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Abstract In this paper we consider several variants of the pointwise convergence
problem for the Schrodinger equation, which generalize the previously known results.
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1 Introduction
Let us consider the free Schrodinger equation in RYxR,d>1,
i0iu+ Ayu=0,

with initial datum f. Then the solution can be formally written as

ux,t) =€ f(x) = (Zn)_d/

Rl
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where f(& )= fRd e~%€ f(x)dx. The problem which was first considered by Car-
leson [7] is to determine the minimal regularity s for which

m% A f(x)=f(x) ae.
t—

whenever f € H® (R). Here H* is the L> Sobolev space of order s which is defined
by ILf I3 = [1FE)PA +[ED> dé.

For one spatial dimension (d = 1) Carleson showed a.e. convergence for f € H®
when s > 1/4 and the sharpness was later proven by Dahlberg and Kenig [10] who
showed that the condition s > 1/4 is necessary (also see [28]). In higher dimensions,
d > 2, Sjolin [23] and Vega [28] independently showed convergence for f € HY, s >
1/2 (also see [6, 9] for earlier results). Results under weaker regularity assumptions
(s < 1/2) had been known for d = 2, which were improved along with the progress of
Fourier restriction estimates for the paraboloid or the sphere (see [2, 14, 18, 26, 27]).
The best known result is convergence for s > 3/8 [14]. For d > 3, progress was very
recently achieved by Bourgain [3]. By making use of multilinear estimates for Fourier

extension operators [1, 4] he showed convergence for s > % — ﬁ. Surprisingly, he

also showed that the condition s > % — % is necessary. So this gives a new lower

bound for d > 5.

In this note we consider several variants of the pointwise convergence problem.
Notwithstanding recent progresses the problem is still open in higher dimensions
d > 2. It might be premature to consider its variants in higher dimensions. So, we
mainly work with such variants in R! (see also [17] for a related problem in the
periodic case).

A natural generalization of the pointwise convergence problem is to ask a.e. con-
vergence along a wider approach region instead of vertical lines. One of such prob-
lems may be the nontangential convergence to the initial data (boundary values). It
is natural to expect that more regularity on the initial data is necessary to guarantee
a.e. existence of the nontangential limit. Since sup, , ™A F O] < | fllgs if s > %
by Sobolev imbedding, the nontangential convergence follows by the standard argu-
ment if s > %. However it was shown by Sjolin and Sjogren [21] that non-tangential

convergence fails for s < % They showed that there is an f € H%/? such that

limsup |e"® f(y)| =00
(y,1)—(x,0)
lx=yl<y®),t>0

for all x € RY. Here y is a strictly increasing function with y (0) = 0. This raises
a question about how the size (or dimension) of the approach region and the regu-
larity which implies pointwise convergence are related. One may also ask a similar
question about the relation between the degree of tangency and regularity when (x, ¢)
approaches to x tangentially. To investigate these questions we consider some model
problems.

Convergence Along Restricted Directions in R x R Let ® be a compact set in R.
To measure the dimension of @, we use a simple notion of dimension. Let N (O, §)
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be the minimal number of §-intervals which cover ® and set

_logN(®,5)
B(®) =limsup —————
50  —logs

’

which is called upper box counting dimension (for example see [12]). It is useful for
the study of some maximal operators of which boundedness depends on the size of
parameter set (see [11, 20] for related works).

We consider convergence of ¢/’2 f(y) to f(x) as (y, 1) — (x,0) while y—x € 1O.
More precisely, we intend to find the optimal regularity s which guarantees

lim /2 = f(x) ae. 1.1
Gom f=rx (1.D
y—xet®

whenever f € H®. Following the usual argument, we consider the associated maxi-
mal operator which is given by

Mof(x)= sup  [e"®f(x+6n)
(t,0)€[0,11x O

, xeR.

Theorem 1.1 Let ®@ be a compact subset of R. If s > W, then
Mo fll2q—1,17) < Cllfllas- (1.2)

Obviously, by translation and dilation the above estimate holds for any finite inter-
val. Once it is established, we have the following result which can be proved by the
usual argument (see [22] for example).

Corollary 1.2 Let ® be a compact subset of R. Then (1.1) holds whenever f € H®

; B(O)+1
with s > ==,

This seems sharp because so is it when §(®) =1 [21] and 8(®) =0 [10] but we
don’t know whether it is sharp or not when 0 < 8(®) < 1.

Convergence Along Variable Curves R? x R Let y be a continuous function such
that
. d d —
y: R x[-1,11-> R, yp(x,0) =x.

Now we consider the pointwise convergence problem along the curve (y(x,1?),1).
That is to say, we want to find the optimal regularity s for which the convergence

1in6e"mf(y(x,z)) = f(x) ae. (1.3)
t—

holds whenever f € H*. When the curve y is smooth, precisely, a C! function, it was
shown in [15] that the boundedness of related maximal operator is essentially equiva-
lent to that of the free Schrodinger operator. However such smoothness condition ex-
cludes the curves which approach (x, 0) tangentially to the hyperplane {(x, 7) : t = 0}.
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Here, we consider a curve which satisfies Holder condition of order o, 0 < ¢ <1,
int;
ly, 0y —y(x.t)| <Clt =" (1.4)

and is bilipschitz in x,
Cilx =yl < |y, 0) —y(y.0)| < Calx — yl. (1.5)

A simple example of such curveis y (x,t) =x —vt*, v € R4 with v #0.Whend =1,
we can prove the optimal results except for the endpoint cases (see Proposition 1.5).

Let us denote by Bg(x) C R? the ball (possibly interval) which has center at x
with radius r and by I (¢) the interval which has center at ¢ and length 27 .

