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Abstract Erdös-Kahane numbers (EK numbers) are introduced in relation to the de-
cay of the Fourier transforms of non-symmetric Bernoulli convolutions. The PV, PS,
and EK numbers are characterized by using a certain trigonometric series Hb(u). The
relations between those numbers and the asymptotic properties of the Fourier trans-
forms of full b-decomposable distributions are shown. A sufficient condition for the
absolute continuity of one-dimensional b-decomposable distributions is given. As an
application, an open problem on the uniform decay of the Fourier transforms of refin-
able distributions, raised by Dai et al. (J. Funct. Anal. 250(1):1–20, 2007), is solved.
Finally, temporal evolution on continuity properties of distributions of some Lévy
processes is discussed.
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1 Introduction

In what follows, denote the Euclidean inner product of z and x and the norm of x

in R
d by 〈z, x〉 and |x|, respectively. Let Z := {0,±1,±2, . . . }, Z+ := {0,1,2, . . . },

N := {1,2,3, . . . }, and R+ := [0,∞). The symbol δa(dx) stands for the delta mea-
sure at a in R

d . Denote the convolution of probability distributions ρ and μ on R
d by
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ρ ∗ μ and the characteristic function (Fourier transform) of a probability distribution
μ on R

d by μ̂(z), namely,

μ̂(z) :=
∫

Rd

ei〈z,x〉μ(dx).

Denote by ηn∗ the nth convolution power of a finite measure η on R
d with the under-

standing that η0∗(dx) = δ0(dx), and by η̄ the reflection of η, that is, η̄(dx) = η(−dx).
A probability distribution on R

d is said to be full if its support is not contained in any
hyperplane in R

d . Let 0 < b < 1. A probability distribution μ on R
d is said to be

b-decomposable if there exists a probability distribution ρ on R
d such that

μ̂(z) = μ̂(bz)ρ̂(z). (1.1)

The decomposition (1.1) is equivalent to

μ̂(z) =
∞
∏

n=0

ρ̂
(

bnz
)

.

The infinite product above converges if and only if ρ has a finite log-moment, namely,

∫

Rd

log
(

2 + |x|)ρ(dx) < ∞. (1.2)

See Lemma 1 of Bunge [2]. We see from Lemma 5 of Watanabe [28] that a b-
decomposable distribution μ satisfying (1.1) with ρ is full if and only if ρ is full.
A distribution μ on R

d is called self-decomposable if it is b-decomposable for ev-
ery b ∈ (0,1). Self-decomposable distributions are infinitely divisible. Many statis-
tically important distributions are known to be self-decomposable and all full self-
decomposable distributions on R

d are absolutely continuous. See Sato [25]. A dis-
tribution μ on R

d is called a homogeneous self-similar measure with contraction
ratio b if it is b-decomposable with some b ∈ (0,1) and the support of ρ is a finite
set. The idea of b-decomposability was introduced by Loève [17] and then extended
by Bunge [2] and Maejima et al. [18] in the theory of limit distributions for some
sequence of normalized sums of independent random variables. Denote by L(b) the
totality of b-decomposable distributions on R

d . The class
⋃

b∈(0,1) L(b) is a rich class
which contains the semi-stable (including Gaussian) distributions and the semi-self-
decomposable distributions. Wolfe [36] proved that every full distribution in L(b)

is either singular or absolutely continuous. The author [28, 29] studied continuity
properties of some distributions in L(b). Applications of the class L(b) to limit the-
orems for shift self-similar additive random sequences, laws of iterated logarithm for
Brownian motions on nested fractals, and exact Hausdorff and packing measures of
random fractals on Galton-Watson trees are found in a series of papers [31–34]. An-
other application to generalized Ornstein-Uhlenbeck processes is found in Lindner
and Sato [15, 16].
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Let b and p be real numbers in (0,1). We define a Bernoulli convolution νb,p on
R by

ν̂b,p(z) =
∞
∏

n=0

(

p + (1 − p) exp
(

ibnz
))

. (1.3)

Note that νb,p is b-decomposable with ρ(dx) = pδ0(dx) + (1 − p)δ1(dx) in (1.1).
Let νb := νb,p with p = 2−1. The probability distribution νb is called a sym-
metric Bernoulli convolution. An algebraic integer θ > 1 is said to be a Pisot-
Vijayaraghavan number (PV number, for short) if all its Galois conjugates θj satisfy
|θj | < 1. Kershner and Wintner [13] proved that, for 0 < b < 2−1, νb is a distribu-
tion on a Cantor set and hence it is singular. Wintner [35] noted that, for b = 2−1,
νb is the uniform distribution on [0,2]. Jessen and Wintner [11] observed that, for
2−1 < b < 1, νb is either singular or absolutely continuous. Erdös [6] showed that it
is singular in case b−1 in (1,2) is a PV number. Garsia [9] gave concrete examples
of b in (2−1,1) such that νb is absolutely continuous. In 1995, Solomyak [26] proved
that νb has an L2-density for a.e. b ∈ (2−1,1). Peres and Solomyak [21] showed
that, for 1/3 ≤ p ≤ 2/3, νb,p has an L2-density for a.e. b ∈ (p2 + (1 − p)2,1). We
say that b in (0,1) is a Peres-Solomyak number (PS number, for short) if there ex-
ist p in (0,2−1) and a positive number q such that ν̂b,p(z) belongs to Lq(R), that
is,

∫ ∞
−∞ |ν̂b,p(z)|qdz < ∞. We say that a nonnegative function f (z) on R

d has uni-
form decay at infinity if there exists γ > 0 such that f (z) = O(|z|−γ ) as |z| → ∞.
Erdös [7] proved that |ν̂b(z)| has uniform decay at infinity and νb is absolutely con-
tinuous for a.e. b ∈ (a,1) with a sufficiently close to 1. Kahane [12] pointed out
that the Hausdorff dimension of the set of b in (a,1) such that νb is singular tends
to 0 as a ↑ 1. We say that b in (0,1) is an Erdös-Kahane number (EK number, for
short) if there exists p in (0,2−1) such that |ν̂b,p(z)| has uniform decay at infinity.
EK numbers are always PS numbers, but its converse remains open. Applications of
PS numbers to Lévy processes are found in Watanabe [29, 30] and Lindner and Sato
[15]. They showed that the distribution of a certain Lévy process is singular for small
time and absolutely continuous for large time. Using EK numbers, we see in Theo-
rem 5.1 in Sect. 5 that more drastic temporal evolution can occur in continuities of
the distribution of such a Lévy process.

In the following, we characterize the PV, PS, and EK numbers by using the func-
tion Hb(u) defined by (1.4) below and discuss the relations between those numbers
and the asymptotic properties of the characteristic functions of distributions in the
class L(b). Let 0 < b < 1. Define functions Hb(u), Ib(t), and Jb(t) on R+ as

Hb(u) :=
∞
∑

k=0

(

1 − cos
(

bku
))

,

Ib(t) :=
∫ ∞

0
exp

(−tHb(u)
)

du,

Jb(t) :=
∫ ∞

0
u exp

(−tHb(u)
)

du.

(1.4)
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Define the subsets Bj in (0,1) for j = 1,2,3 as

B1 :=
{

b ∈ (0,1) : lim
u→∞ exp

(−Hb(u)
) = 0

}

,

B2 := {

b ∈ (0,1) : Ib(t) < ∞ for some t > 0
}

,

B3 := {

b ∈ (0,1) : Jb(t) < ∞ for some t > 0
}

.

Our main results are as follows.

Theorem 1.1 The following are equivalent:

(1) b ∈ B1.
(2) b−1 is not a PV number.
(3) For some p ∈ (0,2−1), lim|z|→∞ ν̂b,p(z) = 0.
(4) For every full μ ∈ L(b) on R

d , lim|z|→∞ μ̂(z) = 0.

Remark 1.1

(i) In Theorem II on P. 40 of [24], Salem proved that, for b 
= 1/2, the condition (2)
in Theorem 1.1 is equivalent to lim|z|→∞ ν̂b(z) = 0. An operator version of a part
of Theorem 1.1 is found in Theorem 2 of Watanabe [28].

