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Abstract Many natural mathematical objects, as well as many multi-dimensional
signals and images from real physical problems, need to distinguish local directional
behaviors (for tracking contours in image processing for example). Using some re-
sults of Jaffard and Triebel, we obtain criteria of directional and anisotropic regular-
ities by decay conditions on Triebel anisotropic wavelet coefficients (resp. wavelet
leaders).
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1 Introduction

Let us first recall the classical notion of Hölder regularity.
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Definition 1 Let h > 0, y ∈ R
m and f : R

m → R or C bounded in a neighborhood
of y. We say that f belongs to Ch(y) if there exist a constant C > 0 and a polynomial
P of degree less than h such that in a neighborhood of y we have

∣
∣f (x) − P(x − y)

∣
∣ ≤ C|x − y|h, (1)

where |.| is the Euclidean norm.
The Hölder exponent (or regularity) of f at y is defined by

hf (y) = sup
{

h : f ∈ Ch(y)
}

.

We say that f belongs to Ch(Rm) if f ∈ L∞(Rm) and if (1) holds for any x and y in
R

m with a uniform constant C.

If m ≥ 2 then Definition 1 is uniform in all directions. However many images
belong to classes of functions with various directional regularity behaviors. These
behaviors are important for detection of edges, efficient image compression, . . . (see
for instance [1] and the references therein). In [3], it is shown that the directional
regularity of any Gaussian random field with stationary increments is constant except
maybe on a hyperplane of dimension at most m − 1.

Standard isotropic multi-dimensional wavelets obtained as tensor product do not
give a satisfactory algorithm to detect directional singularities. A wide range of
directional transform ideas have been proposed. ‘Steerable Pyramids’ and ‘Cortex
Transforms’ were developed in the 1980’s by vision researchers (Adelson, Freeman,
Heeger, and Simoncelli [19] and Watson [22]) to offer increased directional repre-
sentativeness. Extensions of wavelet bases which can be elongated in particular di-
rections were considered. They include the ridgelets of Candes and Donoho, see [6],
or the bandelets of Mallat, see [18], but are efficient with singularities along lines,
along hyperplanes, etc, for which wavelets do not deal with efficiently.

For pointwise singularities, it is natural to define the Hölder regularity at a point
y in a direction e ∈ R

m with |e| = 1 as the Hölder regularity at 0 of the one variable
function fe : s �→ f (y + se). It seems that one cannot expect directional regularity to
be characterized in terms of the size of the usual wavelet coefficients, because fe is
defined as the trace of f on a line, which is a set of vanishing measure and wavelets
have a support of nonempty interior. Thus we should take into account the values
of f around the line considered. Therefore the definition of directional smoothness
should include such information. However, in the asymptotic of small scales, the
values taken into account should be localized more and more sharply around this line.
These considerations motivate the following definition and remark of Jaffard [15].

Definition 2 Let f : R
m → R or C be bounded in a neighborhood of y. Let−→α = (α1, . . . , αm) where α1 ≥ · · · ≥ αm > 0. Let B = (e1, . . . , em) be an orthonor-

mal basis of R
m. We denote by (x1, . . . , xm) the coordinates of x on the basis B.

We say that f ∈ C
−→α (y, B) if there exist a constant C > 0 and a polynomial P(x) =

∑

I=(i1,...,im)∈Nm aI x
I = ∑

I=(i1,...,im)∈Nm aI x
i1
1 · · ·xim

m of degree less than −→α in the
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sense that

max

{
m

∑

n=1

in

αn

: aI �= 0

}

< 1

such that in a neighborhood of y we have

∣
∣f (x) − P(x − y)

∣
∣ ≤ C

m
∑

n=1

|xn − yn|αn . (2)

The following indices were given in [15] and are crucial for the rest of the paper.

Definition 3 Let −→α = (α1, . . . , αm) where α1 ≥ · · · ≥ αm > 0.
The average regularity α̃ is the harmonic mean of the αn, i.e.,

1

α̃
= 1

m

m
∑

n=1

1

αn

. (3)

The anisotropy indices are

vn = α̃

αn

. (4)

Jaffard has obtained a necessary condition for the characterization of C
−→α (y, B)

based on the anisotropic Gabor-wavelet transform.

Remark 1 If (2) holds then for 1 ≤ n ≤ m the one dimensional function fen : s �→
f (y + sen) belongs to Cαn(0). So that, we will say that, in each direction en, the
function f has Hölder regularity αn at y.

Obviously, we have a partial ordering property: if α1 ≤ β1, . . . , αm ≤ βm then

f ∈ C
−→
β (y, B) ⇒ f ∈ C

−→α (y, B).

Therefore in [15] directional regularity exponents were defined in the following way.

Definition 4 Let e ∈ R
m with |e| = 1. The Hölder exponent of f in the direction e

at y is

αf (y, e) = sup
{

α1 : ∃0 < ε ≤ α1 f ∈ C
−−−−−−−→
(α1,ε,...,ε)(y, B)

}

where B is an orthonormal basis starting with the vector e.

Clearly we can choose any orthonormal basis B starting with the vector e for two
reasons: the first reason is the fact that the component x1 − y1 is the same in any B
and is equal to the inner product of x − y with e, and the second reason is the fact
that |x2 − y2|ε + · · · + |xm − ym|ε is equivalent to |(x2 − y2, . . . , xm − ym)|ε , and all
norms of R

m−1 are equivalent.
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Definition 2 can be seen as an extension of the notion of anisotropic regularity
which was already introduced by Ben Slimane [2] in the case where B is the canonical
basis of R

m.
Note that in [7], Clausel and Vedel showed that Gaussian random fields are

anisotropic generalizations of self-similar fields, and that the sharpest way of mea-
suring smoothness is related to these anisotropies and thus to the geometry of these
fields.

Let u = (u1, . . . , um) ∈ R
m be such that

0 < u1 ≤ · · · ≤ um and
m

∑

n=1

un = m. (5)

For I = (i1, . . . , im) ∈ N
m, we set d(I) = ∑m

l=1
ul

u1
il = i1 + u2

u1
i2 + · · · + um

u1
im and

du(I ) = u1d(I) = ∑m
l=1 ul il . Thus d(I) is the degree of homogeneity of the differ-

ential operator ∂I , or, as we shall say, its homogeneous degree. If P = ∑

I∈Nm aI x
I ,

aI ∈ R or C is a polynomial we define its homogeneous degree to be d(P ) :=
max{d(I) : aI �= 0}. We also define its u-homogeneous degree to be

du(P ) := u1d(P ) = max
{

du(I ) : aI �= 0
}

.

