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Abstract We propose Fourier transform algorithms using QTT format for data-
sparse approximate representation of one- and multi-dimensional vectors (m-tensors).
Although the Fourier matrix itself does not have a low-rank QTT representation, it
can be efficiently applied to a vector in the QTT format exploiting the multilevel
structure of the Cooley-Tukey algorithm. The m-dimensional Fourier transform of

an n × · · · × n vector with n = 2d has O(md2R3) complexity, where R is the max-
imum QTT-rank of input, output and all intermediate vectors in the procedure. For
the vectors with moderate R and large n and m the proposed algorithm outperforms
the O(nm logn) fast Fourier transform (FFT) algorithm and has asymptotically the
same log-squared complexity as the superfast quantum Fourier transform (QFT) al-
gorithm. By numerical experiments we demonstrate the examples of problems for
which the use of QTT format relaxes the grid size constrains and allows the high-
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resolution computations of Fourier images and convolutions in higher dimensions
without the ‘curse of dimensionality’. We compare the proposed method with Sparse
Fourier transform algorithms and show that our approach is competitive for sig-
nals with small number of randomly distributed frequencies and signals with limited
bandwidth.

Keywords High-dimensional problems · Tensor train format · QTT · Fourier
transform · Convolution · Sparse Fourier transform · Quantum Fourier transform

Mathematics Subject Classification 15A23 · 15A69 · 65T50 · 65F99

1 Introduction

For high-dimensional problems, data-sparse representation schemes allow to over-
come the so-called curse of dimensionality and perform computations efficiently.
Among many low-parametric formats, tensor decomposition methods appear to be
the most promising for high-dimensional data, see reviews [3, 32, 38] and mono-
graph [16]. The recently proposed tensor train (TT) format [39, 42, 44], also known
in quantum chemistry as matrix product states (MPS) [54], combines advances of
both the canonical and Tucker formats: the number of representing parameters grows
only linearly with the dimension and the approximation problem is stable and can be
computed by algorithms based on singular value decomposition (SVD). Additional
advantage of tensor train format can be taken, if dimensions with large mode size are
substituted by a larger number of dimensions with a small mode sizes. If the small
mode size equals two, it becomes ‘indivisible’, i.e., can not be reduced further. We
can say that such mode represents a quant or bit of information and call this represen-
tation of a vector the quantized tensor train (QTT) format, following [31]. Similarly,
in quantum computations a large data vector is represented by the entangled quantum
state of several qubits (quantum bits), which are systems with two quantum states.

The QTT format is rank-structured and the storage size is governed by QTT-ranks.
The impressive approximation properties of the QTT format were discovered in [31]
for a class of functions discretized on uniform grids. In particular, it was proven that
the QTT-ranks of exp(αx), sin(αx), cos(αx), xp are uniformly bounded with respect
to the grid size. For the functions e−αx2

, xα , sinx
x

, 1
x

, etc., similar properties were
found experimentally.

In this paper we propose algorithms for the discrete Fourier transform of one- and
high-dimensional data represented or approximated in the QTT format. Our approach
is based on a radix-2 recursion formula which reduces the Fourier transform to the
one of half size and lies behind the well-known Cooley-Tukey FFT algorithm [2, 9].
Each step of the proposed QTT-FFT algorithm includes an approximation to reduce
the storage size of the intermediate vectors adaptively to the prescribed level of accu-
racy. The complexity of m-dimensional n×· · ·×n transform with n = 2d is bounded
by O(md2R3), where R is the maximum QTT-rank of the input, all intermediate vec-
tors and output of the QTT-FFT algorithm. For vectors with moderate R, the QTT-
FFT algorithm has square-logarithmic scaling w.r.t. the total number of array entries
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and outperforms the Cooley-Tukey FFT algorithm, which has O(nm logn) complex-
ity. Given an arbitrary input vector, it is not possible to predict the value of R and
state if QTT-FFT algorithm is efficient, until the computation is done. This problem
is solved partially in [48], where the class vectors with R = 1 is fully described and
is also shown by numerical experiments that many vectors can be approximated by
ones with moderate R. The QTT-ranks depend on the desired accuracy level, and
transforms with lower accuracy are computed faster by the approximate QTT-FFT
algorithm, in contrast to the exact FFT algorithm.

The QTT-FFT algorithm can be compared with the quantum Fourier transform
(QFT) algorithm, widely utilized in quantum computations, such as eigenvalue es-
timation, order-finding, integer factorization, etc. A single operation in the quantum
algorithm has an exponential performance, since it changes all 2d components of the
vector describing the entangled state of a quantum system. Remarkably, the superfast
QFT algorithm [6] requires O(d2) quantum operations. The QTT-FFT algorithm has
asymptotically the same complexity for fixed R, that explains the word superfast in
the title of this paper.

The QTT-FFT can be also compared with the Sparse Fourier transform. In the
proposed method we use the data-sparse rank-structured QTT format for data repre-
sentation, instead of pointwise sparsity of the Fourier image exploited in the Sparse
Fourier transform. The QTT-FFT algorithm requires the QTT representation of the
input vector, which can be computed from a small number of vector elements (sam-
ples) using the TT-ACA algorithm [49]. Our method is deterministic, while the Sparse
Fourier transforms algorithms are usually heuristic with certain randomness involved
in the selection of samples and with the probabilistic estimation of the accuracy.

This paper is organized as follows. We start from the overview of TT and QTT
formats in Sect. 2. In Sect. 3 we present the Fourier transform algorithm for vectors
in the QTT format. In Sect. 4 we explain how to keep the QTT-ranks moderate during
this procedure and result in the QTT-FFT algorithm for the approximate computation
of Fourier transform in the QTT format. In Sect. 5 we consider real-valued transforms
(convolution, cosine transform) and explain how to compute them using the QTT-FFT
algorithm. In Sect. 6 we develop the multi-dimensional Fourier transform algorithm
in the QTT format. In Sect. 7 we give numerical examples illustrating that the use
of QTT format relaxes the grid size constrains and allows high-resolution computa-
tions of Fourier images in higher dimensions without the ‘curse of dimensionality’. In
particular, our approach allows to compute one-dimensional and multi-dimensional
Fourier images using n = 260 in 1D and n = 220 in 3D on a standard workstation, see
Sects. 7.1 and 7.2. In Sect. 7.3 we compute the convolution transforms of data with
strong cusps or singularities which occur in particular in quantum chemistry and re-
quire very fine grid. In Sect. 8 we compare our method with Sparse Fourier transform
algorithms for exactly Fourier-sparse signals and signals with limited bandwidth.

2 Tensor Train Format

A tensor is an array with d indices (or modes)

X = [x(k1, . . . , kd)
]
, kp = 0, . . . , np − 1, p = 1, . . . , d.
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The tensor train (TT) format [39, 42] for the tensor X reads1

x(k1, k2, . . . , kd) = X
(1)
k1

X
(2)
k2

· · ·X(d)
kd

, (1)

where each X
(p)
kp

is an rp−1 ×rp matrix. Usually the border conditions r0 = rd = 1 are

imposed to make every entry x(k1, . . . , kd) a scalar. However, larger r0 and rd can be
considered and every entry of a tensor X = [x(k1, . . . , kd)] becomes an r0 ×rd matrix.
The values r0, . . . , rd−1 are referred to as TT-ranks and characterize the separation
properties of the tensor X. Three-dimensional arrays X(p) = [X(p)

kp
] are referred to

as TT-cars.2

Definition 1 [39] The p-th unfolding of a n1 × n2 × · · · × nd tensor X =
[x(k1, . . . , kd)] is the n1 · · ·np × np+1 · · ·nd matrix X{p} = [x{p}(s, t)] with the fol-
lowing elements

x{p}(s, t) = x(k1, . . . , kp, kp+1, . . . , kd),

s = k1 + k2n1 + · · · + kp

p−1∏

q=1

nq, t = kp+1 + kp+2np+1 + · · · + kd

d∏

q=p+1

nq.

We will write X{p} = [x(k1 · · · kp, kp+1 · · · kd)], assuming that comma separates
row and column indices. Obviously, if (1) holds, then rp ≥ rankX{p}. In fact, rp =
rankX{p}.

Statement 1 [39, 42] Each tensor X = [x(k1, . . . , kd)] can be represented by the TT
format with TT-ranks equal to the ranks of unfoldings,

rp = rankX{p} = rank
[
x(k1 · · ·kp, kp+1 · · ·kd)

]
. (2)

For many tensors, unfoldings have large ranks, but can be approximated by the
low rank matrices as follows

∥∥X{p} − X̃{p}∥∥
F

≤ εp, rank X̃{p} = rp.

The minimum rp which satisfies this condition is referred to as the εp-rank of X{p}.

Statement 2 [39, 42] If unfoldings X{p} of a tensor X have εp-ranks rp , then X can
be approximated by the tensor X̃ with TT-ranks rp and the following accuracy

‖X − X̃‖F ≤ ε, ε2 = ε2
1 + · · · + ε2

d−1.

1We will often write the equations in elementwise form, which assumes that all indices run through all
possible values.
2In this paper we use the plural for ‘rank’, which is well-established in tensor analysis, see [38]. We use

the word ‘car’ instead of the original ‘core’ [39, 42] to refer to components X(p) of (1), since the plural
for ‘core’ is not usual.
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The TT format for X̃, i.e., the approximation of a given tensor X in the TT for-
mat with a prescribed accuracy ε, can be computed by a constructive SVD-based
algorithm [42]. Here the Frobenius norm of a tensor is defined as follows

‖X‖2
F

def=
∑

k1···kd

∣∣x(k1, . . . , kd)
∣∣2.

In the following we will omit the subscript and write ‖ · ‖ = ‖ · ‖F for all vectors,
matrices and tensors.

To apply the TT compression to low dimensional data, the idea of quantiza-
tion was proposed [31, 40]. We will explain the idea for one-dimensional vector

x = [x(k)]n−1
k=0, restricting the discussion to n = 2d . Define the binary notation3 of

the index k as follows

k = k1 · · · kd
def=

d∑

p=1

kp2p−1, kp = 0,1. (3)

The isomorphic mapping k ↔ (k1, . . . , kd) allows to reshape a vector x = [x(k)] into
the d-tensor Ẋ = [ẋ(k1, . . . , kd)]. The TT format (1) for the latter is called the QTT
format and reads

x(k) = x(k1 · · ·kd) = ẋ(k1, . . . , kd) = X
(1)
k1

· · ·X(d)
kd

. (4)

This idea appears in [40] in the context of matrix approximation. In [31] the TT
format applied after the quantization of indices was called the QTT format. The im-
pressive properties of the QTT approximation motivate the development of vector
and tensor transforms in the QTT format.

By (2), the QTT-rank rp of a vector x of size n = 2d is not larger than the number
of columns/rows in X{p}, i.e., 1 ≤ rp ≤ 2min(p,d−p).

Definition 2 We will call the vectors with QTT-ranks one the rank-one vectors and
the vectors with QTT-ranks rp = 2min(p,d−p) the full-rank vectors.