Theorem 1.3 Letd =1 and 0 < o < 1. Suppose that (1.4) and (1.5) hold for x,y €
Bgr(xg) and t,t' € IT(ty). Then

L (Brtee)) = If Il (1.6)

sup [ f(y (x, t))|‘

telr (to)

holds if s > max(% —a, %).

Obviously, (1.6) holds for any continuous function y if s > % since the maximal
inequality is true by Sobolev imbedding. With y (x, ) = x + 1/log(1/¢) and the in-
terval (0, 1), one can show that this inequality fails if s < 1/2. See Proposition 1.5
below. The following is an immediate consequence of Theorem 1.3.

Corollary 1.4 Let d =1 and 0 < « < 1. Suppose that for every xo € R, there is a
neighborhood V of (xg, 0) such that (1.4) holds for (x,t), (x,t") € V and (1.5) holds
forall (x,t),(y,t) € V. Then (1.3) holds whenever f € H* and s > max(% —a, }T).

Now we discuss on the necessity of the condition on s in Theorem 1.3. It is sharp
in the sense that there are curves y satisfying both (1.4) and (1.5) but (1.6) fails if
s < max(% —a, }T). In fact, we will show this with y (x, ) = x — t* (see Proposition
1.5 below). Furthermore, with this particular curves, it also can be shown that for
s <max(} —a, 1), there is an f € H* for which (1.3) fails. This can be done by
making use of Stein’s maximal theorem [24].

In order to show the sharpness of Theorem 1.3, we begin by proving the following
proposition.

Proposition 1.5 Let I be an interval and v : [ — R? be a continuous function. Sup-
pose that y(x,t) = x — v(t) and that there is a point ty € I and € > 0 such that
(to, to+€) C I and

diam{v(r): T € 1, t]} =t — 1ol

forallt € (tg, to + €). Then (1.6) holds only if s > max(% —a,0).
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Obviously the above assumption is satisfied with v(¢) = (¢%,0,...,0) and s = 0.
Proof of Proposition 1.5 Fix A > e~ !. Let us consider f which is given by

FE) =y (1 28)

where ¥ € C§°(B(0, 1)). Then by rescaling

e (y(x.1)) = (27) 18 f MR oYy ) g,

So, it follows that
e £y (x.0) [ ~ 27

if |t —19] <A~ ! and |)»%y(x, t)| < c for some sufficiently small ¢ > 0. So,

sup |2 f(y (x, )] ~ S

0<r<1

if x is contained in O()\_%)-neighborhood of the set {v() : T € [to, 1o + A1} (of
length > 2~%) which has measure > AT if > % and 2T Y if o < % Hence

the maximal inequality (1.6) implies

d _d—1 _1 s d
A227 % max(AT4,A72) < CAIAS,
Now letting A — oo we get the desired condition. O
To see the necessity of s > % for (1.6) let us consider y (x,t) = x — (t%,0,...,0)

and the function f which is given by

FEO =y (3¢ - re).

Here i is a smooth bump function compactly supported in a small neighborhood of
the origin and A > 1. Then by translation and rescaling it is easy to see that

e £y (xo0) [ ~ 27

provided that |f| < A~! and |A% (x1 — t* 4+ 2Xt, x)| < ¢ for some small ¢ > 0. Here
x = (x1, %) € R*R¢~1. Hence SUPg<; <] |2 f(y (x, 1)) ~ )»% if 0 < x1 <¢/100 and

%] < cA~2 /100. So, the maximal inequality (1.6) implies

Now letting A — oo we get the condition % <s.
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Schrodinger Equation with Quadratic Potentials Let w = (w1, ...,wg) € Cllo (R)
and set

d
1
H, = 5<A—X:a)j(t)x]2->, x = (x1,X2,...,%0).
=

We now consider the Schrodinger equation with time dependent potential of the form
iy +Hou=0, u(x,0)=f(x), (L.7)

with f € H*(R?). We denote by ¢'"Ho f the solution of (1.7). Then similarly as
before we are interested in the problem of finding the optimal s for which

lim Mo f(x)= f(x) ae. (1.8)
t—

whenever f € H*(R?). When the potential is time independent, namely, @ = wy =
-+ =wy =1 (this gives the Hermite Schrodinger operator), it was shown in [15] that
the problem is equivalent to that of the free Schrédinger operator except the endpoint
cases. In what follows we show that such equivalence is also valid for ¢!/’ f. In
fact, it is a consequence of a more general result that local estimates for ¢'tHo f and
e'' f are essentially equivalent in the mixed norm space LY L’. Both operators can
be related to each other via generalized Mehler’s formula [5, 25], which is also called
lens transform (see Lemma 4.1).
Let c(t) = (c1(t), c2(2), ..., cq(t)) defined on the interval I7 (7o) such that,

c;(t) >0 (1.9

forall j=1,...,d,and t € IT(ty). We define an auxiliary operator

1 ; d 2y ~
— iy (x,0)-6=2 5= ¢j(DIE;17)
U;f(x,t)—wfey DEi= e O8O Fle) de.

Ifci(t) =ca(t) =--- =cq4(t), by asimple change of variables U)f can be transformed

€2 f(¥(x, 1)) for some 7. But it does not seem that such transformation is available
in general. The following is concerned about equivalence between local estimates for
USf and e f.