Definition 5 Let f : R
m → R or C be bounded in a neighborhood of y. Let h > 0.

Let B = (e1, . . . , em) be an orthonormal basis of R
m. We denote by (x1, . . . , xm) the

coordinates of x on the basis B. We say that f ∈ Ch
u(y, B) if there exist a constant

C > 0 and a polynomial P of u-homogeneous degree less than h such that in a neigh-
borhood of y we have

∣
∣f (x) − P(x − y)

∣
∣ ≤ C|x − y|hu, (6)

where

|x − y|u =
m

∑

n=1

|xn − yn|1/un . (7)

The u-Hölder exponent of f at y is defined by

hu,f (y, B) = sup
{

h : f ∈ Ch
u(y, B)

}

.

We say that f belongs to Ch
u(Rm, B) if f ∈ L∞(Rm) and if (6) holds for any x and

y in R
m with a uniform constant C.

In the next section we will give a criterion of directional Hölder regularities in
terms of anisotropic regularities (see Theorem 1).

In the third section we will expose some materials which will be useful later, such
as the homogeneous quasi-norm, anisotropic Taylor’s theorem with remainder for
this quasi-norm, and anisotropic Triebel wavelet bases.

A decomposition-recomposition numerical algorithm will be given in Sect. 4.
In the fifth section we characterize both uniform and pointwise u-Hölder regularity

by decay conditions of anisotropic Triebel wavelet coefficients (see Theorem 3).
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In Sect. 6 we deduce the characterization of both uniform and pointwise u-Hölder
regularity by decay conditions of anisotropic Triebel wavelet leaders (see Theorem 4).
We finally conclude with a numerical discussion and examples.

2 Directional Hölder Regularity Criterion

Our first main result gives a criterion of directional Hölder regularities in terms of a
supremum on a wide range of orientations of anisotropic regularities:

Theorem 1 Let e ∈ R
m with |e| = 1. Let B be an orthonormal basis starting with

the vector e. Let E be the set of all u = (u1, . . . , um) ∈ R
m satisfying both (5) and

u2 = · · · = um, i.e., 0 < u1 ≤ 1 and u2 = · · · = um = m−u1
m−1 . The Hölder exponent of

f in the direction e at y is given by

αf (y, e) = sup
u∈E

(
hu,f (y, B)

u1

)

.

Proof of Theorem 1 Using the notations of (3) and (4), one easily checks that

α̃ = m
∏m

n=1 αn
∑m

n=1(
∏

l �=n αl)
, v1 ≤ · · · ≤ vm and

m
∑

n=1

vn = m.

Now if we put v = (v1, . . . , vm), then

m
∑

n=1

in

αn

< 1 ⇔
m

∑

n=1

invn < α̃

which implies that a polynomial P has degree less than −→α if and only if its v-
homogeneous degree dv(P ) is less than α̃.

On the other hand there exist C1 and C2 depending on m and α̃ such that

∀t C1|t |α̃v ≤
m

∑

n=1

|tn|αn ≤ C2|t |α̃v .

We deduce that

f ∈ C
−→α (y, B) ⇔ f ∈ Cα̃

v (y, B).

Therefore from Definition 4, if B is an orthonormal basis starting with the vector e,
then

αf (y, e) = sup
{

α1 : ∃0 < ε ≤ α1 f ∈ C
−−−−−−−→
(α1,ε,...,ε)(y, B)

}

= sup
{

α1 : ∃0 < ε ≤ α1 f ∈ Cα̃
v (y, B)

}

with

α̃ = mα1ε

ε + (m − 1)α1
, v1 = α̃

α1
and v2 = · · · = vm = α̃

ε
.



898 J Fourier Anal Appl (2012) 18:893–914

Therefore

αf (y, e) = sup

{
α̃

v1
: ∃v2 = · · · = vm ≥ v1 f ∈ Cα̃

v (y, B)

}

.

Hence Theorem 1 holds. �

3 Some Mathematical Tools

Let u = (u1, . . . , um) be as in (5). For r > 0, we define the anisotropic dilation

rux = (

ru1x1, . . . , r
umxm

)

. (8)

3.1 Homogeneous Quasi-norm

Recall that a quasi-norm on a vector space E satisfies the requirements of a norm
except for the triangular inequality which is replaced by the weaker condition, i.e.,

∃C > 0; ∀x, y ∈ E, ‖x + y‖E ≤ C
(‖x‖E + ‖y‖E

)

.

In [4, 5, 12] a quasi-norm ρu on R
m was used to develop a theory of anisotropic

Hp(Rm) spaces. It is defined by ρu(0) = 0, and for all x �= 0, ρu(x) is the unique
value of r for which |r−ux| = 1.

The function ρu is continuous and homogeneous in the sense that

ρu
(

rux
) = rρu(x). (9)

Remark that the corresponding u-ball Bu(x, r) := {y ∈ R
m ; ρu(x − y) < r}, of ρu-

radius r centered on x, is an ellipse of axis of lengths 2ru1, . . . ,2rum , centered on x.
In the isotropic case (ui = 1 for all 1 ≤ i ≤ m), the homogeneous quasi-norm ρu
coincides with the Euclidean norm on R

m.
The homogeneous quasi-norm ρu satisfies the following properties:

∀i ∈ {1, . . . ,m}; |xi |1/ui ≤ ρu(x),

∃ĩ ∈ {1, . . . ,m}; x2
ĩ

≥ 1

m
ρu(x)2u

ĩ ,

|x|1/u1 ≤ ρu(x) ≤ |x|1/um, if ρu(x) ≤ 1

and

|x|1/um ≤ ρu(x) ≤ |x|1/u1 , if ρu(x) ≥ 1.

Then |.|u defined in (7) is also an homogeneous quasi-norm and it is equivalent to ρu
because

1

m
|x|u ≤ ρu(x) ≤ m1/2u1 |x|u.

Note that the equivalence of general homogeneous norms is proved by Lemarié
in [16].