A random tensor, like a random matrix, has full TT-ranks with probability one. In
general, the QTT-ranks grow exponentially in d , making the QTT algorithms com-
pletely inefficient. Therefore, QTT methods are naturally limited to the class of prob-
lems where all data have moderate QTT-ranks. It is not possible yet to describe the
whole class of such problems and vectors explicitly, but it is possible to justify the
concept by a number of convincing examples. Some function-related examples are al-
ready mentioned, more examples of (piecewise) smooth functions and functions with

3The order of bits in the binary notation can be different. The big-endian notation assumes that the most
significant bit kd goes first and the least significant bit k1 goes last, similar to numbers written in the
positional system. The little-endian notation uses reversed directions of bits, from k1 to kd , similar to
numerals in the Arabic scripts. The little-endian ordering is consistent with the FORTRAN style of indexing
for multi-dimensional arrays. In this paper we choose the little-endian notation since it allows more elegant
and intuitive description of the main QTT-FFT algorithm. The little-endian notation is used also in [20].
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singularities that have a low-rank QTT representation can be found in [14, 36, 41].
The exponential function, discretized on the uniform grid, deserves a special interest
in this paper. It has the rank-one QTT representation [31]

exp(αk) = exp(αk1k2 · · ·kd) = exp(αk1) exp(2αk2) · · · exp
(
2d−1αkd

)
, (5)

which plays a key role for the efficient Fourier transform algorithm in the QTT for-
mat.

The QTT format can be applied not only to vectors, but also to matrices (see

TTM format in [40]). Consider a 2d × 2d matrix A = [a(j, k)]2d−1
j,k=0, use the binary

notation (3) for the indices j = j1 · · · jd and k = k1 · · ·kd , then permute the binary
indices and reshape A to the tensor Ȧ = [ȧ(j1k1, j2k2, . . . , jdkd)]. Finally, apply the
TT format to Ȧ as follows

a(j, k) = a(j1 · · · jd, k1 · · ·kd) = ȧ(j1k1, j2k2, . . . , jdkd) = A
(1)
j1k1

A
(2)
j2k2

· · ·A(d)
jdkd

,

(6)
where each A

(p)
jpkp

is an rp−1 × rp matrix. Merging indices jp and kp into the pair-

index ip , we have the d-tensor Ȧ = [ȧ(i1, . . . , id )] and can use its unfoldings to find
the TT-ranks of (6). In Sect. 3.1 we show that the Fourier matrix is ‘not compress-
ible’ using the QTT format, i.e., its QTT-ranks grow exponentially with d . There-
fore, the efficient Fourier transform appears to be a nontrivial problem. In contrast,
recent results on explicit representation for the inverse Laplacian and related matri-
ces [24] and efficient convolution in the QTT format [25] are based on the low-rank
QTT decompositions of certain matrices and tensors. There are more examples of
high-dimensional problems which were efficiently solved using the QTT approxima-
tion [4, 36, 37] as well as H -Tucker format [15].

The TT/QTT algorithms are based on basic linear algebra procedures like sum-
mation, multiplication and rank truncation (tensor rounding) maintaining the com-
pressed format, i.e., the full data array is never computed. A comprehensive list of
basic operations is given in [42]. We will need the Hadamard (elementwise) product,

z = x � y, i.e., z(k) = x(k)y(k), k = 0, . . . ,2d − 1.

If x and y are given in the QTT format (4), the QTT format for z is written as follows

z(k) = z(k1 · · ·kd) = Z
(1)
k1

· · ·Z(d)
kd

, Z
(p)
kp

= X
(p)
kp

⊗ Y
(p)
kp

, p = 1, . . . , d, (7)

where X ⊗Y denotes the Kronecker (tensor) product of matrices X and Y . The QTT-
ranks of the Hadamard product z are the products of the corresponding QTT-ranks of
x and y.

3 Discrete Fourier Transform in One Dimension

For n = 2d , the normalized discrete Fourier transform (DFT) reads

y(j) = 1

2
d
2

2d−1∑

k=0

x(k)ω
jk
d , ωd = exp

(
−2πi

2d

)
, i2 = −1, (8)
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where Fd = 1

2
d
2
[ωjk

d ]2d−1
j,k=0 is the unitary Fourier matrix. The inverse Fourier trans-

form is written in the same way, with ωd = exp( 2πi
2d ).

3.1 QTT Decomposition of the Fourier Matrix Has Full Ranks

Unlike many matrices used in scientific computing (see, e.g., [40]), the Fourier matrix
can not be compressed in the QTT format (6), i.e., its QTT-ranks grow exponentially
with d . The proof is based on the properties of unfoldings of the Fourier matrix,
defined as follows

F
{p}
d = [f {p}

d

(
j ′k′, j ′′k′′)], f

{p}
d

(
j ′k′, j ′′k′′)= 1

2
d
2

ω
jk
d ,

where j = j ′ + 2pj ′′, k = k′ + 2pk′′, j ′, k′ = 0, . . . ,2p − 1,

j ′′, k′′ = 0, . . . ,2d−p − 1.

Lemma 1 For p ≤ d
2 the unfoldings F

{p}
d have orthogonal rows, for p ≥ d

2 they have
orthogonal columns.

Proof If p ≤ d
2 , elements of the unfolding F

{p}
d are the following

f
{p}
d

(
j ′k′, j ′′k′′)= 1

2
d
2

ω
jk
d = 1

2
d
2

ω
j ′k′
d ω

j ′k′′
d−pω

k′j ′′
d−pω

j ′′k′′
d−2p.

In the matrix notation

F
{p}
d = 2d−p

2
d
2

Ω ′(Φ ⊗ Φ)Ω ′′,

where Ω ′ and Ω ′′ are unitary diagonal matrices and Φ is the 2p ×2d−p top submatrix
of Fd−p . Since Fd−p is orthogonal, the matrix Φ also has orthogonal rows and the

Gram matrix of F
{p}
d is written as follows

F
{p}
d

(
F

{p}
d

)∗ = 2d−2pΩ ′(Φ ⊗ Φ)Ω ′′(Ω ′′)∗(Φ ⊗ Φ)∗
(
Ω ′)∗

= 2d−2pΩ ′(ΦΦ∗)⊗2(
Ω ′)∗

= 2d−2pΩ ′(Ω ′)∗

= 2d−2pI.

The statement for the case p ≥ d
2 is proved in the same way. �

The following theorem proves that the low-rank approximation of the Fourier ma-
trix in the QTT format with the reasonable accuracy is not possible.
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Theorem 1 If the Fourier matrix Fd is approximated by the matrix A with relative
accuracy ‖Fd − A‖ ≤ ε‖Fd‖, and A is given in the QTT format (6) with QTT-ranks
r1, . . . , rd−1, then

rp ≥ (1 − ε)4min(p,d−p), p = 1, . . . , d − 1.

Proof From the assumption of the theorem it follows that for every p the unfolding
matrix F

{p}
d is approximated by the rank-rp matrix A{p} as follows,

‖F {p}
d − A{p}‖ ≤ ε‖F {p}

d ‖, A{p} = [a{p}(j ′k′, j ′′k′′)],

a{p}(j ′k′, j ′′k′′)= A
(1)
j1k1

· · ·A(p)
jpkp

A
(p+1)
jp+1kp+1

· · ·A(d)
jdkd

.

where j ′ = j1 · · · jp , k′ = k1 · · ·kp , j ′′ = jp+1 · · · jd , k′′ = kp+1 · · ·kd . Denote by

F̃
{p}
d the best rank-rp approximation of F

{p}
d , then

∥∥F {p}
d − F̃

{p}
d

∥∥≤ ∥∥F {p}
d − A{p}∥∥.

By Lemma 1, the 4p × 4d−p unfolding F
{p}
d has orthogonal rows/columns and the

accuracy of the best rank-rp approximation is exactly the following

∥∥F {p}
d − F̃

{p}
d

∥∥=
(

1 − rp

4min(p,d−p)

)∥∥F {p}
d

∥∥.

We have 1 − rp

4min(p,d−p) ≤ ε, which completes the proof. �

Corollary 1 The QTT-ranks of the exact QTT-decomposition of the Fourier matrix
are rp = 4min(p,d−p) and the storage size grows exponentially with d .

Remark 1 In contrast to the Fourier transform, the Hadamard transform matrix has
QTT-ranks one, which follows directly from the definition,

Hd = H⊗d
1 , H1 = 1√

2

[
1 1

1 −1

]

.

This transform, also known as Walsh transform, arises in various applications,
including quantum computing, etc. The Hadamard transform can be easily applied to
a vector given in the QTT format and does not change the QTT-ranks. The Fourier
transform can arbitrarily increase the QTT-ranks of a vector.

3.2 Radix-2 Recursion Formula in the QTT Format

Since the Fourier matrix is not compressible in the QTT format, we can not com-
pute y = Fdx using the matrix-vector multiplication algorithm in the TT format [42].
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Nevertheless, we can apply the Fourier transform to the QTT vector efficiently. We
define

j = j1j2 · · · jd = j1 + 2j ′, j ′ = j2 · · · jd,

k = k1 · · ·kd−1kd = k′ + 2d−1kd, k′ = k1 · · ·kd−1

(9)

and split odd and even values of the result

y
(
0 + 2j ′)= 1

2
d
2

2d−1−1∑

k′=0

x
(
k′)ω2j ′k′

d +
2d−1−1∑

k′=0

x
(
k′ + 2d−1)ω2j ′(k′+2d−1)

d

= 1

2
d−1

2

2d−1−1∑

k′=0

x(k′) + x(k′ + 2d−1)√
2

ω
2j ′k′
d

y
(
1 + 2j ′)= 1

2
d
2

2d−1−1∑

k′=0

x
(
k′)ω(1+2j ′)k′

d +
2d−1−1∑

k′=0

x
(
k′ + 2d−1)ω(1+2j ′)(k′+2d−1)

d

= 1

2
d−1

2

2d−1−1∑

k′=0

x(k′) − x(k′ + 2d−1)√
2

ωk′
d ω

2j ′k′
d .

We come to the well-known radix-2 recursion formula, the simplest and most com-
mon case of the Cooley-Tukey fast Fourier transform (FFT) algorithm [2, 9]. It re-
duces the full-size Fourier transform to the half-sized transforms as follows

PdFd =
[

Fd−1

Fd−1

][
I

Ωd−1

]
1√
2

[
I I

I −I

]

. (10)

Here Pd is the bit-shift permutation which agglomerates even and odd elements of

a vector, and Ωd−1 = diag{ωk′
d }2d−1−1

k′=0 is the matrix of twiddle factors. We will need

the following general definitions later,

(Ppy)(j2j3 · · · jpj1︸ ︷︷ ︸
bit-shift

jp+1 · · · jd) = y(j1j2 · · · jpjp+1 · · · jd),

Ωp = diag
(
1,ωp+1,ω

2
p+1, . . . ,ω

2p−1
p+1

)
.

(11)

Our goal is to compute y = Fdx for the vector x given in the QTT format (4).
First, we note that the “top” and “bottom” half-vectors of x are the following

xtop
(
k′) def= x

(
k′)= x(k1 · · ·kd−10) = X

(1)
k1

X
(2)
k2

· · ·X(d−1)
kd−1

X
(d)
kd=0,

xbot
(
k′) def= x

(
k′ + 2d−1)= x(k1 · · ·kd−11) = X

(1)
k1

X
(2)
k2

· · ·X(d−1)
kd−1

X
(d)
kd=1,

(12)
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and their summation/subtraction affects only the last car.

x̂
def= 1√

2

[
I I

I −I

]

x, x̂(k) = X
(1)
k1

· · ·X(d−1)
kd−1

X̂
(d)
kd

,

X̂
(d)
0 = 1√

2

(
X

(d)
0 + X

(d)
1

)
,

X̂
(d)
1 = 1√

2

(
X

(d)
0 − X

(d)
1

)
.

The multiplication by the diagonal matrix is written as the Hadamard multiplication

z =
[
I

Ωd−1

]
1√
2

[
I I

I −I

]
x =

[
I

Ωd−1

]
x̂ = wd � x̂,

wT
d

def= [
1 · · ·1︸ ︷︷ ︸

2d−1 elements

1ωdω2
d · · ·ω2d−1−1

d︸ ︷︷ ︸
2d−1 elements

]
,

(13)

where vector wd = [wd(k)] has the following rank-two QTT decomposition

wd(k) = wd(k1 · · ·kd) =
[

1 ω
k1
d

][1

ω
2k2
d

]

· · ·
[

1

ω
2d−2kd−1
d

][
1 − kd

kd

]

.