Theorem 1.6 Let g, r > 2, so € R, and (x9,1ty) € RY x R. Suppose thc_zt y €
Lip(Bpg(xo) x IT(ty)) satisfies (1.5) for x, y € Br(xo),t € IT(ty),and ¢ € CZ(IT(IO))
satisfies (1.9). Then
it A
”elt f”LZ(Bl(O),Lﬂo,u) < Cllf s mey (1.10)
holds for s > sq if and only if
” U;f”LZ(BR(xo)’Lf(IT(to))) = C”f”H‘V(Rd) (1.11)

holds_for s > so. If we additionally assume that y € C®(Br(xp) x IT(t9)) and ¢ €
C®(I7(ty)), then (1.10) and (1.11) are equivalent except for r = co.
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When y is smooth, (1.5) can be replaced by det D,y (x,t) # 0 for all (x,?) €
BRr(x0) x IT(t9). Such equivalence is also valid for the local estimates in L;’L;. If
the signatures of ¢/ (t), c5 (1), ..., c,(¢) are different, then the equivalence between
(1.10) and (1.11) fails. For example, when d > 2 ||€”Df||L%L,°°(Bl wry < I flas fails

ifs < % [19] but ||ei’Af||L§LIOO(BX,) < || fllgs is known to be valid for s > % - ﬁ [3,
14]. However, from the proof of Theorem 1.6 it is obvious that the same equivalence
remains valid if we replace A by 8)%1 +--+ 837" — 83,”1 — = 8fd where m is the
number of positive c;(r) and ¢} (t) # 0.

If we combine Theorem 1.6 and Lemma 4.1, various estimates [14—16] which
hold for ¢'2 f remain valid for ¢!""e f_ In particular, from the equivalence between
maximal estimates (see [3, 14]) we have the following.

Corollary 1.7 Suppose w € C'(—1, 1). Then, then (1.8) holds whenever f € H*(R%)

andsziwhendzl,s>%—ﬁwhendzl

The equivalence of local estimates is related to the fact that the propagation speed
of Schrodinger waves is not finite. For the wave equation there is no such equivalence
as it can be seen by a simple example. In fact, let ¥ € C3°(1, 2) and let us consider

F@&=2"4Ely(jgl/0),  yx.0) =@+ Dx,

and A > 1. Then by making use of asymptotic expansion for Bessel function
. . i d—1_1
it is easy to see that [le"Y "2 f(y O 19 m@epxiony ~ A 2 ¢ and

le™ =2 1] ~ )»_%_é Hence this shows that the equival
L LY (B1(2e1)x[0,1]) : quivalence

fails unless ¢ = r. On the contrary when the order of propagation speed increases
one can further relax the Lipschitz condition on y to Holder conditions. (See Propo-
sition 4.3.)

The paper is organized as follows. In Sect. 2 we show a few preliminary lem-
mas including a temporal localization lemma and in Sect. 3 the proofs of Theo-
rems 1.1 and 1.3 are given. Finally, in Sect. 4 we prove Theorem 1.6 and Corol-
lary 1.7. Throughout the paper C denotes constants which may be different from line
to line.

2 Preliminaries; A Temporal Localization Lemma

Let m > 2 and Q(-, t) be a real valued smooth function satisfying that for |§]| > 1
|VeQ&, 1) = Ve Q(&.1)| ~ |t —1'|IE1"" . 1.1 € Ir(10), 2.1
8foE.n—af o) =cle—rlgm P 1t e Ir ). 2.2)

For a continuous function y which is defined on Bg(xg) x It (fo) let us set

T f(x. 1) = /ei(y(x,t)f—Q(S,t))]’c‘(é)dg.

Q2n)d
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The following version of temporal localization is very useful for the proof of the
theorems. This was first observed in [14] for ¢/’2 f. A sharp version without e-loss of
bounds was obtained [15] by making use of wave-packet decomposition (for example
see [13]). Here we provide a simpler proof based on T'T* method.

Lemma 2.1 Let A > 1 and o € R. And let q,r > 2 and 3 = {J} be a collection of
intervals of length A such that J C It (to) and 2163 X7 < 4. Suppose that (2.1)
and (2.2) hold for |B| <max(2,d — 2« + 3). Also suppose that

|72 7] CA*[ £ 2 2.3)

LY (Br(xo), LI () =

with C uniform in J € J provided that fis supported in {§ : |&| ~ L}. Then, there
exists C = C(B, ||y |l L (Bg(xo) x Ir (10))) SUch that

<C\*

0
” TV f‘ LI(Br(x0), Lf (Uje3 ) = 17112

2.4)
whenever fis supported in {€ : |&] ~ A}.

Proof For simplicity let us set 7' = T,,Q. Obviously we may assume that the intervals
J are disjoint. Since f is supported in the set {& : |€] ~ A}, with appropriate i €
Ci°(R\ {0}), we may write

1 . ~
Tf(x,t)= (ZT)d / EI(Y(X’I)'S_Q(SJ))f(é')lﬂ(|§'|/A) dE.

Let T* denote the adjoint operator of 7' and set
Fy(x,t) = x5O F(x,1).
Then by duality it is enough to show that if
|7*Fs ], < A1 F g 2.5)

for J € J, then

ZT*FJ

JeJ

S CANFllg (2.6)
2

Here || - ||4,, denotes || - ”LZ(BR(XO),LI(IT(to)))' To show (2.6), we may assume that the
intervals {J} are disjoint. Then (2.6) follows from

> (T F;. T*Fy)

J,J' ey

< CA™|F|I?,

2, @7

We note that
TT*F://K(x,y,t,t/)F(y,t’)dydt’,
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where

K(x.y.1.1)= /ei<<y(x,r>—y(y,z/»-s—(Q(s,z)—Q(éf)))w2(|€W) dt

:)Ld/ei)\'”(t—t’)w(g)l/ﬂ('s')dg'

Here we set

1
€)= Gy M@=y (1) £ = (068,10 — 0(48.1)).