J Fourier Anal Appl (2012) 18:893–914 899

3.2 The u-Taylor’s Theorem

In [4, 5, 12], there are versions of Mean Value Theorem and Taylor’s theorem with
remainder for the homogeneous quasi-norm ρu. Using the fact that ρu and |.|u are
equivalent we deduce the following results.

The u-Mean Value Theorem There exist two positive constants C and ν such that
for all functions f of class C1 on R

m and all x, y ∈ R
m,

∣
∣f (y) − f (x)

∣
∣ ≤ C

m
∑

i=1

|y − x|ui
u sup

|h|u≤ν|y−x|u

∣
∣∂xi

f (x + h)
∣
∣.

We denote by Δ the additive sub-semigroup of R generated by 0,1, u2
u1

, . . . and um

u1
.

In other words, Δ is the set of all numbers d(I) as I ranges over N
m. We observe

that N ⊂ Δ.

The u-Taylor Inequality Suppose δ ∈ Δ (δ > 0), and k = [δ]. There are two con-
stants Cδ > 0 and ν > 0 such that for all functions f of class C(k+1) on R

m and all
x, y ∈ R

m,

∣
∣f (y) − P(y − x)

∣
∣ ≤ Cδ

∑

|I |≤k+1 , d(I )>δ

|y − x|du(I )
u sup

|h|u≤νk+1|y−x|u

∣
∣∂I f (x + h)

∣
∣

where P is the Taylor polynomial of f at x of homogeneous degree δ

P (y − x) =
∑

I :d(I )≤δ

∂I f (x)

I ! (y − x)I . (10)

3.3 Anisotropic Triebel Wavelet Bases

The wavelet characterization of (isotropic) Besov spaces has important applica-
tions in data compression and nonlinear approximation (see [8, 9, 11]). In re-
cent years, an increasing interest in non-isotropic models has turned attention
to the more general class of anisotropic Besov spaces. To characterize these
spaces by wavelets, Triebel has constructed in [20, 21] wavelet bases through
anisotropic multiresolution analysis; If ψF and ψM are the Lemarié-Meyer [17]
(resp. Daubechies [10]) father and mother wavelets in the Schwartz class (resp.
arbitrarily smooth with a corresponding compact support) such that all moments
(resp. a finite number of moments) of ψM vanish,

∫

R
ψF (x)dx = 1 and the collection

(ψF (.− k))k∈Z and (2j/2ψM(2j .− k))j∈N,k∈Z is an orthonormal basis of L2(R). Let
u = (u1, . . . , um) ∈ R

m and rux be as in (5) and (8). In [20, 21] Triebel has consid-
ered anisotropic multiresolution analysis; consider, for any j ∈ Z, the closed subspace

Vj,u of L2(Rm) spanned by the orthonormal basis (
√

2
∑m

i=1[jui ]
Φj,k,u)k∈Zm , where

Φj,k,u(x) =
m

∏

i=1

ψF

(

2[jui ]xi − ki

)

.
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The sequence (Vj,u)j∈Z is an anisotropic multiresolution analysis of L2(Rm) in the
sense that

(i) ∀j ∈ Z, Vj,u ⊂ Vj+1,u.
(ii) f (x) ∈ Vj,u ⇐⇒ f (2ux) ∈ Vj+1,u.

(iii)
⋃

j∈Z
Vj,u = L2(Rm).

For j ∈ Z, let Ij,u be the set of pairs (G, l) where G = (G1, . . . ,Gm) ∈ {F,M}m
such that at least one component Gi is M and l = (l1, . . . , lm) ∈ N

m where

li = [jui] if Gi = F, (11)

[jui] ≤ li <
[

(j + 1)ui

]

if Gi = M and
[

(j + 1)ui

]

> [jui], (12)

and

li = [jui] if Gi = M and
[

(j + 1)ui

] = [jui]. (13)

Clearly the cardinality �Ij,u of Ij,u is bounded independently of j , more precisely

1 ≤ �Ij,u ≤ (

2m − 1
)

m
∏

i=1

(2 + ui). (14)

The following proposition is given in [20, 21] in the case where B is the canonical
basis of R

m. It remains valid in the case where B is any orthonormal basis of R
m.

Proposition 1 Let B be an orthonormal basis of R
m. Let (x1, . . . , xm) be the coor-

dinates of x in B. Set

Φk,B(x) :=
m

∏

i=1

ψF (xi − ki),

Ψ
(G,l)
j,k,u,B(x) =

m
∏

i=1

ψGi

(

2li xi − ki

)

and |l| :=
m

∑

i=1

li .

(15)

The collection of the union of (Φk,B) for k ∈ Z
m and (2|l|/2 Ψ

(G,l)
j,k,u,B) for j ∈ N,

(G, l) ∈ Ij,u and k ∈ Z
m, is then an orthonormal basis of L2(Rm). Thus any function

f ∈ L2(Rm) can be written as

f (x) =
∑

k∈Zm

Ck,B Φk,B(x) +
∞
∑

j=0

∑

k∈Zm

∑

(G,l)∈Ij,u

c
(G,l)
j,k,u,BΨ

(G,l)
j,k,u,B(x), (16)

with

Ck,B =
∫

Rm

f (x)Φk,B(x) dx

and

c
(G,l)
j,k,u,B = 2|l|

∫

Rm

f (x)Ψ
(G,l)
j,k,u,B(x) dx.
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Furthermore, a wavelet characterization of some functional spaces was established
in [20, 21], in particular anisotropic Besov spaces B

s,q
p,u(Rm), namely

Theorem 2 Let 0 < p,q ≤ ∞ and s ∈ R. Let B be the canonical basis of R
m. Then

f ∈ B
s,q
p,u(Rm) if and only if its norm

‖f ‖B
s,q
p,u

:=
(

∑

k∈Zm

|Ck,B|p
)1/p

+
(

∑

j∈N

(
∑

k∈Zm

∑

(G,l)∈Ij,u

∣
∣2(s− m

p
)j

c
(G,l)
j,k,u,B

∣
∣
p
)q/p)1/q

(17)
is finite. With the usual modification if p = ∞ and/or q = ∞.

In Sect. 5, we will prove in particular that if B is the canonical basis of R
m then

Cs
u(Rm, B) coincides with B

s,∞∞,u(Rm).