Therefore, the vector z = diag(wd)x̂ = wd � x̂ has the following QTT decomposition

z(k) = wd(k)x̂(k) = Z
(1)
k1

Z
(2)
k2

· · ·Z(d)
kd

, with Z
(1)
k1

=
[
X

(1)
k1

ω
k1
d X

(1)
k1

]
,

Z
(p)
kp

=
⎡

⎣
X

(p)
kp

ω
kp

d−p+1X
(p)
kp

⎤

⎦ , p = 2, . . . , d − 1,

Z
(d)
kd

=
[

(1 − kd)X̂
(d)
kd

kdX̂
(d)
kd

]

.

(14)

Note that the multiplication by the twiddle factors doubles the QTT-ranks.
The last step to implement (10) is to apply the half-size Fourier transform to the

“top” and “bottom” parts of the vector z. We consider the following n
2 ×2rd−1 matrix

Z′ = [z′(k1 · · ·kd−1, α)
]
, where z′(k1 · · ·kd−1, :) = Z

(1)
k1

· · ·Z(d−1)
kd−1

,

and compute Fd−1Z
′ in the QTT format, applying the radix-2 recursion subsequently.

Each radix-2 step applies the bit-shift permutation to the result. It is easy to no-
tice that P1P2 · · ·Pd = Rd , which is a bit-reverse permutation (Rdy)(jdjd−1 · · · j1) =
y(j1 · · · jd). It can be nicely implemented in the QTT format without any computa-
tions by reversing the order of cars in the tensor train,

x(k) = x(k1 · · ·kd) = X
(1)
k1

· · ·X(d)
kd

,

(Rdx)(kd · · ·k1) = (X(d)
kd

)T · · · (X(1)
k1

)T
.

(15)

We add the bit-reverse step and summarize all the above in the QTT-FFT Algorithm 1.
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Algorithm 1 QTT-FFT, exact computation

Input: Vector x = [x(k)]2d−1
k=0 in the QTT format x(k) = x(k1 · · ·kd) = X

(1)
k1

· · ·X(d)
kd

.

Output: Vector y = Fdx = [y(j)]2d−1
j=0 in the QTT format y(j) = y(j1 · · · jd) =

Y
(1)
j1

· · ·Y (d)
jd

.

1: Define xd = x and X
(p)
d,kp

= X
(p)
kp

.
2: for D = d, d − 1, . . . ,1 do
3: X̂

(D)
D,0 := 1√

2
(X

(D)
D,0 + X

(D)
D,1), X̂

(D)
D,1 := 1√

2
(X

(D)
D,0 − X

(D)
D,1)

{Now x̂D has the QTT form x̂D(k1 · · ·kD) = X
(1)
D,k1

X
(2)
D,k2

· · ·X(D−1)
D,kD−1

X̂
(D)
D,kD

}

4: Z
(1)
k1

:=
[
X

(1)
k1

ω
k1
D X

(1)
k1

]
,

Z
(p)
kp

:=
⎡

⎣
X

(p)
kp

ω
2p−1kp

D X
(p)
kp

⎤

⎦ , p = 2, . . . ,D − 1,

Z
(D)
kD

:=
[

(1 − kD)X̂
(D)
kD

kDX̂
(D)
kD

]

.

{Now zD has the QTT form zD(k1 · · ·kD) = Z
(1)
D,k1

Z
(2)
D,k2

· · ·Z(D)
D,kD

}

5: X
(p)

D−1,kp
:= Z

(p)
D,kp

.

{Now xD−1 has the QTT form xD−1(k1 · · ·kD−1) = X
(1)
D−1,k1

X
(2)
D−1,k2

· · · ×
X

(D−1)
D−1,kD−1

}

6: end for
7: Return Y

(p)
jp

:= (Z
(d−p+1)

d−p+1,jp
)T , p = 1, . . . , d . {bit-reverse the output}

4 Approximate Fourier Transform

We do not benefit from the use of the QTT format if QTT-ranks are too large. How-
ever, in Algorithm 1 the QTT-ranks grow by a factor of two each time we multiply by
twiddle factors on Line 4. After d steps they grow by 2d = n, which makes the QTT
representation completely ineffective. To perform computations efficiently, it is nec-
essary to truncate the QTT-ranks, i.e., to approximate the result by the QTT format
with smaller values of ranks.

4.1 TT-Rounding and TT-Orthogonalization

We recall the most important properties of the TT-rounding (also rank truncation or
recompression) algorithm proposed in [42]. We will use it to approximate a vector x

given in the QTT format (4) by vector x̃ in the following QTT form,

x̃(k) = x̃(k1 · · · kd) = X̃
(1)
k1

· · · X̃(d)
kd

, ‖x̃‖ = ‖x‖, ‖x − x̃‖ ≤ ε‖x‖, (16)

where each X̃kp is an r̃p−1 × r̃p matrix, r̃0 = r0, r̃d = rd , r̃p ≤ rp , p = 1, . . . , d − 1.
The approximation can be done up to some desired accuracy level or by bounding the



926 J Fourier Anal Appl (2012) 18:915–953

X(1)

X(2) X(3) X(4) X(5) X(6) X(d)

X̃(1)

X̃(2) X̃(3) X̃(4) X̃(5) X̃(6) X̃(d)

Fig. 1 The TT-rounding algorithm: (top) input; (bottom) output. The rectangles represent the QTT-cars,
the sides of rectangles are proportional to the values of QTT-ranks

values of QTT-ranks r̃p from above. If we want to prescribe the relative accuracy ε

in (16), then the values of r̃p appear during the work of the TT-rounding procedure
and in general cannot be predicted. If r̃p are prescribed, then the approximation is
quasi-optimal [42, 45], i.e.,

‖x − x̃‖ ≤ √
d − 1

∥∥x − x̃best
∥∥,

where x̃best is the best approximation of x with TT-ranks r̃p . However, the error
‖x − x̃‖ is generally not known in advance. The TT-rounding algorithm is based on
QR and SVD algorithms for matrices, which are well established and included in
many linear algebra packages (e.g. LAPACK). We illustrate the TT-rounding proce-
dure in Fig. 1.

The key part of the TT-rounding algorithm is the TT-orthogonalization.

Definition 3 The TT-car X(p) is called left- or right-orthogonal if, respectively,

∑

kp

(
X

(p)
kp

)∗
X

(p)
kp

= I or
∑

kp

X
(p)
kp

(
X

(p)
kp

)∗ = I.

If the TT-car X(p) is written as rp−1 × np × rp tensor, the left-orthogonality
implies that the rp−1np × rp unfolding has orthogonal columns and the right-
orthogonality means that the rp−1 × nprp unfolding has orthogonal rows. A prod-
uct of two left-orthogonal TT-cars is also a left-orthogonal array, as explained by the
following statement.

Statement 3 [42] Consider p × q matrices Ai , i = 0, . . . ,m − 1, and q × r matri-
ces Bj , j = 0, . . . , n − 1. If the 3-tensors A = [Ai] and B = [Bi] are left-orthogonal,
i.e.,

∑
i A

∗
i Ai = I and

∑
j B∗

j Bj = I , then the p × mn × r tensor C = [Cij ],
Cij = AiBj , is also left-orthogonal,

∑

ij

C∗
ijCij =

∑

ij

(AiBj )
∗(AiBj ) =

∑

j

B∗
j

(∑

i

A∗
i Ai

)
Bj =

∑

j

B∗
j Bj = I.

The same statement holds for right-orthogonal cars. It can be also generalized to a
larger number of subsequent TT-cars.
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(a)

(b)

(c)

X(1)

X(p−1) X(p) X(q) X(s) X(s+1) X(d)

X̂(1)

X̂(p−1) X̂(p) X(q) X̂(s) X̂(s+1) X̂(d)

X̂(1)

X̂(p−1) X̃(p) X̃(q) X̃(s) X̂(s+1) X̂(d)

Fig. 2 TT-orthogonalization. (a) Input QTT format for x; (b) TT-orthogonalization is applied to

interfaces X(1) · · ·X(p) (left) and X(s) · · ·X(d) (right); (c) TT-rounding is applied to the subtrain

X̂
(p)
kp

X
(p+1)
kp+1

· · ·X(s−1)
ks−1

X̂
(s)
ks

, giving X̃
(p)
kp

X̃
(p+1)
kp+1

· · · X̃(s−1)
ks−1

X̃
(s)
ks

Definition 4 A sequence of TT-cars X(p),X(p+1), . . . ,X(q−1),X(q) will be referred
to as a subtrain.

Statement 4 [42] If all TT-cars of the subtrain X(1), . . . ,X(p) are left-orthogonal and
r0 = 1, then the following (n1 · · ·np) × rp matrix X′ has orthogonal columns,

X′ = [x′(k1 · · ·kp,α)
]
, where x′(k1 · · ·kp, :) = X

(1)
k1

· · ·X(p)
kp

.

The left- or right-orthogonality of the particular subtrain can be achieved straight-
forwardly, using the matrix orthogonalization procedure such as QR. The algorithm is
called TT-orthogonalization and given in [42]. The ‘structured orthogonality’ of sub-
trains allows to perturb other cars and control the accuracy of the whole tensor. We
illustrate this in Fig. 2. Given a vector x with QTT representation (4), we apply a left
TT-orthogonalization to the subtrain X(1) · · ·X(p) and a right TT-orthogonalization
to X(s) · · ·X(d). As a result, these cars are modified and we get another QTT repre-
sentation for the same vector x, where cars X̂(1), . . . , X̂(p−1) are left-orthogonal and
X(s+1), . . . ,X(d) are right-orthogonal. We depict the left- and right-orthogonal cars
as and , respectively. A similar notation is used in [21].

After TT-orthogonalization is done, we apply the TT-truncation to the subtrain
X(p) · · ·X(s) and reduce the TT-ranks rp, . . . , rs−1 to r̃p, . . . , r̃s−1, introducing an
approximation error or perturbation to the subtrain. The orthogonality of the left and
right interfaces X(1) · · ·X(p−1) and X(s+1) · · ·X(d) guarantees that the same pertur-
bation is introduced to the whole vector x.

Both the TT-rounding and TT-orthogonalization procedures for the QTT format
have O(dR3) complexity, where d is the length of the tensor train and R = max rp is
the maximum TT-rank. Note that the TT-rounding procedure can generate an approx-
imation with orthogonal cars. In [42] the TT-rounding generates a left-orthogonal
tensor train, but we will assume that TT-rounding generates a right-orthogonal QTT
approximation, as shown in Fig. 1.
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Algorithm 2 QTT-FFT, approximation

Input: Vector x of size 2d in the QTT format (4), accuracy ε or maximum ranks
R1, . . . ,Rd−1.

Output: Vector y ≈ Fdx in the QTT format y(j) = y(j1 · · · jd) = Y
(1)
j1

Y
(2)
j2

· · ·Y (d)
jd

.
{Lines 1-4 as in Algorithm 1}.