Letus set | loo = I | L0 (Bg (x0) x I7 (1)) - From (2.1) and (2.2) we have
_ -1
Vep®)| = € =227 [t =1’y lloo.
- -1
lafw(S)\§C+2A1 =17y lloo

for some C > 0. Hence by routine integration by parts (max (2, [d — 2«] + 3) times)
we see that if |t — /| > CA™" T (||y |loo + 1) for a sufficiently large C,

—max(2,d—2a+2)

|K (x,y,t,¢)| < CAd(L+ "]t —1]) 2.8)

So we get for dist(J, J') = CA " (||y loo + 1)

||XJTT*(FJ/) —max(2,d—2a+2)

<A (1+amdist(d, J'))

00,00 —

1Fy i1

Since F may be assumed to be supported in the closure of Bg(xg) x I (%), it
follows that if dist(J, J') = CAY ™ (¥ llec + 1)

| TT*(F)|, , < CA4(1+ 2" dise(7, 7)) "™ @22 Py, .

q
Since (T*F;, T*Fy) = (Fy, x;TT*F),by Holder’s inequality and using the above
> (T*F;, T*Fy)|
J,J'€3:dist(J,J)=CM = ([ly oo +1)

< > Cad (14 A dist(7, J')) G A2t
J.J7€3:dist(1, 7)) =C = (|ly floo+1)

X1 Fyllg w1 Epllg
Since dist(J, J') = CA'(||¥ oo + 1), for any J’
3> A (142" dist(J, J')) " "XEA2F) < )21
JeJ:dist(J,J)=CAl="(||ly [loo+1)
By Schur’s test

> (T*F;, T*Fy)

J,J'€3:dist(J,J)=CA (Jly floo+-1)

<! (Z IEs ||§,,r,).
J
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Since 1 < ¢’,r’ <2 and J are disjoint, (}_, IIFJIIZ/J/) < I, |FJ|2)%”§/J/ _
132, Foli7, .- Therefore,

2
S C)\ZO{*]

> (T*F;, T*Fy)

J,J'€F:dist(J,J)=CA (|l [loo 1)

S

J

2.9)

[

qr

Now, by Holder’s inequality and (2.5) we have [(T*F;, T*F;)| < CA%* x
I Fsllg | Fyrlly, . Hence,

> (T*F;, T*F,)
J,J'e€3:dist(J,J)<CA= (||ly [loo+1)

2
<Cp > IES g 1 E g llgr e
J,J'€F:dist(J,J)<CA (lly lloo 1)

2

2

J

1ot

< C(lIylloo +1)2% (Z ||FJ||§/,,/) <C(llylloo+1)2%
J

q.r

Combining this with (2.9), we get the desired inequality (2.7). This completes the
proof. d

In general, Lemma 2.1 does not hold with f € L7%, p 2 and it is valid only
for local estimates. Lemma 2.1 also provides a simple proof of the local smoothing
estimate

||eitPf|

(See [8, 23, 28].) Here ¢"P(®) f is a solution to the dispersive equation (4.7)
and P satisfies (4.6). In fact, by Lemma 2.1, Littlewood-Paley decomposition and
Plancherel’s theorem, it is enough to show that

12, B0)x .1 = CILFI, ozt

" £] <7 TIf

L2 (By x(0,A1=m))

if fis supported in {£ : |£| ~ A}, but this is obvious from Plancherel’s theorem and
integration in the interval (0, aL-my,

Let x be a smooth function such that supp x C {|§] ~ 1} and } ;. x(27ky=1.
Let us set xo = 222_00 xQ7ky=1- e x(27K.). As usual, for k > 0, we define
the projection operators Py by

Pf=x2%)f, k=1, and Pyf=x0f.

When y is smooth, it is possible to put together estimates for U; P, f without any
loss.

Lemma 2.2 Let y be a continuous function defined on Bgr(xo) X IT+c(fo), € > 0.
Suppose that 8,y is bounded and smooth in t, that is, y (x, -) € C* and suppose that

Birkhauser



982 J Fourier Anal Appl (2012) 18:972-994

[0; Q(&, )| ~ &I for |E] > 1,m > 1.If1 <r < o0, thenfor N >0 and x € Bg(xp),

Y TePf(x,)

k=0

(o)

k>1

L7 (It (t0))

+ CN I f | g~ (Ray-
Ly (It (t0))

Proof Let ¥ be a smooth cutoff function which ¢ = 1 on I7(#p) and supported in
IT+(tp). For a fixed x € By, define Tny by

T2 =yOTL fx,1).

Since ||TyQ Poflloo S| fIl g—n~ for any N, it is sufficient to show that

ZTVQPkf <CH< |TQPkf| )

=1 Li (7 (10)) =1

+ CNILf I =N (Rdy-
Li(R)

Let 1Z be a smooth function which 1Z =1 on {‘L'O_ < |t] £ 1} and supported

on {(279) _ I <|7] < 219} for some 79 > 0 and for k > 1, define Pk by PkF =
w(2 kr)F(r) By Minkowski’s inequality

Y T2Pf Y PuTlPf
k>1 L7 (IT (1)) k>1 L!(R)
_ P \TO
+2 4= Puo T2 P L (7 (1))
k=1
=1+4+11.