4 Decomposition-Recomposition Numerical Algorithm

Without any loss of generality we can assume that m = 2. Let (Vj,u)j∈Z be an
anisotropic multiresolution analysis of L2(R2). Denote by Wj,u the closed subspace
of L2(R2) such that Vj+1,u = Vj,u ⊕Wj,u, for all j ∈ Z. Then Wj,u is spanned by the

orthonormal basis (2|l|/2 Ψ
(G,l)
j,k,u,B) given by (15). Note that for all j ′ ≤ j , both Vj ′,u

and Wj ′,u are in Vj,u.
Let j ∈ Z and f be a given discretized function in Vj,u. We will first obtain a

decomposition algorithm: consist to determinate the wavelet coefficients of f in Vj ′,u
and Wj ′,u, for all j ′ ≤ j , using the wavelet coefficients of f in Vj,u. Without any loss
of generality we can assume that j = 0. Let B be an orthonormal basis of R

m and
denote (x1, . . . , xm) the coordinates of x in B, then

f (x) =
∑

k=(k1,k2)∈Z2

Ck,B ψF (x1 − k1)ψF (x2 − k2). (18)

We distinguish then three cases:

• Assume that W−1,u is spanned by

2([−u1]+l2)/2ψF

(

2[−u1]x1 − K1
)

ψM

(

2l2x2 − K2
)

, where [−u2] ≤ l2 < 0.

Since V0,u = V−1,u ⊕ W−1,u, then

f (x) =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑

K=(K1,K2)∈Z2 C−1,K,u,B 2([−u1]+[−u2])/2ψF (2[−u1]x1 − K1)

× ψF (2[−u2]x2 − K2)

+ ∑

K=(K1,K2)∈Z2 c
(G,l)
−1,K,u,B 2([−u1]+l2)/2ψF (2[−u1]x1 − K1)

× ψM(2l2x2 − K2), (19)
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here G = (F,M) and l = ([−u1], l2). From (18) and (19), it follows that

C−1,K,u,B =
∑

k=(k1,k2)∈Z2

Ck,B
〈

ψF (x1 − k1)ψF (x2 − k2),

2([−u1]+[−u2])/2ψF

(

2[−u1]x1−K1
)

ψF

(

2[−u2]x2−K2
)〉

and

c
(G,l)
−1,K,u,B =

∑

k=(k1,k2)∈Z2

Ck,B
〈

ψF (x1 − k1)ψF (x2 − k2),

2([−u1]+l2)/2ψF

(

2[−u1]x1 − K1
)

ψM

(

2l2x2 − K2
)〉

.

Note that

2([−u1]+[−u2])/2ψF

(

2[−u1]x1
)

ψF

(

2[−u2]x2
)

and

2([−u1]+l2)/2ψF

(

2[−u1]x1
)

ψM

(

2l2x2
)

are in V0,u, then

2([−u1]+[−u2])/2ψF

(

2[−u1]x1
)

ψF

(

2[−u2]x2
)

=
∑

k=(k1,k2)∈Z2

αk,u,B ψF (x1 − k1)ψF (x2 − k2)

and

2([−u1]+l2)/2ψF

(

2[−u1]x1
)

ψM

(

2l2x2
) =

∑

k=(k1,k2)∈Z2

β
(G,l)
k,u,B ψF (x1 − k1)ψF (x2 − k2)

where

αk,u,B = 〈

ψF (x1 − k1)ψF (x2 − k2), 2([−u1]+[−u2])/2ψF

(

2[−u1]x1
)

ψF

(

2[−u2]x2
)〉

(20)
and

β
(G,l)
k,u,B = 〈

ψF (x1 − k1)ψF (x2 − k2), 2([−u1]+l2)/2ψF

(

2[−u1]x1
)

ψM

(

2l2x2
)〉

. (21)

Thus

C−1,K,u,B =
∑

k=(k1,k2)∈Z2

Ck,B αk1−2−[−u1]K1,k2−2−[−u2]K2,u,B (22)

and

c
(G,l)
−1,K,u,B =

∑

k=(k1,k2)∈Z2

Ck,B β
(G,l)
k1−2−[−u1]K1,k2−2−l2 K2,u,B.

• Assume that W−1,u is spanned by

2(l1+[−u2])/2ψM

(

2l1x1 − K1
)

ψF

(

2[−u2]x2 − K2
)

, where [−u1] ≤ l1 < 0.
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Arguing similarly as above, we get

f (x) =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑

K=(K1,K2)∈Z2 C−1,K,u,B 2([−u1]+[−u2])/2ψF (2[−u1]x1 − K1)

× ψF (2[−u2]x2 − K2)

+ ∑

K=(K1,K2)∈Z2 c̃
(G,l)
−1,K,u,B 2(l1+[−u2])/2ψM(2l1x1 − K1)

× ψF (2[−u2]x2 − K2), (23)

where C−1,K,u,B is given by (22), G = (M,F), l = (l1, [−u2]),

c̃
(G,l)
−1,K,u,B =

∑

k=(k1,k2)∈Z2

Ck,B β̃
(G,l)
k1−2−l1 K1,k2−2−[−u2]K2,u,B

and

β̃
(G,l)
k,u,B = 〈

ψF (x1 − k1)ψF (x2 − k2), 2(l1+[−u2])/2ψM

(

2l1x1
)

ψF

(

2[−u2]x2
)〉

. (24)

• Assume that W−1,u is spanned by

2(l1+l2)/2ψM

(

2l1x1 − K1
)

ψM

(

2l2x2 − K2
)

, where [−ui] ≤ li < 0.