(ii) Theorem 2.3 of Hu [10] gave a necessary and sufficient condition in order that
the characteristic function μ̂(z) of a one-dimensional homogeneous self-similar
measure μ tends to 0 as |z| → ∞. Our Theorem 1.1 says that if the contraction
ratio b is not the reciplocal of a PV number, then the characteristic function μ̂(z)

of every full homogeneous self-similar measure μ on R
d tends to 0 as |z| → ∞.

Theorem 1.2 The following are equivalent:

(1) b ∈ B2.
(2) b is a PS number.
(3) For every full μ ∈ L(b) on R

d , μ̂(z) ∈ Lq(Rd) for some q > 0.

Remark 1.2

(i) Let n ∈ Z+. For a.e. b ∈ ((5/9)2−n
, (5/9)2−n−1

), we have

Ib

(

2−n log 3
)

< ∞.

(ii) Let c > 0. For all b ∈ (0, e−2c), we have Ib(c) = ∞.

Theorem 1.3 The following are equivalent:

(1) b ∈ B3.
(2) b is an EK number.
(3) exp(−Hb(|z|)) has uniform decay at infinity.
(4) For every full μ ∈ L(b) on R

d , |μ̂(z)| has uniform decay at infinity.
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Remark 1.3

(i) Let n ∈ Z+. For a.e. b ∈ (2−2−n
,2−2−n−1

), we have

exp
(−Hb(u)

) = O
(

u(−0.0027)2n)

.

(ii) Let c > 0. For all b ∈ (0, e−c), we have Jb(c) = ∞ and

exp
(−Hb(u)

) 
= O
(

u−1/c
)

.

Theorem 1.4 Let μ be a full b-decomposable distribution on R satisfying (1.1). Let
q := ρ ∗ ρ̄({0}). Then we have the following.

(i) Let N be the smallest positive integer satisfying 2−N log 3 + q < 1. Then, for a.e.
b ∈ ((5/9)2−N

,1), μ has an L2-density. In particular, if ρ has no point mass,
then μ has an L2-density for a.e. b ∈ (

√
5/3,1).

(ii) Let n ∈ Z+. We have, for a.e. b ∈ (2−2−n
,2−2−n−1

),
∣

∣μ̂(z)
∣

∣ = O
(|z|(−0.0013)(1−q)2n)

.

Remark 1.4 Theorem 1.4 holds for μ = νb,p with 1 − q = 2p(1 − p). We apply
Theorem 1.4 to a one-dimensional homogeneous self-similar measure in Proposi-
tion 4.1 in Sect. 4. Peres and Solomyak [21] discussed the absolute continuity of
a one-dimensional homogeneous self-similar measure under the assumption of the
transversality condition. Ngai and Wang [19] extended the results of [21] to the inho-
mogeneous case. But, we do not know whether the transversality condition holds on
an interval (a,1) with a close to 1.

We do not yet know an explicit example of EK numbers or PS numbers. How-
ever, modifying the Erdös-Kahane argument for symmetric Bernoulli convolutions,
we have the following.

Theorem 1.5 All real numbers in (0,1) outside a set of Hausdorff dimension 0 are
EK numbers and hence PS numbers.

Corollary 1.1 If a full distribution μ on R
d is b-decomposable for all b in a set of

positive Hausdorff dimension, then |μ̂(z)| has uniform decay at infinity. In particular,
for every full self-decomposable distribution μ on R

d , |μ̂(z)| has uniform decay at
infinity.

In Sect. 2, we prove our main results. In Sect. 3, we discuss the structures of the
PS numbers and the EK numbers. In Sects. 4 and 5, we give applications of our main
results to refinable distributions and to some Lévy processes, respectively.

2 Proofs of the Main Results

First we give several preliminary lemmas for the proofs of the main results mentioned
in Sect. 1.
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Lemma 2.1 Let 0 < b < 1. Then we have the following.

(i) For p ∈ (0,1),
∣

∣ν̂b,p(z)
∣

∣

2 ≤ exp
(−2p(1 − p)Hb

(|z|)).
(ii) For p ∈ (0,2−1) ∪ (2−1,1),

∣

∣ν̂b,p(z)
∣

∣

2 ≥ exp
(−∣

∣log |2p − 1|∣∣Hb

(|z|)).

Proof Let p ∈ (0,1). Note that 1 + 2p(1 − p)(cos(bkz) − 1) ≥ 0. Thus, using the
inequality x ≤ ex−1 for x ≥ 0, we have by (1.3)

∣

∣ν̂b,p(z)
∣

∣

2 =
∞
∏

k=0

(

1 + 2p(1 − p)
(

cos
(

bkz
) − 1

))

≤ exp
(−2p(1 − p)Hb

(|z|)).
Next let p ∈ (0,2−1) ∪ (2−1,1). Using the inequality 1 − x ≥ exp(a−1x log(1 − a))

for 0 ≤ x ≤ a < 1, we see that

∣

∣ν̂b,p(z)
∣

∣

2 =
∞
∏

k=0

(

1 + 2p(1 − p)
(

cos
(

bkz
) − 1

))

≥ exp
(−∣

∣log |2p − 1|∣∣Hb

(|z|)).
Thus we have proved the lemma. �

Lemma 2.2 Let μ be a full b-decomposable distribution μ on R
d satisfying (1.1).

(i) There are positive constants K1 and K2 depending only on ρ such that

∣

∣μ̂(z)
∣

∣

2 ≤ sup
u≥K2|z|

exp
(−K1Hb(u)

)

. (2.1)

(ii) Let d = 1. Let Cδ := ρ ∗ ρ̄(|x| > δ) for δ > 0. Then we have

∣

∣μ̂(z)
∣

∣

2 ≤ C−1
δ

∫

|x|>δ

exp
(−CδHb

(|zx|))ρ ∗ ρ̄(dx). (2.2)

Proof Note that
∫

Rd cos〈z, x〉ρ ∗ ρ̄(dx) = |ρ̂(z)|2 ≥ 0. Using the inequality x ≤ ex−1

for x ≥ 0, we have

∣

∣μ̂(z)
∣

∣

2 =
∞
∏

k=0

∫

Rd

cos
〈

bkz, x
〉

ρ ∗ ρ̄(dx)

≤ exp

( ∞
∑

k=0

∫

Rd

(

cos
〈

bkz, x
〉 − 1

)

ρ ∗ ρ̄(dx)

)

= exp

(

−
∫

Rd

Hb

(∣

∣〈z, x〉∣∣)ρ ∗ ρ̄(dx)

)

. (2.3)
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We find from Lemma 5 of Watanabe [28] that ρ and also ρ ∗ ρ̄ are full on R
d . Thus

there exist disjoint closed balls Dj for 1 ≤ j ≤ d in R
d such that Cj := ρ ∗ ρ̄(Dj ) > 0

and, for any choice of xj ∈ Dj , {xj }dj=1 is a basis of R
d . Let K1 := min1≤j≤d Cj .

There exists K2 > 0 independent of any choice of {xj } such that max1≤j≤d |〈z, xj 〉| ≥
K2|z| for z ∈ R

d . Applying Jensen’s inequality, we conclude from (2.3) that

∣

∣μ̂(z)
∣

∣

2 ≤ exp

{

−
d

∑

j=1

∫

Dj

Hb

(∣

∣〈z, xj 〉
∣

∣

)

ρ ∗ ρ̄(dxj )

}

≤
d

∏

j=1

C−1
j

∫

Dj

exp
{−CjHb

(∣

∣〈z, xj 〉
∣

∣

)}

ρ ∗ ρ̄(dxj )

=
(

d
∏

j=1

C−1
j

)

∫

D1×···×Dd

exp

{

−
d

∑

j=1

CjHb

(∣

∣〈z, xj 〉
∣

∣

)

}

d
∏

j=1

ρ ∗ ρ̄(dxj )

≤ sup
u≥K2|z|

exp
(−K1Hb(u)

)

. (2.4)

Thus we have proved (i). Let d = 1. Applying Jensen’s inequality again, we have
by (2.3)

∣

∣μ̂(z)
∣

∣

2 ≤ exp

{

−
∫

|x|>δ

Hb

(|zx|)ρ ∗ ρ̄(dx)

}

≤ C−1
δ

∫

|x|>δ

exp
(−CδHb

(|zx|))ρ ∗ ρ̄(dx).