For I, by applying Littlewood-Paley theorem in ¢, we obtain

1
2 2
<c”( TP Pif(x, )| )
LY (R) k>1

for some C > 0. So it suffices to show

1
2
I <c”( TQPkf(x,.>|2>
k>1

Ly (IT4¢(10))

IT <CNIf Il g ra)y-
‘We now observe that

(1= Pu)T2Pef(x.1) = f f x(27FE) (1 =¥ (27" 7))K(x. &, 1) F(§)e'™ dr d,

(2.10)
where

K(x,§,7)= /w(,)el(y(x NDE=QED—IT) gy

Q2 )d+l
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Since 7 < 2" 75! or T > 2" g for k > 1 and |&| < 2%*? and |3,y | < C, we observe

that for sufficiently large 79, |0;(y (x,1) - & — Q(&, 1) —tT)| > C max (2" |t]). By
integration by parts, we obtain, for N > 0,

K@, &, o) < v (1 +27 ) 7",
Putting this in (2.10) and integrating, we get for any N > 0
~ ~ -~ d
|1 = Pu) T2 P f (1)] < Cy2 N / |x(27%€) F(&)| d& < Cy2 N IR P f o

Choosing sufficiently large N, by Holder’s inequality and Plancherel’s theorem, we
see that

|1 = P T2 P f

—k
L" (It (t9)) = CN2 ”f”H*N(Rd)

Hence we get the desired inequality. 0

3 Proofs of Theorems 1.1 and 1.3

In this section we prove Theorems 1.1 and 1.3. The argument here is basically
a modification of TT* argument and it is incorporated with temporal localization
(Lemma 2.1) which can be applied after frequency localization.

Proof of Theorem 1.1 Let P, be the projection operator which is given by P, f =
(W (/W) f)HY with ¥ € C((—2, —%) U (3,2)). In order to prove Theorem 1.1 it is
enough to show that

1
1Mo Pifll 21,1 < Cy/ N(©, A=1/2) &3] f . 3.1)

In fact, from the definition of B(®) it follows that N (@, A~1/2) < A@“ for any
€ > (. Hence we have

BO)+1
Mo Prfllp2p—1 1 <Cr 3 Nl

By Littlewood-Paley decomposition, triangle inequality and direct summation we get
(1.2) whenever s > m.
It remains to show (3.1). Let §21, 22, ... denote N (6, »~1/2) intervals of length

A~2 which covers @. Then by Cauchy—Schwarz’s inequality it follows that
MoP,f(x)= sup [¢"*Pyf(x+061)]
(t,0)eIx O
1
. 2
s( > sup ]e”APAf(x—i-Gt)}Z) :

1<k<N(©,r~1/2) (1,0)€l x 2

Hence, to get (3.1) it is sufficient to show the following. Il
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Lemma 3.1 If 2 is an interval of length P , then
IM@ Py fll 211y < CA3 11 £ 2.
Proof of Lemma 3.1 Let us set
X (x,2,0) = X[—1,11x[0,11x 2 (x, 1, 0)
and
T, = xe,1,0) [ IR0y ) £ ds.

By Plancherel’s Theorem the estimate is equivalent to

1Tz, < CA31 £

We consider the adjoint operator of 7 which is given by

T F© =y e/ [[[ Oy (1 0)F(y. 9 dyar do,
Then by duality (7 T* argument) it is enough to show that

1
|TT* SCAZ|IF 2y - (3.2)

“L;Lg?,
‘We now note that
TT*F(x,t,0)=x(x,t,60) /// K;\(t, Y, x,v,0, ﬂ)x(y, t, ﬂ)F(y, t, 19) dydt' dv
where

K(t.t',x,y,0,9)=x(x,1,0)x(y.1',9)A

x /ei(m/—z)\s\2+Mx—y+9’—1’”)'5)w2(5)d$~

Since [x|, |yl.7,7,6,9 <1, [VeA2 (1" = DI +A(x —y + 601 —91') - £)| = CA*|r —
t'|if |t —t'| = CA~! for some large C. Hence, by integration by parts it follows that
Ko (1,7, %, 3,6, 9) | <A N (14 a|e =)

if t—t|>C A~ L. So, the operator is localized at scale of A~ !in time. By a standard
localization argument it is enough to show that

1
”TT*F”L;LgOL?O(J) = CR2F N2y

Here J C £2 is an interval of length ~ A~!. (For example see the proof of
Lemma 2.1.) Let us set

X(x,1,0)= x5O x(x,1,0)
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and
K, (1.1, %,y,0,9) =X (x.1,0)X(y. 1/, 9)A

< / ei(Az(t/—t)\S\2+A(x—y+9t—z9t’)~§)w2($) dE.
Then we are reduced to show that

H/ I?x(t, v, x,v,0, ﬁ)F(y,t/, z?) dydt

1
<CAiz ”F”L%L('”'
LILE, o

This follows from Schur’s test and the estimates

/ sup ‘Ex(t,t’,x,y,e,ﬁﬂdy,/ sup \KA(t ¢, x,,0,9)]dx <Cr2. (3.3)
0,t,9,s 0,t,9

We now claim that
yk’x(t,t’,x,y,e,ﬂﬂ§A(1+x|x—y|)‘% (3.4)

provided that |[x — y| > €577 for some large constant C > 0. Since ¢, € J C [0, 1]
and 0,9 € 2 we have 10 — t'9 = 0()»_%) because J, §2 are intervals of length
~AL, )»_% , respectively. So, if |[x —y| > C)\_% ,then |[x —y+0t—9t'| ~|x—y|.On
the other hand, if |A2(t — t’)l > Alx —ylor [A2(r — )| < Alx — v, by integration by
parts it follows that |K;L(t t,x, 9,0, <A(1+Alx—y)~V - Hence we may assume
that |A2(t —t')| ~ Mx — y|. Then by Van der Corput’s lemma IKA(t t',x,y,0,9) <
Co(1 4 22|t —1])72. So, we get (3.4).
Since | K| < 4, by (3.4)

1

)2 1
/‘|K)\(t,t/,x,y,9,z9)|dxSCA(/ dx—i—)\_%/ |x—y|_édx)§)»2.
0 0

Hence we get the desired estimates (3.3). This completes the proof. 0

Proof of Theorem 1.3 By changing variables (x,t) — (xo + Rx,t0 — T + 2Tt), we
may assume that Br(xo) =[—1, 1] and I7(¢y) = [0, 1]. We set

Uy fx,0)=¢"2f(y(x.1),
and

U f(x)= sup |¢"® f(y(x.0)].