5: {Modify Line 5 of Algorithm 1 as follows}
if accuracy criterion ε is given then

Use TT-rounding [42] to approximate zD with relative accuracy ε as follows

‖zD − z̃D‖ ≤ ε‖zD‖, ‖z̃D‖ = ‖zD‖, z̃D(k1 · · ·kD) = Z̃
(1)
D,k1

· · · Z̃(D)
D,kD

.

else {maximum rank criterion R1, . . . ,Rd−1 is given}
Use TT-rounding [42] to find quasi-optimal approximation

z̃D ≈ zD, ‖z̃D‖ = ‖zD‖, z̃D(k1 · · ·kD) = Z̃
(1)
D,k1

· · · Z̃(D)
D,kD

.

with QTT-ranks r̃p ≤ Rp .
end if
X

(p)

D−1,kp
:= Z̃

(p)
D,kp

.
{Continue as in Algorithm 1}
Return Y

(p)
jp

:= (Z̃
(d−p+1)

d−p+1,jp
)T , p = 1, . . . , d . {bit-reverse the output}

4.2 Accuracy of the QTT-FFT Algorithm with Approximation

We include the TT-rounding step in Algorithm 1 and result in the version of QTT-
FFT with approximation, which we will call QTT-FFT in the following. It is given by
Algorithm 2 and visualized in Fig. 3. Each step of Algorithm 2 includes an approxi-
mation which introduces an error to the active subtrain. In the following theorem we
estimate the accuracy of the result returned by QTT-FFT.

Theorem 2 If accuracy-based criterion ε is used on each approximation step in Al-
gorithm 2, the accuracy of the result is the following

‖y − Fdx‖ ≤ dε‖y‖.
Proof In the first step D = d of the algorithm it holds y = Fdxd and

Pdy = (I1 ⊗ Fd−1)zd ,

where Ip denotes the 2p × 2p identity matrix and zd is defined by (14). The approxi-
mation step gives ‖zd − z̃d‖ ≤ ε‖zd‖ and since Pd and I1 ⊗Fd−1 are unitary matrices
we have

y = ỹd + μd, ỹd
def= P T

d (I1 ⊗ Fd−1)z̃d , ‖μd‖ ≤ ε‖y‖, (17)

where ỹd is the approximation of the result and μd is the error at step D = d . At the
next step the Fourier transform is applied to the n

2 × rd−1(z̃d ) matrix xd−1, where
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xd . . .

zd . . .

z̃d
. . .

xd−1 . . .

zd−1 . . .

z̃d−1 . . .

xd−2 . . .

Pdy . . .

y . . .

Fig. 3 Visualization of the QTT-FFT Algorithm 2

rd−1(z̃d ) is the corresponding QTT-rank of z̃d . The matrix xd−1 has the following
QTT decomposition

xd−1(k1 · · ·kd−1, :) := X
(1)
d−1,k1

X
(2)
d−1,k2

· · ·X(d−1)
d−1,kd−1

, X
(p)

d−1,kp
= Z̃

(p)
d,kp

,

p = 1, . . . , d − 1.

If yd−1 = Fd−1xd−1 is computed, the approximation ỹd is written in elementwise
notation as follows

ỹd (j1 · · · jd) = yd−1(j2 · · · jd)Z̃
(d)
d,j1

. (18)

Note that the TT-car Z̃
(d)
d is right-orthogonal after the TT-truncation, see Fig. 3. This

means that any perturbation introduced to yd−1 results in the error of the same norm
introduced to ỹd . We will now estimate this error.

In the step D = d − 1 of the algorithm we compute the Fourier transform of xd−1

using the same radix-2 step. We define zd−1 by Lines 3 and 4 of Algorithm 1 and
have

Pd−1yd−1 = (I1 ⊗ Fd−2)zd−1,

which is similar to what we had before. Approximation gives ‖z̃d−1 − zd−1‖ ≤
ε‖zd−1‖. This leads to

yd−1 = ỹd−1 + μd−1, ỹd−1
def= P T

d−1(I1 ⊗ Fd−2)z̃d−1, ‖μd−1‖ ≤ ε‖y‖.
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Substituting this equation to (18) and (17), we have, in elementwise form,

y(j1 · · · jd) = ỹd−1(j2 · · · jd)Z
(d)
d,j1

+ μd−1(j2 · · · jd)Z
(d)
d,j1

+ μd(j1 · · · jd).

Since the TT-car Z
(d)
d is right-orthogonal, it does not change the Frobenius norm,

and both error terms have a norm bounded by ε‖y‖. It is easy to notice that every
approximation step D introduces the perturbation ‖μD‖ ≤ ε‖y‖, and since all TT-
cars in the right subtrain Z

(D+1)
D+1 · · ·Z(d)

d are right-orthogonal, the perturbation of the

result has the same norm. After d approximation steps of the algorithm, the total error
is not larger than dε‖y‖. This completes the proof. �

Remark 2 The proof of Theorem 2 actually shows that the norm of the error of Algo-
rithm 2 is not larger than the sum of the norms of errors introduced on each approx-
imation step. If for a certain input vector all TT-truncation steps are exact, the result
returned by Algorithm 2 is precise. Examples of such vectors are given in [48].

Theorem 2 holds for any input vector x. However, the QTT-ranks of the intermedi-
ate vectors xD , D = d, . . . ,1, depend both on the accuracy level ε and the properties
of the vector x. It is not easy to describe explicitly the class of vectors x for which
all xD in Algorithm 2 will have QTT-ranks bounded by the desired value R for ac-
curacy level ε. This problem is solved for R = 1, ε = 0 (QTT-rank-one vectors with
QTT-rank-one Fourier images) in [48]. The numerical experiments provided in [48]
show that the class of such vectors for larger R and non-zero ε can be ‘not so small’,
even if ε is close to the machine precision. For instance, the Fourier transform of a
random rank-one vector typically (in the large set of numerical tests) is approximated
by a vector with moderate QTT-ranks.

4.3 Complexity Analysis

Now we estimate the asymptotic complexity of Algorithm 2 assuming that all QTT-
ranks of vectors xD on all steps of the algorithm are bounded by R, as well as the
QTT-ranks of input and output.

Theorem 3 If on levels D = d, . . . ,1 of Algorithm 2 the QTT-ranks of intermediate
vectors xD are not larger than RD , the complexity is estimated as follows

work≤
d∑

D=1

O
(
DR3

D

)≤ O
(
d2R3), where R = maxRD. (19)

Proof In step D = d, . . . ,1 we do the following:

1. alter the last block X̂
(D)
0,1 = 1√

2
(X

(D)
0 ± X

(D)
1 ) in O(R2

D) operations;

2. multiply the cars by twiddle factors, see Eq. (14) in O(R2
D) operations;

3. compress the subtrain zD(k) = Z
(1)
k1

· · ·Z(D)
kD

using the TT-truncation algo-

rithm [42] of O(DR3
D) complexity.

By summation we come to (19). �
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The complexity of the QTT-FFT algorithm is bounded by O(d2R3), where R

depends on the input vector x and the accuracy ε of the approximation. It can be
compared with the complexity of the superfast quantum Fourier transform [6], which
requires O(d2) quantum operations. In general (for arbitrary input vector x) the value
of R can grow exponentially with d . If we use the ‘brute-force’ TT-truncation with
the maximum rank criterion, the value of R does not grow and the complexity is
O(d2) for all input vectors, but the accuracy of the result can be arbitrarily bad. If the
accuracy-based criterion is used, Theorem 2 guarantees the accuracy of the result, but
the value of R and the complexity can be arbitrarily large. Therefore, for a class of all
possible input vectors the accuracy and the complexity of the QTT-FFT are related
(informally speaking) by the uncertainty principle: both cannot be small.

It is interesting (both theoretically and practically) to establish a special subclass
of vectors x for which the QTT-FFT algorithm has both the square-logarithmic com-
plexity and reasonable accuracy. This work has been started in [48]. More examples
are provided by the numerical experiments in Sect. 7.

5 Real-Valued Transforms Using QTT-FFT Algorithm

Many problems are formulated in real-valued arithmetic but can be efficiently solved
using the Fourier transform. For example, consider the discrete convolution of two
real-valued vectors, defined as follows

f (j) =
n−1∑

k=0

h(j − k)g(k), j = 0, . . . , n − 1.

In matrix-vector form f = T g where T = [t (j, k)]n−1
j,k=0 is the Toeplitz matrix with

elements t (j, k) = h(j − k). Each n × n Toeplitz matrix is the leading submatrix of
some 2n × 2n circulant matrix

C =
[

T ∗
∗ T

]

, C = [c(j, k)
]
, where c(j, k) = ĉ(j − k mod 2n).

To correspond with the matrix T , the elements of C are defined by

ĉ(k) = h(k), k = 0, . . . , n − 1,

ĉ(n) is arbitrary,

ĉ(k) = h(k − 2n), k = n + 1, . . . ,2n − 1.

Circulant matrices are diagonalized by the unitary Fourier matrix [10]:

C = F ∗ΛF, Λ = √
2ndiag(F ĉ).

The multiplication by the Toeplitz matrix T can be performed as follows
[

f

∗

]

= F ∗ΛF

[
g

0

]

, (20)
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which involves three Fourier transforms of size 2n and can be done ‘at FFT speed’.
The result is the complex-valued vector representing the real-valued convolution. In
standard computations we can easily take the real or imaginary part of a vector. For
vectors or tensors represented in the QTT format such operation is not straightfor-
ward. The algorithm is given by the constructive proof of the following theorem.

Theorem 4 If the complex-valued tensor X = [x(k1, . . . , kd)] is represented by the
tensor train format (1) with ranks r0, r1, . . . , rd−1, rd , it can be represented by the
following tensor train with TT-ranks r0,2r1, . . . ,2rd−1, rd , where all cars but one
are real-valued.

x(k1, . . . , kd) = X̂
(1)
k1

· · · X̂(d)
kd

X̂
(1)
k1

=
[
B

(1)
k1

C
(1)
k1

]
, X̂

(p)
kp

=
⎡

⎣
B

(p)
kp

C
(p)
kp

−C
(p)
kp

B
(p)
kp

.

⎤

⎦ ,

X̂
(d)
kd

=
⎡

⎣
B

(d)
kd

−C
(d)
kd

⎤

⎦+ i

⎡

⎣
C

(d)
kd

B
(d)
kd

⎤

⎦ ,

(21)

where p = 2, . . . , d − 1 and B
(q)
kq

= �X
(q)
kq

, C
(q)
kq

= 
X
(q)
kq

for q = 1, . . . , d .

Proof Start from

X
(1)
k1

=
[
B

(1)
k1

C
(1)
k1

][ I

iI

]

,

where I denotes the identity r1 × r1 matrix. Define the real-valued car X̂
(1)
k1

=
[B(1)

k1
C

(1)
k1

] and multiply [I iI ]T to the second car of tensor train as follows

[
I

iI

]

X
(2)
k2

=
[

I

iI

]
(
B

(2)
k2

+ iC
(2)
k2

)

=
⎡

⎣
B

(2)
k2

+ iC
(2)
k2

−C
(2)
k2

+ iB
(2)
k2

⎤

⎦=
⎡

⎣
B

(2)
k2

C
(2)
k2

−C
(2)
k2

B
(2)
k2

⎤

⎦

[
I

iI

]

= X̂
(2)
k2

[
I

iI

]

,

where in the right-hand side X̂
(2)
k2

is the new real-valued car and I is r2 × r2 identity
matrix. Continue the process and establish (21). �

Corollary 2 The representation (21) allows to compute the real and imaginary parts
of a tensor train (1) as follows

�x(k1, . . . , kd) =
(

d−1∏

p=1

X̂
(p)
kp

)

�X̂
(d)
kd

, 
x(k1, . . . , kd) =
(

d−1∏

p=1

X̂
(p)
kp

)


X̂
(d)
kd

.
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Example 1 Obtain the QTT representation for cosine and sine functions, discretized

on the uniform grid, i.e., vectors [cosαk]2d−1
k=0 and [sinαk]2d−1

k=0 . They are the real and

imaginary part of the vector (5), which has the rank-one QTT representation with the
following cars

X
(p)
kp

= exp
(
i2p−1αkp

)= cos 2p−1αkp + i sin 2p−1αkp.