Thus we have proved (ii). �

Lemma 2.3 Let 0 < b < 1. Then we have the following.

(i) If u,v ≥ 0 and |u − v| ≤ 1, then |Hb(u) − Hb(v)| ≤ (1 − b)−1.
(ii) There are positive constants C1 and C2 such that, for u ≥ 0,

Hb(u) ≤ 2

| logb| log(2 + u) + C1 ≤ C2 log(2 + u).

Proof Let u,v ≥ 0 and |u − v| ≤ 1. We have

∣

∣Hb(u) − Hb(v)
∣

∣ ≤
∞
∑

k=0

∣

∣cos
(

bku
) − cos

(

bkv
)∣

∣ ≤
∞
∑

k=0

bk|u − v| ≤ (1 − b)−1.

Thus (i) is true. Let N := logu/| logb| for u ≥ 1. Then we have, for u ≥ 1,

Hb(u) ≤
∑

0≤k≤N

2 +
∑

k>N

2−1u2b2k ≤ 2

(

logu

| logb| + 1

)

+ 1

2(1 − b2)
.

Thus we have proved (ii). �
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The following lemma is due to Pisot [22].

Lemma 2.4 A real number θ > 1 is a PV number if and only if there exists t 
= 0
such that

∑∞
n=1 sin2(tθn) converges.

Let θ > 1. For 1 ≤ t < θ and n ∈ N, we can uniquely represent θnt as

θnt = Cn + εn,

where Cn ∈ N and εn ∈ [−2−1,2−1). The symbol [x] stands for the largest integer
not exceeding x ∈ R and 	(A) does for the cardinality of a finite set A. We denote by
dimE the Hausdorff dimension of a Borel set E in R

d . The following lemma is due
to Lemma 6.3 of Peres et al. [20]. Its idea goes back to Erdös [7].

Lemma 2.5 Fix a > 1 and δ > 0. For any ε > 0, the following holds for all suffi-
ciently large integers n ≥ n0(a, δ, ε).

(i) Given Cn and Cn+1, there are at most [1 + (a + δ + 1)2 + ε] possibilities for
Cn+2, independent of θ ∈ [a, a + δ] and t ∈ [1, θ).

(ii) If

max
{|εn|, |εn+1|, |εn+2|

}

<
1

2(a + δ + 1)2 + ε
,

then Cn+2 is uniquely determined by Cn and Cn+1, independent of θ ∈ [a, a + δ]
and t ∈ [1, θ).

Lemma 2.6 Fix a > 1 and δ > 0. Let K ≥ 3. Suppose that

0 < B <
1 − cos(π/(a + δ + 1)2)

log(a + δ)
. (2.5)

Then we have

dim

{

b ∈
[

1

a + δ
,

1

a

]

: exp
(−Hb(u)

) 
= O
(

u−B/K
)

}

≤ logK − (K − 1) log(1 − K−1) + 3 log[1 + (a + δ + 1)2]
K loga

. (2.6)

Proof Let N ∈ N and ε > 0. Define τ > 0 and a set EN as τ := (2(a + δ +1)2 + ε)−1

and

EN := {

θ ∈ [a, a + δ] : for some t ∈ [1, θ), 	
{

n ∈ [1,N] : |εn| ≥ τ
} ≤ N/K

}

.

Let E := lim supN→∞ EN . Let θ ∈ [a, a + δ]. Choose ε > 0 such that

B <
1 − cos(2πτ)

log(a + δ)
.
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Note that there exists M > 0 independent of N such that, for N ≥ 2,
∣

∣

∣

∣

CN

CN−1
− θ

∣

∣

∣

∣

= |θεN−1 − εN |
CN−1

≤ Ma−N.

We see from Lemma 2.5 that, for θ ∈ EN , the possibilities of {Cj }Nj=1 are at most

Const · ( N
[N/K]

)[1 + (a + δ + 1)2 + ε]3N/K . Thus EN can be covered by at most

Const · ( N
[N/K]

)[1 + (a + δ + 1)2 + ε]3N/K intervals with length 2Ma−N . Hence,
using Stirling’s formula, we have

dim(E) ≤ lim
N→∞

log((
N

[N/K] )[1 + (a + δ + 1)2 + ε]3N/K)

N loga

= logK − (K − 1) log(1 − K−1) + 3 log[1 + (a + δ + 1)2 + ε]
K loga

. (2.7)

Let b = θ−1 and represent u ∈ [2πθ,∞) as u = 2πtθN with some t ∈ [1, θ) and
N ∈ N. Then we see that

exp
(−Hb(u)

) ≤ exp

(

−
N
∑

n=1

(

1 − cos(2πεn)
)

)

.

Thus if b ∈ [ 1
a+δ

, 1
a
] and

exp
(−Hb(u)

) 
= O
(

u−B/K
)

,

then we have b−1 = θ ∈ E. Hence, letting ε → 0, we obtain (2.6) from (2.7). �

Proof of Theorem 1.1 The equivalence (1) ⇐⇒ (3) is clear from Lemma 2.1. It is
obvious that (4) =⇒ (3). We see from (i) of Lemma 2.2 that (1) =⇒ (4). Suppose
that (2) is not true, that is, b−1 is a PV number. Then we see from Lemma 2.4 that
there exists t > 0 such that

∑∞
n=1 sin2(tb−n) converges. Thus we have

lim
n→∞ exp

(−Hb

(

2tb−n
)) = exp

(

−Hb(2t) − 2
∞
∑

n=1

sin2(tb−n
)

)

> 0.

That is, (1) is not true, and hence (1) =⇒ (2). Finally, suppose that (1) is not true.
Then there exist a sequence {2tnb

−mn}∞n=1 such that 1 ≤ tn < b−1, mn ∈ N, mn ↑ ∞
as n → ∞, and limn→∞ tn = t ∈ [1, b−1] and that

lim
n→∞ exp

(−Hb

(

2tnb
−mn

))

> 0.

We find that, for n ≥ N with N ∈ N,

exp
(−Hb

(

2tnb
−mn

)) = exp

(

−Hb(2tn) − 2
mn
∑

k=1

sin2(tnb
−k

)

)

≤ exp

(

−2
mN
∑

k=1

sin2(tnb
−k

)

)

.
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Letting n → ∞ and then N → ∞, we have

exp

(

−2
∞
∑

k=1

sin2(tb−k
)

)

> 0.

Thus, by Lemma 2.4, b−1 is a PV number, and hence (2) =⇒ (1). �

Proof of Theorem 1.2 The equivalence (1) ⇐⇒ (2) is clear from Lemma 2.1. It is
obvious that (3) =⇒ (2). Suppose that (1) is true. Then Ib(t0) < ∞ for some t0 > 0.
Let {Dj }, {Cj }, and {xj } be the same as in the proof of (i) of Lemma 2.2. Let xj =
t (x1j , x2j , . . . , xdj ) and define a real d ×d matrix X as X = (xij ). Clearly, if xj ∈ Dj

for 1 ≤ j ≤ d , then detX 
= 0. Take any positive number q satisfying 2−1qCj ≥ t0
for 1 ≤ j ≤ d . Changing variables as 〈z, xj 〉 = uj for 1 ≤ j ≤ d , we obtain as in (2.4)
that

∫

Rd

∣

∣μ̂(z)
∣

∣

q
dz ≤

∫

Rd

exp

{

−2−1q

d
∑

j=1

∫

Dj

Hb

(∣

∣〈z, xj 〉
∣

∣

)

ρ ∗ ρ̄(dxj )

}

dz

≤
∫

Rd

dz

d
∏

j=1

C−1
j

∫

Dj

exp
{−2−1qCjHb

(∣

∣〈z, xj 〉
∣

∣

)}

ρ ∗ ρ̄(dxj )

=
(

d
∏

j=1

C−1
j 2Ib

(

2−1qCj

)

)

∫

D1×···×Dd

|detX|−1
d

∏

j=1

ρ ∗ ρ̄(dxj )

< ∞.