As above

f (x) =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑

K=(K1,K2)∈Z2 C−1,K,u,B 2([−u1]+[−u2])/2ψF (2[−u1]x1 − K1)

× ψF (2[−u2]x2 − K2)

+ ∑

K=(K1,K2)∈Z2 c̆
(G,l)
−1,K,u,B 2(l1+l2)/2ψM(2l1x1 − K1)

× ψM(2l2x2 − K2), (25)

here C−1,K,u,B is given by (22), G = (M,M), l = (l1, l2),

c̆
(G,l)
−1,K,u,B =

∑

k=(k1,k2)∈Z2

Ck,B β̆
(G,l)
k1−2−l1 K1,k2−2−l2 K2,u,B

and

β̆
(G,l)
k,u,B = 〈

ψF (x1 − k1)ψF (x2 − k2), 2(l1+l2)/2ψM

(

2l1x1
)

ψM

(

2l2x2
)〉

. (26)

In all these cases we obtain the decomposition of f on V−1,u and W−1,u. The decom-
position of f on V−2,u and W−2,u will be obtained from that on V−1,u by iterating
C−1,K,u,B , and so on. We stop with the lowest resolution −J that we fix, then we get

f (x) =
J

∑

j=1

∑

K∈Z2

∑

(G,l)∈Ij,u

D
(G,l)
−j,K,u,BΨ

(G,l)
−j,K,u,B(x) +

∑

K∈Z2

C−J,K,u,BΦ−J,K,u,B(x).
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The “recomposition” algorithm of f from the above decomposition is similar. As
above, we establish the passage algorithm from the decomposition of f on V−1,u and
W−1,u to the decomposition on V0,u = V−1,u ⊕ W−1,u. The complete algorithm will
be obtained by reiterating this last J times. Let us explain the passage from V−1,u and
W−1,u to V0,u. Let f ∈ V−1,u ⊕ W−1,u.

• If W−1,u is spanned by

2([−u1]+l2)/2ψF

(

2[−u1]x1 − K1
)

ψM

(

2l2x2 − K2
)

, where [−u2] ≤ l2 < 0,

then f is given by (19). Since f ∈ V0,u, then f can be written as (18). It yields

Ck,B =
∑

K=(K1,K2)∈Z2

C−1,K,u,B αk1−2−[−u1]K1,k2−2−[−u2]K2,u,B

+ c
(G,l)
−1,K,u,B β

(G,l)
k1−2−[−u1]K1,k2−2−l2 K2,u,B

where αk,u,B and β
(G,l)
k,u,B are given respectively by (20) and (21).

• If W−1,u is spanned by

2(l1+[−u2])/2ψM

(

2l1x1 − K1
)

ψF

(

2[−u2]x2 − K2
)

, where [−u1] ≤ l1 < 0,

then f is given by (23). We get in this case that

Ck,B =
∑

K=(K1,K2)∈Z2

C−1,K,u,B αk1−2−[−u1]K1,k2−2−[−u2]K2,u,B

+ c̃
(G,l)
−1,K,u,B β̃

(G,l)
k1−2−l1 K1,k2−2−[−u2]K2,u,B

where β̃
(G,l)
k,u,B is given by (24).

• If W−1,u is spanned by

2(l1+l2)/2ψM

(

2l1x1 − K1
)

ψM

(

2l2x2 − K2
)

, where [−ui] ≤ li < 0,

then f is given by (25) and we obtain

Ck,B =
∑

K=(K1,K2)∈Z2

C−1,K,u,B αk1−2−[−u1]K1,k2−2−[−u2]K2,u,B

+ c̆
(G,l)
−1,K,u,B β̆

(G,l)
k1−2−l1 K1,k2−2−l2 K2,u,B

where β̆
(G,l)
k,u,B is given by (26).

5 Wavelet Characterization of u-Regularity

The anisotropic wavelet transform characterizes the u-Hölder regularity by condi-
tions analogous to those of the classic wavelet transform for the isotropic case. The
following theorem is reminiscent of [13] where Jaffard proved similar results for the
isotropic Hölder regularity.
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Theorem 3 Let B be an orthonormal basis of R
m. Let (y1, . . . , ym) be the coordi-

nates of y in B.
If f ∈ C

β
u (Rm, B) for β > 0, the u-Hölder exponent of f can be expressed at every

point by the formula

hu,f (y, B) = lim inf
j→∞ inf

k∈Zm,(G,l)∈Ij,u

log(|c(G,l)
j,k,u,B|)

log(2−j + |y − 2−lk|u)
,

where

2−lk :=
(

k1

2l1
, . . . ,

km

2lm

)

the coordinates are in B (27)

and

∣
∣y − 2−lk

∣
∣
u =

m
∑

n=1

∣
∣
∣
∣
yn − kn

2ln

∣
∣
∣
∣

1/un

.

Remark 2 If we use the Lemarié-Meyer wavelets then there is no added assumptions
in the following results. However, if we use the Daubechies wavelets then we will not
mention the regularity needed for them, which will be assumed to be smooth enough.

Clearly if f ∈ Cε(Rm) for ε > 0, then for every u there exists β > 0 such that
f ∈ C

β
u (Rm, B). Hence Theorems 1 and 3 yield the following corollary.

Corollary 1 Let f ∈ Cε(Rm) for ε > 0. Let e ∈ R
m with |e| = 1. Let B be any

orthonormal basis starting with the vector e. Let E be the set of all anisotropies u =
(u1, . . . , um) ∈ R

m satisfying 0 < u1 ≤ 1 and u2 = · · · = um = m−u1
m−1 . The Hölder

exponent of f in the direction e at y is given by

αf (y, e)

= sup
u∈E

(

lim inf
j→∞ inf

k∈Zm,(G,l)∈Ij,u

log(|c(G,l)
j,k,u,B|)

log(2−ju1 + |y1 − k1
2l1

| + ∑m
i=2 |yi − ki

2li
|

(m−1)u1
m−u1 )

)

.

Theorem 3 is a consequence of the following proposition.

Proposition 2

1. F ∈ Cs
u(Rm, B) if and only if there exists a constant C > 0 such that

|Ck,B| ≤ C ∀k

and
∣
∣c

(G,l)
j,k,u,B

∣
∣ ≤ C2−js ∀j ∈ N, ∀k, (G, l).
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2. If F ∈ Cs
u(y, B) then there exists a constant C > 0 such that

∣
∣c

(G,l)
j,k,u,B

∣
∣ ≤ C2−js

(

1 + 2j |y − 2−lk|u
)s ∀j ∈ N, ∀k, (G, l). (28)

3. If (28) holds and if F ∈ C
β
u (Rm, B) for β > 0, there exist a constant C > 0 and a

polynomial P of u-homogeneous degree smaller than s such that if |x−y|u ≤ 1/2,

∣
∣F(x) − P(x − y)

∣
∣ ≤ C|x − y|su log

(
1

|x − y|u
)

. (29)

4. If there exist s′ < s and a constant C > 0 such that

∣
∣c

(G,l)
j,k,u,B

∣
∣ ≤ C2−js

(

1 + 2j
∣
∣y − 2−lk

∣
∣
u

)s′ ∀j ∈ N, ∀k, (G, l) (30)

then F ∈ Cs
u(y, B).