We use (21) and form the real-valued cars X̂
(1)
k1

= [cosαk1 sinαk1] and

X̂
(p)
kp

=
[

cos 2p−1αkp sin 2p−1αkp

− sin 2p−1αkp cos 2p−1αkp

]

, p = 2, . . . , d − 1.

We result in

cosαk =
[

cosαk1

sinαk1

]T

· · ·
[

cos 2p−1αkp sin 2p−1αkp

− sin 2p−1αkp cos 2p−1αkp

]

· · ·
[

cos 2d−1αkd

− sin 2d−1αkd

]

,

sinαk =
[

cosαk1

sinαk1

]T

· · ·
[

cos 2p−1αkp sin 2p−1αkp

− sin 2p−1αkp cos 2p−1αkp

]

· · ·
[

sin 2d−1αkd

cos 2d−1αkd

]

.

(22)

This is the simultaneous representation of two considered vectors in the common
QTT form. The QTT-ranks are two, which follows from the existence of the rank-one
QTT representation for the exponential function and the simultaneous representation
of the real and imaginary part of complex tensor train, ensured by Theorem 4.

Example 2 Given a vector x, compute the orthogonal DCT-II (discrete cosine even
type-2) transform, defined as follows

y(j) =
n−1∑

k=0

x(k) cos

(
π

n
j

(
k + 1

2

))
, j = 0, . . . , n − 1.

The history of this and related cosine transforms, including the applications to signal
and image processing, can be found in a nice review [53]. The DCT-II can be com-
puted through the Fourier transform of size 2n applied to the vector x expanded by
zeros,

y(j) = �
[

exp

(
−πi

2n
j

) 2n−1∑

k=0

x̂(k) exp

(
−2πi

2n
jk

)]

,

where x̂(0 : n− 1) = x and x̂(n : 2n− 1) = 0. In computational practice double-sized
vectors and transforms are usually avoided for the sake of efficiency. However, in the
QTT approach, a double sized vector/transform does not require double storage/cost.
If n = 2d and x is given in the QTT format (4), the vector x̂ has the following QTT
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representation,

x̂(k) = x̂(k1 · · · kdkd+1) = X
(1)
k1

· · ·X(d)
kd

(1 − kd+1),

which has the same QTT-ranks as x. To compute y, we need to apply QTT-FFT algo-
rithm 2 to find ŷ = Fd+1x̂, which requires O((d + 1)2R3) operations, asymptotically
equal to the complexity of the transform of size 2d . Then we need to consider the
“top” half-vector of ŷ as explained by (12) and multiply the result pointwise by the
exponential vector. These operations do not change the QTT-ranks. Finally, we apply
Theorem 4 and obtain the real-valued cosine transform with QTT-ranks twice as large
as ones of the Fourier transform.

Finally, we should mention that the proposed approach to the computation of con-
volution and cosine transform can be generalized to other types of trigonometric
transforms as well as to higher dimensions.

6 Discrete Fourier Transform in Higher-Dimensional Case

The m-dimensional normalized Fourier transform is defined as follows.

y(j1, . . . , jm) =
n1−1∑

k1=0

· · ·
nm−1∑

km=0

x(k1, . . . , km)√
n1 · · ·nm

× exp

(
−2πi

n1
j1k1

)
· · · exp

(
−2πi

nm

jmkm

)
, (23)

where jq = 0, . . . , nq − 1 for q = 1, . . . ,m. If x = [x(k1, . . . , km)] and y =
[y(j1, . . . , jm)] are considered as n1 · · ·nd vectors, the m-dimensional Fourier trans-
form is the Kronecker product of m one-dimensional transforms, i.e., Fd1,...,dm =
Fdm ⊗ Fdm−1 ⊗ · · · ⊗ Fd2 ⊗ Fd1 . Using the tensor train representation (1), we have

x(k1, k2, . . . , km) = X
(1)
k1

X
(2)
k2

· · ·X(m)
km

,

y(j1, j2, . . . , jm) = Y
(1)
j1

Y
(2)
j2

· · ·Y (m)
jm

,

Y
(q)
jq

= 1√
nq

nq−1∑

kq=0

X
(q)
kq

exp

(
−2πi

nq

jqkq

)
, q = 1, . . . ,m.

(24)

We see that due to the perfect separation of variables, Fourier transform is inde-
pendently applied to all TT-cars. The multidimensional Fourier transform does not
change the TT-ranks. Therefore, Eq. (24) is the straightforward algorithm to compute
the m-dimensional Fourier transform of a n×n×· · ·×n vector with O(mR2n logn)

complexity, where R is the maximal TT-rank of a vector.
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Algorithm 3 Multi-dimensional QTT-FFT, approximation
Input: Vector x in the QTT format (25), accuracy ε or rank bounds R1,1, . . . ,

Rm,dm−1
Output: Approximation y ≈ Fd1,...,dmx of the Fourier transform (23) in the QTT

format (26)
1: Orthogonalize input tensor train right-to-left using TT-orthogonalization [42]
2: for q = 1,2, . . . ,m do
3: Apply QTT-FFT Algorithm 2 without the last bit-reverse step to the subtrain

X
(q,1)
kq,1

· · ·X(q,dq)

kq,dq
. The result appears as (Y

(q,dq )

kq,dq
)T · · · (Y (q,1)

kq,1
)T

4: If q �= m, make cars of the subtrain (Y
(q,dq )

kq,dq
)T · · · (Y (q,1)

kq,1
)T left-orthogonal

5: end for
6: Reverse the tensor train

[(
Y

(1,d1)
k1,d1

)T · · · (Y (1,1)
k1,1

)T ] · · · [(Y (m,dm)
km,dm

)T · · · (Y (m,1)
km,1

)T ]

and obtain (26).

To reach square-logarithmic complexity (of course, for a special type of input
data), we assume np = 2dp and use the binary notation (3) for all mode indices. The
input array is represented as follows

x(k1, . . . , km) = x(k1,1 · · ·k1,d1 , . . . , km,1 · · ·km,dm)

= (X(1,1)
k1,1

· · ·X(1,d1)
k1,d1

) · · · (X(m,1)
km,1

· · ·X(m,dm)
km,dm

)
. (25)

Then the QTT-FFT Algorithm 2 can be used to compute unimodular Fourier trans-
forms subsequently. The QTT-FFT introduces the error, controlled by Theorem 2.
The appropriate TT-orthogonalization should be used for interfaces to guarantee
that this error will not be amplified in the whole m-dimensional vector. The multi-
dimensional version of QTT-FFT is summarized by Algorithm 3 and visualized in
Fig. 4. The accuracy and complexity are estimated similarly to the one-dimensional
case.

Theorem 5 If the accuracy-based criterion ε is used on each approximation step
in Algorithm 3, the accuracy of the result is the following

‖y − Fd1,...,dmx‖ ≤
m∑

q=1

dqε‖y‖.

Theorem 6 The complexity of Algorithm 3 for m-dimensional transform of an n ×
n×· · ·×n vector with n = 2d is not larger than O(md2R3), where R is the maximum
QTT-rank of all intermediate vectors at all steps of Algorithm 3 and all internal calls
to Algorithm 2.
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X
(1,1)
k1,1

. . .X
(1,d1)
k1,d1

X
(2,1)
k2,1

. . .X
(2,d2)
k2,d2

. . . X
(m,1)
km,1

. . .X
(m,dm)
km,dm

(
Y

(1,d1)
j1,d1

)T
. . .
(
Y

(1,1)
k1,1

)T
X

(2,1)
k2,1

. . .X
(2,d2)
k2,d2

. . . X
(m,1)
km,1

. . .X
(m,dm)
km,dm

(
Y

(1,d1)
j1,d1

)T
. . .
(
Y

(1,1)
k1,1

)T (
Y

(2,d2)
j2,d2

)T
. . .
(
Y

(2,1)
k2,1

)T
. . .

(
Y

(m,dm)
jm,dm

)T
. . .
(
Y

(m,1)
km,1

)T

Rd1Fd1

Rd2Fd2

RdmFdm

Y
(m,1)
km,1

. . . Y
(m,dm)
km,dm

. . . Y
(2,1)
k2,1

. . . Y
(2,d2)
k2,d2

Y
(1,1)
k1,1

. . . Y
(1,d1)
k1,d1

Fig. 4 Visualization of the QTT-FFT Algorithm 3

Proof In Line 1 of Algorithm 3 the TT-orthogonalization of the tensor train with
md cars is performed, which requires not more than O(mdR3) operations. Then the
Algorithm 2 and TT-orthogonalization are applied to m subtrains with d cars each,
which costs not more than mO(d2R3) + mO(dR3). The last step does not require
any operations. Therefore, we obtain the O(md2R3) estimate, which completes the
proof. �

Note that due to the bit-reverse permutation issues, the order of mode indices in
the tensor train on output is reversed as follows.

y(j1, . . . , jm) = y(j1,1 · · · j1,d1 , . . . , jm,1 · · · jm,dm)

= (Y (m,1)
jm,1

· · ·Y (m,dm)
jm,dm

) · · · (Y (1,1)
j1,1

· · ·Y (1,d1)
j1,d1

)
. (26)

The reason is that every unimodular QTT transform is performed by Algorithm 2 with
the bit-reverse permutation of the result. In the 1D case, the bit-reverse permutation
is made without any computations by simple reordering of the transposed QTT-cars.
If we apply this reordering to each unimodular subtrain individually, the TT-ranks
(ranks separating the physical variables) will not be consistent. Instead, we reverse
the tensor train globally and obtain the result where the order of bits in the QTT rep-
resentation is correct, but the order of frequency modes is reversed compared with
the original ordering of space modes, as shown in Fig. 4. Fortunately, a wide class
of applications (e.g. convolution, solution of discretized PDEs) requires two succes-
sive Fourier transforms. In this case the second transform will recover the original
ordering.
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This drawback of the multi-dimensional QTT-FFT can be removed using a one-
dimensional QTT-FFT algorithm based on the self-sorting FFT [20].

7 Numerical Examples

In this section we compare the accuracy and timings of the trigonometric transforms
for one-, two- and three-dimensional functions with moderate QTT-ranks. From the
proof of Theorem 3 we see that the complexity of the QTT-FFT depends on all QTT-
ranks. The maximum QTT-rank used in (19) sometimes gives incorrect impression of
“structure complexity” of particular data array. To account the distribution of all QTT-
ranks r0, . . . , rd , we define the effective QTT-rank4 of a vector as the positive solution
r of the quadratic equation mem(r0, r1, r2, . . . , rd−1, rd) = mem(r0, r, r, . . . , r, rd),
where mem measures the storage for the QTT format as follows

mem(r0, r1, r2, . . . , rd−1, rd) = r0r1 + r1r2 + · · · + rd−1rd .

The effective QTT-rank is generally non-integer.
For experiments we use one Xeon E5504 CPU at 2.0 GHz with 72 GB of mem-

ory in the Institute of Numerical Mathematics, Russian Academy of Sciences, Rus-
sia. The TT subroutines and QTT-FFT algorithms are implemented in Fortran 90
by the third author. We use Intel Fortran Composer XE version 12.0 (64 bit) and
BLAS/LAPACK and FFTW packages provided with MKL library.