Thus we see that (1) =⇒ (3). �

Proof of Remark 1.2 Let n ∈ Z+. Corollary 1.4 of Peres and Solomyak [21] says that,
for a.e. b ∈ (5/9,

√
5/9) with p = 3−1, ν̂b,p(z) ∈ L2(R). Thus, by (ii) of Lemma 2.1,

the assertion is true for n = 0. Note that, for all m ∈ N,

Hb1/m(u) =
m−1
∑

k=0

Hb

(

bk/mu
)

. (2.8)

For general n, using (2.8) with m = 2n and applying the generalized Hölder’s in-
equality, we have, for a.e. b ∈ (5/9,

√
5/9),

Ib1/m

(

m−1 log 3
) =

∫ ∞

0

m−1
∏

k=0

exp
(−m−1(log 3)Hb

(

bk/mu
))

du

≤
m−1
∏

k=0

(∫ ∞

0
exp

(−(log 3)Hb

(

bk/mu
))

du

)1/m

= b(−m+1)/(2m)Ib(log 3) < ∞.

Thus we proved (i). Assertion (ii) follows from (ii) of Lemma 2.3. �
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Proof of Theorem 1.3 The equivalence (2) ⇐⇒ (3) is clear from Lemma 2.1. Obvi-
ously, (3) =⇒ (1) and (4) =⇒ (2). We see from (i) of Lemma 2.2 that (3) =⇒ (4).
Let t > 0 be arbitrary. We obtain from (i) of Lemma 2.3 that, for v ≥ 0,

Jb(t) ≥
∫ v+1

v

u exp
(−tHb(u)

)

du

≥ exp

(

− t

1 − b

)

v exp
(−tHb(v)

)

.

Thus we have, for v ≥ 1,

exp
(−Hb(v)

) ≤ exp

(

1

1 − b

)

(

Jb(t)
)1/t

v−1/t . (2.9)

Hence we have proved that (1) =⇒ (3). �

Proof of Remark 1.3 Let n ∈ Z+. For n = 0, take K = 32, a = √
2, and a + δ = 2−

in (2.6). Then we can take B/K = 0.0027 and make the dimension in (2.6) less than
1. Thus, by using (2.8) with m = 2n, we find that (i) is true. By virtue of Theorem
4.5.2 of Bertin et al. [1], for a.e. t > 0, the sequence {θnt}∞n=1 is uniformly distributed
mod 1. Fix such a t . We have

lim
n→∞n−1Hb

(

2πθnt
) =

∫ 1

0

(

1 − cos(2πu)
)

du = 1.

Thus we see that, for all b ∈ (0,1) and any ε > 0,

lim sup
u→∞

exp
(−Hb(u)

)

u
1

| logb| +ε = ∞.

Thus the second assertion of (ii) is true. The first assertion follows from (2.9). �

Proof of Theorem 1.4 Let Cδ := ρ ∗ ρ̄(|x| > δ) for δ > 0. We can choose δ > 0 such
that 2−N log 3 < Cδ . We obtain from (ii) of Lemma 2.2 and (i) of Remark 1.2 that,
for a.e. b ∈ ((5/9)2−N

,1),
∫ ∞

−∞
∣

∣μ̂(z)
∣

∣

2
dz ≤ 2Ib(Cδ)C

−1
δ

∫

|x|>δ

|x|−1ρ ∗ ρ̄(dx) < ∞.

Thus μ has an L2-density. If ρ has no point mass, we have q = 0 and hence N = 1.
Thus (i) is true. Assertion (ii) follows from (ii) of Lemma 2.2 and (i) of Remark 1.3. �

Proof of Theorem 1.5 Since B3 ⊂ B2, it is enough to prove that

dim
(

(0,1) \ B3
) = 0. (2.10)

Let K ≥ 3 and take B satisfying (2.5). We see from Theorem 1.3 that
[

1

a + δ
,

1

a

]

\ B3 ⊂
{

b ∈
[

1

a + δ
,

1

a

]

: exp
(−Hb(u)

) 
= O
(

u−B/K
)

}

.
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Thus we obtain from Lemma 2.6 that

dim

([

1

a + δ
,

1

a

]

\ B3

)

≤ logK − (K − 1) log(1 − K−1) + 3 log[1 + (a + δ + 1)2]
K loga

.

Letting K ↑ ∞, and then a ↓ 1 and δ ↑ ∞, we have (2.10). �

Proof of Corollary 1.1 The corollary follows from Theorems 1.3 and 1.5. �

Finally, we add a theorem of the Erdös-Kahane type for b-decomposable distribu-
tions. For an integer k ≥ 0, let Ck(Rd) be the class of real-valued functions on R

d all
of whose partial derivatives of order up to and including k are continuous.

Theorem 2.1

(i) Let μ be a full b-decomposable distribution on R
d . Suppose that b is an EK

number. Then |μ̂(z)| has uniform decay at infinity. Thus, for every integer k ≥ 0,
the convolution power μn∗ is absolutely continuous with a bounded density of
class Ck(Rd) for all sufficiently large integers n.

(ii) Fix a full probability distribution ρ on R
d satisfying (1.2). Then there are a pos-

itive strictly increasing sequence {ak}∞k=0 and a positive strictly decreasing se-
quence {ck}∞k=0 with limk→∞ ak = 1 and limk→∞ ck = 0 such that the following
statement is true for every integer k ≥ 0: For b ∈ (ak,1) outside a set of Haus-
dorff dimension less than ck , any b-decomposable distribution μ on R

d satisfying
(1.1) has a density of class Ck(Rd).

Proof The first assertion of (i) follows from Theorem 1.3. The second one is a di-
rect consequence of the first one. Next we prove (ii). We see from (2.1), (2.8), and
Lemma 2.6 that we can take the two sequences {ak}∞k=0 and {ck}∞k=0. �

3 Structures of the Sets Bj

Denote by ‖x‖ the distance of x ∈ R to the nearest integer. We define a function D(θ)

for θ > 1 as

D(θ) := inf
1≤t<θ

lim sup
n→∞

∥

∥θnt
∥

∥.

Let S be the totality of PV numbers. Salem [23] proved that the set S is a closed set.
All positive integers bigger than 1 are PV numbers. The minimum PV number is the
positive zero of x3 − x − 1. An algebraic integer θ > 1 is said to be a Salem number
if all its Galois conjugates θj satisfy |θj | ≤ 1 and at least one of the conjugates has
modulus equal to one. Let T be the totality of Salem numbers and T−1 be the set
of their reciprocals. Salem numbers are not PV numbers. We say that a real number
θ > 1 is a generalized Salem number if D(θ) = 0. Let T∗ be the totality of generalized
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Salem numbers and (T∗)−1 be the set of their reciprocals. Let S⊥ be the set of b in
(2−1,1) such that νb is singular, and let S∗⊥(⊃ S⊥) be the set of b in (2−1,1) such
that νb does not have an L2-density. Let E be a set in (0,1). We say that E is of type
A if E contains a left neighborhood of 1, that is, E contains an interval (1 − ε,1)

for some ε ∈ (0,1). We say that E is of type B if, for any nonempty open interval
I in (0,1), I \ E is an uncountable set. Clearly, if E is of type B, then it is totally
disconnected. We do not yet know whether S⊥ is a countable set. However, we prove
in Theorem 3.1 below that if 1 is a limit point of S⊥, then S⊥ is an uncountable dense
set in (2−1,1) and B2 and B3 are of type B.

Lemma 3.1 Suppose that a set E in (0,1) is a Fσ set and that if b ∈ E, then b1/n ∈ E

for all n ∈ N. Then we have the following.

(i) E is either of type A or of type B.
(ii) If (0,1)\E is a countable set, then E is of type A and (0,1)\E is nowhere dense

in (0,1).