5. If F ∈ C
γ
u (Rm, B) for γ > 0 and there exists s′ > s such that (30) holds, then

F ∈ C

γs′
γ−s+s′
u (y, B).

Proof of Proposition 2 1. Suppose that F ∈ Cs
u(Rm, B). Since F ∈ L∞(Rm), then

|Ck,B| =
∣
∣
∣
∣

∫

Rm

F (x)Φk,B(x) dx

∣
∣
∣
∣
≤ C‖F‖L∞ .

On the other hand since ψM has vanishing moments, then for j ∈ N

∣
∣c

(G,l)
j,k,u,B

∣
∣ = 2|l|

∣
∣
∣
∣

∫

Rm

F (x)Ψ
(G,l)
j,k,u,B(x) dx

∣
∣
∣
∣

= 2|l|
∣
∣
∣
∣

∫

Rm

(

F(x) − P
(

x − 2−lk
))

Ψ
(G,l)
j,k,u,B(x) dx

∣
∣
∣
∣

≤ C2|l|
∫

∣
∣x − 2−lk

∣
∣
s

u

∣
∣
∣
∣
∣

m
∏

i=1

ψGi

(

2li xi − ki

)

∣
∣
∣
∣
∣
dx.

Put x − 2−lk = 2−lt = 2−juz, thus

∣
∣c

(G,l)
j,k,u,B

∣
∣ ≤ C

∫
∣
∣2−lt

∣
∣
s

u

∣
∣
∣
∣
∣

m
∏

i=1

ψGi
(ti)

∣
∣
∣
∣
∣
dt

≤ C

m
∏

i=1

2li−jui

∫
∣
∣2−juz

∣
∣
s

u

∣
∣
∣
∣
∣

m
∏

i=1

ψGi

(

2li−jui zi

)

∣
∣
∣
∣
∣
dz

≤ C2−js
m

∏

i=1

2li−jui

∫

|z|su
∣
∣
∣
∣
∣

m
∏

i=1

ψGi

(

2li−jui zi

)

∣
∣
∣
∣
∣
dz.

From (11), (12), (13) and the localization of the wavelets it follows that
∣
∣c

(G,l)
j,k,u,B

∣
∣ ≤ C2−js .



J Fourier Anal Appl (2012) 18:893–914 907

Conversely, assume that F is expressed as in (16). Since

|Ck,B| ≤ C ∀k,

the function
∑

k∈Zm Ck,B Φk,B(x) has uniformly the same regularity as ψF . It suf-

fices to examine the regularity of
∑∞

j=0
∑

k∈Zm

∑

(G,l)∈Ij,u
c
(G,l)
j,k,u,B Ψ

(G,l)
j,k,u,B(x). Set

Fj (x) =
∑

k∈Zm

∑

(G,l)∈Ij,u

c
(G,l)
j,k,u,B Ψ

(G,l)
j,k,u,B(x).

It follows from (11), (12), (13), relation (14) and the localization of the wavelets that

‖Fj‖L∞ ≤ C2−js (31)

and
∥
∥∂IFj

∥
∥

L∞ ≤ C2−j (s−du(I )). (32)

Let y ∈ R
m. Set δu = max{du(I ) : du(I ) < s}. For j ≥ 0, denote by Pj (x − y)

the Taylor polynomial of Fj at y of u-homogeneous degree δu (which was defined
in (10))

Pj (x − y) =
∑

I :du(I )≤δu

∂IFj (y)

I ! (x − y)I .

Then the u-Taylor polynomial of F − ∑

k∈Zm Ck,B Φk,B is P(x − y) :=
∑∞

j=0 Pj (x − y). This series converges because of (32) and the fact that s > du(I ).

Let j0 be the unique integer such that 2−j0 ≤ |x − y|u < 2. 2−j0 . Therefore

∣
∣
∣
∣
F(x) −

∑

k∈Zm

Ck,B Φk,B(x) − P(x − y)

∣
∣
∣
∣
≤

j0∑

j=0

∣
∣Fj (x) − Pj (x − y)

∣
∣

+
∑

j>j0

∣
∣Fj (x)

∣
∣ +

∑

j>j0

∣
∣Pj (x − y)

∣
∣.

It follows from (31) and (32), that

∑

j>j0

∣
∣Fj (x)

∣
∣ ≤

∑

j>j0

C2−js ≤ C2−j0s ≤ C|x − y|su

and
∑

j>j0

∣
∣Pj (x − x0)

∣
∣ ≤

∑

j>j0

∑

I :du(I )≤δu

C2−j (s−du(I ))
∣
∣(x − y)I

∣
∣.

But from the definition of |.|u
∣
∣(x − y)I

∣
∣ ≤ |x − y|du(I )

u . (33)
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Furthermore, since s > du(I ) then we obtain

∑

j>j0

∣
∣Pj (x − y)

∣
∣ ≤ C2−j0s ≤ C|x − y|su.

Let δ > δu/u1 and l = [δ], since Fj is of class C(l+1), then using the u-Taylor
inequality

j0∑

j=0

∣
∣Fj (x) − Pj (x − y)

∣
∣

≤
j0∑

j=0

Cδ

∑

|J |≤l+1 , d(J )>δ

|x − y|du(J )
u sup

|h|u≤νl+1|x−y|u

∣
∣∂J Fj (y + h)

∣
∣

≤ Cδ

∑

|J |≤l+1 , d(J )>δ

|x − y|du(J )
u

j0∑

j=0

2−j (s−du(J )).

It follows from the definition of δu and the fact that δ > δu/u1 that

j0∑

j=0

∣
∣Fj (x) − Pj (x − y)

∣
∣ ≤ C|x − y|su

(

because s < du(J )
)

.