7.1 Fourier Images in 1D

For integrable function f (x), the Fourier transform, or image f̂ (ξ) is defined for
every real ξ as follows

f̂ (ξ) =
∫ +∞

−∞
f (t) exp(−2πitξ )dt. (27)

We consider the rectangle pulse function, for which the Fourier transform is known,

Π(t) =

⎧
⎪⎨

⎪⎩

0, if |t | > 1
2

1
2 , if |t | = 1

2 ,

1, if |t | < 1
2 ,

Π̂(ξ) = sinc(ξ)
def= sinπξ

πξ
. (28)

The Fourier integral is approximated by the rectangle rule. Since f (t) = Π(t) is real
and even, we write

f̂ (ξj ) = 2�
∫ +∞

0
f (t) exp(−2πitξj )dt ≈ 2�

n−1∑

k=0

f (tk) exp(−2πitkξj )ht , (29)

4This definition was proposed by E.E. Tyrtyshnikov.
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Table 1 Time for QTT-FFT (in milliseconds) w.r.t. size n = 2d and accuracy ε. Here timeQTT is the
runtime of Algorithm 2, timeFFTW is the runtime of the FFT algorithm from the FFTW library, and
rank f̂ is the effective QTT-rank of the Fourier image

f = Π(t) ε = 10−4 ε = 10−8 ε = 10−12

d timeFFTW rank f̂ timeQTT rank f̂ timeQTT rank f̂ timeQTT

16 1.7 4.66 7.9 6.85 13.8 8.85 20.0

18 8.9 4.70 9.7 6.86 16.7 8.82 23.4

20 42.5 4.75 11.3 6.85 19.8 8.86 30.6

22 180 4.77 13.1 6.83 23.3 8.89 36.4

24 810 4.74 15.0 6.72 26.3 8.94 41.7

26 4100 4.62 17.0 6.76 30.0 8.89 46.5

28 26300 4.57 18.9 6.80 33.0 8.88 51.2

30 – 4.72 20.3 6.78 36.2 8.84 57.0

40 – 4.20 29.1 6.59 53.6 8.78 83.2

50 – 3.96 39.3 6.45 70.5 8.48 109

60 – 3.69 50.0 6.25 87.6 8.32 133

where tk = (k + 1
2 )ht , ξj = (j + 1

2 )hξ and k, j = 0, . . . , n − 1. If hthξ = 1
n

and
n = 2d , the sum in the right-hand side can be computed by DFT as follows

f̂ ≈ f̃ = 2
d
2 +1ht�(ωd+2ΩdFdΩdf ), f̂ = [f̂ (ξj )

]2d−1
j=0 , f = [f (tk)

]2d−1
k=0 .

(30)
For ht = hξ = 1

2
d
2

and d even, the QTT representation of the rectangular pulse has

QTT-ranks one, i.e.,

Π(tk) = Π

(
h

2
+ k1 · · · k d

2 −1h + k d
2
· · ·kd/2

)
= (1 − k d

2
) · · · (1 − kd).

We can use QTT-FFT Algorithm 2 to compute DFT in (30). According to Theo-
rem 2 the relative accuracy of the result is ε if the tolerance parameter is set to ε

d
. The

QTT-ranks and timings will grow for smaller ε. In Table 1 we compare the runtime of
Algorithm 2 for different ε with the runtime of the FFT out-of-place algorithm from
the FFTW library. The timings are rather small and were obtained by averaging the
computation time over a large number of executions. We see that for the considered
example the QTT-FFT algorithm outperforms the FFT algorithm from FFTW library
for n ≥ 220, even for very high accuracy. We also see that the use of moderate or low
accuracy for QTT-FFT significantly reduces the QTT-ranks of the result and speeds
up the computation. That is not the case for the standard FFT algorithm.

The accuracy of the rectangle rule (30) increases for smaller step size h. For fixed
frequency ξ we can expect O(h2) = O(n−1) convergence, but for very large frequen-
cies ξj , j � n

2 , Eq. (29) is not accurate since the period of exponent exp(−2πxξj ) is
less 2h. Therefore, we check the accuracy of (30) for a subvectors corresponding to
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Table 2 Accuracy verification for the QTT-FFT Algorithm 2 and f = Π(t). The desired accuracy is

ε = 10−13, grid size h = 2− d
2 , and acc denotes the relative accuracy in Frobenius norm of (30) for

subvectors corresponding to 0 ≤ ξj ≤ 16

d 20 22 24 26 28 30 40 50 60

h 110−3 510−4 210−4 110−4 610−5 310−5 110−6 310−8 910−10

acc 210−5 510−6 110−6 310−7 810−8 210−8 210−11 210−13 210−13

0 ≤ ξj ≤ 16. The results are shown in Table 2, where

acc= ‖f̂ − f̃ ‖[0,16]/‖f̂ ‖[0,16], where ‖f ‖2[0,16] =
∑

j :0≤ξj ≤16

∣∣f (ξj )
∣∣2.

The computations for n ≤ 228 can be performed by FFTW or QTT-FFT. For n > 228

the one-processor subroutine from FFTW cannot be used due to storage limitations
and data-sparse QTT format is necessary to increase the accuracy of the computed
Fourier image. For d ≤ 28 the accuracy of QTT-FFT was verified by comparison with
FFTW and the QTT-FFT error was always ‘under control’, i.e., less than the desired
accuracy.

7.2 Fourier Images in 3D

In larger dimensions the one-dimensional size of the array that can be processed by
standard FFT algorithm is severely restricted by computing resources. Therefore, the
discretization accuracy obtained on simple workstations is often low and multiproces-
sor parallel platforms have to be used for larger grids. As well as in 1D case, the use
of data-structured QTT-FFT algorithm relaxes/removes the grid size restrictions and
allows to reach higher accuracy of the computation using one CPU. As an example,
we compute the following m-dimensional Fourier image from [52]

f (x) =
{

(1 − |x|2)δ, if |x| ≤ 1,

0, otherwise,

f̂ (ξ) =
∫

Rm

f (x)e−2πix·ξ dξ = Γ (δ + 1)Jm
2 +δ(2π |ξ |)

πδ|ξ |m
2 +δ

,

(31)

where Γ is the Gamma function, δ is arbitrary real parameter, Jα is the Bessel func-
tion of the first kind of order α, and x · ξ denotes the scalar product. Introducing the
uniform tensor product n × n × · · · × n grids in space and frequency domains with
step sizes hx = hξ = 1√

n
and n = 2d , we approximate (31) by the rectangle quadra-

ture rule. The result can be computed by m-dimensional DFT.
We perform the experiments for the case m = 3, where DFT can be computed both

by FFTW and QTT-FFT. The accuracy of Algorithm 3 is verified by comparison with
the analytical answer (31). Since the comparison at all 2dm points is unfeasible, the
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Table 3 Relative accuracy acc
of 3D Fourier image (31) FFTW QTT-FFT

δ d = 8 d = 8 d = 10 d = 12

0.5 210−3 210−3 310−4 710−5

1.5 810−5 810−5 710−6 510−7

2.5 910−6 910−6 310−7 110−8

3.5 810−7 810−7 110−8 210−10

accuracy is defined as follows

acc= ‖f̂ − f̃ ‖diag[0,8]3/‖f̂ ‖diag[0,8]3 ,

where ‖f ‖2
diag[0,8]3 =

∑

j :0≤ξj ≤8

∣∣f (ξj , ξj , ξj )
∣∣2.

The results are shown in Table 3. For d = 8 the accuracy of QTT-FFT is verified also
by comparison with the FFTW algorithm.

7.3 Convolution in 3D

In the scientific computing the Fourier transform is often used for the computation
of convolutions. As a motivating example, consider the evaluation of the Newton
potential,

V (x) = 1

4π

∫

R3

f (y)

‖x − y‖dy, (32)

which plays an important role in the electronic structure calculations based on the
Hartree-Fock equation. In many chemical modelling programs, e.g., PC GAMESS
and MOLPRO, the electron density function f (y) is represented as a sum of poly-
nomially weighted 3D Gaussians, for which (32) is evaluated analytically. For larger
molecules, the proper choice of Gaussian-type orbitals (GTO) basis requires signifi-
cant efforts, and sometimes computations become infeasible due to the huge number
of basis elements involved. The possible alternative may be the discretization on the
n × n × n tensor grids using standard Galerkin/collocation schemes with piecewise
constant or linear basis elements. The electron density function has strong cusps at
the positions of the nuclei, which motivates the use of very precise grids. The tensor-
structured methods lead to almost linear or even logarithmic complexity w.r.t. n,
which makes the use of very fine grids and high accuracy of computations possible
without a special choice of basis. In this way, fast tensor-product convolution with the
Newton kernel based on the canonical or/and Tucker tensor decompositions has been
developed in [30, 33, 50] and applied to the fully discrete grid-based solution of the
Hartree-Fock equation in [26, 35]. These algorithms reduce the three-dimensional
convolution to a number of one-dimensional ones, which are computed by FFT in
O(n logn) operations. The QTT representation of the canonical vectors reduces the
complexity to the logarithmic scale w.r.t. n, see [28]. The multidimensional convolu-
tion of QTT-structured data can be computed also directly using the analytical QTT
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decomposition of a multilevel Toeplitz matrix [25]. We refer also to [8, 12, 27, 29,
34, 43, 47, 51] for the detailed discussions on recent progress in this field.

To discretize (32), we reduce the integration interval to B
def= [− 1

2 , 1
2 ]3, assuming

that f (y) vanishes outside this cube, and introduce the uniform n × n × n tensor-
product grid in B . We consider two discretization methods: collocation and Nyström-
type. Collocation method approximates f (y) by a piecewise constant function and
leads to

V (x) ≈ Vc(x)
def= 1

4π

∑

k

f (yk)

∫

Bk

dy

‖x − y‖ , V (xj ) ≈ vc(j)
def= Vc(xj ), (33)

where xj = (h + 1
2 )j , yk = (h + 1

2 )k, Bk is the h × h × h cube centered at yk ,
j = (j1, j2, j3), k = (k1, k2, k3) and jp, kp = 0, . . . , n − 1 for p = 1,2,3. As shown
in [30], the pointwise accuracy of this approximation is

∣∣V (xj ) − vc(j)
∣∣≤ Ch2.

Nyström-type convolution appears if we write (32) at points x = xj and then ap-
proximate the integral by the rectangle quadrature rule over B as follows

V (xj ) ≈ vn(j)
def= 1

4π

∑

k

f
(
y′
k

) h3

‖xj − y′
k‖

, (34)

where y′
k = kh and j, k are defined as earlier. Since y′

k �= xj for all j and k, the
right-hand side in this equation is well defined. The standard accuracy estimate of
the rectangle rule is not applicable to the singular functions and we did not find the
accuracy estimate of this method in the literature. Surprisingly, it can be proven that
the accuracy of the Nystöm-type convolution for the 3D Newton potential of smooth
functions is estimated as

∣∣V (xj ) − vn(j)
∣∣≤ Ch2| logh|,

which is almost the same order of convergence, as for the collocation method. We
will report the proof elsewhere.

Note that the Nyström-type method ‘shifts’ the result, i.e., grids for f (y) and
V (x) do not coincide. This can be a drawback for some applications. However, the
coefficients of the convolution core in (34) are easier to compute than the ones in (33).

Both (33) and (34) represent the three-dimensional discrete convolution. By (20),
it can be computed by three three-dimensional DFTs of size (2n)3. This operation is
highly restricted by the value of n and for n � 29 is not feasible for full-sized vectors
using a standard FFT algorithm on one processor. If f (y) has moderate QTT-ranks,
the Newton potential can be efficiently computed using QTT-FFT Algorithm 3. To
do this, we need the QTT representation of the first column of the Newton potential
matrix, which is different for the collocation and Nyström-type methods. A similar
problem was discussed for the representation of Newton/Yukawa potential in canon-
ical format [1], and was solved using the sinc-quadrature from [17], which expresses
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Fig. 5 (left) Pointwise relative accuracy of the sinc-quadrature [17, Eq. (5.3)] with nq terms for r−1.
(right) QTT-ranks of the first column of Newton potential matrix for grid size n and relative accuracy ε.
Solid lines—collocation method (33), dashed lines—Nyström-type method (34)

r−1 as the sum of Gaussian functions, i.e.,

r−1 ≈
nq∑

q=1

bq exp
(−aqr2)

=
nq∑

q=1

bq exp
(−aqx2) exp

(−aqy2) exp
(−aqz2), r2 = x2 + y2 + z2.