Proof Suppose that there exists a nonempty open interval I in (0,1) such that I \ E

is a countable set. Then, by virtue of the Baire-Hausdorff theorem, I ∩ E contains
a nonempty open interval. We see that if 1 is a limit point of (0,1) \ E, then I ∩ E

cannot include a nonempty open interval. Thus E contains a left neighborhood of 1
and the proof of (i) is complete. Suppose that (0,1) \ E is a countable set. Then E is
not of type B and hence it is of type A. Let I be any nonempty open interval in (0,1).
Then, as in the proof of (i), I ∩ E includes a nonempty open interval and thereby
(0,1) \ E is nowhere dense in (0,1). Thus (ii) is true. �

Proposition 3.1 We have the following.

(i) B3 ⊂ B2 ⊂ B1. B1 is an open set. B2 and B3 are Fσ sets.
(ii) S ∪ T ⊂ T∗, (T∗)−1 ∩ B3 = ∅, and T−1 ⊂ B1 \ B3.

(iii) Let j = 1,2,3. If b ∈ Bj , then b1/n ∈ Bj for all n ∈ N.
(iv) B1 is of type A. Assertions (i) and (ii) of Lemma 3.1 are true for E = B2 and for

E = B3.

Proof First we prove (i). It is clear that B3 ⊂ B2. Suppose that b /∈ B1. Then there is
a sequence {un}∞n=0 such that u0 = 1, un+1 ≥ un + 1 for n ≥ 0 and that

lim
n→∞ exp

(−Hb(un)
) ∈ (0,1].

Let t > 0 be arbitrary. Thus we see from (i) of Lemma 2.3 that

Ib(t) ≥
∞
∑

n=0

∫ un+1

un

exp
(−tHb(u)

)

du

≥ exp

(

− t

1 − b

) ∞
∑

n=0

exp
(−tHb(un)

) = ∞.
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Thus b /∈ B2 and hence B2 ⊂ B1. Since S is a closed set, we find from Theorem 1.1
that B1 is an open set. Note that

Hb(u) ≤ 1

2

∞
∑

n=0

b2nu2 = u2

2(1 − b2)
.

By virtue of the dominated convergence theorem, we see that Hb(u) is continuous in
b ∈ [1/(n + 1), n/(n + 1)] for n ∈ N. We have

B2 =
⋃

n∈N

⋃

N∈N

⋃

t∈N

{

b ∈ [

1/(n + 1), n/(n + 1)
] : Ib(t) ≤ N

}

, and

B3 =
⋃

n∈N

⋃

N∈N

⋃

t∈N

{

b ∈ [

1/(n + 1), n/(n + 1)
] : Jb(t) ≤ N

}

.

(3.1)

Thus B2 and B3 are Fσ sets. Next we prove (ii). It is well known that if θ ∈ S,
then limn→∞ ‖θn‖ = 0. Hence S ⊂ T∗. We see from Theorem 5.5.1 of Bertin et al.
[1] that T ⊂ T∗. Thus, S ∪ T ⊂ T∗. Suppose that b := θ−1 ∈ (T∗)−1. Then, for any
δ > 0, there is t ∈ [1, θ) such that ‖θnt‖ ≤ δ for all sufficiently large n ∈ N. Let
ε := 4π2δ2/ log θ . Since δ > 0 is arbitrary, so is ε > 0. We obtain that

lim sup
u→∞

exp
(−Hb(u)

)

uε ≥ lim sup
n→∞

exp
(−Hb

(

2πtθn
))(

2πtθn
)ε = ∞.

Namely, by Theorem 1.3, b /∈ B3 and thereby (T∗)−1 ∩B3 = ∅. Since Salem numbers
are not PV numbers, the inclusion T−1 ⊂ B1 is clear. Thus T−1 ⊂ B1 \ B3 because
T ⊂ T∗. To prove (iii), note from (2.8) that, for all n ∈ N, Hb1/n(u) ≥ Hb(u). Thus, if
b ∈ Bj , then b1/n ∈ Bj for all n ∈ N and j = 1,2,3. Next, we prove (iv). Since there
exists the minimum PV number greater than 1, we find from Theorem 1.1 that B1 is
of type A. Remaining assertions follow from Lemma 3.1. �

Remark 3.1

(i) Theorem 5.6.1 of Bertin et al. [1] says that the set {θ > 1 : D(θ) < (2(θ +
1)2)−1} is a countable set and hence T∗ is a countable set.

(ii) Let M(θ) := ∑n
k=0 |ak| for an algebraic number θ > 1 where P(x) :=

∑n
k=0 akx

k is the minimal polynomial of θ . Theorem 1 of Dubickas [4] says
that if θ > 1 is an algebraic number satisfying θ /∈ S ∪ T, then we have

D(θ) ≥ (

M(θ)
)−1

.

Thus if θ ∈ T∗ is an algebraic number, then θ ∈ S ∪ T.
(iii) We do not yet know whether the following equations are true: S⊥ = S∗⊥; S⊥ ∩

B1 = ∅; B1 = B2; B2 = B3; S ∪ T = T∗; and (T∗)−1 ∪ B3 = (0,1). We see
from (ii) of Proposition 3.1 that B3 � B2 or B2 � B1 holds. Feng and Wang [8]
showed that S⊥ � S∗⊥ or S⊥ ∩ B1 
= ∅ holds.

At this point, it is not easy to answer the fascinating question whether B2 and B3
are of type A. However, we can find that some strong assertions are true under the
assumption that B2 and B3 are of type A.
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Proposition 3.2 Suppose that B2 is of type A. Then we have the following.

(i) There are N1 ∈ N and t1 ∈ N such that Ib(t1) ≤ N1 for all b in a left neighbor-
hood of 1.

(ii) Fix a full probability distribution ρ on R
d satisfying (1.2). Then, for all b in

a left neighborhood of 1, any b-decomposable distribution μ on R
d satisfying

(1.1) has a bounded continuous density.
(iii) 1 is not a limit point of S∗⊥.

Proof Suppose that B2 is of type A, that is, B2 contains a left neighborhood I0 of
1. Then, by virtue of the Baire-Hausdorff theorem, we see from (3.1) that I0 ∩ {b ∈
(0,1) : Ib(t1) ≤ N1} includes a non-empty open interval for some N1 ∈ N and t1 ∈ N.
Let B := {b ∈ (0,1) : Ib(t1) ≤ N1}. Like in (iii) of Proposition 3.1, if b ∈ B , then
b1/n ∈ B for all n ∈ N. In case 1 is a limit point of (0,1) \ B , B cannot include a
non-empty open interval. Thus we see that B contains a left neighborhood I1 of 1.
Hence (i) is true. Next to prove (ii), let {Dj }, {Cj }, {xj }, and the matrix X be the same
as in the proof of Theorem 1.2. Choose n ∈ N satisfying 2−1nCj ≥ t1 for 1 ≤ j ≤ d

and let b ∈ I1. Fix a full probability distribution ρ on R
d satisfying (1.2). Define a

b1/n-decomposable distribution μ(n) on R
d by

μ̂(n)(z) =
∞
∏

k=0

ρ̂
(

bk/nz
)

. (3.2)

Define a constant K as

K :=
∫

D1×···×Dd

|detX|−1
d

∏

j=1

ρ ∗ ρ̄(dxj ).