0<r<1

By Littlewood-Paley decomposition it is sufficient to show that for s > max(% —a, %)

N
taxpoap = CA Nl
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where as before P, is the projection operator to the set {|§| ~ A}. Let J be an interval
of length A~! contained in [0, 1]. By Lemma 2.1, it is enough to show

NUSPf | 2 oot iy < CFILF 112

with C independent of J. By T T* argument it suffices to show that

< AN Fllapqoipesy 35

HfK(x,y,t,t’)F(y,t’)dydt/
LZL([—-1,1]1xJ)

where

K(x.y.t.') = / P ED=y OaNEHE=DIER) 2 8 13 g

and ¥ € C°((—2, —%) U (3. 2)). Changing of variables & — A&, we have
K(x.y.i.') =2 / O ED=y N ER2E=0ER) 42 6) g -

Lemma 3.2 Ler J C [0,1] be an interval of sidelength A~'. Suppose that y :
[0, 1] — R satisfies (1.4) and (1.5). Then, if |x — y| > CA™Y for some large C, then
fort, ' eJ
1
|K(x,y,t,t/)|§Ck(1+k|x—y|)_7. (3.6)

Proof Let us set

9E) =r(y(e,n) —y(y,1') - E+27(1 —1)IE1.
Since ¢, ¢’ € J, from the conditions (1.4) and (1.5) we observe that
v, -y )=y n—-yx)+ ) -v(.1)),
v,y —y(x. )| S|t=7]"=0(%), (3.7)
ly (e t) =y (1) [~ 1x = yl.

So, we separately consider three cases:

lx — y[ > alr — 7], lx — y| < At —7'), lx —yl~Alt—1|.

For the first case |x — y| > A|t — t/|, we have |f—$<p| 2 Alx — y| because |x — y| >
CA™“%. Hence, by non stationary phase method (integration by parts), we get for
any N

A
K(x,y,t,t)| <Cor- .
Ky 0] = C =
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If |x — y| < At — |, then we see that |%<p(§)| > 22|t —t'| because ¥ is supported
away from zero. Integration by parts gives the bound

A A
C <C .
(I+2A2t =PV =~ (A +alx — yDN

K(eyr.)] <

2
For the last case |x — y| ~ Alt — 1], |j?(p| > A%|t —t'|. Hence by van der Corput’s
lemma we obtain that

|K(x,y,2,1")| < Cx ! ~ & :
T+ A2 =Y (A4 Al — yD12

Combining these three cases we get the desired (3.6). |

Lemma 3.3 Assume that J C [0, 1] be an interval of sidelength .~ and y : [0, 1] —
R satisfies (1.4) and (1.5). Then, fort,t' € J

)\'I/Z
|K(x,y,l‘,f/)|Scmax<m,|x—y|_%). (38)

Proof Here we use the same notation as in the proof of Lemma 3.2. We first consider

two cases |x — y| S [t —t'|%, |x — y| > |t — 1'|*, separately. If |x — y| < |t —t/|%, we
2 .

use the fact that |;?go| 2> 22|t — ¢'| and van der Corput’s lemma to obtain

1
A <
A+ 22 —Pl2 = |

|K(x,y,t,t’)‘§ t—t"_1/25|x_y|—1/2a.

Now we consider the case |x — y| > |t — ¢'|*. Then, recalling (3.7), we see that
d
‘£¢(§)' =[A(y.t) =y (y.1)) + 222 (¢ = 1)&] 2 Alx — y| — O (3]t = 1']).

Thus if |x — y| > A|t — t/|, then |%<p| > Alx — y|. So it follows from integration by
parts that |K (x, y, t,1')| < m And if Alr — t'| > |x — y|, then by van der
Corput’s lemma again we have

)\'I/Z

|K(x,y,t,t’)|§m.

Hence we have the desired bounds. O

Now we prove (3.5). We break the interval [—1, 1] into essentially intervals of side
length CA™% so that [—1, 1] = Ix. So we bound the square of the left hand side of
(3.5) by

2

)

LZL® (L x J)

>

> [ 0K eyt s, 0O F 3. v
k/

Birkhauser



988 J Fourier Anal Appl (2012) 18:972-994

which is again bounded by the sum of

2
ZZ ’/XIk(x)K(x,y,t,t’))(;k(y)F(y,t/)dydt’ , (3.9)
k LIL(kxJ)
2
ZZ Z/x]k(x)K(x,y,t,t’)ka/(y)F(y,t/)dydt’ , (3.10)
PRI L2LP (I xJ)

where we say k ~ k' if the distance between the two intervals Iy and I} is bigger than
4CA™% and E( is an interval containing [; and of length slightly bigger than 2C1™%.

We handle the case % <« <1 first. In this case we need to show (3.5) with s = %.
We first deal with (3.9), which is easier. Note that | K| < CX and the length of interval
I ~ A~%. Hence it follows that

/ sup | x5, (O)K (x, y,1,1") xj. ()| dx,

t,r’'eJ

/ sup x5, )K (x.y.1.¢) x5 ()| dy < CA' .

t,t’'ed
Schur’s test gives the bound

2

< CAD | F |2

“/ka(x)K(x,y,t,t’)xrk(y)F(y,t’) dydr’ L2

LZL® (I xJ)

where Fi(x,t) = X7, (X)F (x, ). Now using the disjoint of the supports, we get

< CA|F|?