Gaussians are perfectly separable in physical modes and the QTT representation of
each term can be constructed as the Kronecker product of one-dimensional Gaus-
sians, for which we can use full-to-TT algorithm [40]. The QTT-ranks of a one-

dimensional Gaussian are bounded by O(log
1
2 ε−1) [5].

The pointwise relative accuracy of the sinc-quadrature for different r is shown
in Fig. 5(left). We see that for rmax

rmin
≈ n � 104, the quadrature with nq = 500 terms

provides almost the machine precision. For n ≤ 106, the quadrature with nq = 3600
terms has the pointwise relative accuracy ε = 10−13, which is enough for our pur-
poses. Since the potential should be constructed only once (there is no adaptation of
grid, etc.), the large nq is not restrictive. In Fig. 5(right) we show the QTT-ranks of
the convolution cores (33) and (34) w.r.t. grid size n and relative accuracy level ε.

To check the accuracy and speed of the proposed method, we compute the Hartree
potential (32) for the Gaussian charge density f = g0,σ for different σ and compare
the result with the analytical answer,

ga,σ (y) = 1

(
√

2πσ)3
exp

(
−|y − a|2

2σ 2

)
,

V (x) = 1

4π |x − a| erf

( |x − a|√
2σ

)
.

(35)

Here a,σ are the center and width of the Gaussian and erf(x)
def= 2√

π

∫ x

0 exp(−t2)dt

is the error function. Accuracy and timings of the evaluation of (35) using 3D convo-
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Fig. 6 Accuracy (left) and computation time (right) for the Newton potential of the Gaussian charge den-
sity (35) with width σ on the uniform tensor-product n×n×n grid. Solid lines—collocation method (33),
dashed lines—Nyström-type method (34). Approximation accuracy for the QTT-FFT is ε = 10−10

lution are shown in Fig. 6. The relative accuracy in the Frobenius norm is measured
over one line of grid points, {xj } × {xn

2
} × {xn

2
}, j = 0, . . . , n − 1.

It is interesting, that in Fig. 6(left) there are three error plateaus which ap-
pear for different reasons. The right plateau for σ = 10−1 appears on the level
acc≈ 10−6 due to the error, introduced by the truncation of the integral away from
the cube B , since on the boundary the Gaussian does not vanish to machine zero, i.e.,

exp(− x2

2σ 2 )|
x= 1

2
≈ 10−6. Gaussian charges with smaller σ represent stronger cusps

and do not have this error visible. The right plateau for the Gaussian with σ = 10−2

appears due to the approximation error in QTT-FFT, which is set to ε = 10−10. Fi-
nally, the left plateau for σ = 10−3, σ = 10−4 and σ = 10−5 appear since these cusps
cannot be properly described on coarse grids. Therefore, a precise evaluation of the
Newton potential of such functions on the uniform tensor product grids requires larger
grid sizes and is feasible using QTT approximation.

Timings for the evaluation of 3D convolution using the QTT-FFT algorithm are
very moderate and scale square-logarithmically w.r.t. d , see Fig. 6(right).

7.4 Signals with Sparse Fourier Images

Consider a sum of p plane waves in m-dimensional space, defined as follows

f (k) =
R∑

p=1

ap exp

(
2πi

n
fp · k

)
, fp ∈ R

m, k = {0, . . . , n − 1}m, n = 2d .

(36)
Each plane wave has QTT-ranks one (5), which do not depend on the accuracy and
vector size. The QTT-ranks of f = [f (k)] are not larger than R. If the frequencies
are integer numbers, fp ∈ Z

m, all intermediate vectors of Algorithm 3 also have
QTT-ranks one [48]. Therefore, using plain waves we can construct a signal with
prescribed QTT-ranks and complexity of the QTT-FFT algorithm, which allows to
compare the speed of QTT-FFT and the standard FFT algorithm for different d and R.
The results are given in Fig. 7.
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Fig. 7 QTT-FFT and FFTW time for R plane waves in m dimensions. Graphs 1–3 show the runtime w.r.t.
problem size N = nm for different R and m. Graph 4 shows the runtime w.r.t. R for m = 1 (thick solid
lines), m = 2 (dashed lines), m = 3 (thin gray solid lines)

We see that the QTT-FFT is asymptotically faster than the full-size FFT for all
moderate R that we have tested. However, the crossover point, i.e., the minimum size
of the transform for which QTT-FFT outperforms the standard method, depends on R

and m. For example, for R = 8 the crossover point for m = 1 is d ≈ 20, for m = 2 is
d ≈ 19 and for m = 3 is d ≈ 18. Therefore, the QTT-FFT algorithm performs better
for high-dimensional problems than the standard FFT algorithm and is not restricted
by the problem size. However, the QTT-FFT is not efficient if R is too large.

By Theorem 6, the complexity of multi-dimensional QTT-FFT is not larger
than O(md2R3). Using signals (36) with different R, we can measure the actual run-
time w.r.t. R. The results for signals (36) with ap = 1 and random integer frequencies
fp ∈ Z

m are given by the fourth graph in Fig. 7. Surprisingly, the computational time
grows quadratically, not cubically, w.r.t. parameter R for the large-size transforms.
The time of smaller-size transforms (see N = 212) tends to a constant for large R,
since the QTT-ranks of vector (36) can not exceed the QTT-ranks of full-rank vectors.
This constant level is, however, significantly larger than the time of corresponding
transform of a dense vector. That shows that our current implementation of QTT-FFT
is by far not so optimized as the algorithms from FFTW library. We also see that for
transforms of the same size N = nm, i.e., with the same log2 N = m log2 n = md ,
the transforms with larger m are faster, since the complexity is linear w.r.t. m and
quadratic w.r.t. d .

Since the complexity of QTT-FFT is defined by the parameters d,m and R of the
input vector, the numerical results obtained for plane waves can be generalized to all
vectors with QTT-ranks bounded by R at all steps of the Cooley-Tukey algorithm.
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Therefore, the runtimes given in Fig. 7 can be considered as the ‘typical’ runtimes of
QTT-FFT algorithm for signals characterized by m,n and R.

7.5 QTT-FFT and Sparse Fourier Transform

The QTT representation is the example of a data-sparse representation, i.e., with
number of representation parameters asymptotically smaller than the full number of
array elements. The sum of plane waves (36) is a particular example of a signal with
data-sparse QTT representation: the QTT-ranks of the sum of R plain waves does not
exceed R. If fp ∈ Z

m, this signal has no more than R non-zero Fourier components
and is both QTT-sparse and Fourier-sparse.

The sparse Fourier transform problem is the following: given a signal of length n,
estimate the R largest in magnitude coefficients of its Fourier transform. If we use
all n elements of a given vector and the standard FFT algorithm, the answer can be
trivially computed in O(n logn) operations, which is both the complexity of FFT
and sorting algorithm. To reduce the complexity, heuristic algorithms are developed,
which estimate the Fourier-sparse representation with given number of terms R using
a subset of samples (vector elements), usually selected with a certain randomization.
Sparse Fourier transform algorithms are most efficient for the vectors with o(n) non-
zero Fourier components. Note that the description of this class of vectors is not
explicit, as well as the description of a class of ‘suitable’ vectors for the QTT-FFT
algorithm. The Fourier-sparsity of a general input vector cannot be predicted before
the Fourier transform is computed.

To compare QTT-FFT with Sparse Fourier transform, we should first explain that
QTT-FFT solves actually a different problem: given a signal in data-sparse QTT form,
compute a Fourier transform in the same data-sparse format. The similarity, which al-
lows to compare the QTT-FFT approach with the Sparse Fourier transform, is the fol-
lowing: the class of QTT-sparse vectors includes all Fourier-sparse vectors, since each
signal with exactly R non-zero Fourier coefficients has QTT-ranks bounded by R (but
not vice versa). The differences are the following: QTT-FFT algorithm requires in-
put to be given already in the QTT format, and the output is again the QTT format,
which is data-sparse, but not sparse. Two missing components are an algorithm that
computes the QTT representation of a given signal from a set of samples (TT-cross),
and an algorithm that converts the QTT format to a sparse vector (TT-sparse). This is
illustrated by a scheme in Fig. 8.

Signal Fourier image

QTT for signal QTT for Fourier

Sparse Fourier transform

TT-cross

QTT-FFT

TT-sparse

Fig. 8 Sparse Fourier transform and QTT-FFT approach



946 J Fourier Anal Appl (2012) 18:915–953

Fig. 9 (Left) DFT image of 2D data set with R = 5 plane waves on 2d × 2d grid, d = 9. Logarithm of
amplitude is shown in 256 levels of gray (black = maximum, white = minimum). (Right) The image after
sparsification in the QTT format

Algorithms that reconstruct the tensor train format from samples of a given array
are proposed in [45, 49]. They are based on the maximum-volume principle [11, 13],
which selects proper sets of indices in the array for the interpolation procedure. The
maximum-volume algorithm is heuristic, adaptive to the signal and originally non-
random, but certain randomness can be included to check the accuracy and/or im-
prove the robustness. The development of the maximum-volume concept to higher
dimensions is still at the early stage and “TT-cross” algorithms should be further
improved, as well as the background theory.

The “TT-sparse” algorithms were never considered previously, mostly due to the
reason that data-sparse TT/QTT representations are “good enough” for the numerical
work and we usually do not need to convert them into the pointwise-sparse format.
In order to proof the concept, we can propose a very naive algorithm which sparsifies
the TT-cars of (1) independently as follows A

(p)
kp

→ Ã
(p)
kp

, where

Ã
(p)
kp

(i, j) =
{

A
(p)
kp

(i, j), if |A(p)
kp

(i, j)| ≥ μmaxkp maxi,j |A(p)
kp

(i, j)|,
0, elsewhere,

(37)

where μ is the threshold parameter. The sparsified TT format can be easily “decom-
pressed” into a sparse vector.

We show how the “TT-cross → QTT-FFT → TT-sparse” scheme works for the
particular two-dimensional signal, which is a sum of five plain waves (36) with unit
amplitudes and randomly taken frequencies. Since the frequencies are not integer,
the discrete Fourier image of this signal (see Fig. 9(left)) is not sparse, but has strong
cusps near the positions of fp . We apply the TT-ACA algorithm [49] (which is the
DMRG-type TT-cross algorithm) to reconstruct the QTT representation of the signal
from a few samples. Then we apply Algorithm 3 and sparsify the DFT image by (37)
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with μ = 0.4. The result is shown in Fig. 9(right) and gives the correct positions of all
five plane wave frequencies. This example shows that QTT-FFT approach (three-step
scheme) can be helpful for problems where Sparse Fourier transform algorithms are
applied.

8 Comparison with Sparse Fourier Transform

8.1 Comparison with Sparse Fourier Transform Algorithms

The history of the Sparse Fourier transform framework can be found in [18]. Since
the Sparse Fourier transform is not a central topic of this paper, we will compare our
approach only with recent algorithms developed in this field.