In the following calculation, we use Jensen’s inequality together with (2.8), change
variables as 〈z, xj 〉 = uj for 1 ≤ j ≤ d , and apply the generalized Hölder’s inequality.
Thus, replacing b by b1/n, we obtain from (2.3) that

∫

Rd

∣

∣μ̂(n)(z)
∣

∣dz ≤
∫

Rd

exp

{

−2−1
d

∑

j=1

∫

Dj

Hb1/n

(∣

∣〈z, xj 〉
∣

∣

)

ρ ∗ ρ̄(dxj )

}

dz

≤
∫

Rd

dz

d
∏

j=1

C−1
j

∫

Dj

n−1
∏

=0

exp
{−2−1CjHb

(∣

∣

〈

b/nz, xj

〉∣

∣

)}

ρ ∗ ρ̄(dxj )

= K

d
∏

j=1

C−1
j

∫ ∞

−∞

n−1
∏

=0

exp
(−2−1CjHb

(

b/n|uj |
))

duj

≤ K

d
∏

j=1

C−1
j

n−1
∏

=0

(∫ ∞

−∞
exp

(−2−1nCjHb

(

b/n|uj |
))

duj

)1/n

≤ K

(

d
∏

j=1

C−1
j

)

b(−n+1)d/(2n)

(∫ ∞

−∞
exp

(−t1Hb

(|u|))du

)d

< ∞.
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Therefore, the b-decomposable distribution μ satisfying (1.1) has a bounded contin-
uous density for all b in a left neighborhood of 1. Hence, setting μ = νb , we see that
1 is not a limit point of S∗⊥. Thus (ii) and (iii) are true. �

Remark 3.2 Peres et al. [20] showed that S⊥ is a Gδ set. Since |ν̂b(z)| is continuous
in b ∈ [1/(n + 1), n/(n + 1)] for n ∈ N, S∗⊥ is clearly a Gδ set. Note that ν̂b1/n (z) =
∏n−1

k=0 ν̂b(b
k/nz) for all n ∈ N. Hence it is clear that b1/n ∈ (2−1,1) \ S⊥ (resp. b1/n ∈

(2−1,1) \ S∗⊥) for all n ∈ N provided that b ∈ (2−1,1) \ S⊥ (resp. b ∈ (2−1,1) \ S∗⊥).
Thus we see that the assertions of Lemma 3.1 are true for the sets (2−1,1) \ S⊥ and
(2−1,1) \ S∗⊥ instead of E by replacing the interval (0,1) with the interval (2−1,1).

Proposition 3.3 Suppose that B3 is of type A. Then the following hold.

(i) 1 is not a limit point of S∗⊥ ∪ T∗.
(ii) There are N2 ∈ N and t2 ∈ N such that Jb(t2) ≤ N2 for all b in a left neighbor-

hood of 1.
(iii) Fix a full probability distribution ρ on R

d satisfying (1.2). Fix an integer k ≥ 0.
Then, for all b in a left neighborhood of 1, any b-decomposable distribution μ

on R
d satisfying (1.1) has a bounded density of class Ck(Rd).

(iv) We have

lim inf
θ↓1

D(θ) > 0. (3.3)

Proof Suppose that B3 is of type A. Assertion (i) is obvious from (i) and (ii) of Propo-
sition 3.1 and (iii) of Proposition 3.2. The proof of assertion (ii) is similar to that of (i)
of Proposition 3.2 by using the Baire-Hausdorff theorem again and is omitted. Thus
there are N2 ∈ N and t2 ∈ N such that Jb(t2) ≤ N2 for all b in a left neighborhood
I2 of 1. Fix a full probability distribution ρ on R

d satisfying (1.2). Let μ(n) be the
b1/n-decomposable distribution defined by (3.2) with b ∈ I2. Then we see from (2.1),
(2.8), and (2.9) that, for every integer k ≥ 0, there is a sufficiently large n ∈ N such
that

∫

Rd

|z|k∣∣μ̂(n)(z)
∣

∣dz < ∞.

Hence the b-decomposable distribution μ satisfying (1.1) has a bounded density of
class Ck(Rd) for all b in a left neighborhood of 1. Thus (iii) is true. Finally, we prove
(iv). Let γ := t−1

2 and I2 := (δ,1) with some δ ∈ (0,1). We see from (ii) and (2.9)
that, for all b ∈ (δ,1),

exp
(−Hb(u)

) = O
(

u−γ
)

.

Hence we obtain from (2.8) that, for all b ∈ (δ2−k
, δ2−k−1 ] with k ∈ Z+,

exp
(−Hb(u)

) = O
(

u−γ 2k )

. (3.4)
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Let ε := √
2γ | log δ|/(4π). Suppose that (3.3) fails. Then there exists a sufficiently

large k ∈ N such that, for some θ ∈ [δ−2−k−1
, δ−2−k

) and t ∈ [1, θ),

lim sup
n→∞

∥

∥θnt
∥

∥ < ε.

Therefore we have

lim
n→∞ exp

(−Hθ−1

(

2πtθn
))(

2πtθn
)4π2ε2/ log θ = ∞.

Since γ 2k ≥ 4π2ε2/ log θ , we see from (3.4) that this is a contradiction. Thus we
have proved (iv). �

Consequently, we can establish the following facts on the types of B2 and B3.

Theorem 3.1

(i) If 1 is a limit point of S⊥ (resp. S∗⊥), then S⊥ (resp. S∗⊥) is an uncountable dense
set in (2−1,1) and B2 and B3 are of type B.

(ii) B2 is of type A if and only if, for some fixed p 
= 2−1, νb,p has a bounded con-
tinuous density for all b in a left neighborhood of 1.

(iii) B3 is of type A if and only if, for some fixed p 
= 2−1, νb,p has a density of class
C1(R) for all b in a left neighborhood of 1.

Proof The proof of (i) is clear from Remark 3.2 and Propositions 3.1, 3.2, and 3.3.
Fix p ∈ (0,2−1)∪ (2−1,1). Suppose that B2 is of type A. Then we see from Proposi-
tion 3.2 that νb,p has a bounded continuous density for all b in a left neighborhood of
1. Conversely, suppose that B2 is of type B. Then we find from (ii) of Lemma 2.1 that
νb,p does not have an L2-density for some b arbitrarily close to 1. Thus (ii) is true.
Next suppose that B3 is of type A. Then we see from Proposition 3.3 that νb,p has
a density of class C1(R) for all b in a left neighborhood of 1. Conversely, suppose
that B3 is of type B. Note that νb,p has a compact support. Thus we find from (ii)
of Lemma 2.1 that, for some b arbitrarily close to 1, ν̂b,p(z) does not have uniform
decay at infinity and hence νb,p does not have a density of class C1(R). Thus the
proof of (iii) is complete. �

We finish this section by posing three open problems which are of interest from
the view-point of number theory. It is known that if the answer to Lehmer’s problem
in [14] on the minimum Mahler measure for integer polynomials is “no” (that is, so-
called Lehmer’s conjecture is true), then 1 is not a limit point of T. It should be noted
that if the answer to one of those open problems is “yes”, then 1 is not a limit point
of T∗(⊃ T).

Problem 1 Is it true that lim infθ↓1 D(θ) > 0?

Problem 2 Is it true that all real numbers in a left neighborhood of 1 are EK num-
bers?
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Problem 3 Is it true that if b−1 ∈ (1,∞) is not a PV nor Salem number, then b is an
EK number?

4 Applications to Refinable Distributions

Let λ ∈ R with |λ| > 1. A Schwartz distribution function fλ on R is called λ-refinable
function if there exist m ≥ 2 and cj , dj ∈ R for 1 ≤ j ≤ m with

∑m
j=1 cj = |λ| such

that, in the sense of Schwartz distribution theory,

fλ(x) =
m

∑

j=1

cjfλ(λx − dj ). (4.1)

Note that fλ always has a compact support. A probability distribution μλ on R is
called λ-refinable distribution if there exist m ≥ 2 and cj > 0, dj ∈ R for 1 ≤ j ≤ m

with
∑m

j=1 cj = |λ| such that

μλ(dx) =
m

∑

j=1

cj

|λ|μλ(λdx − dj ) (4.2)

with the understanding that
∫

B
μλ(λdx − dj ) = μλ(λB − dj ) for Borel sets B in

R. We assume that μλ is not a delta measure. If the λ-refinable distribution μλ is
absolutely continuous, then its density fλ(x) satisfies (4.1) in the usual sense. The
Bernoulli convolution νb,p is a typical example of b−1-refinable distributions with
m = 2, c1 = b−1p, c2 = b−1(1 − p), d1 = 0, and d2 = b−1. Note that λ-refinable
distributions μλ are λ−2-decomposable because they satisfy (1.1) with b = λ−2 and

ρ(dx) =
(

m
∑

j=1

cj |λ|−1δdj
(λdx)

)

∗
(

m
∑

j=1

cj |λ|−1δdj

(

λ2dx
)

)

.