2. If F ∈ Cs
u(y, B), then

∣
∣c

(G,l)
j,k,u,B(F )

∣
∣ = 2|l|

∣
∣
∣
∣
∣

∫
(

F(x) − P(x − y)
)

m
∏

i=1

ψGi

(

2li xi − ki

)

dx

∣
∣
∣
∣
∣

≤ 2|l|
∫

C|x − y|su
∣
∣
∣
∣
∣

m
∏

i=1

ψGi

(

2li xi − ki

)

∣
∣
∣
∣
∣
dx

≤ C2|l|
∫

(∣
∣x − 2−lk

∣
∣
s

u + ∣
∣y − 2−lk

∣
∣
s

u

)

∣
∣
∣
∣
∣

m
∏

i=1

ψGi

(

2li xi − ki

)

∣
∣
∣
∣
∣
dx.

As previously, using the localization of the wavelets, we get

∣
∣c

(G,l)
j,k,u,B(F )

∣
∣ ≤ C2−js + C

∣
∣y − 2−lk

∣
∣
s

u

≤ C2−js
(

1 + 2j
∣
∣y − 2−lk

∣
∣
u

)s
.

3. Conversely, if (28) holds then

∣
∣Fj (x)

∣
∣ ≤

∑

k∈Zm

∑

(G,l)∈Ij,u

C
(

2−js + ∣
∣y − 2−lk

∣
∣
s

u

)

∣
∣
∣
∣
∣

m
∏

i=1

ψGi

(

2li xi − ki

)

∣
∣
∣
∣
∣
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≤
∑

k∈Zm

∑

(G,l)∈Ij,u

C
(

2−js + |x − y|su + ∣
∣x − 2−lk

∣
∣
s

u

)

∣
∣
∣
∣
∣

m
∏

i=1

ψGi

(

2li xi − ki

)

∣
∣
∣
∣
∣
.

It follows from (11), (12), (13), relation (14) and the localization of the wavelets that

∣
∣Fj (x)

∣
∣ ≤ C

(

2−js + |x − y|su
)

. (34)

Similarly we obtain

∣
∣∂IFj (x)

∣
∣ ≤ C2−j (s−du(I ))

(

1 + 2j |x − y|u
)s

. (35)

Using the same notations as previously with besides j1 = sj0/β

∣
∣
∣
∣
F(x) −

∑

k∈Zm

Ck,B Φk,B(x) − P(x − y)

∣
∣
∣
∣

≤
j0∑

j=0

∣
∣Fj (x) − Pj (x − y)

∣
∣ +

j1∑

j=j0

∣
∣Fj (x)

∣
∣ +

∑

j>j1

∣
∣Fj (x)

∣
∣ +

∑

j>j0

∣
∣Pj (x − y)

∣
∣.

It follows from (34) that

j1∑

j=j0

∣
∣Fj (x)

∣
∣ ≤

j1∑

j=j0

C
(

2−js + |x − y|su
)

≤ C
(

2−j0s + (j1 − j0)|x − y|su
)

≤ C

(

|x − y|su + |x − y|su log
1

|x − y|u
)

≤ C|x − y|su log

(
1

|x − y|u
)

.

It follows from the fact that F ∈ C
β
u (Rm, B) for a β > 0, that

∑

j>j1

∣
∣Fj (x)

∣
∣ ≤

∑

j>j1

C2−βj ≤ C2−βj1 ≤ C|x − y|su.

It follows from (35) that

∑

j>j0

∣
∣Pj (x − y)

∣
∣ ≤

∑

j>j0

∑

I :du(I )≤δu

C2−j (s−du(I ))
(

1 + 2j |y − y|u
)s∣

∣(x − y)I
∣
∣.

Using (33) and the fact that s > du(I ), we get

∑

j>j0

∣
∣Pj (x − y)

∣
∣ ≤ C

∑

I :du(I )≤δu

|x − y|du(I )
u

∑

j>j0

2−j (s−du(I )) ≤ C|x − y|su.
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Let δ = δu/u1 and l = [δ], since Fj is of class C(l+1), then using the u-Taylor
inequality

j0∑

j=0

∣
∣Fj (x) − Pj (x − y)

∣
∣

≤
j0∑

j=0

Cδ

∑

|J |≤l+1 , d(J )>δ

|x − y|du(J )
u sup

|h|u≤νl+1ρu(x−y)

∣
∣∂J Fj (y + h)

∣
∣

≤
j0∑

j=0

Cδ

∑

|J |≤l+1 , d(J )>δ

|x − y|du(J )
u sup

|h|u≤νl+1ρu(x−y)

2−j (s−du(J ))
(

1 + 2j |h|u
)s

≤ Cδ

∑

|J |≤l+1 , d(J )>δ

|x − y|du(J )
u

j0∑

j=0

(

2−j (s−du(J )) + 2jdu(J )|x − y|su
)

≤ C|x − y|su
(

because s < du(J )
)

.

The proofs of the last two results in Proposition 2 are similar. �

6 Wavelet Leaders Characterization of u-Regularity

We will now deduce an equivalent characterization of u-Hölder regularity by decay
conditions of anisotropic wavelet leaders. For that we start by introducing some defi-
nitions and notations. By λu(B) = λl

j,k,u,B we denote a u-dyadic rectangle in R
m of

scale j oriented with respect to the basis B, which has the form

λu(B) = λl
j,k,u,B = 2−lk +

m
∏

i=1

[

0,2−li
)

,

in the coordinates of the basis B, where 2−lk was defined in (27). Set

|cλu(B)| = max
∣
∣c

(G,l)
j,k,u,B

∣
∣, (36)

where the maximum is taken over all indices G giving the same l at scale j .

Definition 6 The u-wavelet leaders (oriented with respect to the basis B) are defined
by

dλu(B) = sup
λ′

u(B)⊂λu(B)

|cλ′
u(B)|.

Note that since we are interested to pointwise regularity we can assume that f ∈
L∞

loc then the u-wavelet leaders are finite because

|cλu(B)| ≤ C‖f ‖L∞
loc

.
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Definition 7 We say that two u-dyadic rectangles are adjacent if they are at the same
scale and if the distance between them equals 0 (note that a u-dyadic rectangle is ad-
jacent to itself). We denote by λj,u(y, B) the u-dyadic rectangle at scale j containing
y and by Adj (λu(B)) the set of u-dyadic rectangles adjacent to λu(B). Then

dj,u(y, B) = max
λ′

u(B)⊂Adj (λj,u(y,B))
dλ′

u(B).