8.1.1 RAlSFA

The randomized heuristic algorithm RAlSFA [55] finds a near-optimal R-term
Fourier-sparse representation of a signal of length n with probability δ and quasi-
optimality parameter α in time poly(r) logn log( 1

δ
)/α2, where the polynomial

poly(r) is empirically found to be quadratic. The complexity of the QTT-FFT trans-
form for such array is O(R3 log2 n), that is larger than the RAlSFA complexity by
R logn factor. The program code is not available in public domain, and we can com-
pare the running time only using the information about crossover points with FFTW.
The crossover point between RAlSFA and FFTW algorithms is reported for R = 8,
some δ and α and dimensions m = 1,2,3 as N � 70000 for 1D transforms, N � 9002

for 2D transforms and (estimated) as N � 2103 for 3D transforms. The crossover
points of QTT-FFT and FFTW for R = 8 and m = 1,2,3 are N � 220 for 1D prob-
lems, N � 219 for 2D problems and N � 218 for 3D problems, see Fig. 7. If we
consider the runtime of TT-ACA algorithm together with QTT-FFT, the crossover
point for 1D transform moves to N = 221, see Fig. 10(left). For m = 2,3 the runtime
of TT-ACA also does not change the crosspoint significantly.

Fig. 10 Runtimes of the TT-ACA + QTT-FFT algorithms (solid lines), AAFFT algorithm (dashed lines)
and FFTW (gray lines) for the plane waves example (36), m = 1. (Left) Integer frequencies fp ∈ Z, (right)
real frequencies fp ∈ R, relative accuracy ε = 10−2
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We can conclude that our approach is slower than RAlSFA for 1D problems, has
almost the same speed for 2D problems and outperforms it in higher dimensions.
The other advantage of the QTT-FFT method is that it does not require any choice of
parameters, while the parameter tune in RAlSFA is quite tricky.

8.1.2 sFFT

The nearly optimal Sparse Fourier transform algorithm was recently proposed by
MIT group [18, 19]. The complexity is reported to be O(R logn log(n/R)), which
is smaller than the complexity of QTT-FFT by a factor of R2 for n � R. The sFFT
algorithm is faster than FFTW for n = 222 and R ≤ 217. From Fig. 10(left) we see
that the “TT-ACA + QTT-FFT” approach is competitive with FFTW for n = 222 and
R � 23, i.e., our approach is far less efficient for this problem. The program code for
sFFT is currently not available in public domain.

8.1.3 AAFFT

The combinatorial sublinear Fourier transform algorithm [23] provides the approxi-
mation with high probability and has O(R log5 n) complexity. The deterministic ver-
sion requires O(R2 log4 n) operations. The complexity of QTT-FFT is O(R3 log2 n)

and TT-ACA algorithm [49] requires O(R3 logn) operations for each iteration/sweep.
Therefore, we can expect that AAFFT is faster than our approach for larger R.

The program code of AAFFT algorithm (written in C++) is available in public
domain [22] for the case m = 1. This allows us to perform the numerical comparison.
Note that the measured runtime includes the time of evaluation of the value of signal
on selected positions (samples), i.e., signal is not precomputed before the experiment.
This allows us to use finer grids with n ≤ 230 but increases the runtime of “sampling”
part (TT-ACA and the corresponding part of AAFFT) by the factor of R. The results
are reported in Fig. 10(left) in terms of CPU times. We see that our approach outper-
forms AAFFT for small n or very small R. For larger n and R the AAFFT algorithm
is faster than the “TT-ACA + QTT-FFT” scheme for the signal that is the sum of R

one-dimensional plain waves (36) with integer frequencies fp ∈ Z. Comparison in
terms of number of samples gives similar result.

8.2 Comparison for Limited Bandwidth Signals

We have considered the signals (36) with integer frequencies, i.e., the exactly Fourier-
sparse case. Such signals are the ‘best examples’ for the Sparse Fourier transform
algorithms. However, since our approach is applicable to a wider class of signals, it is
interesting to provide comparison also for the signals which are not exactly Fourier-
sparse. For instance, we consider the same plain waves example (36) with arbitrary
real frequencies fp ∈ R

m. The Fourier images of such signals are not exactly sparse,
for example see Fig. 9(left). The QTT-ranks of (36) are bounded by the number of
terms R, but the QTT-ranks of Fourier image (as well as the complexity of QTT-FFT)
are larger and depend on selected accuracy level ε, if fp /∈ Z

m.
The number of Fourier terms required to represent the Fourier image of (36) with

accuracy ε in sparse format is o(n) but grows with ε. We found that for signals (36)
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Fig. 11 Example of limited bandwidth signal. Left—Fourier image, right—positions of frequencies of
R-term Fourier-sparse representation computed by AAFFT w.r.t. R

with random frequencies and unit amplitudes the Sparse Fourier representation with
about 32R terms provides the accuracy ε = 10−1 and 1024R terms provide the ac-
curacy ε = 10−2. The corresponding runtime for the accuracy ε = 10−2 is shown
in Fig. 10(right). We see that the QTT-ranks and runtime of our method grow very
slowly with ε, while the runtime of AAFFT is proportional to the number of the
Fourier terms required for the representation. Therefore, the sum of plane waves (36)
with real frequencies is an example of a signal for which our approach allows to com-
pute the approximate Fourier image faster / more accurately than the AAFFT Sparse
Fourier algorithm.

Another example is the signal consisting of three components with limited band-
widths,

f̂ (ξ) = exp

(
− ξ2

2σ 2

)
+ 1

10
exp

(
− (ξ − ξ∗)2

2σ 2

)
+ 1

10
exp

(
− (ξ + ξ∗)2

2σ 2

)
, (38)

where σ = 0.02 and ξ∗ = 0.4. The Fourier image is shown in Fig. 11(left). This signal
models the AM (amplitude modulation) broadcast, where the amplitude of central
carrier signal is one order of magnitude larger than the amplitude of sidebands. It is
known that the spectrum of the signal belongs to interval [−1,1] and we can measure
the signal in the time domain at points tk = hk on the uniform grid of size n = 2d .
Suppose that our goal is to locate the positions of sidebands in frequency space using
a small number of samples from the signal and/or the minimum runtime.

Since the signal has many Fourier components which are almost zero, the prob-
lem can be naturally considered using the Sparse Fourier transform framework, i.e.,
compute the R-term Fourier-sparse representation of given signal and look at the po-
sitions of the computed frequencies. However the number of non-vanishing Fourier
components of such a signal is O(n), the ratio of the bandwidths of signal compo-
nents to the whole interval where the spectrum is considered. This makes this prob-
lem particularly difficult for Sparse Fourier transform algorithms and can increase
the complexity to O(n).

We try to locate the sidebands using the AAFFT algorithm with different R. Since
the amplitude of carrier signal is larger than the amplitudes of sidebands, for R < R∗
all components of the obtained R-term representation belong to the carrier signal. In
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Table 4 Comparison of AAFFT and “TT-ACA + QTT-FFT” for limited bandwidth signal (38) of length
n = 2d . ‘AAFFT’ columns: R∗ is minimal number of Fourier terms that allow to detect the sideband,
time and nval are the corresponding runtime (in milliseconds) and the number of samples, ε is the
relative accuracy of the Fourier-sparse representation with R∗ terms. ‘TT-ACA + QTT-FFT’ columns: ε is
the desired accuracy, R is the maximum effective QTT-rank seen in the computation, time and nval are
the corresponding runtime (in milliseconds) and the number of samples

AAFFT TT-ACA + QTT-FFT

ε = 10−1 ε = 10−2 ε = 10−10

d R∗ time nval R time nval R time nval

10 46 190 7.36104 3.00 5.00 3.59103 7.29 10.9 4.74103

12 183 1.2103 3.29105 2.78 6.72 2.61103 7.30 19.8 4.92103

14 710 6.4103 1.42106 2.58 9.00 3.60103 7.13 28.1 5.00103

16 2800 8.4104 6.16106 2.42 9.81 3.83103 6.78 36.1 6.96103

18 11100 4.2105 2.67107 2.30 11.2 3.43103 6.44 43.8 5.52103

20 – – – 2.19 12.9 1.56104 6.15 49.5 5.88103

other words, even the presence of sidebands cannot be detected until we set R = R∗
with certain critical number of terms R∗. This is shown in Fig. 11(right). Note that
R∗ grows with the signal size, since the frequency domain grid size decreases and
more Fourier-sparse components belong to the support of each bandwidth limited
component.

Our approach represents the signal by the QTT format (4), and a large number
of non-vanishing components does not mean large QTT-ranks and large complexity
of the proposed method. In the experiment we note that the QTT-ranks do not grow
significantly w.r.t. n, and grow very reasonably w.r.t. accuracy parameter ε. This leads
to the square-logarithmic complexity of TT-ACA and QTT-FFT, i.e., O(R3d2), where
R is very moderate. The results are shown in Table 4. The sparse format with R = R∗
Fourier terms approximates the given signal with relative accuracy in Frobenius norm
ε ≈ 10−1. A much more accurate QTT approximation is possible and can be obtained
in sublinear time.

The considered limitation of the Sparse Fourier transform framework is general
and does not (in our opinion) address specifically the AAFFT algorithm. We can con-
clude that for the considered signal with limited bandwidth our method outperforms
the Sparse Fourier transform algorithms, even for small n.

9 Conclusion and Future Work

We propose algorithms for the approximate Fourier transform of one- and multi-
dimensional vectors in the QTT format. The m-dimensional Fourier transform of an
n × · · · × n array with n = 2d has O(md2R3) complexity where R is the maximum
QTT-rank of the input vector, result, and all intermediate vectors of the Cooley-Tukey
algorithm. The storage size is bounded by O(mdR2). The proposed approach is ef-
ficient for vectors with moderate R. For vectors with moderate R and large n and m
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the proposed algorithm outperforms the O(nm logn) FFT algorithm. The complexity
w.r.t. d corresponds to the complexity of the superfast quantum Fourier transform,
which requires O(d2) quantum operations.

Using the QTT format, the 1D FFT transform of size n = 2d for vectors with
QTT-ranks R � 10 can be computed for n ≤ 260 in less than a second. The 3D FFT
transform for n × n × n array with about the same QTT-ranks can be computed for
n ≤ 220 in one second. This allows to use very fine grids and thus, to accurately
compute the Hartree potential of Gaussian functions with strong cusps and width in
the range from σ = 10−1 to 10−5 by 3D convolution. We measure the runtime of the
algorithm applied to multidimensional functions (m = 1,2,3) with a small number
of Fourier coefficients, which can be used to estimate the runtime for vectors with
similar m,d and R. Notice that in the case m > 3 the computation of high-resolution
FFT and convolution transforms is practically infeasible without the use of a certain
approximation.

Combining the QTT-FFT algorithm with a method that computes the QTT rep-
resentation from several elements (samples) of a given vector, we compare it with
Sparse Fourier transform algorithms. By numerical examples we show that our ap-
proach can be competitive with existing methods for the Fourier-sparse signals with
randomly distributed components, especially for higher dimensions. Our approach is
especially advantageous for the signals with limited bandwidth, which are not exactly
Fourier-sparse. More detailed comparison with modern Sparse Fourier transform al-
gorithms and links with the fast Fourier transform on hyperbolic cross points [7] and
QTT-FFT or QTT cross interpolation schemes are postponed for future work.

The proposed method can be applied in various scientific computing solvers work-
ing with multidimensional data in data-sparse tensor formats. The discrete sine/cosine
and other trigonometric transforms can be implemented using the corresponding re-
cursion formulae, following the structure of QTT-FFT algorithm. We hope that such
algorithms can have an application to image and video processing, directly or with
the use of WTT version of the format, following the ideas of [46]. Also, we hope
that proposed method can help to construct the classical model of several quantum
algorithms based on the QFT, at least for a certain class of input data.
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