Thus they are homogeneous self-similar measures. In particular, if λ > 1, then μλ is
λ−1-decomposable with ρ(dx) = ∑m

j=1 cjλ
−1δdj

(λdx).
Dai et al. [3] discussed several cases where λ-refinable distributions have uniform

decay at infinity. In the first assertion of the following theorem, we solve the third
open problem raised by Dai et al. [3] in their appendix.

Theorem 4.1

(i) Every real number λ in (−∞,−1)∪ (1,∞) outside a set of Hausdorff dimension
0 has the property that, for any λ-refinable distribution μλ on R, |μ̂λ(z)| has
uniform decay at infinity.

(ii) Fix c′
j > 0 and d ′

j ∈ R for 1 ≤ j ≤ m. Then there are positive strictly decreasing
sequences {ak}∞k=0 and {ek}∞k=0 with limk→∞ ak = 1 and limk→∞ ek = 0 such
that the following statement is true for each integer k ≥ 0: For λ ∈ (1, ak) outside
a set of Hausdorff dimension less than ek , any λ-refinable distribution μλ on R

satisfying (4.2) with cj = c′
j λ and dj = d ′

j λ has a density of class Ck(R).
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Proof Theorem 4.1 is a direct consequence of Theorems 1.5 and 2.1. �

We can show the absolute continuity of refinable distributions μλ for a.e. λ ∈ (1, a)

with some a > 1 without assuming the transversality condition used in Theorem 1.3
of Peres and Solomyak [21]. Moreover, we can give the decay order of the Fourier
transforms of μλ for a.e. λ ∈ (1,2).

Proposition 4.1 Let λ > 1 and q := ∑m
j=1 c2

j λ
−2. Then we have the following.

(i) Let N be the smallest positive integer satisfying 2−N log 3 + q < 1. Then, for a.e.
λ ∈ (1, (9/5)2−N

), μλ has an L2-density. In particular, let m ≥ 3 and cj = λ/m

for 1 ≤ j ≤ m. Then N = 1 and μλ has an L2-density for a.e. λ ∈ (1,3/
√

5).
(ii) Let n ∈ Z+. We have, for a.e. λ ∈ (22−n−1

,22−n
),

∣

∣μ̂λ(z)
∣

∣ = O
(|z|(−0.0013)(1−q)2n)

.

Proof The distribution μλ is λ−1-decomposable with ρ(dx) = ∑m
j=1 cjλ

−1δdj
(λdx).

Note that ρ ∗ ρ̄({0}) = q . Thus the proof is clear from Theorem 1.4. �

We add a result on the non-smoothness of the distributions in L(b). We say that
a probability distribution μ on R

d belongs to the class W∞(Rd) if, for every γ > 0,
|μ̂(z)| = O(|z|−γ ) as |z| → ∞. If μ ∈ W∞(Rd), then μ has a bounded density of
class C∞(Rd). The converse is also true provided that the support of μ is compact.
Dubickas and Xu [5] proved in their Theorem 1.1 that a λ-refinable distribution μλ

does not have a density of class C∞(R), provided that λ > 1 and that all dj /dj0 for
1 ≤ j ≤ m are rational with some dj0 
= 0. Thus νb,p does not have a density of class
C∞(R) for every b and p in (0,1). Recently, Wang and Xu [27] proved that all λ-
refinable distributions μλ do not have densities of class C∞(R). We also give another
proof. Define the Laplace transform Lρ(u) on [0,∞) for a probability distribution ρ

on [0,∞) as

Lρ(u) :=
∫ ∞

0−
e−uxρ(dx).

Under the assumption that 0 < ρ({0}) < 1, we define a regularly varying function
Kλ0(x) on (0,∞) with the index −λ0 := logρ({0})/| logb| for a probability distri-
bution ρ on [0,∞) as

Kλ0(x) := x−λ0 exp

(∫ x

1

logρ({0}) − logLρ(u)

u logb
du

)

.

For two positive functions f1(x) and f2(x) on (0,∞), we define the relation f1(x) �
f2(x) by 0 < lim infx→∞ f1(x)/f2(x) and lim supx→∞ f1(x)/f2(x) < ∞. The fol-
lowing lemma is due to Proposition 4.1 of Watanabe [31].

Lemma 4.1 Let μ be a b-decomposable distribution on [0,∞) with ρ in (1.1). If
0 < ρ({0}) < 1, then

μ
([0,1/t]) � Kλ0(t) as t → ∞.
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Proposition 4.2 Let μ ∈ L(b) on R
d satisfying (1.1).

(i) Suppose that ρ ∗ ρ̄({0}) > 2−1. Then μ /∈ W∞(Rd). Moreover, if the support of
ρ is compact, then μ does not have a density of class C∞(Rd).

(ii) Suppose that d = 1 and there exists a ∈ R such that ρ((−∞, a)) = 0 and 0 <

ρ({a}) < 1. Let k0 := [logρ({a})/ logb]. Then μ does not have a density of class
Ck0(R). In particular, all λ-refinable distributions μλ with λ > 1 do not have
densities of class C∞(R).

Proof First we prove (i). If ρ ∗ ρ̄({0}) = 1, then μ is a delta measure. Thus, let q :=
ρ ∗ ρ̄({0}) ∈ (2−1,1) and set η(dx) := (ρ ∗ ρ̄(dx) − qδ0(dx))/(1 − q). Note from
(1.2) that η has a finite log-moment. Using the inequality 1 − x ≥ exp(a−1x log(1 −
a)) for 0 ≤ x ≤ a < 1, we see from (ii) of Lemma 2.3 that

∣

∣μ̂(z)
∣

∣

2 =
∞
∏

k=0

(

1 − (1 − q)

∫

Rd

(

1 − cos
〈

bkz, x
〉)

η(dx)

)

≥ exp

(

−2−1
∣

∣log(2q − 1)
∣

∣

∫

Rd

Hb

(∣

∣〈z, x〉∣∣)η(dx)

)

≥ exp

(

−2−1
∣

∣log(2q − 1)
∣

∣C2

∫

Rd

log
(

2 + ∣

∣〈z, x〉∣∣)η(dx)

)

≥ (

2 + |z|)−γ exp

(

−2−1C2
∣

∣log(2q − 1)
∣

∣

∫

Rd

log
(

2 + |x|)η(dx)

)

,

where γ := 2−1C2| log(2q − 1)| > 0. Thus μ /∈ W∞(Rd). Note that the support of
μ is compact if and only if so is that of ρ. Thus the second assertion is clear. Next
we prove (ii). Suppose that d = 1 and there exists a ∈ R such that ρ((−∞, a)) = 0
and 0 < ρ({a}) < 1 and assume that μ has a density of class Ck(R) with k ∈ Z+. By
translating the support of ρ, we can assume that a = 0. Noting that μ((−∞,0)) = 0,
we see that

μ
([0,1/t]) = o

(

t−k−1) as t → ∞.

Thus we find from Lemma 4.1 that k + 1 ≤ λ0, but see from the definitions of k0 and
λ0 that λ0 < k0 + 1. Hence μ does not have a density of class Ck0(R). The second
assertion is obvious. �

5 Applications to Lévy Processes

Let 0 < b < 1 and t > 0. Let ζt be an infinitely divisible distribution on R
d defined

by

̂ζt (z) = exp

(

t

∞
∑

n=0

∫

Rd

(

exp
(

i
〈

bnz, x
〉) − 1 − i〈bnz, x〉

1 + |x|2
)

ν(dx) + it〈z, x0〉
)

, (5.1)
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where x0 ∈ R
d and ν is a measure on R

d with ν({0}) = 0 and
∫

Rd

(|x|2 ∧ log
(

2 + |x|))ν(dx) < ∞. (5.2)

Then μ = ζt satisfies (1.1) with ρ = ρt defined by

ρ̂t (z) = exp

(

t

∫

Rd

(

exp
(

i〈z, x〉) − 1 − i〈z, x〉
1 + |x|2

)

ν(dx) + it (1 − b)〈z, x0〉
)

.