The following proposition is reminiscent of [14] where Jaffard proved similar re-
sults for the isotropic Hölder regularity in the canonical basis. The following propo-
sition characterizes the u-uniform (resp. u-pointwise) regularity by a decay condition
of the dλu(B) (resp. dj,u(y, B)) when j → ∞.

Proposition 3

1. F ∈ Cs
u(Rm, B) if and only if there exists a constant C > 0 such that

dλu(B) ≤ C2−js ∀λu.

2. If F ∈ Cs
u(y, B) then there exists a constant C > 0 such that

dj,u(y, B) ≤ C2−js ∀j ∈ N. (37)

3. If (37) holds and if F ∈ C
β
u (Rm, B) for β > 0, there exist a constant C > 0 and a

polynomial P of homogeneous degree smaller than s such that if |x − y|u ≤ 1/2,
then (29) holds.

Proof of Proposition 3 The first result is immediate because of Proposition 2 and the
fact that |cλu(B)| ≤ dλu(B).

For the second result, thanks to Proposition 2 we have

|cλ′
u(B)| ≤ C2−j ′s(1 + 2j ′ ∣

∣y − 2−l′k′∣∣
u

)s ∀j ′ ∈ N, ∀k′,
(

G, l′
)

. (38)

Let j ∈ N, if λ′
u(B) ⊂ Adj (λu(B)) then j ′ ≥ j − 1 and |y − 2−l′k′|u ≤ C2−j , hence

(38) implies that |cλ′
u(B)| ≤ C2−js , so that dj,u(y, B) ≤ C2−js .

For the third result, let j ′ be given. We will first estimate the size of Fj ′ and of its
partial derivatives. If λ′

u(B) is a u-dyadic rectangle at scale j ′, denote by λu(B) the
u-dyadic rectangle defined by

• If λ′
u(B) ⊂ Adj (λj ′,u(y, B)), then λu(B) = λj ′,u(y, B),

• else, if j = sup{n : λ′
u(B) ⊂ Adj (λn,u(y, B))}, then λu(B) = λj,u(y, B) and it fol-

lows that C12−j ≤ |y − 2−l′k′|u ≤ C2−j .

In the first case, by hypothesis, |cλ′
u(B)| ≤ dj ′,u(y, B) ≤ C2−j ′s , and as in (31), the

sum F1,j ′ on the corresponding λ′
u(B) satisfies ‖F1,j ′ ‖L∞ ≤ C2−sj ′

.
In the second case, |cλ′

u(B)| ≤ dj,u(y, B) ≤ C2−js ≤ C|y − 2−l′k′|su, and as in (34)

and (35), the sum F2,j ′ on the corresponding λ′
u(B) satisfies ‖F2,j ′ ‖L∞ ≤ C(2−j ′s +
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|x − y|su) and |∂IF2,j ′(x)| ≤ C2−j ′(s−du(I ))(1 + 2j ′ |x − y|u)s . And the conclusion is
the same. �

As a consequence of the second and third results of Proposition 3, we have the
following theorem.

Theorem 4 If f ∈ C
β
u (Rm, B) for β > 0, the u-Hölder exponent of f can be ex-

pressed at every point by the formula

hu,f (x, B) = lim inf
j→∞

log(dj,u(x, B))

log(2−j )
.

Theorems 3 and 4 yield the following corollary.

Corollary 2 Let f ∈ Cε(Rm) for ε > 0. Let e ∈ R
m with |e| = 1. Let B be any

orthonormal basis starting with the vector e. Let E be the set of all anisotropies u =
(u1, . . . , um) ∈ R

m satisfying 0 < u1 ≤ 1 and u2 = · · · = um = m−u1
m−1 . The Hölder

exponent of f in the direction e at y is given by

αf (y, e) = sup
u∈E

(

lim inf
j→∞

log(dj,u(y, B))

log(2−ju1)

)

.

Remark 3 In Definition 5, if the signal f (x) behaves like a u-cusp-like singularity
f (y) + |x − y|hu in a neighborhood of y then the u-Hölder exponent of f at y will be
given by the formula

hu,f (y, B) = lim inf
j→∞ inf

k∈Zm,(G,l)∈Ij,u

log(|c(G,l)
j,k,u,B|)

log(2−j )
. (39)

This is the case for self-affine functions F on bounded domains Ω (see [2])

F(x) =
L

∑

i=1

λiF
(

S−1
i (x)

) + g(x), (40)

where L ≥ 2, g is a smooth and well localized function, the λi are scalars with |λi | <
1, Si(x) = μ

1
u1

u

i x + Vi , 0 < μi < 1, , Vi are vectors in R
m and

∑L
i=1 |λi |μm

i < 1.
Assume that

Si(Ω) ⊂ Ω ∀i (41)

and

Si(Ω) ∩ Sj (Ω) = ∅ ∀i �= j. (42)

Let K be the non-empty compact set K that satisfies K = ⋃L
i=1 Si(K). In [2], the

following results were found:

– if y /∈ K then F is Ck
u in a neighborhood of y,
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– if y ∈ K and if Bj,u(y) is the set of i = (i1, . . . , in) such that

∣
∣Si1 · · ·Sin(0) − y

∣
∣u1
u ≤ μi1 · · ·μin

and

2−j ≤ μi1 · · ·μin < 2−(j−1),

then

hu,F (y, B) = u1 lim inf
j→∞ inf

i∈Bj,u(y)

log |λi1 | · · · |λin |
logμi1 · · ·μin

.

So if a function f exhibits only u-cusp-like pointwise singularities for all u’s in
the set E given in Theorem 1 of Sect. 2, then the Hölder exponent of f in the direction
e at y is given by

αf (y, e) = sup
u∈E

(

lim inf
j→∞ inf

k∈Zm,(G,l)∈Ij,u

log(|c(G,l)
j,k,u,B|)

log(2−ju1)

)

.

Hence this exponent can be numerically obtained from Sect. 4 by discretizing E.
On the opposite from u-cusp singularities are the u-chirp-like singularities which

display very strong oscillations in the neighborhood of y, such as

f (y) + |x − y|hu sin

(
1

|x − y|βu

)

where β > 0. In this case, the u-Hölder exponent of f at y cannot be deduced from
formula (39), but from Theorem 4. And numerically, the Hölder exponent of f in the
direction e at y should be obtained from Sect. 4 by discretizing E.
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