L LIy

2(1—a) 2 2(1-a) 2
(3.9)<Ch ijannL%L[.scx IFI7

Now we consider (3.10). Since dist({y, Iy) > CA™% if k # k/, from Lemma 3.2
we see that

Z/XIk(x)K(xv yvt’t/)XIk/(y)F(yst/)dydt/

k' ok

dydt

> X1, OF(y.1)

k' ok

gxlk(x)/|K(x,y,t,t’)|

dydt

> x WF(y.1)

k' ok

<C (x)/x(l Al —yl)7E

=Cxu (x)/x(l + Alx — yl)_% |F(y.t")|dydt’.

Hence (3.10) is bounded by

2
H/A(l 2 = yl) HF (v, 0) [ dyar’

LZL®([-1,1]1xJ)
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Since ||A(1 4+ A| - |)_% =221 = C3.2. Hence by Schur’s test again we get

(3.10) < CAIIFI, 1.

Combining the above two estimate for (3.9) and (3.10), we get (3.5) with s = %.

Now we consider the case 0 < o < 1/2. Note that [711 min(|x — y| "%, 1) < A172
when 0 < @ < 1/2. Hence by (3.8) and the fact that | K| < CA implies

! 1
/ sup |K(x,y,t,;/)|dx,/ sup |K(X,y,t,t/)|dy gmax()»%,kl_z“‘).

1t,//ed lt,t'ed

Using Schur’s test again, we obtain

H/ K(x, v, t, t’)F(y, t’) dydt

L2L3(—1,11%J)
1122
<Cmax(A2, A a)”F”L)%L?O([—Ll]XJ)’

This completes the proof of Theorem 1.3.

4 Time Dependent Quadratic Potentials; Proof of Theorem 1.6

We begin by recalling the following result in [25] (Lemma 1 in [25] and also see
Lemma 3.3 in [5]) which generalizes Mehler’s formula to (1.7) with w € Clloc.1 If
w€E Clluc, there exists T > 0 such that fort € (=T, T)

1

d 2 .
oMo f = [T2miz;® f e3P0 £ (y)dy,
j=1 R
where
d
¢y, )= (a;(t)xF —2b;(O)x;yj +d;(1)y7).
j=1
and 7, aj, bj, and d; are given by
r]/-’—i—a)j(t)rj:O; 7;(0) =0, T}(O):l, 4.1
ajzrj’./rj, bj=1/t;,

P ((f;)—‘ -[ oy (1) (@) dﬂ). 42)

Using this we have the following lemma which relates ¢/ *o f to ¢!'2 f.

n fact, it remains valid for locally Lipschitz continuous function w. See Lemma 3.3 in [5].
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Lemma4.1 Let w € Clloc. There is a T > 0 such that
Mo f(x.ty=e(x,)US f(x,1), (x.,1) eR x [-T,T],
le(x,t)|~1,and c e C-T,T] satisfies ¢c(t) = (t,t,...,t,1) + O (t?) and
y(x, )= (n1(Ox1, 2(0x2, ..., va()xa), yi®) =14+ 0(@).

Proof By completing square and using the fundamental solution to the free Schrod-
inger equation we see

»
a X
22] 1(aj— dz) b0

eitHw:l_;d o ())1/2/ e%Z?:ldj(t)(yJ ERO) J)zf(y)dy
=1 @mit(t R4

bZ
ZZ/ 1= dz)x 1 bj ()

/ e’(Z, ld ) xj&j— 3?:1 m‘sﬂz)f@)ds'
R4

- Hj:l(fj(t)dj(t))lﬂ 2m)d

Now we set

2
i \~d
IEZ/':I( /__ 2 d

elx,t)=e l_[ T (0)dj (1)

Jj=1

1 1 AN ! / / !/ - / -l
Cj(f)=m=zfj<(fj) 1_/0 ; (1) (z;(t') zdf) ;
t -1
no=n00)" = ()7 - (o) Ee) )

Since w € Clloc, it follows from (4.1) that 7; € C? locally. Using the second equation
above, we see that c; € C? locally. From (4.1), 7;(¢) =1t + O(t?) and 1:} =1+
O(t). Hence it is easy to see |e(x, )| ~ 1 because 7;(¢)d;(t) ~ 1 by (4.2) if t is
sufficiently small. The other properties are easy to check. So, we omit the details. [

Proof of Corollary 1.7 Now assuming Theorem 1.6 we prove Corollary 1.7. By
Lemma 4.1 it is sufficient to show

<C HS
L2081 o) 11

o, s

0<t<T

for any xo € R?. Now it is easy to see that y, ¢ in Lemma 4.1 satisfy the assump-
tions in Theorem 1.6. Hence the above estimate holds for s > 50 if || supg, <7 €'"® x
Fl2s,0)) = Cllfllgso which is valid for so > when d=1, sg > % — ﬁ when

d > 2 (see [3, 14]). This proves Corollary 1.7 except the endpoint case s = Alf when
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d =1, which can be proven by following the argument in [22]. The details are omit-
ted. U

Proof of Theorem 1.6 We only prove that (1.10) implies (1.11). The converse also
can be shown similarly. To begin with, we first establish the following equivalence
of the estimates over intervals of length ~A~!, which will be combined to get the
desired estimate by making use of Lemma 2.1. g

Lemma 4.2 Let A > 1 and q,r > 1. Suppose that y and ¢ sansfy the assumptions
in Theorem 1.6. Let J C It (to) be an interval of length ~ .~" and assume that f is
supported in {& : |&| ~ A}. Then the followings are equivalent:

it A
I F1l Lo, 0. Lr10.0-17) < CX N2, 43)