Moreover (5.2) is equivalent to (1.2). Hence ζt ∈ L(b) and it is the distribution of
Xt for some Lévy process {Xt } on R

d without Gaussian part. See Lemma 2.1 of
Watanabe [29] and Sato [25]. Thus {ζt } satisfies the convolution semigroup property,
that is, ζs ∗ ζt = ζs+t for all s, t > 0. We assume that the linear span of the support of
ν is the whole space R

d . By virtue of Wolfe’s theorem in [36], ζt is either singular or
absolutely continuous for t > 0. Thus there are logically three cases:

Case A. ζt is absolutely continuous for all t > 0;
Case B. ζt is singular for all t > 0;
Case C. There is T ∈ (0,∞) such that ζt is singular for 0 < t < T and absolutely

continuous for t > T .

We show the existence of Cases A, B, and C, respectively, in Propositions 5.1, 5.3,
and Theorem 5.1 below.

Proposition 5.1 Let d = 1. Suppose that ν in (5.1) satisfies ν(R) = ∞. Then we have
the following.

(i) If b is a PS number, then ζt is absolutely continuous with a bounded continuous
density for all t > 0.

(ii) If b is an EK number, then ζt ∈ W∞(R) for all t > 0.

Proof Let δ > 0 and set Cδ := ν(|x| > δ). Applying Jensen’s inequality, we have

∣

∣̂ζt (z)
∣

∣ = exp

(

−t

∫

R

Hb

(|zx|)ν(dx)

)

≤ C−1
δ

∫

|x|>δ

exp
(−tCδHb

(|zx|))ν(dx).

(5.3)
Note that as δ → 0, Cδ → ∞. Thus, if b is a PS number, then we see from Theo-
rem 1.2 that

∫

R
|̂ζt (z)|dz < ∞ for all t > 0. Moreover, if b is an EK number, then we

find from Theorem 1.3 that ζt ∈ W∞(R) for all t > 0. �

Proposition 5.2 Let d = 1. Suppose that ν in (5.1) satisfies ν(R) < ∞. Then we have
the following.

(i) Let n ∈ Z+. For a.e. b ∈ ((5/9)2−n
, (5/9)2−n−1

), ζt is absolutely continuous with
a bounded continuous density for all t > 2−n(ν(R))−1 log 3.

(ii) Let n, k ∈ Z+. For a.e. b ∈ (2−2−n
,2−2−n−1

), ζt is absolutely continuous with a
bounded density of class Ck(R) for all t > 371(k + 1)2−n(ν(R))−1.
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Proof Note that (5.3) holds. Thus assertions (i) and (ii) follow from (i) of Remark 1.2
and (i) of Remark 1.3, respectively. �

Proposition 5.3 Let d = 1. Suppose that ν in (5.1) is a finite discrete measure on Z.
If b−1 is a PV number, then ζt is singular for all t > 0.

Proof Let {θj }mj=1 be the Galois conjugates of a PV number b−1. Note that |θj | < 1
for 1 ≤ j ≤ m. Thus, as in the proof of (ii) of Lemma 2.3, there is a constant C > 0
such that, for x ∈ Z,

∞
∑

k=1

(

1 − cos

(

2π

m
∑

j=1

θk
j x

))

≤ C log
(

2 + |x|). (5.4)

Since b−1 is an algebraic integer, we find that, for n ∈ N, there is Nn ∈ Z such that
b−n = Nn − ∑m

j=1 θn
j . Thus we see from (5.4) and (ii) of Lemma 2.3 that, for x ∈ Z,

Hb

(

b−n2π |x|) =
n

∑

k=1

(

1 − cos

(

2π

m
∑

j=1

θk
j |x|

))

+ Hb

(

2π |x|)

≤ (C + C2) log
(

2 + 2π |x|).
It follows from (5.2) that

lim inf
n→∞

∣

∣̂ζt

(

b−n2π
)∣

∣ = lim inf
n→∞ exp

(

−t

∫

Z

Hb

(

b−n2π |x|)ν(dx)

)

≥ exp

(

−t

∫

Z

(C + C2) log
(

2 + 2π |x|)ν(dx)

)

> 0.

Thus, by virtue of the Riemann-Lebesgue theorem, ζt is singular for all t > 0. �

Proposition 5.4

(i) If ν in (5.1) satisfies ν(Rd) < ∞, then ζt /∈ W∞(Rd) for all t > 0.
(ii) If d = 1, ν((−∞,0)) = 0, and 0 < ν((0,∞)) < ∞, then ζt does not have a

density of class C∞(R) for all t > 0.

Proof Define a finite measure σ on R
d as

σ(dx) := ν(dx) + ν(−dx).

Then it holds that, for sufficiently small t > 0,

ρt ∗ ρ̄t

({0}) = exp
(−tσ

(

R
d
))

∞
∑

n=0

(n!)−1tnσ n∗({0})

≥ exp
(−2tν

(

R
d
))

> 1/2.
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Thus we see from Proposition 4.2 that ζt /∈ W∞(Rd) for sufficiently small t > 0, and
hence so is for all t > 0. We have proved (i). Suppose that d = 1, ν((−∞,0)) = 0,
and 0 < ν((0,∞)) < ∞. Since ρ = ρt satisfies the assumption of (ii) of Proposi-
tion 4.2 with a = −t

∫ ∞
0 x(1 + x2)−1ν(dx) + t (1 − b)x0, the assertion (ii) is clear

from Proposition 4.2. �

The upper Hausdorff dimension of a probability distribution μ on R
d is denoted

by dim∗ μ, that is,

dim∗ μ := inf
{

dimE : μ(E) = 1
}

.

The entropy of a discrete probability measure μ on R
d is denoted by H(μ), that is,

H(μ) := −
∑

a∈A

μ
({a}) logμ

({a}),

where the set A is given by A = {a ∈ R
d : μ({a}) > 0}. For a finite discrete measure μ

on R
d , define H(μ) by H(μ) := H((μ(Rd))−1μ). Let η be a finite discrete measure

on R
d with η({0}) = 0. Define a compound Poisson distribution ηt for t ≥ 0 as

ηt := exp
(−tη

(

R
d
))

∞
∑

n=0

(n!)−1tnηn∗.

Note that ηt is a discrete distribution for all t ≥ 0. Define a function hη(t) on R+ as
hη(t) := H(ηt ). The following is due to Proposition 5.1 of Watanabe [29].

Lemma 5.1 Let η be a finite discrete measure on R
d with η({0}) = 0. Then we have

the following.

(i) If H(η) = ∞, then hη(t) = ∞ for all t > 0.
(ii) If H(η) < ∞, then hη(t) < ∞ for all t ≥ 0 and it is positive, continuous, and

strictly increasing for t > 0 with hη(0+) = hη(0) = 0 and limt→∞ hη(t) = ∞.

In the last theorem, we discover that, as time increases, the distribution of a certain
Lévy process on R

d can change from singular with arbitrarily small dimension to
absolutely continuous with a density of class Ck(Rd) of any order k.

Theorem 5.1 Suppose that ν in (5.1) is a finite discrete measure on R
d with H(ν) <

∞. Then the following hold.

(i) We have

dim∗ ζt ≤ hν(t)

| logb|
and ζt is singular for 0 < t < h−1

ν (d| logb|) < ∞.
(ii) If b is a PS number, then ζt is absolutely continuous with a bounded continuous

density for all sufficiently large t > 0.
(iii) If b is an EK number, then, for every k ∈ Z+, ζt is absolutely continuous with a

bounded density of class Ck(Rd) for all sufficiently large t > 0.
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Proof Assertion (i) is due to Theorem 5.1 of Watanabe [29]. Since ζt is full and
ζt ∈ L(b), assertions (ii) and (iii) follow from Theorems 1.2 and 1.3, respectively. �

Finally we raise two open problems on the temporal evolution of continuities of ζt .

Problem 4 Is it true that if ζt is singular for all t > 0, then b−1 is a PV number?

Problem 5 Is it true that if ζt is absolutely continuous for some t > 0, then it has a
bounded continuous density for all sufficiently large t > 0?

Acknowledgements The author is sincerely grateful to Ken-iti Sato for his useful comments on the
early draft.
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