γ ∈ C∞(BR(x0) × IT (t0)) and c ∈ C∞(I T (t0)), we may
replace IT (t0) with a slightly extended region IT +ε(t0) for some ε > 0. So we may
assume that (4.5) on BR(x0) × IT +ε(t0) holds. By Lemma 2.2, for 1 < r < ∞, x ∈
BR(x0)

∥∥U c
γ f (x, ·)∥∥

Lr
t (IT (t0))

≤ C

∥∥∥∥
(∑

k≥1

∣∣U c
γ Pkf (x, ·)∣∣2

) 1
2
∥∥∥∥

Lr
t (IT +ε (t0))

+ C‖f ‖H−N(Rd ).

Since q , r ≥ 2, by Minkowski’s inequality and (4.5) (with IT +ε(t0))
∥∥Uc

γ f
∥∥

L
q
x(BR(x0),L

r
t (IT (t0)))

≤ C

(∑
k≥1

∥∥U c
γ Pkf

∥∥2
L

q
x(BR(x0),L

r
t (IT +ε (t0)))

) 1
2 + C‖f ‖H−N(Rd )

≤ C

(∑
k≥1

22sk‖Pkf ‖2
2

) 1
2 + C‖f ‖H−N(Rd ) ≤ C‖f ‖Hs .

This completes the proof of the implication (1.10) → (1.11).
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Higher Order Dispersive Equation Let m ≥ 2 and P satisfy that for |ξ | � 1

∣∣∂β
ξ P (ξ)

∣∣ ≤ C|ξ |m−|β|,
∣∣∇P(ξ)

∣∣ ∼ |ξ |m−1. (4.6)

Let eitP f be the solution of the equation

i∂tu + P(D)u = 0, u(·,0) = f. (4.7)

When m > 2, we can relax Lipschitz condition in t to Hölder condition.

Proposition 4.3 Let γ : Br(x0) × IT (t0) → R
d satisfy (1.5) for x, y ∈ Br(x0),

t ∈ IT (t0) and
∣∣γ (x, t) − γ

(
x, t ′

)∣∣ ≤ C
∣∣t − t ′

∣∣ 1
m−1 (4.8)

all x ∈ B(x0, r), t, t ′ ∈ IT (t0). Let 2 ≤ q, r ≤ ∞, and s0 ∈ R. Then, for s > s0

∥∥eitP f
∥∥

L
q
x(B1(0),Lr

t [0,1]) ≤ c ‖f ‖Hs(Rd ) (4.9)

if only if for s > s0

∥∥eitP f
(
γ (x, t)

)∥∥
L

q
x(BR(x0),L

r
t (IT (t0)))

≤ C ‖f ‖Hs(Rd ). (4.10)

As before, if γ is smooth in t , using Lemma 2.2 we can show the equivalence
of (4.9) and (4.10) except r = ∞. However, we don’t know whether the equivalence
fails if the exponent 1

m−1 in (4.8) is replaced by a smaller number. It seems interesting
to find the exact order of Hölder condition which guarantees the equivalence.

Proposition 4.3 can be proven similarly as Theorem 1.6. In fact, since |∇P(ξ)| ∼
|ξ |m−1, by Lemma 2.1 we are reduced to showing equivalence on an interval of length
λ1−m. By recalling the proof of Theorem 1.6, it is not difficult to see that the equiv-
alence follows if we show that λ(γ (x, t) − γ (x, t ′)) = O(1) when |t − t ′| � λ1−m.
This is obvious from (4.8).
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