103 £l Lt Bror. gy = CA IS N2 (4.4)

Proof First we prove the implication from (4.3) to (4.4). Let ¢, € J. For simplicity
let us set & = (|&; |2, e, |§d|2). By rescaling & — A& we have

Uy f(x,0) =2 / O CDERDE) Fog) dg

$<lEl<2

_ )\d/ oIV (18) i Oy (2, 1) = (1122 (1)-8) =i (1)-5 Foe) de,
<l§l<2

where
W(x,1,E) =A(y(x, 1) = y(x, 1)) - & =22 (c(t) — c(ta) = (t = £ (1)) - £

Since 1, € J and length of J is O(1~!), it is easy to see that |8£l1/| = O (1) uniformly

in x,t because y € Lip(Bg(xo) x IT(t9)) and ¢ € C2(TT(t0)). So we may expand
Y18 into Fourier series on [—, 7]¢ so that ¢!¥ @18 = Y kezd Cr(x, 1)etks
with |Ci(x, 1)| < C(Jk| + 1)~V for large N. Hence we have

USrn =20 Y G, ,)/ oIk i Oy (100§ ~(=1)22¢ (1) 8)
kezd =lél=2

¢S Fog) d
-3 G, ,)f @£t W) D) T (6 g

kEZd /25‘$‘<2)‘

with || fi, ».kll2 = | f]l2. Now, recalling (1.9), we make change of variables & —
1
|cj (1) 2&; to get

IR
105 £ s ron 2z = 2 C ORI+ 1) 12 Fey @ t0) | 11 gy 25000
k
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with ﬁ which is Fourier supported in {£ : |§| ~ A} and ||ﬁ||2 ~ || fll2. Since y (x, t,)
is independent of 7 and bilipschitz in x, changing variables in x we get

105 1t oo, = > C(kI+1)" e fi | L4 Berty otoriran
k

We now use the assumption (4.3) which is translation invariant. So, by (1.10), trans-
lation and mild dilation it follows that

105 £l sporng oy = 2 CURI+ 1) 2 74, = €251 £l
k

This completes the proof of the implication (4.3) — (4.4). The converse can be
proven similarly. We omit the details. d

Let A>T 1. We split the interval I7(#p) into a union of disjoint intervals J of
length ~ A~ 1. Trivially (1.10) implies (4.3). Hence, by Lemma 4.2 we get for each J

luy s

LBty iy = CH I N2
provided that e (£ : 5] ~ A}. By Lemma 2.1, it follows that

[ Us 1 4.5)

S
L9 (Bro) L (Ur oy = CA IS 1l

if fe {& :1&| ~ A}. Since (1.10) holds for s > sq, so does (4.5). Also note that (1.11)
is trivial when fis supported in {£ : || < 1}. Hence, summation along dyadic pieces
gives (1.11).

If we additionally have smoothness for y and ¢, we may use Lemma 2.2. In fact,
since we are assuming that y € C*®°(Bg(x) x I7(t9)) and ¢ € C*®(I17 (1)), we may
replace I7(fg) with a slightly extended region I7(f) for some € > 0. So we may
assume that (4.5) on Br(xg) X IT+¢(t9) holds. By Lemma 2.2, for | <r < 00, x €
BR(x0)

|Uy £, + Clf Nl - gay-

Li(Ir+¢(10))

(Zwsmseor)

k>1

L) = C‘
Since g, r > 2, by Minkowski’s inequality and (4.5) (with IT1¢(f9))

H U;ffHLZ(BR(xo),L;‘(lT(ZO)))
1
2 2
= C(ZH U)S PkfHLZ(BR(xo),Lf(ITJre(to)))) + C”f”H#V(Rd)
k>1
1

2
< C(Z 22Ak||Pkf||%> + Cllf x5 ey < Cllf s

k>1

This completes the proof of the implication (1.10) — (1.11).
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Higher Order Dispersive Equation Letm > 2 and P satisfy that for [§] > 1
pfP@&)|<clem?. |vPE)|~gm (4.6)
Let ¢/’ f be the solution of the equation
idju+ P(D)u =0, u(-,0)=f. 4.7
When m > 2, we can relax Lipschitz condition in ¢ to Holder condition.

Proposition 4.3 Let v : B,(xo) x Ir(to) — R? satisfy (1.5) for x,y € B,(xo),
t € It (t) and

1
ly(e,t) —y(x,t)| = Clt =] (4.8)
all x € B(xg, 1), t,t' € IT(tp). Let 2 < q,r < 00, and sy € R. Then, for s > sg
e 7] <clfl (4.9)
LY(B1(0), L{[0,1]) = HY (RY) :
if only if for s > sg

e ? £ (v (x,0)| (4.10)

L4BrGro), L (r oy = C 1 Las a)-

As before, if y is smooth in ¢, using Lemma 2.2 we can show the equivalence
of (4.9) and (4.10) except r = co. However, we don’t know whether the equivalence
fails if the exponent mL in (4.8) is replaced by a smaller number. It seems interesting
to find the exact order of Holder condition which guarantees the equivalence.

Proposition 4.3 can be proven similarly as Theorem 1.6. In fact, since |V P(§)| ~
|£|™~1, by Lemma 2.1 we are reduced to showing equivalence on an interval of length
A1~ By recalling the proof of Theorem 1.6, it is not difficult to see that the equiv-
alence follows if we show that A(y (x,1) — ¥ (x,¢")) = O(1) when |t — /| <A™,
This is obvious from (4.8).
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